1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mlock.c 4 * 5 * (C) Copyright 1995 Linus Torvalds 6 * (C) Copyright 2002 Christoph Hellwig 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mman.h> 11 #include <linux/mm.h> 12 #include <linux/sched/user.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/pagemap.h> 16 #include <linux/pagevec.h> 17 #include <linux/mempolicy.h> 18 #include <linux/syscalls.h> 19 #include <linux/sched.h> 20 #include <linux/export.h> 21 #include <linux/rmap.h> 22 #include <linux/mmzone.h> 23 #include <linux/hugetlb.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 27 #include "internal.h" 28 29 bool can_do_mlock(void) 30 { 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return true; 33 if (capable(CAP_IPC_LOCK)) 34 return true; 35 return false; 36 } 37 EXPORT_SYMBOL(can_do_mlock); 38 39 /* 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing 41 * in vmscan and, possibly, the fault path; and to support semi-accurate 42 * statistics. 43 * 44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 46 * The unevictable list is an LRU sibling list to the [in]active lists. 47 * PageUnevictable is set to indicate the unevictable state. 48 * 49 * When lazy mlocking via vmscan, it is important to ensure that the 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 51 * may have mlocked a page that is being munlocked. So lazy mlock must take 52 * the mmap_lock for read, and verify that the vma really is locked 53 * (see mm/rmap.c). 54 */ 55 56 /* 57 * LRU accounting for clear_page_mlock() 58 */ 59 void clear_page_mlock(struct page *page) 60 { 61 if (!TestClearPageMlocked(page)) 62 return; 63 64 mod_zone_page_state(page_zone(page), NR_MLOCK, -thp_nr_pages(page)); 65 count_vm_event(UNEVICTABLE_PGCLEARED); 66 /* 67 * The previous TestClearPageMlocked() corresponds to the smp_mb() 68 * in __pagevec_lru_add_fn(). 69 * 70 * See __pagevec_lru_add_fn for more explanation. 71 */ 72 if (!isolate_lru_page(page)) { 73 putback_lru_page(page); 74 } else { 75 /* 76 * We lost the race. the page already moved to evictable list. 77 */ 78 if (PageUnevictable(page)) 79 count_vm_event(UNEVICTABLE_PGSTRANDED); 80 } 81 } 82 83 /* 84 * Mark page as mlocked if not already. 85 * If page on LRU, isolate and putback to move to unevictable list. 86 */ 87 void mlock_vma_page(struct page *page) 88 { 89 /* Serialize with page migration */ 90 BUG_ON(!PageLocked(page)); 91 92 VM_BUG_ON_PAGE(PageTail(page), page); 93 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 94 95 if (!TestSetPageMlocked(page)) { 96 mod_zone_page_state(page_zone(page), NR_MLOCK, 97 thp_nr_pages(page)); 98 count_vm_event(UNEVICTABLE_PGMLOCKED); 99 if (!isolate_lru_page(page)) 100 putback_lru_page(page); 101 } 102 } 103 104 /* 105 * Isolate a page from LRU with optional get_page() pin. 106 * Assumes lru_lock already held and page already pinned. 107 */ 108 static bool __munlock_isolate_lru_page(struct page *page, bool getpage) 109 { 110 if (PageLRU(page)) { 111 struct lruvec *lruvec; 112 113 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 114 if (getpage) 115 get_page(page); 116 ClearPageLRU(page); 117 del_page_from_lru_list(page, lruvec, page_lru(page)); 118 return true; 119 } 120 121 return false; 122 } 123 124 /* 125 * Finish munlock after successful page isolation 126 * 127 * Page must be locked. This is a wrapper for try_to_munlock() 128 * and putback_lru_page() with munlock accounting. 129 */ 130 static void __munlock_isolated_page(struct page *page) 131 { 132 /* 133 * Optimization: if the page was mapped just once, that's our mapping 134 * and we don't need to check all the other vmas. 135 */ 136 if (page_mapcount(page) > 1) 137 try_to_munlock(page); 138 139 /* Did try_to_unlock() succeed or punt? */ 140 if (!PageMlocked(page)) 141 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 142 143 putback_lru_page(page); 144 } 145 146 /* 147 * Accounting for page isolation fail during munlock 148 * 149 * Performs accounting when page isolation fails in munlock. There is nothing 150 * else to do because it means some other task has already removed the page 151 * from the LRU. putback_lru_page() will take care of removing the page from 152 * the unevictable list, if necessary. vmscan [page_referenced()] will move 153 * the page back to the unevictable list if some other vma has it mlocked. 