1 /* 2 * linux/mm/mlock.c 3 * 4 * (C) Copyright 1995 Linus Torvalds 5 * (C) Copyright 2002 Christoph Hellwig 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/mman.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/pagemap.h> 14 #include <linux/pagevec.h> 15 #include <linux/mempolicy.h> 16 #include <linux/syscalls.h> 17 #include <linux/sched.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> 20 #include <linux/mmzone.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memcontrol.h> 23 #include <linux/mm_inline.h> 24 25 #include "internal.h" 26 27 int can_do_mlock(void) 28 { 29 if (capable(CAP_IPC_LOCK)) 30 return 1; 31 if (rlimit(RLIMIT_MEMLOCK) != 0) 32 return 1; 33 return 0; 34 } 35 EXPORT_SYMBOL(can_do_mlock); 36 37 /* 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing 39 * in vmscan and, possibly, the fault path; and to support semi-accurate 40 * statistics. 41 * 42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists. 44 * The unevictable list is an LRU sibling list to the [in]active lists. 45 * PageUnevictable is set to indicate the unevictable state. 46 * 47 * When lazy mlocking via vmscan, it is important to ensure that the 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we 49 * may have mlocked a page that is being munlocked. So lazy mlock must take 50 * the mmap_sem for read, and verify that the vma really is locked 51 * (see mm/rmap.c). 52 */ 53 54 /* 55 * LRU accounting for clear_page_mlock() 56 */ 57 void clear_page_mlock(struct page *page) 58 { 59 if (!TestClearPageMlocked(page)) 60 return; 61 62 mod_zone_page_state(page_zone(page), NR_MLOCK, 63 -hpage_nr_pages(page)); 64 count_vm_event(UNEVICTABLE_PGCLEARED); 65 if (!isolate_lru_page(page)) { 66 putback_lru_page(page); 67 } else { 68 /* 69 * We lost the race. the page already moved to evictable list. 70 */ 71 if (PageUnevictable(page)) 72 count_vm_event(UNEVICTABLE_PGSTRANDED); 73 } 74 } 75 76 /* 77 * Mark page as mlocked if not already. 78 * If page on LRU, isolate and putback to move to unevictable list. 79 */ 80 void mlock_vma_page(struct page *page) 81 { 82 BUG_ON(!PageLocked(page)); 83 84 if (!TestSetPageMlocked(page)) { 85 mod_zone_page_state(page_zone(page), NR_MLOCK, 86 hpage_nr_pages(page)); 87 count_vm_event(UNEVICTABLE_PGMLOCKED); 88 if (!isolate_lru_page(page)) 89 putback_lru_page(page); 90 } 91 } 92 93 /* 94 * Finish munlock after successful page isolation 95 * 96 * Page must be locked. This is a wrapper for try_to_munlock() 97 * and putback_lru_page() with munlock accounting. 98 */ 99 static void __munlock_isolated_page(struct page *page) 100 { 101 int ret = SWAP_AGAIN; 102 103 /* 104 * Optimization: if the page was mapped just once, that's our mapping 105 * and we don't need to check all the other vmas. 106 */ 107 if (page_mapcount(page) > 1) 108 ret = try_to_munlock(page); 109 110 /* Did try_to_unlock() succeed or punt? */ 111 if (ret != SWAP_MLOCK) 112 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 113 114 putback_lru_page(page); 115 } 116 117 /* 118 * Accounting for page isolation fail during munlock 119 * 120 * Performs accounting when page isolation fails in munlock. There is nothing 121 * else to do because it means some other task has already removed the page 122 * from the LRU. putback_lru_page() will take care of removing the page from 123 * the unevictable list, if necessary. vmscan [page_referenced()] will move 124 * the page back to the unevictable list if some other vma has it mlocked. 