xref: /openbmc/linux/mm/mlock.c (revision 4800cd83)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /**
92  * munlock_vma_page - munlock a vma page
93  * @page - page to be unlocked
94  *
95  * called from munlock()/munmap() path with page supposedly on the LRU.
96  * When we munlock a page, because the vma where we found the page is being
97  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98  * page locked so that we can leave it on the unevictable lru list and not
99  * bother vmscan with it.  However, to walk the page's rmap list in
100  * try_to_munlock() we must isolate the page from the LRU.  If some other
101  * task has removed the page from the LRU, we won't be able to do that.
102  * So we clear the PageMlocked as we might not get another chance.  If we
103  * can't isolate the page, we leave it for putback_lru_page() and vmscan
104  * [page_referenced()/try_to_unmap()] to deal with.
105  */
106 void munlock_vma_page(struct page *page)
107 {
108 	BUG_ON(!PageLocked(page));
109 
110 	if (TestClearPageMlocked(page)) {
111 		dec_zone_page_state(page, NR_MLOCK);
112 		if (!isolate_lru_page(page)) {
113 			int ret = try_to_munlock(page);
114 			/*
115 			 * did try_to_unlock() succeed or punt?
116 			 */
117 			if (ret != SWAP_MLOCK)
118 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119 
120 			putback_lru_page(page);
121 		} else {
122 			/*
123 			 * Some other task has removed the page from the LRU.
124 			 * putback_lru_page() will take care of removing the
125 			 * page from the unevictable list, if necessary.
126 			 * vmscan [page_referenced()] will move the page back
127 			 * to the unevictable list if some other vma has it
128 			 * mlocked.
129 			 */
130 			if (PageUnevictable(page))
131 				count_vm_event(UNEVICTABLE_PGSTRANDED);
132 			else
133 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 		}
135 	}
136 }
137 
138 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
139 {
140 	return (vma->vm_flags & VM_GROWSDOWN) &&
141 		(vma->vm_start == addr) &&
142 		!vma_stack_continue(vma->vm_prev, addr);
143 }
144 
145 /**
146  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
147  * @vma:   target vma
148  * @start: start address
149  * @end:   end address
150  *
151  * This takes care of making the pages present too.
152  *
153  * return 0 on success, negative error code on error.
154  *
155  * vma->vm_mm->mmap_sem must be held for at least read.
156  */
157 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
158 				    unsigned long start, unsigned long end,
159 				    int *nonblocking)
160 {
161 	struct mm_struct *mm = vma->vm_mm;
162 	unsigned long addr = start;
163 	int nr_pages = (end - start) / PAGE_SIZE;
164 	int gup_flags;
165 
166 	VM_BUG_ON(start & ~PAGE_MASK);
167 	VM_BUG_ON(end   & ~PAGE_MASK);
168 	VM_BUG_ON(start < vma->vm_start);
169 	VM_BUG_ON(end   > vma->vm_end);
170 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
171 
172 	gup_flags = FOLL_TOUCH;
173 	/*
174 	 * We want to touch writable mappings with a write fault in order
175 	 * to break COW, except for shared mappings because these don't COW
176 	 * and we would not want to dirty them for nothing.
177 	 */
178 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
179 		gup_flags |= FOLL_WRITE;
180 
181 	/*
182 	 * We want mlock to succeed for regions that have any permissions
183 	 * other than PROT_NONE.
184 	 */
185 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
186 		gup_flags |= FOLL_FORCE;
187 
188 	if (vma->vm_flags & VM_LOCKED)
189 		gup_flags |= FOLL_MLOCK;
190 
191 	/* We don't try to access the guard page of a stack vma */
192 	if (stack_guard_page(vma, start)) {
193 		addr += PAGE_SIZE;
194 		nr_pages--;
195 	}
196 
197 	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
198 				NULL, NULL, nonblocking);
199 }
200 
201 /*
202  * convert get_user_pages() return value to posix mlock() error
203  */
204 static int __mlock_posix_error_return(long retval)
205 {
206 	if (retval == -EFAULT)
207 		retval = -ENOMEM;
208 	else if (retval == -ENOMEM)
209 		retval = -EAGAIN;
210 	return retval;
211 }
212 
213 /**
214  * mlock_vma_pages_range() - mlock pages in specified vma range.