154 */ 155 static void __munlock_isolation_failed(struct page *page) 156 { 157 if (PageUnevictable(page)) 158 __count_vm_event(UNEVICTABLE_PGSTRANDED); 159 else 160 __count_vm_event(UNEVICTABLE_PGMUNLOCKED); 161 } 162 163 /** 164 * munlock_vma_page - munlock a vma page 165 * @page: page to be unlocked, either a normal page or THP page head 166 * 167 * returns the size of the page as a page mask (0 for normal page, 168 * HPAGE_PMD_NR - 1 for THP head page) 169 * 170 * called from munlock()/munmap() path with page supposedly on the LRU. 171 * When we munlock a page, because the vma where we found the page is being 172 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 173 * page locked so that we can leave it on the unevictable lru list and not 174 * bother vmscan with it. However, to walk the page's rmap list in 175 * try_to_munlock() we must isolate the page from the LRU. If some other 176 * task has removed the page from the LRU, we won't be able to do that. 177 * So we clear the PageMlocked as we might not get another chance. If we 178 * can't isolate the page, we leave it for putback_lru_page() and vmscan 179 * [page_referenced()/try_to_unmap()] to deal with. 180 */ 181 unsigned int munlock_vma_page(struct page *page) 182 { 183 int nr_pages; 184 pg_data_t *pgdat = page_pgdat(page); 185 186 /* For try_to_munlock() and to serialize with page migration */ 187 BUG_ON(!PageLocked(page)); 188 189 VM_BUG_ON_PAGE(PageTail(page), page); 190 191 /* 192 * Serialize with any parallel __split_huge_page_refcount() which 193 * might otherwise copy PageMlocked to part of the tail pages before 194 * we clear it in the head page. It also stabilizes thp_nr_pages(). 195 */ 196 spin_lock_irq(&pgdat->lru_lock); 197 198 if (!TestClearPageMlocked(page)) { 199 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ 200 nr_pages = 1; 201 goto unlock_out; 202 } 203 204 nr_pages = thp_nr_pages(page); 205 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 206 207 if (__munlock_isolate_lru_page(page, true)) { 208 spin_unlock_irq(&pgdat->lru_lock); 209 __munlock_isolated_page(page); 210 goto out; 211 } 212 __munlock_isolation_failed(page); 213 214 unlock_out: 215 spin_unlock_irq(&pgdat->lru_lock); 216 217 out: 218 return nr_pages - 1; 219 } 220 221 /* 222 * convert get_user_pages() return value to posix mlock() error 223 */ 224 static int __mlock_posix_error_return(long retval) 225 { 226 if (retval == -EFAULT) 227 retval = -ENOMEM; 228 else if (retval == -ENOMEM) 229 retval = -EAGAIN; 230 return retval; 231 } 232 233 /* 234 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 235 * 236 * The fast path is available only for evictable pages with single mapping. 237 * Then we can bypass the per-cpu pvec and get better performance. 238 * when mapcount > 1 we need try_to_munlock() which can fail. 239 * when !page_evictable(), we need the full redo logic of putback_lru_page to 240 * avoid leaving evictable page in unevictable list. 241 * 242 * In case of success, @page is added to @pvec and @pgrescued is incremented 243 * in case that the page was previously unevictable. @page is also unlocked. 244 */ 245 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 246 int *pgrescued) 247 { 248 VM_BUG_ON_PAGE(PageLRU(page), page); 249 VM_BUG_ON_PAGE(!PageLocked(page), page); 250 251 if (page_mapcount(page) <= 1 && page_evictable(page)) { 252 pagevec_add(pvec, page); 253 if (TestClearPageUnevictable(page)) 254 (*pgrescued)++; 255 unlock_page(page); 256 return true; 257 } 258 259 return false; 260 } 261 262 /* 263 * Putback multiple evictable pages to the LRU 264 * 265 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 266 * the pages might have meanwhile become unevictable but that is OK. 267 */ 268 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 269 { 270 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 271 /* 272 *__pagevec_lru_add() calls release_pages() so we don't call 273 * put_page() explicitly 274 */ 275 __pagevec_lru_add(pvec); 276 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 277 } 278 279 /* 280 * Munlock a batch of pages from the same zone 281 * 282 * The work is split to two main phases. First phase clears the Mlocked flag 283 * and attempts to isolate the pages, all under a single zone lru lock. 284 * The second phase finishes the munlock only for pages where isolation 285 * succeeded. 