1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/sched/user.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/pagemap.h> 15 #include <linux/pagevec.h> 16 #include <linux/mempolicy.h> 17 #include <linux/syscalls.h> 18 #include <linux/sched.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> 21 #include <linux/mmzone.h> 22 #include <linux/hugetlb.h> 23 #include <linux/memcontrol.h> 24 #include <linux/mm_inline.h> 25 26 #include "internal.h" 27 28 bool can_do_mlock(void) 29 { 30 if (rlimit(RLIMIT_MEMLOCK) != 0) 31 return true; 32 if (capable(CAP_IPC_LOCK)) 33 return true; 34 return false; 35 } 36 EXPORT_SYMBOL(can_do_mlock); 37 38 /* 39 * Mlocked pages are marked with PageMlocked() flag for efficient testing 40 * in vmscan and, possibly, the fault path; and to support semi-accurate 41 * statistics. 42 * 43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 44 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 45 * The unevictable list is an LRU sibling list to the [in]active lists. 46 * PageUnevictable is set to indicate the unevictable state. 47 * 48 * When lazy mlocking via vmscan, it is important to ensure that the 49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 50 * may have mlocked a page that is being munlocked. So lazy mlock must take 51 * the mmap_sem for read, and verify that the vma really is locked 52 * (see mm/rmap.c). 53 */ 54 55 /* 56 * LRU accounting for clear_page_mlock() 57 */ 58 void clear_page_mlock(struct page *page) 59 { 60 if (!TestClearPageMlocked(page)) 61 return; 62 63 mod_zone_page_state(page_zone(page), NR_MLOCK, 64 -hpage_nr_pages(page)); 65 count_vm_event(UNEVICTABLE_PGCLEARED); 66 if (!isolate_lru_page(page)) { 67 putback_lru_page(page); 68 } else { 69 /* 70 * We lost the race. the page already moved to evictable list. 71 */ 72 if (PageUnevictable(page)) 73 count_vm_event(UNEVICTABLE_PGSTRANDED); 74 } 75 } 76 77 /* 78 * Mark page as mlocked if not already. 79 * If page on LRU, isolate and putback to move to unevictable list. 80 */ 81 void mlock_vma_page(struct page *page) 82 { 83 /* Serialize with page migration */ 84 BUG_ON(!PageLocked(page)); 85 86 VM_BUG_ON_PAGE(PageTail(page), page); 87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 88 89 if (!TestSetPageMlocked(page)) { 90 mod_zone_page_state(page_zone(page), NR_MLOCK, 91 hpage_nr_pages(page)); 92 count_vm_event(UNEVICTABLE_PGMLOCKED); 93 if (!isolate_lru_page(page)) 94 putback_lru_page(page); 95 } 96 } 97 98 /* 99 * Isolate a page from LRU with optional get_page() pin. 100 * Assumes lru_lock already held and page already pinned. 101 */ 102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 103 { 104 if (PageLRU(page)) { 105 struct lruvec *lruvec; 106 107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 108 if (getpage) 109 get_page(page); 110 ClearPageLRU(page); 111 del_page_from_lru_list(page, lruvec, page_lru(page)); 112 return true; 113 } 114 115 return false; 116 } 117 118 /* 119 * Finish munlock after successful page isolation 120 * 121 * Page must be locked. This is a wrapper for try_to_munlock() 122 * and putback_lru_page() with munlock accounting. 123 */ 124 static void __munlock_isolated_page(struct page *page) 125 { 126 /* 127 * Optimization: if the page was mapped just once, that's our mapping 128 * and we don't need to check all the other vmas. 129 */ 130 if (page_mapcount(page) > 1) 131 try_to_munlock(page); 132 133 /* Did try_to_unlock() succeed or punt? */ 134 if (!PageMlocked(page)) 135 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 136 137 putback_lru_page(page); 138 } 139 140 /* 141 * Accounting for page isolation fail during munlock 142 * 143 * Performs accounting when page isolation fails in munlock. There is nothing 144 * else to do because it means some other task has already removed the page 145 * from the LRU. putback_lru_page() will take care of removing the page from 146 * the unevictable list, if necessary. vmscan [page_referenced()] will move 147 * the page back to the unevictable list if some other vma has it mlocked. 