xref: /openbmc/linux/mm/mlock.c (revision 5c889690)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24 
25 #include "internal.h"
26 
27 int can_do_mlock(void)
28 {
29 	if (capable(CAP_IPC_LOCK))
30 		return 1;
31 	if (rlimit(RLIMIT_MEMLOCK) != 0)
32 		return 1;
33 	return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36 
37 /*
38  * Mlocked pages are marked with PageMlocked() flag for efficient testing
39  * in vmscan and, possibly, the fault path; and to support semi-accurate
40  * statistics.
41  *
42  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
43  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44  * The unevictable list is an LRU sibling list to the [in]active lists.
45  * PageUnevictable is set to indicate the unevictable state.
46  *
47  * When lazy mlocking via vmscan, it is important to ensure that the
48  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49  * may have mlocked a page that is being munlocked. So lazy mlock must take
50  * the mmap_sem for read, and verify that the vma really is locked
51  * (see mm/rmap.c).
52  */
53 
54 /*
55  *  LRU accounting for clear_page_mlock()
56  */
57 void clear_page_mlock(struct page *page)
58 {
59 	if (!TestClearPageMlocked(page))
60 		return;
61 
62 	mod_zone_page_state(page_zone(page), NR_MLOCK,
63 			    -hpage_nr_pages(page));
64 	count_vm_event(UNEVICTABLE_PGCLEARED);
65 	if (!isolate_lru_page(page)) {
66 		putback_lru_page(page);
67 	} else {
68 		/*
69 		 * We lost the race. the page already moved to evictable list.
70 		 */
71 		if (PageUnevictable(page))
72 			count_vm_event(UNEVICTABLE_PGSTRANDED);
73 	}
74 }
75 
76 /*
77  * Mark page as mlocked if not already.
78  * If page on LRU, isolate and putback to move to unevictable list.
79  */
80 void mlock_vma_page(struct page *page)
81 {
82 	BUG_ON(!PageLocked(page));
83 
84 	if (!TestSetPageMlocked(page)) {
85 		mod_zone_page_state(page_zone(page), NR_MLOCK,
86 				    hpage_nr_pages(page));
87 		count_vm_event(UNEVICTABLE_PGMLOCKED);
88 		if (!isolate_lru_page(page))
89 			putback_lru_page(page);
90 	}
91 }
92 
93 /*
94  * Finish munlock after successful page isolation
95  *
96  * Page must be locked. This is a wrapper for try_to_munlock()
97  * and putback_lru_page() with munlock accounting.
98  */
99 static void __munlock_isolated_page(struct page *page)
100 {
101 	int ret = SWAP_AGAIN;
102 
103 	/*
104 	 * Optimization: if the page was mapped just once, that's our mapping
105 	 * and we don't need to check all the other vmas.
106 	 */
107 	if (page_mapcount(page) > 1)
108 		ret = try_to_munlock(page);
109 
110 	/* Did try_to_unlock() succeed or punt? */
111 	if (ret != SWAP_MLOCK)
112 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
113 
114 	putback_lru_page(page);
115 }
116 
117 /*
118  * Accounting for page isolation fail during munlock
119  *
120  * Performs accounting when page isolation fails in munlock. There is nothing
121  * else to do because it means some other task has already removed the page
122  * from the LRU. putback_lru_page() will take care of removing the page from
123  * the unevictable list, if necessary. vmscan [page_referenced()] will move
124  * the page back to the unevictable list if some other vma has it mlocked.
125  */
126 static void __munlock_isolation_failed(struct page *page)
127 {
128 	if (PageUnevictable(page))
129 		count_vm_event(UNEVICTABLE_PGSTRANDED);
130 	else
131 		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
132 }
133 
134 /**
135  * munlock_vma_page - munlock a vma page
136  * @page - page to be unlocked
137  *
138  * called from munlock()/munmap() path with page supposedly on the LRU.
139  * When we munlock a page, because the vma where we found the page is being
140  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
141  * page locked so that we can leave it on the unevictable lru list and not
142  * bother vmscan with it.  However, to walk the page's rmap list in
143  * try_to_munlock() we must isolate the page from the LRU.  If some other
144  * task has removed the page from the LRU, we won't be able to do that.