286 * 287 * Note that the pagevec may be modified during the process. 288 */ 289 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 290 { 291 int i; 292 int nr = pagevec_count(pvec); 293 int delta_munlocked = -nr; 294 struct pagevec pvec_putback; 295 int pgrescued = 0; 296 297 pagevec_init(&pvec_putback); 298 299 /* Phase 1: page isolation */ 300 spin_lock_irq(&zone->zone_pgdat->lru_lock); 301 for (i = 0; i < nr; i++) { 302 struct page *page = pvec->pages[i]; 303 304 if (TestClearPageMlocked(page)) { 305 /* 306 * We already have pin from follow_page_mask() 307 * so we can spare the get_page() here. 308 */ 309 if (__munlock_isolate_lru_page(page, false)) 310 continue; 311 else 312 __munlock_isolation_failed(page); 313 } else { 314 delta_munlocked++; 315 } 316 317 /* 318 * We won't be munlocking this page in the next phase 319 * but we still need to release the follow_page_mask() 320 * pin. We cannot do it under lru_lock however. If it's 321 * the last pin, __page_cache_release() would deadlock. 322 */ 323 pagevec_add(&pvec_putback, pvec->pages[i]); 324 pvec->pages[i] = NULL; 325 } 326 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 327 spin_unlock_irq(&zone->zone_pgdat->lru_lock); 328 329 /* Now we can release pins of pages that we are not munlocking */ 330 pagevec_release(&pvec_putback); 331 332 /* Phase 2: page munlock */ 333 for (i = 0; i < nr; i++) { 334 struct page *page = pvec->pages[i]; 335 336 if (page) { 337 lock_page(page); 338 if (!__putback_lru_fast_prepare(page, &pvec_putback, 339 &pgrescued)) { 340 /* 341 * Slow path. We don't want to lose the last 342 * pin before unlock_page() 343 */ 344 get_page(page); /* for putback_lru_page() */ 345 __munlock_isolated_page(page); 346 unlock_page(page); 347 put_page(page); /* from follow_page_mask() */ 348 } 349 } 350 } 351 352 /* 353 * Phase 3: page putback for pages that qualified for the fast path 354 * This will also call put_page() to return pin from follow_page_mask() 355 */ 356 if (pagevec_count(&pvec_putback)) 357 __putback_lru_fast(&pvec_putback, pgrescued); 358 } 359 360 /* 361 * Fill up pagevec for __munlock_pagevec using pte walk 362 * 363 * The function expects that the struct page corresponding to @start address is 364 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 365 * 366 * The rest of @pvec is filled by subsequent pages within the same pmd and same 367 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 368 * pages also get pinned. 369 * 370 * Returns the address of the next page that should be scanned. This equals 371 * @start + PAGE_SIZE when no page could be added by the pte walk. 372 */ 373 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 374 struct vm_area_struct *vma, struct zone *zone, 375 unsigned long start, unsigned long end) 376 { 377 pte_t *pte; 378 spinlock_t *ptl; 379 380 /* 381 * Initialize pte walk starting at the already pinned page where we 382 * are sure that there is a pte, as it was pinned under the same 383 * mmap_lock write op. 384 */ 385 pte = get_locked_pte(vma->vm_mm, start, &ptl); 386 /* Make sure we do not cross the page table boundary */ 387 end = pgd_addr_end(start, end); 388 end = p4d_addr_end(start, end); 389 end = pud_addr_end(start, end); 390 end = pmd_addr_end(start, end); 391 392 /* The page next to the pinned page is the first we will try to get */ 393 start += PAGE_SIZE; 394 while (start < end) { 395 struct page *page = NULL; 396 pte++; 397 if (pte_present(*pte)) 398 page = vm_normal_page(vma, start, *pte); 399 /* 400 * Break if page could not be obtained or the page's node+zone does not 401 * match 402 */ 403 if (!page || page_zone(page) != zone) 404 break; 405 406 /* 407 * Do not use pagevec for PTE-mapped THP, 408 * munlock_vma_pages_range() will handle them. 409 */ 410 if (PageTransCompound(page)) 411 break; 412 413 get_page(page); 414 /* 415 * Increase the address that will be returned *before* the 416 * eventual break due to pvec becoming full by adding the page 417 */ 418 start += PAGE_SIZE; 419 if (pagevec_add(pvec, page) == 0) 420 break; 421 } 422 pte_unmap_unlock(pte, ptl); 423 return start; 424 } 425 426 /* 427 * munlock_vma_pages_range() - munlock all pages in the vma range.' 