215  * @vma - the vma containing the specfied address range
216  * @start - starting address in @vma to mlock
217  * @end   - end address [+1] in @vma to mlock
218  *
219  * For mmap()/mremap()/expansion of mlocked vma.
220  *
221  * return 0 on success for "normal" vmas.
222  *
223  * return number of pages [> 0] to be removed from locked_vm on success
224  * of "special" vmas.
225  */
226 long mlock_vma_pages_range(struct vm_area_struct *vma,
227 			unsigned long start, unsigned long end)
228 {
229 	int nr_pages = (end - start) / PAGE_SIZE;
230 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
231 
232 	/*
233 	 * filter unlockable vmas
234 	 */
235 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
236 		goto no_mlock;
237 
238 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
239 			is_vm_hugetlb_page(vma) ||
240 			vma == get_gate_vma(current))) {
241 
242 		__mlock_vma_pages_range(vma, start, end, NULL);
243 
244 		/* Hide errors from mmap() and other callers */
245 		return 0;
246 	}
247 
248 	/*
249 	 * User mapped kernel pages or huge pages:
250 	 * make these pages present to populate the ptes, but
251 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
252 	 * return nr_pages so these don't get counted against task's
253 	 * locked limit.  huge pages are already counted against
254 	 * locked vm limit.
255 	 */
256 	make_pages_present(start, end);
257 
258 no_mlock:
259 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
260 	return nr_pages;		/* error or pages NOT mlocked */
261 }
262 
263 /*
264  * munlock_vma_pages_range() - munlock all pages in the vma range.'
265  * @vma - vma containing range to be munlock()ed.
266  * @start - start address in @vma of the range
267  * @end - end of range in @vma.
268  *
269  *  For mremap(), munmap() and exit().
270  *
271  * Called with @vma VM_LOCKED.
272  *
273  * Returns with VM_LOCKED cleared.  Callers must be prepared to
274  * deal with this.
275  *
276  * We don't save and restore VM_LOCKED here because pages are
277  * still on lru.  In unmap path, pages might be scanned by reclaim
278  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
279  * free them.  This will result in freeing mlocked pages.
280  */
281 void munlock_vma_pages_range(struct vm_area_struct *vma,
282 			     unsigned long start, unsigned long end)
283 {
284 	unsigned long addr;
285 
286 	lru_add_drain();
287 	vma->vm_flags &= ~VM_LOCKED;
288 
289 	for (addr = start; addr < end; addr += PAGE_SIZE) {
290 		struct page *page;
291 		/*
292 		 * Although FOLL_DUMP is intended for get_dump_page(),
293 		 * it just so happens that its special treatment of the
294 		 * ZERO_PAGE (returning an error instead of doing get_page)
295 		 * suits munlock very well (and if somehow an abnormal page
296 		 * has sneaked into the range, we won't oops here: great).
297 		 */
298 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
299 		if (page && !IS_ERR(page)) {
300 			lock_page(page);
301 			/*
302 			 * Like in __mlock_vma_pages_range(),
303 			 * because we lock page here and migration is
304 			 * blocked by the elevated reference, we need
305 			 * only check for file-cache page truncation.
306 			 */
307 			if (page->mapping)
308 				munlock_vma_page(page);
309 			unlock_page(page);
310 			put_page(page);
311 		}
312 		cond_resched();
313 	}
314 }
315 
316 /*
317  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
318  *
319  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
320  * munlock is a no-op.  However, for some special vmas, we go ahead and
321  * populate the ptes via make_pages_present().
322  *
323  * For vmas that pass the filters, merge/split as appropriate.
324  */
325 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
326 	unsigned long start, unsigned long end, unsigned int newflags)
327 {
328 	struct mm_struct *mm = vma->vm_mm;
329 	pgoff_t pgoff;
330 	int nr_pages;
331 	int ret = 0;
332 	int lock = newflags & VM_LOCKED;
333 
334 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
335 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current))
336 		goto out;	/* don't set VM_LOCKED,  don't count */
337 
338 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
339 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
340 			  vma->vm_file, pgoff, vma_policy(vma));
341 	if (*prev) {
342 		vma = *prev;
343 		goto success;
344 	}
345 
346 	if (start != vma->vm_start) {
347 		ret = split_vma(mm, vma, start, 1);
348 		if (ret)
349 			goto out;
350 	}
351 
352 	if (end != vma->vm_end) {
353 		ret = split_vma(mm, vma, end, 0);
354 		if (ret)
355 			goto out;
356 	}
357 
358 success:
359 	/*
360 	 * Keep track of amount of locked VM.