145  * So we clear the PageMlocked as we might not get another chance.  If we
146  * can't isolate the page, we leave it for putback_lru_page() and vmscan
147  * [page_referenced()/try_to_unmap()] to deal with.
148  */
149 unsigned int munlock_vma_page(struct page *page)
150 {
151 	unsigned int page_mask = 0;
152 
153 	BUG_ON(!PageLocked(page));
154 
155 	if (TestClearPageMlocked(page)) {
156 		unsigned int nr_pages = hpage_nr_pages(page);
157 		mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
158 		page_mask = nr_pages - 1;
159 		if (!isolate_lru_page(page))
160 			__munlock_isolated_page(page);
161 		else
162 			__munlock_isolation_failed(page);
163 	}
164 
165 	return page_mask;
166 }
167 
168 /**
169  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
170  * @vma:   target vma
171  * @start: start address
172  * @end:   end address
173  *
174  * This takes care of making the pages present too.
175  *
176  * return 0 on success, negative error code on error.
177  *
178  * vma->vm_mm->mmap_sem must be held for at least read.
179  */
180 long __mlock_vma_pages_range(struct vm_area_struct *vma,
181 		unsigned long start, unsigned long end, int *nonblocking)
182 {
183 	struct mm_struct *mm = vma->vm_mm;
184 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
185 	int gup_flags;
186 
187 	VM_BUG_ON(start & ~PAGE_MASK);
188 	VM_BUG_ON(end   & ~PAGE_MASK);
189 	VM_BUG_ON(start < vma->vm_start);
190 	VM_BUG_ON(end   > vma->vm_end);
191 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
192 
193 	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
194 	/*
195 	 * We want to touch writable mappings with a write fault in order
196 	 * to break COW, except for shared mappings because these don't COW
197 	 * and we would not want to dirty them for nothing.
198 	 */
199 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
200 		gup_flags |= FOLL_WRITE;
201 
202 	/*
203 	 * We want mlock to succeed for regions that have any permissions
204 	 * other than PROT_NONE.
205 	 */
206 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
207 		gup_flags |= FOLL_FORCE;
208 
209 	/*
210 	 * We made sure addr is within a VMA, so the following will
211 	 * not result in a stack expansion that recurses back here.
212 	 */
213 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
214 				NULL, NULL, nonblocking);
215 }
216 
217 /*
218  * convert get_user_pages() return value to posix mlock() error
219  */
220 static int __mlock_posix_error_return(long retval)
221 {
222 	if (retval == -EFAULT)
223 		retval = -ENOMEM;
224 	else if (retval == -ENOMEM)
225 		retval = -EAGAIN;
226 	return retval;
227 }
228 
229 /*
230  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
231  *
232  * The fast path is available only for evictable pages with single mapping.
233  * Then we can bypass the per-cpu pvec and get better performance.
234  * when mapcount > 1 we need try_to_munlock() which can fail.
235  * when !page_evictable(), we need the full redo logic of putback_lru_page to
236  * avoid leaving evictable page in unevictable list.
237  *
238  * In case of success, @page is added to @pvec and @pgrescued is incremented
239  * in case that the page was previously unevictable. @page is also unlocked.
240  */
241 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
242 		int *pgrescued)
243 {
244 	VM_BUG_ON(PageLRU(page));
245 	VM_BUG_ON(!PageLocked(page));
246 
247 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
248 		pagevec_add(pvec, page);
249 		if (TestClearPageUnevictable(page))
250 			(*pgrescued)++;
251 		unlock_page(page);
252 		return true;
253 	}
254 
255 	return false;
256 }
257 
258 /*
259  * Putback multiple evictable pages to the LRU
260  *
261  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
262  * the pages might have meanwhile become unevictable but that is OK.
263  */
264 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
265 {
266 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
267 	/*
268 	 *__pagevec_lru_add() calls release_pages() so we don't call
269 	 * put_page() explicitly
270 	 */
271 	__pagevec_lru_add(pvec);
272 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
273 }
274 
275 /*
276  * Munlock a batch of pages from the same zone
277  *
278  * The work is split to two main phases. First phase clears the Mlocked flag
279  * and attempts to isolate the pages, all under a single zone lru lock.