428 * @vma - vma containing range to be munlock()ed. 429 * @start - start address in @vma of the range 430 * @end - end of range in @vma. 431 * 432 * For mremap(), munmap() and exit(). 433 * 434 * Called with @vma VM_LOCKED. 435 * 436 * Returns with VM_LOCKED cleared. Callers must be prepared to 437 * deal with this. 438 * 439 * We don't save and restore VM_LOCKED here because pages are 440 * still on lru. In unmap path, pages might be scanned by reclaim 441 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 442 * free them. This will result in freeing mlocked pages. 443 */ 444 void munlock_vma_pages_range(struct vm_area_struct *vma, 445 unsigned long start, unsigned long end) 446 { 447 vma->vm_flags &= VM_LOCKED_CLEAR_MASK; 448 449 while (start < end) { 450 struct page *page; 451 unsigned int page_mask = 0; 452 unsigned long page_increm; 453 struct pagevec pvec; 454 struct zone *zone; 455 456 pagevec_init(&pvec); 457 /* 458 * Although FOLL_DUMP is intended for get_dump_page(), 459 * it just so happens that its special treatment of the 460 * ZERO_PAGE (returning an error instead of doing get_page) 461 * suits munlock very well (and if somehow an abnormal page 462 * has sneaked into the range, we won't oops here: great). 463 */ 464 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); 465 466 if (page && !IS_ERR(page)) { 467 if (PageTransTail(page)) { 468 VM_BUG_ON_PAGE(PageMlocked(page), page); 469 put_page(page); /* follow_page_mask() */ 470 } else if (PageTransHuge(page)) { 471 lock_page(page); 472 /* 473 * Any THP page found by follow_page_mask() may 474 * have gotten split before reaching 475 * munlock_vma_page(), so we need to compute 476 * the page_mask here instead. 477 */ 478 page_mask = munlock_vma_page(page); 479 unlock_page(page); 480 put_page(page); /* follow_page_mask() */ 481 } else { 482 /* 483 * Non-huge pages are handled in batches via 484 * pagevec. The pin from follow_page_mask() 485 * prevents them from collapsing by THP. 486 */ 487 pagevec_add(&pvec, page); 488 zone = page_zone(page); 489 490 /* 491 * Try to fill the rest of pagevec using fast 492 * pte walk. This will also update start to 493 * the next page to process. Then munlock the 494 * pagevec. 495 */ 496 start = __munlock_pagevec_fill(&pvec, vma, 497 zone, start, end); 498 __munlock_pagevec(&pvec, zone); 499 goto next; 500 } 501 } 502 page_increm = 1 + page_mask; 503 start += page_increm * PAGE_SIZE; 504 next: 505 cond_resched(); 506 } 507 } 508 509 /* 510 * mlock_fixup - handle mlock[all]/munlock[all] requests. 511 * 512 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 513 * munlock is a no-op. However, for some special vmas, we go ahead and 514 * populate the ptes. 515 * 516 * For vmas that pass the filters, merge/split as appropriate. 517 */ 518 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 519 unsigned long start, unsigned long end, vm_flags_t newflags) 520 { 521 struct mm_struct *mm = vma->vm_mm; 522 pgoff_t pgoff; 523 int nr_pages; 524 int ret = 0; 525 int lock = !!