148 */ 149 static void __munlock_isolation_failed(struct page *page) 150 { 151 if (PageUnevictable(page)) 152 __count_vm_event(UNEVICTABLE_PGSTRANDED); 153 else 154 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 155 } 156 157 /** 158 * munlock_vma_page - munlock a vma page 159 * @page - page to be unlocked, either a normal page or THP page head 160 * 161 * returns the size of the page as a page mask (0 for normal page, 162 * HPAGE_PMD_NR - 1 for THP head page) 163 * 164 * called from munlock()/munmap() path with page supposedly on the LRU. 165 * When we munlock a page, because the vma where we found the page is being 166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 167 * page locked so that we can leave it on the unevictable lru list and not 168 * bother vmscan with it. However, to walk the page's rmap list in 169 * try_to_munlock() we must isolate the page from the LRU. If some other 170 * task has removed the page from the LRU, we won't be able to do that. 171 * So we clear the PageMlocked as we might not get another chance. If we 172 * can't isolate the page, we leave it for putback_lru_page() and vmscan 173 * [page_referenced()/try_to_unmap()] to deal with. 174 */ 175 unsigned int munlock_vma_page(struct page *page) 176 { 177 int nr_pages; 178 struct zone *zone = page_zone(page); 179 180 /* For try_to_munlock() and to serialize with page migration */ 181 BUG_ON(!PageLocked(page)); 182 183 VM_BUG_ON_PAGE(PageTail(page), page); 184 185 /* 186 * Serialize with any parallel __split_huge_page_refcount() which 187 * might otherwise copy PageMlocked to part of the tail pages before 188 * we clear it in the head page. It also stabilizes hpage_nr_pages(). 189 */ 190 spin_lock_irq(zone_lru_lock(zone)); 191 192 if (!TestClearPageMlocked(page)) { 193 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 194 nr_pages = 1; 195 goto unlock_out; 196 } 197 198 nr_pages = hpage_nr_pages(page); 199 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); 200 201 if (__munlock_isolate_lru_page(page, true)) { 202 spin_unlock_irq(zone_lru_lock(zone)); 203 __munlock_isolated_page(page); 204 goto out; 205 } 206 __munlock_isolation_failed(page); 207 208 unlock_out: 209 spin_unlock_irq(zone_lru_lock(zone)); 210 211 out: 212 return nr_pages - 1; 213 } 214 215 /* 216 * convert get_user_pages() return value to posix mlock() error 217 */ 218 static int __mlock_posix_error_return(long retval) 219 { 220 if (retval == -EFAULT) 221 retval = -ENOMEM; 222 else if (retval == -ENOMEM) 223 retval = -EAGAIN; 224 return retval; 225 } 226 227 /* 228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 229 * 230 * The fast path is available only for evictable pages with single mapping. 231 * Then we can bypass the per-cpu pvec and get better performance. 232 * when mapcount > 1 we need try_to_munlock() which can fail. 233 * when !page_evictable(), we need the full redo logic of putback_lru_page to 234 * avoid leaving evictable page in unevictable list. 235 * 236 * In case of success, @page is added to @pvec and @pgrescued is incremented 237 * in case that the page was previously unevictable. @page is also unlocked. 238 */ 239 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 240 int *pgrescued) 241 { 242 VM_BUG_ON_PAGE(PageLRU(page), page); 243 VM_BUG_ON_PAGE(!PageLocked(page), page); 244 245 if (page_mapcount(page) <= 1 && page_evictable(page)) { 246 pagevec_add(pvec, page); 247 if (TestClearPageUnevictable(page)) 248 (*pgrescued)++; 249 unlock_page(page); 250 return true; 251 } 252 253 return false; 254 } 255 256 /* 257 * Putback multiple evictable pages to the LRU 258 * 259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 260 * the pages might have meanwhile become unevictable but that is OK. 261 */ 262 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 263 { 264 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 265 /* 266 *__pagevec_lru_add() calls release_pages() so we don't call 267 * put_page() explicitly 268 */ 269 __pagevec_lru_add(pvec); 270 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 271 } 272 273 /* 274 * Munlock a batch of pages from the same zone 275 * 276 * The work is split to two main phases. First phase clears the Mlocked flag 277 * and attempts to isolate the pages, all under a single zone lru lock. 278 * The second phase finishes the munlock only for pages where isolation 279 * succeeded. 