280  * The second phase finishes the munlock only for pages where isolation
281  * succeeded.
282  *
283  * Note that the pagevec may be modified during the process.
284  */
285 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
286 {
287 	int i;
288 	int nr = pagevec_count(pvec);
289 	int delta_munlocked = -nr;
290 	struct pagevec pvec_putback;
291 	int pgrescued = 0;
292 
293 	/* Phase 1: page isolation */
294 	spin_lock_irq(&zone->lru_lock);
295 	for (i = 0; i < nr; i++) {
296 		struct page *page = pvec->pages[i];
297 
298 		if (TestClearPageMlocked(page)) {
299 			struct lruvec *lruvec;
300 			int lru;
301 
302 			if (PageLRU(page)) {
303 				lruvec = mem_cgroup_page_lruvec(page, zone);
304 				lru = page_lru(page);
305 				/*
306 				 * We already have pin from follow_page_mask()
307 				 * so we can spare the get_page() here.
308 				 */
309 				ClearPageLRU(page);
310 				del_page_from_lru_list(page, lruvec, lru);
311 			} else {
312 				__munlock_isolation_failed(page);
313 				goto skip_munlock;
314 			}
315 
316 		} else {
317 skip_munlock:
318 			/*
319 			 * We won't be munlocking this page in the next phase
320 			 * but we still need to release the follow_page_mask()
321 			 * pin.
322 			 */
323 			pvec->pages[i] = NULL;
324 			put_page(page);
325 			delta_munlocked++;
326 		}
327 	}
328 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
329 	spin_unlock_irq(&zone->lru_lock);
330 
331 	/* Phase 2: page munlock */
332 	pagevec_init(&pvec_putback, 0);
333 	for (i = 0; i < nr; i++) {
334 		struct page *page = pvec->pages[i];
335 
336 		if (page) {
337 			lock_page(page);
338 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
339 					&pgrescued)) {
340 				/*
341 				 * Slow path. We don't want to lose the last
342 				 * pin before unlock_page()
343 				 */
344 				get_page(page); /* for putback_lru_page() */
345 				__munlock_isolated_page(page);
346 				unlock_page(page);
347 				put_page(page); /* from follow_page_mask() */
348 			}
349 		}
350 	}
351 
352 	/*
353 	 * Phase 3: page putback for pages that qualified for the fast path
354 	 * This will also call put_page() to return pin from follow_page_mask()
355 	 */
356 	if (pagevec_count(&pvec_putback))
357 		__putback_lru_fast(&pvec_putback, pgrescued);
358 }
359 
360 /*
361  * Fill up pagevec for __munlock_pagevec using pte walk
362  *
363  * The function expects that the struct page corresponding to @start address is
364  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
365  *
366  * The rest of @pvec is filled by subsequent pages within the same pmd and same
367  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
368  * pages also get pinned.
369  *
370  * Returns the address of the next page that should be scanned. This equals
371  * @start + PAGE_SIZE when no page could be added by the pte walk.
372  */
373 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
374 		struct vm_area_struct *vma, int zoneid,	unsigned long start,
375 		unsigned long end)
376 {
377 	pte_t *pte;
378 	spinlock_t *ptl;
379 
380 	/*
381 	 * Initialize pte walk starting at the already pinned page where we
382 	 * are sure that there is a pte.
383 	 */
384 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
385 	end = min(end, pmd_addr_end(start, end));
386 
387 	/* The page next to the pinned page is the first we will try to get */
388 	start += PAGE_SIZE;
389 	while (start < end) {
390 		struct page *page = NULL;
391 		pte++;
392 		if (pte_present(*pte))
393 			page = vm_normal_page(vma, start, *pte);
394 		/*
395 		 * Break if page could not be obtained or the page's node+zone does not
396 		 * match
397 		 */
398 		if (!page || page_zone_id(page) != zoneid)
399 			break;
400 
401 		get_page(page);
402 		/*
403 		 * Increase the address that will be returned *before* the
404 		 * eventual break due to pvec becoming full by adding the page
405 		 */
406 		start += PAGE_SIZE;
407 		if (pagevec_add(pvec, page) == 0)
408 			break;
409 	}
410 	pte_unmap_unlock(pte, ptl);
411 	return start;
412 }
413 
414 /*
415  * munlock_vma_pages_range() - munlock all pages in the vma range.'