(newflags & VM_LOCKED); 526 vm_flags_t old_flags = vma->vm_flags; 527 528 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 529 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || 530 vma_is_dax(vma)) 531 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ 532 goto out; 533 534 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 535 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 536 vma->vm_file, pgoff, vma_policy(vma), 537 vma->vm_userfaultfd_ctx); 538 if (*prev) { 539 vma = *prev; 540 goto success; 541 } 542 543 if (start != vma->vm_start) { 544 ret = split_vma(mm, vma, start, 1); 545 if (ret) 546 goto out; 547 } 548 549 if (end != vma->vm_end) { 550 ret = split_vma(mm, vma, end, 0); 551 if (ret) 552 goto out; 553 } 554 555 success: 556 /* 557 * Keep track of amount of locked VM. 558 */ 559 nr_pages = (end - start) >> PAGE_SHIFT; 560 if (!lock) 561 nr_pages = -nr_pages; 562 else if (old_flags & VM_LOCKED) 563 nr_pages = 0; 564 mm->locked_vm += nr_pages; 565 566 /* 567 * vm_flags is protected by the mmap_lock held in write mode. 568 * It's okay if try_to_unmap_one unmaps a page just after we 569 * set VM_LOCKED, populate_vma_page_range will bring it back. 570 */ 571 572 if (lock) 573 vma->vm_flags = newflags; 574 else 575 munlock_vma_pages_range(vma, start, end); 576 577 out: 578 *prev = vma; 579 return ret; 580 } 581 582 static int apply_vma_lock_flags(unsigned long start, size_t len, 583 vm_flags_t flags) 584 { 585 unsigned long nstart, end, tmp; 586 struct vm_area_struct * vma, * prev; 587 int error; 588 589 VM_BUG_ON(offset_in_page(start)); 590 VM_BUG_ON(len != PAGE_ALIGN(len)); 591 end = start + len; 592 if (end < start) 593 return -EINVAL; 594 if (end == start) 595 return 0; 596 vma = find_vma(current->mm, start); 597 if (!vma || vma->vm_start > start) 598 return -ENOMEM; 599 600 prev = vma->vm_prev; 601 if (start > vma->vm_start) 602 prev = vma; 603 604 for (nstart = start ; ; ) { 605 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 606 607 newflags |= flags; 608 609 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 610 tmp = vma->vm_end; 611 if (tmp > end) 612 tmp = end; 613 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 614 if (error) 615 break; 616 nstart = tmp; 617 if (nstart < prev->vm_end) 618 nstart = prev->vm_end; 619 if (nstart >= end) 620 break; 621 622 vma = prev->vm_next; 623 if (!vma || vma->vm_start != nstart) { 624 error = -ENOMEM; 625 break; 626 } 627 } 628 return error; 629 } 630 631 /* 632 * Go through vma areas and sum size of mlocked 633 * vma pages, as return value. 634 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) 635 * is also counted. 636 * Return value: previously mlocked page counts 637 */ 638 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, 639 unsigned long start, size_t len) 640 { 641 struct vm_area_struct *vma; 642 unsigned long count = 0; 643 644 if (mm == NULL) 645 mm = current->mm; 646 647 vma = find_vma(mm, start); 648 if (vma == NULL) 649 vma = mm->mmap; 650 651 for (; vma ; vma = vma->vm_next) { 652 if (start >= vma->vm_end) 653 continue; 654 if (start + len <= vma->vm_start) 655 break; 656 if (vma->vm_flags & VM_LOCKED) { 657 if (start > vma->vm_start) 658 count -= (start - vma->vm_start); 659 if (start + len < vma->vm_end) { 660 count += start + len - vma->vm_start; 661 break; 662 } 663 count += vma->vm_end - vma->vm_start; 664 } 665 } 666 667 return count >> PAGE_SHIFT; 668 } 669 670 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) 671 { 672 unsigned long locked; 673 unsigned long lock_limit; 674 int error = -ENOMEM; 675 676 start = untagged_addr(start); 677 678 if (!can_do_mlock()) 679 return -EPERM; 680 681 len = PAGE_ALIGN(len + (offset_in_page(start))); 682 start &= PAGE_MASK; 683 684 lock_limit = rlimit(RLIMIT_MEMLOCK); 685 lock_limit >>= PAGE_SHIFT; 686 locked = len >> PAGE_SHIFT; 687 688 if (mmap_write_lock_killable(current->mm)) 689 return -EINTR; 690 691 locked += current->mm->locked_vm; 692 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { 693 /* 694 * It is possible that the regions requested intersect with 695 * previously mlocked areas, that part area in "mm->locked_vm" 696 * should not be counted to new mlock increment count. So check 697 * and adjust locked count if necessary. 