125 */ 126 static void __munlock_isolation_failed(struct page *page) 127 { 128 if (PageUnevictable(page)) 129 count_vm_event(UNEVICTABLE_PGSTRANDED); 130 else 131 count_vm_event(UNEVICTABLE_PGMUNLOCKED); 132 } 133 134 /** 135 * munlock_vma_page - munlock a vma page 136 * @page - page to be unlocked 137 * 138 * called from munlock()/munmap() path with page supposedly on the LRU. 139 * When we munlock a page, because the vma where we found the page is being 140 * munlock()ed or munmap()ed, we want to check whether other vmas hold the 141 * page locked so that we can leave it on the unevictable lru list and not 142 * bother vmscan with it. However, to walk the page's rmap list in 143 * try_to_munlock() we must isolate the page from the LRU. If some other 144 * task has removed the page from the LRU, we won't be able to do that. 145 * So we clear the PageMlocked as we might not get another chance. If we 146 * can't isolate the page, we leave it for putback_lru_page() and vmscan 147 * [page_referenced()/try_to_unmap()] to deal with. 148 */ 149 unsigned int munlock_vma_page(struct page *page) 150 { 151 unsigned int page_mask = 0; 152 153 BUG_ON(!PageLocked(page)); 154 155 if (TestClearPageMlocked(page)) { 156 unsigned int nr_pages = hpage_nr_pages(page); 157 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 158 page_mask = nr_pages - 1; 159 if (!isolate_lru_page(page)) 160 __munlock_isolated_page(page); 161 else 162 __munlock_isolation_failed(page); 163 } 164 165 return page_mask; 166 } 167 168 /** 169 * __mlock_vma_pages_range() - mlock a range of pages in the vma. 170 * @vma: target vma 171 * @start: start address 172 * @end: end address 173 * 174 * This takes care of making the pages present too. 175 * 176 * return 0 on success, negative error code on error. 177 * 178 * vma->vm_mm->mmap_sem must be held for at least read. 179 */ 180 long __mlock_vma_pages_range(struct vm_area_struct *vma, 181 unsigned long start, unsigned long end, int *nonblocking) 182 { 183 struct mm_struct *mm = vma->vm_mm; 184 unsigned long nr_pages = (end - start) / PAGE_SIZE; 185 int gup_flags; 186 187 VM_BUG_ON(start & ~PAGE_MASK); 188 VM_BUG_ON(end & ~PAGE_MASK); 189 VM_BUG_ON(start < vma->vm_start); 190 VM_BUG_ON(end > vma->vm_end); 191 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 192 193 gup_flags = FOLL_TOUCH | FOLL_MLOCK; 194 /* 195 * We want to touch writable mappings with a write fault in order 196 * to break COW, except for shared mappings because these don't COW 197 * and we would not want to dirty them for nothing. 198 */ 199 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 200 gup_flags |= FOLL_WRITE; 201 202 /* 203 * We want mlock to succeed for regions that have any permissions 204 * other than PROT_NONE. 205 */ 206 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 207 gup_flags |= FOLL_FORCE; 208 209 /* 210 * We made sure addr is within a VMA, so the following will 211 * not result in a stack expansion that recurses back here. 212 */ 213 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 214 NULL, NULL, nonblocking); 215 } 216 217 /* 218 * convert get_user_pages() return value to posix mlock() error 219 */ 220 static int __mlock_posix_error_return(long retval) 221 { 222 if (retval == -EFAULT) 223 retval = -ENOMEM; 224 else if (retval == -ENOMEM) 225 retval = -EAGAIN; 226 return retval; 227 } 228 229 /* 230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() 231 * 232 * The fast path is available only for evictable pages with single mapping. 233 * Then we can bypass the per-cpu pvec and get better performance. 234 * when mapcount > 1 we need try_to_munlock() which can fail. 235 * when !page_evictable(), we need the full redo logic of putback_lru_page to 236 * avoid leaving evictable page in unevictable list. 237 * 238 * In case of success, @page is added to @pvec and @pgrescued is incremented 239 * in case that the page was previously unevictable. @page is also unlocked. 