xref: /openbmc/linux/mm/mlock.c (revision 586a32ac)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/export.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void clear_page_mlock(struct page *page)
55 {
56 	if (!TestClearPageMlocked(page))
57 		return;
58 
59 	mod_zone_page_state(page_zone(page), NR_MLOCK,
60 			    -hpage_nr_pages(page));
61 	count_vm_event(UNEVICTABLE_PGCLEARED);
62 	if (!isolate_lru_page(page)) {
63 		putback_lru_page(page);
64 	} else {
65 		/*
66 		 * We lost the race. the page already moved to evictable list.
67 		 */
68 		if (PageUnevictable(page))
69 			count_vm_event(UNEVICTABLE_PGSTRANDED);
70 	}
71 }
72 
73 /*
74  * Mark page as mlocked if not already.
75  * If page on LRU, isolate and putback to move to unevictable list.
76  */
77 void mlock_vma_page(struct page *page)
78 {
79 	BUG_ON(!PageLocked(page));
80 
81 	if (!TestSetPageMlocked(page)) {
82 		mod_zone_page_state(page_zone(page), NR_MLOCK,
83 				    hpage_nr_pages(page));
84 		count_vm_event(UNEVICTABLE_PGMLOCKED);
85 		if (!isolate_lru_page(page))
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /**
91  * munlock_vma_page - munlock a vma page
92  * @page - page to be unlocked
93  *
94  * called from munlock()/munmap() path with page supposedly on the LRU.
95  * When we munlock a page, because the vma where we found the page is being
96  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
97  * page locked so that we can leave it on the unevictable lru list and not
98  * bother vmscan with it.  However, to walk the page's rmap list in
99  * try_to_munlock() we must isolate the page from the LRU.  If some other
100  * task has removed the page from the LRU, we won't be able to do that.
101  * So we clear the PageMlocked as we might not get another chance.  If we
102  * can't isolate the page, we leave it for putback_lru_page() and vmscan
103  * [page_referenced()/try_to_unmap()] to deal with.
104  */
105 unsigned int munlock_vma_page(struct page *page)
106 {
107 	unsigned int page_mask = 0;
108 
109 	BUG_ON(!PageLocked(page));
110 
111 	if (TestClearPageMlocked(page)) {
112 		unsigned int nr_pages = hpage_nr_pages(page);
113 		mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
114 		page_mask = nr_pages - 1;
115 		if (!isolate_lru_page(page)) {
116 			int ret = SWAP_AGAIN;
117 
118 			/*
119 			 * Optimization: if the page was mapped just once,
120 			 * that's our mapping and we don't need to check all the
121 			 * other vmas.
122 			 */
123 			if (page_mapcount(page) > 1)
124 				ret = try_to_munlock(page);
125 			/*
126 			 * did try_to_unlock() succeed or punt?
127 			 */
128 			if (ret != SWAP_MLOCK)
129 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
130 
131 			putback_lru_page(page);
132 		} else {
133 			/*
134 			 * Some other task has removed the page from the LRU.
135 			 * putback_lru_page() will take care of removing the
136 			 * page from the unevictable list, if necessary.
137 			 * vmscan [page_referenced()] will move the page back
138 			 * to the unevictable list if some other vma has it
139 			 * mlocked.
140 			 */
141 			if (PageUnevictable(page))
142 				count_vm_event(UNEVICTABLE_PGSTRANDED);
143 			else
144 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
145 		}
146 	}
147 
148 	return page_mask;
149 }
150 
151 /**
152  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
153  * @vma:   target vma
154  * @start: start address
155  * @end:   end address
156  *
157  * This takes care of making the pages present too.
158  *
159  * return 0 on success, negative error code on error.
160  *
161  * vma->vm_mm->mmap_sem must be held for at least read.
162  */
163 long __mlock_vma_pages_range(struct vm_area_struct *vma,
164 		unsigned long start, unsigned long end, int *nonblocking)
165 {
166 	struct mm_struct *mm = vma->vm_mm;
167 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
168 	int gup_flags;
169 
170 	VM_BUG_ON(start & ~PAGE_MASK);
171 	VM_BUG_ON(end   & ~PAGE_MASK);
172 	VM_BUG_ON(start < vma->vm_start);
173 	VM_BUG_ON(end   > vma->vm_end);
174 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
175 
176 	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
177 	/*
178 	 * We want to touch writable mappings with a write fault in order
179 	 * to break COW, except for shared mappings because these don't COW
180 	 * and we would not want to dirty them for nothing.