698 */ 699 locked -= count_mm_mlocked_page_nr(current->mm, 700 start, len); 701 } 702 703 /* check against resource limits */ 704 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 705 error = apply_vma_lock_flags(start, len, flags); 706 707 mmap_write_unlock(current->mm); 708 if (error) 709 return error; 710 711 error = __mm_populate(start, len, 0); 712 if (error) 713 return __mlock_posix_error_return(error); 714 return 0; 715 } 716 717 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 718 { 719 return do_mlock(start, len, VM_LOCKED); 720 } 721 722 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) 723 { 724 vm_flags_t vm_flags = VM_LOCKED; 725 726 if (flags & ~MLOCK_ONFAULT) 727 return -EINVAL; 728 729 if (flags & MLOCK_ONFAULT) 730 vm_flags |= VM_LOCKONFAULT; 731 732 return do_mlock(start, len, vm_flags); 733 } 734 735 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 736 { 737 int ret; 738 739 start = untagged_addr(start); 740 741 len = PAGE_ALIGN(len + (offset_in_page(start))); 742 start &= PAGE_MASK; 743 744 if (mmap_write_lock_killable(current->mm)) 745 return -EINTR; 746 ret = apply_vma_lock_flags(start, len, 0); 747 mmap_write_unlock(current->mm); 748 749 return ret; 750 } 751 752 /* 753 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) 754 * and translate into the appropriate modifications to mm->def_flags and/or the 755 * flags for all current VMAs. 756 * 757 * There are a couple of subtleties with this. If mlockall() is called multiple 758 * times with different flags, the values do not necessarily stack. If mlockall 759 * is called once including the MCL_FUTURE flag and then a second time without 760 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. 761 */ 762 static int apply_mlockall_flags(int flags) 763 { 764 struct vm_area_struct * vma, * prev = NULL; 765 vm_flags_t to_add = 0; 766 767 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; 768 if (flags & MCL_FUTURE) { 769 current->mm->def_flags |= VM_LOCKED; 770 771 if (flags & MCL_ONFAULT) 772 current->mm->def_flags |= VM_LOCKONFAULT; 773 774 if (!(flags & MCL_CURRENT)) 775 goto out; 776 } 777 778 if (flags & MCL_CURRENT) { 779 to_add |= VM_LOCKED; 780 if (flags & MCL_ONFAULT) 781 to_add |= VM_LOCKONFAULT; 782 } 783 784 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 785 vm_flags_t newflags; 786 787 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 788 newflags |= to_add; 789 790 /* Ignore errors */ 791 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 792 cond_resched(); 793 } 794 out: 795 return 0; 796 } 797 798 SYSCALL_DEFINE1(mlockall, int, flags) 799 { 800 unsigned long lock_limit; 801 int ret; 802 803 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || 804 flags == MCL_ONFAULT) 805 return -EINVAL; 806 807 if (!can_do_mlock()) 808 return -EPERM; 809 810 lock_limit = rlimit(RLIMIT_MEMLOCK); 811 lock_limit >>= PAGE_SHIFT; 812 813 if (mmap_write_lock_killable(current->mm)) 814 return -EINTR; 815 816 ret = -ENOMEM; 817 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 818 capable(CAP_IPC_LOCK)) 819 ret = apply_mlockall_flags(flags); 820 mmap_write_unlock(current->mm); 821 if (!ret && (flags & MCL_CURRENT)) 822 mm_populate(0, TASK_SIZE); 823 824 return ret; 825 } 826 827 SYSCALL_DEFINE0(munlockall) 828 { 829 int ret; 830 831 if (mmap_write_lock_killable(current->mm)) 832 return -EINTR; 833 ret = apply_mlockall_flags(0); 834 mmap_write_unlock(current->mm); 835 return ret; 836 } 837 838 /* 839 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 840 * shm segments) get accounted against the user_struct instead. 841 */ 842 static DEFINE_SPINLOCK(shmlock_user_lock); 843 844 int user_shm_lock(size_t size, struct user_struct *user) 845 { 846 unsigned long lock_limit, locked; 847 int allowed = 0; 848 849 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 850 lock_limit = rlimit(RLIMIT_MEMLOCK); 851 if (lock_limit == RLIM_INFINITY) 852 allowed = 1; 853 lock_limit >>= PAGE_SHIFT; 854 spin_lock(&shmlock_user_lock); 855 if (!allowed && 856 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 857 goto out; 858 get_uid(user); 859 user->locked_shm += locked; 860 allowed = 1; 861 out: 862 spin_unlock(&shmlock_user_lock); 863 return allowed; 864 } 865 866 void user_shm_unlock(size_t size, struct user_struct *user) 867 { 868 spin_lock(&shmlock_user_lock); 869 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 870 spin_unlock(&shmlock_user_lock); 871 free_uid(user); 872 } 873