240 */ 241 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, 242 int *pgrescued) 243 { 244 VM_BUG_ON(PageLRU(page)); 245 VM_BUG_ON(!PageLocked(page)); 246 247 if (page_mapcount(page) <= 1 && page_evictable(page)) { 248 pagevec_add(pvec, page); 249 if (TestClearPageUnevictable(page)) 250 (*pgrescued)++; 251 unlock_page(page); 252 return true; 253 } 254 255 return false; 256 } 257 258 /* 259 * Putback multiple evictable pages to the LRU 260 * 261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of 262 * the pages might have meanwhile become unevictable but that is OK. 263 */ 264 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) 265 { 266 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); 267 /* 268 *__pagevec_lru_add() calls release_pages() so we don't call 269 * put_page() explicitly 270 */ 271 __pagevec_lru_add(pvec); 272 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 273 } 274 275 /* 276 * Munlock a batch of pages from the same zone 277 * 278 * The work is split to two main phases. First phase clears the Mlocked flag 279 * and attempts to isolate the pages, all under a single zone lru lock. 280 * The second phase finishes the munlock only for pages where isolation 281 * succeeded. 282 * 283 * Note that the pagevec may be modified during the process. 284 */ 285 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) 286 { 287 int i; 288 int nr = pagevec_count(pvec); 289 int delta_munlocked = -nr; 290 struct pagevec pvec_putback; 291 int pgrescued = 0; 292 293 /* Phase 1: page isolation */ 294 spin_lock_irq(&zone->lru_lock); 295 for (i = 0; i < nr; i++) { 296 struct page *page = pvec->pages[i]; 297 298 if (TestClearPageMlocked(page)) { 299 struct lruvec *lruvec; 300 int lru; 301 302 if (PageLRU(page)) { 303 lruvec = mem_cgroup_page_lruvec(page, zone); 304 lru = page_lru(page); 305 /* 306 * We already have pin from follow_page_mask() 307 * so we can spare the get_page() here. 308 */ 309 ClearPageLRU(page); 310 del_page_from_lru_list(page, lruvec, lru); 311 } else { 312 __munlock_isolation_failed(page); 313 goto skip_munlock; 314 } 315 316 } else { 317 skip_munlock: 318 /* 319 * We won't be munlocking this page in the next phase 320 * but we still need to release the follow_page_mask() 321 * pin. 322 */ 323 pvec->pages[i] = NULL; 324 put_page(page); 325 delta_munlocked++; 326 } 327 } 328 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); 329 spin_unlock_irq(&zone->lru_lock); 330 331 /* Phase 2: page munlock */ 332 pagevec_init(&pvec_putback, 0); 333 for (i = 0; i < nr; i++) { 334 struct page *page = pvec->pages[i]; 335 336 if (page) { 337 lock_page(page); 338 if (!__putback_lru_fast_prepare(page, &pvec_putback, 339 &pgrescued)) { 340 /* 341 * Slow path. We don't want to lose the last 342 * pin before unlock_page() 343 */ 344 get_page(page); /* for putback_lru_page() */ 345 __munlock_isolated_page(page); 346 unlock_page(page); 347 put_page(page); /* from follow_page_mask() */ 348 } 349 } 350 } 351 352 /* 353 * Phase 3: page putback for pages that qualified for the fast path 354 * This will also call put_page() to return pin from follow_page_mask() 355 */ 356 if (pagevec_count(&pvec_putback)) 357 __putback_lru_fast(&pvec_putback, pgrescued); 358 } 359 360 /* 361 * Fill up pagevec for __munlock_pagevec using pte walk 362 * 363 * The function expects that the struct page corresponding to @start address is 364 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. 365 * 366 * The rest of @pvec is filled by subsequent pages within the same pmd and same 367 * zone, as long as the pte's are present and vm_normal_page() succeeds. These 368 * pages also get pinned. 