280 * 281 * Note that the pagevec may be modified during the process. 282 */ 283 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 284 { 285 int i; 286 int nr = pagevec_count(pvec); 287 int delta_munlocked; 288 struct pagevec pvec_putback; 289 int pgrescued = 0; 290 291 pagevec_init(&pvec_putback, 0); 292 293 /* Phase 1: page isolation */ 294 spin_lock_irq(zone_lru_lock(zone)); 295 for (i = 0; i < nr; i++) { 296 struct page *page = pvec->pages[i]; 297 298 if (TestClearPageMlocked(page)) { 299 /* 300 * We already have pin from follow_page_mask() 301 * so we can spare the get_page() here. 302 */ 303 if (__munlock_isolate_lru_page(page, false)) 304 continue; 305 else 306 __munlock_isolation_failed(page); 307 } 308 309 /* 310 * We won't be munlocking this page in the next phase 311 * but we still need to release the follow_page_mask() 312 * pin. We cannot do it under lru_lock however. If it's 313 * the last pin, __page_cache_release() would deadlock. 314 */ 315 pagevec_add(&pvec_putback, pvec->pages[i]); 316 pvec->pages[i] = NULL; 317 } 318 delta_munlocked = -nr + pagevec_count(&pvec_putback); 319 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 320 spin_unlock_irq(zone_lru_lock(zone)); 321 322 /* Now we can release pins of pages that we are not munlocking */ 323 pagevec_release(&pvec_putback); 324 325 /* Phase 2: page munlock */ 326 for (i = 0; i < nr; i++) { 327 struct page *page = pvec->pages[i]; 328 329 if (page) { 330 lock_page(page); 331 if (!__putback_lru_fast_prepare(page, &pvec_putback, 332 &pgrescued)) { 333 /* 334 * Slow path. We don't want to lose the last 335 * pin before unlock_page() 336 */ 337 get_page(page); /* for putback_lru_page() */ 338 __munlock_isolated_page(page); 339 unlock_page(page); 340 put_page(page); /* from follow_page_mask() */ 341 } 342 } 343 } 344 345 /* 346 * Phase 3: page putback for pages that qualified for the fast path 347 * This will also call put_page() to return pin from follow_page_mask() 348 */ 349 if (pagevec_count(&pvec_putback)) 350 __putback_lru_fast(&pvec_putback, pgrescued); 351 } 352 353 /* 354 * Fill up pagevec for __munlock_pagevec using pte walk 355 * 356 * The function expects that the struct page corresponding to @start address is 357 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 358 * 359 * The rest of @pvec is filled by subsequent pages within the same pmd and same 360 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 361 * pages also get pinned. 362 * 363 * Returns the address of the next page that should be scanned. This equals 364 * @start + PAGE_SIZE when no page could be added by the pte walk. 365 */ 366 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 367 struct vm_area_struct *vma, int zoneid, unsigned long start, 368 unsigned long end) 369 { 370 pte_t *pte; 371 spinlock_t *ptl; 372 373 /* 374 * Initialize pte walk starting at the already pinned page where we 375 * are sure that there is a pte, as it was pinned under the same 376 * mmap_sem write op. 377 */ 378 pte = get_locked_pte(vma->vm_mm, start, &ptl); 379 /* Make sure we do not cross the page table boundary */ 380 end = pgd_addr_end(start, end); 381 end = p4d_addr_end(start, end); 382 end = pud_addr_end(start, end); 383 end = pmd_addr_end(start, end); 384 385 /* The page next to the pinned page is the first we will try to get */ 386 start += PAGE_SIZE; 387 while (start < end) { 388 struct page *page = NULL; 389 pte++; 390 if (pte_present(*pte)) 391 page = vm_normal_page(vma, start, *pte); 392 /* 393 * Break if page could not be obtained or the page's node+zone does not 394 * match 395 */ 396 if (!page || page_zone_id(page) != zoneid) 397 break; 398 399 /* 400 * Do not use pagevec for PTE-mapped THP, 401 * munlock_vma_pages_range() will handle them. 402 */ 403 if (PageTransCompound(page)) 404 break; 405 406 get_page(page); 407 /* 408 * Increase the address that will be returned *before* the 409 * eventual break due to pvec becoming full by adding the page 410 */ 411 start += PAGE_SIZE; 412 if (pagevec_add(pvec, page) == 0) 413 break; 414 } 415 pte_unmap_unlock(pte, ptl); 416 return start; 417 } 418 419 /* 420 * munlock_vma_pages_range() - munlock all pages in the vma range.' 