361 	 */
362 	nr_pages = (end - start) >> PAGE_SHIFT;
363 	if (!lock)
364 		nr_pages = -nr_pages;
365 	mm->locked_vm += nr_pages;
366 
367 	/*
368 	 * vm_flags is protected by the mmap_sem held in write mode.
369 	 * It's okay if try_to_unmap_one unmaps a page just after we
370 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
371 	 */
372 
373 	if (lock)
374 		vma->vm_flags = newflags;
375 	else
376 		munlock_vma_pages_range(vma, start, end);
377 
378 out:
379 	*prev = vma;
380 	return ret;
381 }
382 
383 static int do_mlock(unsigned long start, size_t len, int on)
384 {
385 	unsigned long nstart, end, tmp;
386 	struct vm_area_struct * vma, * prev;
387 	int error;
388 
389 	VM_BUG_ON(start & ~PAGE_MASK);
390 	VM_BUG_ON(len != PAGE_ALIGN(len));
391 	end = start + len;
392 	if (end < start)
393 		return -EINVAL;
394 	if (end == start)
395 		return 0;
396 	vma = find_vma_prev(current->mm, start, &prev);
397 	if (!vma || vma->vm_start > start)
398 		return -ENOMEM;
399 
400 	if (start > vma->vm_start)
401 		prev = vma;
402 
403 	for (nstart = start ; ; ) {
404 		unsigned int newflags;
405 
406 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
407 
408 		newflags = vma->vm_flags | VM_LOCKED;
409 		if (!on)
410 			newflags &= ~VM_LOCKED;
411 
412 		tmp = vma->vm_end;
413 		if (tmp > end)
414 			tmp = end;
415 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
416 		if (error)
417 			break;
418 		nstart = tmp;
419 		if (nstart < prev->vm_end)
420 			nstart = prev->vm_end;
421 		if (nstart >= end)
422 			break;
423 
424 		vma = prev->vm_next;
425 		if (!vma || vma->vm_start != nstart) {
426 			error = -ENOMEM;
427 			break;
428 		}
429 	}
430 	return error;
431 }
432 
433 static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
434 {
435 	struct mm_struct *mm = current->mm;
436 	unsigned long end, nstart, nend;
437 	struct vm_area_struct *vma = NULL;
438 	int locked = 0;
439 	int ret = 0;
440 
441 	VM_BUG_ON(start & ~PAGE_MASK);
442 	VM_BUG_ON(len != PAGE_ALIGN(len));
443 	end = start + len;
444 
445 	for (nstart = start; nstart < end; nstart = nend) {
446 		/*
447 		 * We want to fault in pages for [nstart; end) address range.
448 		 * Find first corresponding VMA.
449 		 */
450 		if (!locked) {
451 			locked = 1;
452 			down_read(&mm->mmap_sem);
453 			vma = find_vma(mm, nstart);
454 		} else if (nstart >= vma->vm_end)
455 			vma = vma->vm_next;
456 		if (!vma || vma->vm_start >= end)
457 			break;
458 		/*
459 		 * Set [nstart; nend) to intersection of desired address
460 		 * range with the first VMA. Also, skip undesirable VMA types.
461 		 */
462 		nend = min(end, vma->vm_end);
463 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
464 			continue;
465 		if (nstart < vma->vm_start)
466 			nstart = vma->vm_start;
467 		/*
468 		 * Now fault in a range of pages. __mlock_vma_pages_range()
469 		 * double checks the vma flags, so that it won't mlock pages
470 		 * if the vma was already munlocked.