181 	 */
182 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
183 		gup_flags |= FOLL_WRITE;
184 
185 	/*
186 	 * We want mlock to succeed for regions that have any permissions
187 	 * other than PROT_NONE.
188 	 */
189 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
190 		gup_flags |= FOLL_FORCE;
191 
192 	/*
193 	 * We made sure addr is within a VMA, so the following will
194 	 * not result in a stack expansion that recurses back here.
195 	 */
196 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
197 				NULL, NULL, nonblocking);
198 }
199 
200 /*
201  * convert get_user_pages() return value to posix mlock() error
202  */
203 static int __mlock_posix_error_return(long retval)
204 {
205 	if (retval == -EFAULT)
206 		retval = -ENOMEM;
207 	else if (retval == -ENOMEM)
208 		retval = -EAGAIN;
209 	return retval;
210 }
211 
212 /*
213  * munlock_vma_pages_range() - munlock all pages in the vma range.'
214  * @vma - vma containing range to be munlock()ed.
215  * @start - start address in @vma of the range
216  * @end - end of range in @vma.
217  *
218  *  For mremap(), munmap() and exit().
219  *
220  * Called with @vma VM_LOCKED.
221  *
222  * Returns with VM_LOCKED cleared.  Callers must be prepared to
223  * deal with this.
224  *
225  * We don't save and restore VM_LOCKED here because pages are
226  * still on lru.  In unmap path, pages might be scanned by reclaim
227  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
228  * free them.  This will result in freeing mlocked pages.
229  */
230 void munlock_vma_pages_range(struct vm_area_struct *vma,
231 			     unsigned long start, unsigned long end)
232 {
233 	vma->vm_flags &= ~VM_LOCKED;
234 
235 	while (start < end) {
236 		struct page *page;
237 		unsigned int page_mask, page_increm;
238 
239 		/*
240 		 * Although FOLL_DUMP is intended for get_dump_page(),
241 		 * it just so happens that its special treatment of the
242 		 * ZERO_PAGE (returning an error instead of doing get_page)
243 		 * suits munlock very well (and if somehow an abnormal page
244 		 * has sneaked into the range, we won't oops here: great).
245 		 */
246 		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
247 					&page_mask);
248 		if (page && !IS_ERR(page)) {
249 			lock_page(page);
250 			/*
251 			 * Any THP page found by follow_page_mask() may have
252 			 * gotten split before reaching munlock_vma_page(),
253 			 * so we need to recompute the page_mask here.
254 			 */
255 			page_mask = munlock_vma_page(page);
256 			unlock_page(page);
257 			put_page(page);
258 		}
259 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
260 		start += page_increm * PAGE_SIZE;
261 		cond_resched();
262 	}
263 }
264 
265 /*
266  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
267  *
268  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
269  * munlock is a no-op.  However, for some special vmas, we go ahead and
270  * populate the ptes.
271  *
272  * For vmas that pass the filters, merge/split as appropriate.
273  */
274 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
275 	unsigned long start, unsigned long end, vm_flags_t newflags)
276 {
277 	struct mm_struct *mm = vma->vm_mm;
278 	pgoff_t pgoff;
279 	int nr_pages;
280 	int ret = 0;
281 	int lock = !!(newflags & VM_LOCKED);
282 
283 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
284 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
285 		goto out;	/* don't set VM_LOCKED,  don't count */
286 
287 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
288 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
289 			  vma->vm_file, pgoff, vma_policy(vma));
290 	if (*prev) {
291 		vma = *prev;
292 		goto success;
293 	}
294 
295 	if (start != vma->vm_start) {
296 		ret = split_vma(mm, vma, start, 1);
297 		if (ret)
298 			goto out;
299 	}
300 
301 	if (end != vma->vm_end) {
302 		ret = split_vma(mm, vma, end, 0);
303 		if (ret)
304 			goto out;
305 	}
306 
307 success:
308 	/*
309 	 * Keep track of amount of locked VM.