421 * @vma - vma containing range to be munlock()ed. 422 * @start - start address in @vma of the range 423 * @end - end of range in @vma. 424 * 425 * For mremap(), munmap() and exit(). 426 * 427 * Called with @vma VM_LOCKED. 428 * 429 * Returns with VM_LOCKED cleared. Callers must be prepared to 430 * deal with this. 431 * 432 * We don't save and restore VM_LOCKED here because pages are 433 * still on lru. In unmap path, pages might be scanned by reclaim 434 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 435 * free them. This will result in freeing mlocked pages. 436 */ 437 void munlock_vma_pages_range(struct vm_area_struct *vma, 438 unsigned long start, unsigned long end) 439 { 440 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 441 442 while (start < end) { 443 struct page *page; 444 unsigned int page_mask = 0; 445 unsigned long page_increm; 446 struct pagevec pvec; 447 struct zone *zone; 448 int zoneid; 449 450 pagevec_init(&pvec, 0); 451 /* 452 * Although FOLL_DUMP is intended for get_dump_page(), 453 * it just so happens that its special treatment of the 454 * ZERO_PAGE (returning an error instead of doing get_page) 455 * suits munlock very well (and if somehow an abnormal page 456 * has sneaked into the range, we won't oops here: great). 457 */ 458 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 459 460 if (page && !IS_ERR(page)) { 461 if (PageTransTail(page)) { 462 VM_BUG_ON_PAGE(PageMlocked(page), page); 463 put_page(page); /* follow_page_mask() */ 464 } else if (PageTransHuge(page)) { 465 lock_page(page); 466 /* 467 * Any THP page found by follow_page_mask() may 468 * have gotten split before reaching 469 * munlock_vma_page(), so we need to compute 470 * the page_mask here instead. 471 */ 472 page_mask = munlock_vma_page(page); 473 unlock_page(page); 474 put_page(page); /* follow_page_mask() */ 475 } else { 476 /* 477 * Non-huge pages are handled in batches via 478 * pagevec. The pin from follow_page_mask() 479 * prevents them from collapsing by THP. 480 */ 481 pagevec_add(&pvec, page); 482 zone = page_zone(page); 483 zoneid = page_zone_id(page); 484 485 /* 486 * Try to fill the rest of pagevec using fast 487 * pte walk. This will also update start to 488 * the next page to process. Then munlock the 489 * pagevec. 490 */ 491 start = __munlock_pagevec_fill(&pvec, vma, 492 zoneid, start, end); 493 __munlock_pagevec(&pvec, zone); 494 goto next; 495 } 496 } 497 page_increm = 1 + page_mask; 498 start += page_increm * PAGE_SIZE; 499 next: 500 cond_resched(); 501 } 502 } 503 504 /* 505 * mlock_fixup - handle mlock[all]/munlock[all] requests. 506 * 507 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 508 * munlock is a no-op. However, for some special vmas, we go ahead and 509 * populate the ptes. 510 * 511 * For vmas that pass the filters, merge/split as appropriate. 512 */ 513 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 514 unsigned long start, unsigned long end, vm_flags_t newflags) 515 { 516 struct mm_struct *mm = vma->vm_mm; 517 pgoff_t pgoff; 518 int nr_pages; 519 int ret = 0; 520 int lock = !!