416  * @vma - vma containing range to be munlock()ed.
417  * @start - start address in @vma of the range
418  * @end - end of range in @vma.
419  *
420  *  For mremap(), munmap() and exit().
421  *
422  * Called with @vma VM_LOCKED.
423  *
424  * Returns with VM_LOCKED cleared.  Callers must be prepared to
425  * deal with this.
426  *
427  * We don't save and restore VM_LOCKED here because pages are
428  * still on lru.  In unmap path, pages might be scanned by reclaim
429  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
430  * free them.  This will result in freeing mlocked pages.
431  */
432 void munlock_vma_pages_range(struct vm_area_struct *vma,
433 			     unsigned long start, unsigned long end)
434 {
435 	vma->vm_flags &= ~VM_LOCKED;
436 
437 	while (start < end) {
438 		struct page *page = NULL;
439 		unsigned int page_mask, page_increm;
440 		struct pagevec pvec;
441 		struct zone *zone;
442 		int zoneid;
443 
444 		pagevec_init(&pvec, 0);
445 		/*
446 		 * Although FOLL_DUMP is intended for get_dump_page(),
447 		 * it just so happens that its special treatment of the
448 		 * ZERO_PAGE (returning an error instead of doing get_page)
449 		 * suits munlock very well (and if somehow an abnormal page
450 		 * has sneaked into the range, we won't oops here: great).
451 		 */
452 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
453 				&page_mask);
454 
455 		if (page && !IS_ERR(page)) {
456 			if (PageTransHuge(page)) {
457 				lock_page(page);
458 				/*
459 				 * Any THP page found by follow_page_mask() may
460 				 * have gotten split before reaching
461 				 * munlock_vma_page(), so we need to recompute
462 				 * the page_mask here.
463 				 */
464 				page_mask = munlock_vma_page(page);
465 				unlock_page(page);
466 				put_page(page); /* follow_page_mask() */
467 			} else {
468 				/*
469 				 * Non-huge pages are handled in batches via
470 				 * pagevec. The pin from follow_page_mask()
471 				 * prevents them from collapsing by THP.
472 				 */
473 				pagevec_add(&pvec, page);
474 				zone = page_zone(page);
475 				zoneid = page_zone_id(page);
476 
477 				/*
478 				 * Try to fill the rest of pagevec using fast
479 				 * pte walk. This will also update start to
480 				 * the next page to process. Then munlock the
481 				 * pagevec.
482 				 */
483 				start = __munlock_pagevec_fill(&pvec, vma,
484 						zoneid, start, end);
485 				__munlock_pagevec(&pvec, zone);
486 				goto next;
487 			}
488 		}
489 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
490 		start += page_increm * PAGE_SIZE;
491 next:
492 		cond_resched();
493 	}
494 }
495 
496 /*
497  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
498  *
499  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
500  * munlock is a no-op.  However, for some special vmas, we go ahead and
501  * populate the ptes.
502  *
503  * For vmas that pass the filters, merge/split as appropriate.
504  */
505 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
506 	unsigned long start, unsigned long end, vm_flags_t newflags)
507 {
508 	struct mm_struct *mm = vma->vm_mm;
509 	pgoff_t pgoff;
510 	int nr_pages;
511 	int ret = 0;
512 	int lock = !!(newflags & VM_LOCKED);
513 
514 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
515 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
516 		goto out;	/* don't set VM_LOCKED,  don't count */
517 
518 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
519 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
520 			  vma->vm_file, pgoff, vma_policy(vma));
521 	if (*prev) {
522 		vma = *prev;
523 		goto success;
524 	}
525 
526 	if (start != vma->vm_start) {
527 		ret = split_vma(mm, vma, start, 1);
528 		if (ret)
529 			goto out;
530 	}
531 
532 	if (end != vma->vm_end) {
533 		ret = split_vma(mm, vma, end, 0);
534 		if (ret)
535 			goto out;
536 	}
537 
538 success:
539 	/*
540 	 * Keep track of amount of locked VM.