310 	 */
311 	nr_pages = (end - start) >> PAGE_SHIFT;
312 	if (!lock)
313 		nr_pages = -nr_pages;
314 	mm->locked_vm += nr_pages;
315 
316 	/*
317 	 * vm_flags is protected by the mmap_sem held in write mode.
318 	 * It's okay if try_to_unmap_one unmaps a page just after we
319 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
320 	 */
321 
322 	if (lock)
323 		vma->vm_flags = newflags;
324 	else
325 		munlock_vma_pages_range(vma, start, end);
326 
327 out:
328 	*prev = vma;
329 	return ret;
330 }
331 
332 static int do_mlock(unsigned long start, size_t len, int on)
333 {
334 	unsigned long nstart, end, tmp;
335 	struct vm_area_struct * vma, * prev;
336 	int error;
337 
338 	VM_BUG_ON(start & ~PAGE_MASK);
339 	VM_BUG_ON(len != PAGE_ALIGN(len));
340 	end = start + len;
341 	if (end < start)
342 		return -EINVAL;
343 	if (end == start)
344 		return 0;
345 	vma = find_vma(current->mm, start);
346 	if (!vma || vma->vm_start > start)
347 		return -ENOMEM;
348 
349 	prev = vma->vm_prev;
350 	if (start > vma->vm_start)
351 		prev = vma;
352 
353 	for (nstart = start ; ; ) {
354 		vm_flags_t newflags;
355 
356 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
357 
358 		newflags = vma->vm_flags & ~VM_LOCKED;
359 		if (on)
360 			newflags |= VM_LOCKED;
361 
362 		tmp = vma->vm_end;
363 		if (tmp > end)
364 			tmp = end;
365 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
366 		if (error)
367 			break;
368 		nstart = tmp;
369 		if (nstart < prev->vm_end)
370 			nstart = prev->vm_end;
371 		if (nstart >= end)
372 			break;
373 
374 		vma = prev->vm_next;
375 		if (!vma || vma->vm_start != nstart) {
376 			error = -ENOMEM;
377 			break;
378 		}
379 	}
380 	return error;
381 }
382 
383 /*
384  * __mm_populate - populate and/or mlock pages within a range of address space.
385  *
386  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
387  * flags. VMAs must be already marked with the desired vm_flags, and
388  * mmap_sem must not be held.
389  */
390 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
391 {
392 	struct mm_struct *mm = current->mm;
393 	unsigned long end, nstart, nend;
394 	struct vm_area_struct *vma = NULL;
395 	int locked = 0;
396 	long ret = 0;
397 
398 	VM_BUG_ON(start & ~PAGE_MASK);
399 	VM_BUG_ON(len != PAGE_ALIGN(len));
400 	end = start + len;
401 
402 	for (nstart = start; nstart < end; nstart = nend) {
403 		/*
404 		 * We want to fault in pages for [nstart; end) address range.
405 		 * Find first corresponding VMA.
406 		 */
407 		if (!locked) {
408 			locked = 1;
409 			down_read(&mm->mmap_sem);
410 			vma = find_vma(mm, nstart);
411 		} else if (nstart >= vma->vm_end)
412 			vma = vma->vm_next;
413 		if (!vma || vma->vm_start >= end)
414 			break;
415 		/*
416 		 * Set [nstart; nend) to intersection of desired address
417 		 * range with the first VMA. Also, skip undesirable VMA types.
418 		 */
419 		nend = min(end, vma->vm_end);
420 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
421 			continue;
422 		if (nstart < vma->vm_start)
423 			nstart = vma->vm_start;
424 		/*
425 		 * Now fault in a range of pages. __mlock_vma_pages_range()
426 		 * double checks the vma flags, so that it won't mlock pages
427 		 * if the vma was already munlocked.