(newflags & VM_LOCKED); 521 vm_flags_t old_flags = vma->vm_flags; 522 523 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 524 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 525 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 526 goto out; 527 528 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 529 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 530 vma->vm_file, pgoff, vma_policy(vma), 531 vma->vm_userfaultfd_ctx); 532 if (*prev) { 533 vma = *prev; 534 goto success; 535 } 536 537 if (start != vma->vm_start) { 538 ret = split_vma(mm, vma, start, 1); 539 if (ret) 540 goto out; 541 } 542 543 if (end != vma->vm_end) { 544 ret = split_vma(mm, vma, end, 0); 545 if (ret) 546 goto out; 547 } 548 549 success: 550 /* 551 * Keep track of amount of locked VM. 552 */ 553 nr_pages = (end - start) >> PAGE_SHIFT; 554 if (!lock) 555 nr_pages = -nr_pages; 556 else if (old_flags & VM_LOCKED) 557 nr_pages = 0; 558 mm->locked_vm += nr_pages; 559 560 /* 561 * vm_flags is protected by the mmap_sem held in write mode. 562 * It's okay if try_to_unmap_one unmaps a page just after we 563 * set VM_LOCKED, populate_vma_page_range will bring it back. 564 */ 565 566 if (lock) 567 vma->vm_flags = newflags; 568 else 569 munlock_vma_pages_range(vma, start, end); 570 571 out: 572 *prev = vma; 573 return ret; 574 } 575 576 static int apply_vma_lock_flags(unsigned long start, size_t len, 577 vm_flags_t flags) 578 { 579 unsigned long nstart, end, tmp; 580 struct vm_area_struct * vma, * prev; 581 int error; 582 583 VM_BUG_ON(offset_in_page(start)); 584 VM_BUG_ON(len != PAGE_ALIGN(len)); 585 end = start + len; 586 if (end < start) 587 return -EINVAL; 588 if (end == start) 589 return 0; 590 vma = find_vma(current->mm, start); 591 if (!vma || vma->vm_start > start) 592 return -ENOMEM; 593 594 prev = vma->vm_prev; 595 if (start > vma->vm_start) 596 prev = vma; 597 598 for (nstart = start ; ; ) { 599 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 600 601 newflags |= flags; 602 603 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 604 tmp = vma->vm_end; 605 if (tmp > end) 606 tmp = end; 607 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 608 if (error) 609 break; 610 nstart = tmp; 611 if (nstart < prev->vm_end) 612 nstart = prev->vm_end; 613 if (nstart >= end) 614 break; 615 616 vma = prev->vm_next; 617 if (!vma || vma->vm_start != nstart) { 618 error = -ENOMEM; 619 break; 620 } 621 } 622 return error; 623 } 624 625 /* 626 * Go through vma areas and sum size of mlocked 627 * vma pages, as return value. 628 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 629 * is also counted. 630 * Return value: previously mlocked page counts 631 */ 632 static int count_mm_mlocked_page_nr(struct mm_struct *mm, 633 unsigned long start, size_t len) 634 { 635 struct vm_area_struct *vma; 636 int count = 0; 637 638 if (mm == NULL) 639 mm = current->mm; 640 641 vma = find_vma(mm, start); 642 if (vma == NULL) 643 vma = mm->mmap; 644 645 for (; vma ; vma = vma->vm_next) { 646 if (start >= vma->vm_end) 647 continue; 648 if (start + len <= vma->vm_start) 649 break; 650 if (vma->vm_flags & VM_LOCKED) { 651 if (start > vma->vm_start) 652 count -= (start - vma->vm_start); 653 if (start + len < vma->vm_end) { 654 count += start + len - vma->vm_start; 655 break; 656 } 657 count += vma->vm_end - vma->vm_start; 658 } 659 } 660 661 return count >> PAGE_SHIFT; 662 } 663 664 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 665 { 666 unsigned long locked; 667 unsigned long lock_limit; 668 int error = -ENOMEM; 669 670 if (!can_do_mlock()) 671 return -EPERM; 672 673 lru_add_drain_all(); /* flush pagevec */ 674 675 len = PAGE_ALIGN(len + (offset_in_page(start))); 676 start &= PAGE_MASK; 677 678 lock_limit = rlimit(RLIMIT_MEMLOCK); 679 lock_limit >>= PAGE_SHIFT; 680 locked = len >> PAGE_SHIFT; 681 682 if (down_write_killable(¤t->mm->mmap_sem)) 683 return -EINTR; 684 685 locked += current->mm->locked_vm; 686 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 687 /* 688 * It is possible that the regions requested intersect with 689 * previously mlocked areas, that part area in "mm->locked_vm" 690 * should not be counted to new mlock increment count. So check 691 * and adjust locked count if necessary. 