541 	 */
542 	nr_pages = (end - start) >> PAGE_SHIFT;
543 	if (!lock)
544 		nr_pages = -nr_pages;
545 	mm->locked_vm += nr_pages;
546 
547 	/*
548 	 * vm_flags is protected by the mmap_sem held in write mode.
549 	 * It's okay if try_to_unmap_one unmaps a page just after we
550 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
551 	 */
552 
553 	if (lock)
554 		vma->vm_flags = newflags;
555 	else
556 		munlock_vma_pages_range(vma, start, end);
557 
558 out:
559 	*prev = vma;
560 	return ret;
561 }
562 
563 static int do_mlock(unsigned long start, size_t len, int on)
564 {
565 	unsigned long nstart, end, tmp;
566 	struct vm_area_struct * vma, * prev;
567 	int error;
568 
569 	VM_BUG_ON(start & ~PAGE_MASK);
570 	VM_BUG_ON(len != PAGE_ALIGN(len));
571 	end = start + len;
572 	if (end < start)
573 		return -EINVAL;
574 	if (end == start)
575 		return 0;
576 	vma = find_vma(current->mm, start);
577 	if (!vma || vma->vm_start > start)
578 		return -ENOMEM;
579 
580 	prev = vma->vm_prev;
581 	if (start > vma->vm_start)
582 		prev = vma;
583 
584 	for (nstart = start ; ; ) {
585 		vm_flags_t newflags;
586 
587 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
588 
589 		newflags = vma->vm_flags & ~VM_LOCKED;
590 		if (on)
591 			newflags |= VM_LOCKED;
592 
593 		tmp = vma->vm_end;
594 		if (tmp > end)
595 			tmp = end;
596 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
597 		if (error)
598 			break;
599 		nstart = tmp;
600 		if (nstart < prev->vm_end)
601 			nstart = prev->vm_end;
602 		if (nstart >= end)
603 			break;
604 
605 		vma = prev->vm_next;
606 		if (!vma || vma->vm_start != nstart) {
607 			error = -ENOMEM;
608 			break;
609 		}
610 	}
611 	return error;
612 }
613 
614 /*
615  * __mm_populate - populate and/or mlock pages within a range of address space.
616  *
617  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
618  * flags. VMAs must be already marked with the desired vm_flags, and
619  * mmap_sem must not be held.
620  */
621 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
622 {
623 	struct mm_struct *mm = current->mm;
624 	unsigned long end, nstart, nend;
625 	struct vm_area_struct *vma = NULL;
626 	int locked = 0;
627 	long ret = 0;
628 
629 	VM_BUG_ON(start & ~PAGE_MASK);
630 	VM_BUG_ON(len != PAGE_ALIGN(len));
631 	end = start + len;
632 
633 	for (nstart = start; nstart < end; nstart = nend) {
634 		/*
635 		 * We want to fault in pages for [nstart; end) address range.
636 		 * Find first corresponding VMA.
637 		 */
638 		if (!locked) {
639 			locked = 1;
640 			down_read(&mm->mmap_sem);
641 			vma = find_vma(mm, nstart);
642 		} else if (nstart >= vma->vm_end)
643 			vma = vma->vm_next;
644 		if (!vma || vma->vm_start >= end)
645 			break;
646 		/*
647 		 * Set [nstart; nend) to intersection of desired address
648 		 * range with the first VMA. Also, skip undesirable VMA types.
649 		 */
650 		nend = min(end, vma->vm_end);
651 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
652 			continue;
653 		if (nstart < vma->vm_start)
654 			nstart = vma->vm_start;
655 		/*
656 		 * Now fault in a range of pages. __mlock_vma_pages_range()
657 		 * double checks the vma flags, so that it won't mlock pages
658 		 * if the vma was already munlocked.