428 		 */
429 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
430 		if (ret < 0) {
431 			if (ignore_errors) {
432 				ret = 0;
433 				continue;	/* continue at next VMA */
434 			}
435 			ret = __mlock_posix_error_return(ret);
436 			break;
437 		}
438 		nend = nstart + ret * PAGE_SIZE;
439 		ret = 0;
440 	}
441 	if (locked)
442 		up_read(&mm->mmap_sem);
443 	return ret;	/* 0 or negative error code */
444 }
445 
446 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
447 {
448 	unsigned long locked;
449 	unsigned long lock_limit;
450 	int error = -ENOMEM;
451 
452 	if (!can_do_mlock())
453 		return -EPERM;
454 
455 	lru_add_drain_all();	/* flush pagevec */
456 
457 	down_write(&current->mm->mmap_sem);
458 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
459 	start &= PAGE_MASK;
460 
461 	locked = len >> PAGE_SHIFT;
462 	locked += current->mm->locked_vm;
463 
464 	lock_limit = rlimit(RLIMIT_MEMLOCK);
465 	lock_limit >>= PAGE_SHIFT;
466 
467 	/* check against resource limits */
468 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
469 		error = do_mlock(start, len, 1);
470 	up_write(&current->mm->mmap_sem);
471 	if (!error)
472 		error = __mm_populate(start, len, 0);
473 	return error;
474 }
475 
476 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
477 {
478 	int ret;
479 
480 	down_write(&current->mm->mmap_sem);
481 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
482 	start &= PAGE_MASK;
483 	ret = do_mlock(start, len, 0);
484 	up_write(&current->mm->mmap_sem);
485 	return ret;
486 }
487 
488 static int do_mlockall(int flags)
489 {
490 	struct vm_area_struct * vma, * prev = NULL;
491 
492 	if (flags & MCL_FUTURE)
493 		current->mm->def_flags |= VM_LOCKED;
494 	else
495 		current->mm->def_flags &= ~VM_LOCKED;
496 	if (flags == MCL_FUTURE)
497 		goto out;
498 
499 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
500 		vm_flags_t newflags;
501 
502 		newflags = vma->vm_flags & ~VM_LOCKED;
503 		if (flags & MCL_CURRENT)
504 			newflags |= VM_LOCKED;
505 
506 		/* Ignore errors */
507 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
508 	}
509 out:
510 	return 0;
511 }
512 
513 SYSCALL_DEFINE1(mlockall, int, flags)
514 {
515 	unsigned long lock_limit;
516 	int ret = -EINVAL;
517 
518 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
519 		goto out;
520 
521 	ret = -EPERM;
522 	if (!can_do_mlock())
523 		goto out;
524 
525 	if (flags & MCL_CURRENT)
526 		lru_add_drain_all();	/* flush pagevec */
527 
528 	down_write(&current->mm->mmap_sem);
529 
530 	lock_limit = rlimit(RLIMIT_MEMLOCK);
531 	lock_limit >>= PAGE_SHIFT;
532 
533 	ret = -ENOMEM;
534 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
535 	    capable(CAP_IPC_LOCK))
536 		ret = do_mlockall(flags);
537 	up_write(&current->mm->mmap_sem);
538 	if (!ret && (flags & MCL_CURRENT))
539 		mm_populate(0, TASK_SIZE);
540 out:
541 	return ret;
542 }
543 
544 SYSCALL_DEFINE0(munlockall)
545 {
546 	int ret;
547 
548 	down_write(&current->mm->mmap_sem);
549 	ret = do_mlockall(0);
550 	up_write(&current->mm->mmap_sem);
551 	return ret;
552 }
553 
554 /*
555  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
556  * shm segments) get accounted against the user_struct instead.
557  */
558 static DEFINE_SPINLOCK(shmlock_user_lock);
559 
560 int user_shm_lock(size_t size, struct user_struct *user)
561 {
562 	unsigned long lock_limit, locked;
563 	int allowed = 0;
564 
565 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
566 	lock_limit = rlimit(RLIMIT_MEMLOCK);
567 	if (lock_limit == RLIM_INFINITY)
568 		allowed = 1;
569 	lock_limit >>= PAGE_SHIFT;
570 	spin_lock(&shmlock_user_lock);
571 	if (!allowed &&
572 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
573 		goto out;
574 	get_uid(user);
575 	user->locked_shm += locked;
576 	allowed = 1;
577 out:
578 	spin_unlock(&shmlock_user_lock);
579 	return allowed;
580 }
581 
582 void user_shm_unlock(size_t size, struct user_struct *user)
583 {
584 	spin_lock(&shmlock_user_lock);
585 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
586 	spin_unlock(&shmlock_user_lock);
587 	free_uid(user);
588 }
589