471 		 */
472 		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
473 		if (ret < 0) {
474 			if (ignore_errors) {
475 				ret = 0;
476 				continue;	/* continue at next VMA */
477 			}
478 			ret = __mlock_posix_error_return(ret);
479 			break;
480 		}
481 		nend = nstart + ret * PAGE_SIZE;
482 		ret = 0;
483 	}
484 	if (locked)
485 		up_read(&mm->mmap_sem);
486 	return ret;	/* 0 or negative error code */
487 }
488 
489 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
490 {
491 	unsigned long locked;
492 	unsigned long lock_limit;
493 	int error = -ENOMEM;
494 
495 	if (!can_do_mlock())
496 		return -EPERM;
497 
498 	lru_add_drain_all();	/* flush pagevec */
499 
500 	down_write(&current->mm->mmap_sem);
501 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
502 	start &= PAGE_MASK;
503 
504 	locked = len >> PAGE_SHIFT;
505 	locked += current->mm->locked_vm;
506 
507 	lock_limit = rlimit(RLIMIT_MEMLOCK);
508 	lock_limit >>= PAGE_SHIFT;
509 
510 	/* check against resource limits */
511 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
512 		error = do_mlock(start, len, 1);
513 	up_write(&current->mm->mmap_sem);
514 	if (!error)
515 		error = do_mlock_pages(start, len, 0);
516 	return error;
517 }
518 
519 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
520 {
521 	int ret;
522 
523 	down_write(&current->mm->mmap_sem);
524 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
525 	start &= PAGE_MASK;
526 	ret = do_mlock(start, len, 0);
527 	up_write(&current->mm->mmap_sem);
528 	return ret;
529 }
530 
531 static int do_mlockall(int flags)
532 {
533 	struct vm_area_struct * vma, * prev = NULL;
534 	unsigned int def_flags = 0;
535 
536 	if (flags & MCL_FUTURE)
537 		def_flags = VM_LOCKED;
538 	current->mm->def_flags = def_flags;
539 	if (flags == MCL_FUTURE)
540 		goto out;
541 
542 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
543 		unsigned int newflags;
544 
545 		newflags = vma->vm_flags | VM_LOCKED;
546 		if (!(flags & MCL_CURRENT))
547 			newflags &= ~VM_LOCKED;
548 
549 		/* Ignore errors */
550 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
551 	}
552 out:
553 	return 0;
554 }
555 
556 SYSCALL_DEFINE1(mlockall, int, flags)
557 {
558 	unsigned long lock_limit;
559 	int ret = -EINVAL;
560 
561 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
562 		goto out;
563 
564 	ret = -EPERM;
565 	if (!can_do_mlock())
566 		goto out;
567 
568 	lru_add_drain_all();	/* flush pagevec */
569 
570 	down_write(&current->mm->mmap_sem);
571 
572 	lock_limit = rlimit(RLIMIT_MEMLOCK);
573 	lock_limit >>= PAGE_SHIFT;
574 
575 	ret = -ENOMEM;
576 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
577 	    capable(CAP_IPC_LOCK))
578 		ret = do_mlockall(flags);
579 	up_write(&current->mm->mmap_sem);
580 	if (!ret && (flags & MCL_CURRENT)) {
581 		/* Ignore errors */
582 		do_mlock_pages(0, TASK_SIZE, 1);
583 	}
584 out:
585 	return ret;
586 }
587 
588 SYSCALL_DEFINE0(munlockall)
589 {
590 	int ret;
591 
592 	down_write(&current->mm->mmap_sem);
593 	ret = do_mlockall(0);
594 	up_write(&current->mm->mmap_sem);
595 	return ret;
596 }
597 
598 /*
599  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
600  * shm segments) get accounted against the user_struct instead.
601  */
602 static DEFINE_SPINLOCK(shmlock_user_lock);
603 
604 int user_shm_lock(size_t size, struct user_struct *user)
605 {
606 	unsigned long lock_limit, locked;
607 	int allowed = 0;
608 
609 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
610 	lock_limit = rlimit(RLIMIT_MEMLOCK);
611 	if (lock_limit == RLIM_INFINITY)
612 		allowed = 1;
613 	lock_limit >>= PAGE_SHIFT;
614 	spin_lock(&shmlock_user_lock);
615 	if (!allowed &&
616 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
617 		goto out;
618 	get_uid(user);
619 	user->locked_shm += locked;
620 	allowed = 1;
621 out:
622 	spin_unlock(&shmlock_user_lock);
623 	return allowed;
624 }
625 
626 void user_shm_unlock(size_t size, struct user_struct *user)
627 {
628 	spin_lock(&shmlock_user_lock);
629 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
630 	spin_unlock(&shmlock_user_lock);
631 	free_uid(user);
632 }
633