659 		 */
660 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
661 		if (ret < 0) {
662 			if (ignore_errors) {
663 				ret = 0;
664 				continue;	/* continue at next VMA */
665 			}
666 			ret = __mlock_posix_error_return(ret);
667 			break;
668 		}
669 		nend = nstart + ret * PAGE_SIZE;
670 		ret = 0;
671 	}
672 	if (locked)
673 		up_read(&mm->mmap_sem);
674 	return ret;	/* 0 or negative error code */
675 }
676 
677 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
678 {
679 	unsigned long locked;
680 	unsigned long lock_limit;
681 	int error = -ENOMEM;
682 
683 	if (!can_do_mlock())
684 		return -EPERM;
685 
686 	lru_add_drain_all();	/* flush pagevec */
687 
688 	down_write(&current->mm->mmap_sem);
689 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
690 	start &= PAGE_MASK;
691 
692 	locked = len >> PAGE_SHIFT;
693 	locked += current->mm->locked_vm;
694 
695 	lock_limit = rlimit(RLIMIT_MEMLOCK);
696 	lock_limit >>= PAGE_SHIFT;
697 
698 	/* check against resource limits */
699 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
700 		error = do_mlock(start, len, 1);
701 	up_write(&current->mm->mmap_sem);
702 	if (!error)
703 		error = __mm_populate(start, len, 0);
704 	return error;
705 }
706 
707 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
708 {
709 	int ret;
710 
711 	down_write(&current->mm->mmap_sem);
712 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
713 	start &= PAGE_MASK;
714 	ret = do_mlock(start, len, 0);
715 	up_write(&current->mm->mmap_sem);
716 	return ret;
717 }
718 
719 static int do_mlockall(int flags)
720 {
721 	struct vm_area_struct * vma, * prev = NULL;
722 
723 	if (flags & MCL_FUTURE)
724 		current->mm->def_flags |= VM_LOCKED;
725 	else
726 		current->mm->def_flags &= ~VM_LOCKED;
727 	if (flags == MCL_FUTURE)
728 		goto out;
729 
730 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
731 		vm_flags_t newflags;
732 
733 		newflags = vma->vm_flags & ~VM_LOCKED;
734 		if (flags & MCL_CURRENT)
735 			newflags |= VM_LOCKED;
736 
737 		/* Ignore errors */
738 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
739 		cond_resched();
740 	}
741 out:
742 	return 0;
743 }
744 
745 SYSCALL_DEFINE1(mlockall, int, flags)
746 {
747 	unsigned long lock_limit;
748 	int ret = -EINVAL;
749 
750 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
751 		goto out;
752 
753 	ret = -EPERM;
754 	if (!can_do_mlock())
755 		goto out;
756 
757 	if (flags & MCL_CURRENT)
758 		lru_add_drain_all();	/* flush pagevec */
759 
760 	down_write(&current->mm->mmap_sem);
761 
762 	lock_limit = rlimit(RLIMIT_MEMLOCK);
763 	lock_limit >>= PAGE_SHIFT;
764 
765 	ret = -ENOMEM;
766 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
767 	    capable(CAP_IPC_LOCK))
768 		ret = do_mlockall(flags);
769 	up_write(&current->mm->mmap_sem);
770 	if (!ret && (flags & MCL_CURRENT))
771 		mm_populate(0, TASK_SIZE);
772 out:
773 	return ret;
774 }
775 
776 SYSCALL_DEFINE0(munlockall)
777 {
778 	int ret;
779 
780 	down_write(&current->mm->mmap_sem);
781 	ret = do_mlockall(0);
782 	up_write(&current->mm->mmap_sem);
783 	return ret;
784 }
785 
786 /*
787  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
788  * shm segments) get accounted against the user_struct instead.
789  */
790 static DEFINE_SPINLOCK(shmlock_user_lock);
791 
792 int user_shm_lock(size_t size, struct user_struct *user)
793 {
794 	unsigned long lock_limit, locked;
795 	int allowed = 0;
796 
797 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
798 	lock_limit = rlimit(RLIMIT_MEMLOCK);
799 	if (lock_limit == RLIM_INFINITY)
800 		allowed = 1;
801 	lock_limit >>= PAGE_SHIFT;
802 	spin_lock(&shmlock_user_lock);
803 	if (!allowed &&
804 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
805 		goto out;
806 	get_uid(user);
807 	user->locked_shm += locked;
808 	allowed = 1;
809 out:
810 	spin_unlock(&shmlock_user_lock);
811 	return allowed;
812 }
813 
814 void user_shm_unlock(size_t size, struct user_struct *user)
815 {
816 	spin_lock(&shmlock_user_lock);
817 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
818 	spin_unlock(&shmlock_user_lock);
819 	free_uid(user);
820 }
821