692 */ 693 locked -= count_mm_mlocked_page_nr(current->mm, 694 start, len); 695 } 696 697 /* check against resource limits */ 698 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 699 error = apply_vma_lock_flags(start, len, flags); 700 701 up_write(¤t->mm->mmap_sem); 702 if (error) 703 return error; 704 705 error = __mm_populate(start, len, 0); 706 if (error) 707 return __mlock_posix_error_return(error); 708 return 0; 709 } 710 711 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 712 { 713 return do_mlock(start, len, VM_LOCKED); 714 } 715 716 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 717 { 718 vm_flags_t vm_flags = VM_LOCKED; 719 720 if (flags & ~MLOCK_ONFAULT) 721 return -EINVAL; 722 723 if (flags & MLOCK_ONFAULT) 724 vm_flags |= VM_LOCKONFAULT; 725 726 return do_mlock(start, len, vm_flags); 727 } 728 729 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 730 { 731 int ret; 732 733 len = PAGE_ALIGN(len + (offset_in_page(start))); 734 start &= PAGE_MASK; 735 736 if (down_write_killable(¤t->mm->mmap_sem)) 737 return -EINTR; 738 ret = apply_vma_lock_flags(start, len, 0); 739 up_write(¤t->mm->mmap_sem); 740 741 return ret; 742 } 743 744 /* 745 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 746 * and translate into the appropriate modifications to mm->def_flags and/or the 747 * flags for all current VMAs. 748 * 749 * There are a couple of subtleties with this. If mlockall() is called multiple 750 * times with different flags, the values do not necessarily stack. If mlockall 751 * is called once including the MCL_FUTURE flag and then a second time without 752 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 753 */ 754 static int apply_mlockall_flags(int flags) 755 { 756 struct vm_area_struct * vma, * prev = NULL; 757 vm_flags_t to_add = 0; 758 759 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 760 if (flags & MCL_FUTURE) { 761 current->mm->def_flags |= VM_LOCKED; 762 763 if (flags & MCL_ONFAULT) 764 current->mm->def_flags |= VM_LOCKONFAULT; 765 766 if (!(flags & MCL_CURRENT)) 767 goto out; 768 } 769 770 if (flags & MCL_CURRENT) { 771 to_add |= VM_LOCKED; 772 if (flags & MCL_ONFAULT) 773 to_add |= VM_LOCKONFAULT; 774 } 775 776 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 777 vm_flags_t newflags; 778 779 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 780 newflags |= to_add; 781 782 /* Ignore errors */ 783 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 784 cond_resched_rcu_qs(); 785 } 786 out: 787 return 0; 788 } 789 790 SYSCALL_DEFINE1(mlockall, int, flags) 791 { 792 unsigned long lock_limit; 793 int ret; 794 795 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) 796 return -EINVAL; 797 798 if (!can_do_mlock()) 799 return -EPERM; 800 801 if (flags & MCL_CURRENT) 802 lru_add_drain_all(); /* flush pagevec */ 803 804 lock_limit = rlimit(RLIMIT_MEMLOCK); 805 lock_limit >>= PAGE_SHIFT; 806 807 if (down_write_killable(¤t->mm->mmap_sem)) 808 return -EINTR; 809 810 ret = -ENOMEM; 811 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 812 capable(CAP_IPC_LOCK)) 813 ret = apply_mlockall_flags(flags); 814 up_write(¤t->mm->mmap_sem); 815 if (!ret && (flags & MCL_CURRENT)) 816 mm_populate(0, TASK_SIZE); 817 818 return ret; 819 } 820 821 SYSCALL_DEFINE0(munlockall) 822 { 823 int ret; 824 825 if (down_write_killable(¤t->mm->mmap_sem)) 826 return -EINTR; 827 ret = apply_mlockall_flags(0); 828 up_write(¤t->mm->mmap_sem); 829 return ret; 830 } 831 832 /* 833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 834 * shm segments) get accounted against the user_struct instead. 835 */ 836 static DEFINE_SPINLOCK(shmlock_user_lock); 837 838 int user_shm_lock(size_t size, struct user_struct *user) 839 { 840 unsigned long lock_limit, locked; 841 int allowed = 0; 842 843 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 844 lock_limit = rlimit(RLIMIT_MEMLOCK); 845 if (lock_limit == RLIM_INFINITY) 846 allowed = 1; 847 lock_limit >>= PAGE_SHIFT; 848 spin_lock(&shmlock_user_lock); 849 if (!allowed && 850 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 851 goto out; 852 get_uid(user); 853 user->locked_shm += locked; 854 allowed = 1; 855 out: 856 spin_unlock(&shmlock_user_lock); 857 return allowed; 858 } 859 860 void user_shm_unlock(size_t size, struct user_struct *user) 861 { 862 spin_lock(&shmlock_user_lock); 863 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 864 spin_unlock(&shmlock_user_lock); 865 free_uid(user); 866 } 867