369 * 370 * Returns the address of the next page that should be scanned. This equals 371 * @start + PAGE_SIZE when no page could be added by the pte walk. 372 */ 373 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, 374 struct vm_area_struct *vma, int zoneid, unsigned long start, 375 unsigned long end) 376 { 377 pte_t *pte; 378 spinlock_t *ptl; 379 380 /* 381 * Initialize pte walk starting at the already pinned page where we 382 * are sure that there is a pte. 383 */ 384 pte = get_locked_pte(vma->vm_mm, start, &ptl); 385 end = min(end, pmd_addr_end(start, end)); 386 387 /* The page next to the pinned page is the first we will try to get */ 388 start += PAGE_SIZE; 389 while (start < end) { 390 struct page *page = NULL; 391 pte++; 392 if (pte_present(*pte)) 393 page = vm_normal_page(vma, start, *pte); 394 /* 395 * Break if page could not be obtained or the page's node+zone does not 396 * match 397 */ 398 if (!page || page_zone_id(page) != zoneid) 399 break; 400 401 get_page(page); 402 /* 403 * Increase the address that will be returned *before* the 404 * eventual break due to pvec becoming full by adding the page 405 */ 406 start += PAGE_SIZE; 407 if (pagevec_add(pvec, page) == 0) 408 break; 409 } 410 pte_unmap_unlock(pte, ptl); 411 return start; 412 } 413 414 /* 415 * munlock_vma_pages_range() - munlock all pages in the vma range.' 416 * @vma - vma containing range to be munlock()ed. 417 * @start - start address in @vma of the range 418 * @end - end of range in @vma. 419 * 420 * For mremap(), munmap() and exit(). 421 * 422 * Called with @vma VM_LOCKED. 423 * 424 * Returns with VM_LOCKED cleared. Callers must be prepared to 425 * deal with this. 426 * 427 * We don't save and restore VM_LOCKED here because pages are 428 * still on lru. In unmap path, pages might be scanned by reclaim 429 * and re-mlocked by try_to_{munlock|unmap} before we unmap and 430 * free them. This will result in freeing mlocked pages. 431 */ 432 void munlock_vma_pages_range(struct vm_area_struct *vma, 433 unsigned long start, unsigned long end) 434 { 435 vma->vm_flags &= ~VM_LOCKED; 436 437 while (start < end) { 438 struct page *page = NULL; 439 unsigned int page_mask, page_increm; 440 struct pagevec pvec; 441 struct zone *zone; 442 int zoneid; 443 444 pagevec_init(&pvec, 0); 445 /* 446 * Although FOLL_DUMP is intended for get_dump_page(), 447 * it just so happens that its special treatment of the 448 * ZERO_PAGE (returning an error instead of doing get_page) 449 * suits munlock very well (and if somehow an abnormal page 450 * has sneaked into the range, we won't oops here: great). 451 */ 452 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, 453 &page_mask); 454 455 if (page && !IS_ERR(page)) { 456 if (PageTransHuge(page)) { 457 lock_page(page); 458 /* 459 * Any THP page found by follow_page_mask() may 460 * have gotten split before reaching 461 * munlock_vma_page(), so we need to recompute 462 * the page_mask here. 463 */ 464 page_mask = munlock_vma_page(page); 465 unlock_page(page); 466 put_page(page); /* follow_page_mask() */ 467 } else { 468 /* 469 * Non-huge pages are handled in batches via 470 * pagevec. The pin from follow_page_mask() 471 * prevents them from collapsing by THP. 472 */ 473 pagevec_add(&pvec, page); 474 zone = page_zone(page); 475 zoneid = page_zone_id(page); 476 477 /* 478 * Try to fill the rest of pagevec using fast 479 * pte walk. This will also update start to 480 * the next page to process. Then munlock the 481 * pagevec. 482 */ 483 start = __munlock_pagevec_fill(&pvec, vma, 484 zoneid, start, end); 485 __munlock_pagevec(&pvec, zone); 486 goto next; 487 } 488 } 489 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 490 start += page_increm * PAGE_SIZE; 491 next: 492 cond_resched(); 493 } 494 } 495 496 /* 497 * mlock_fixup - handle mlock[all]/munlock[all] requests. 498 * 499 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and 500 * munlock is a no-op. However, for some special vmas, we go ahead and 501 * populate the ptes. 502 * 503 * For vmas that pass the filters, merge/split as appropriate. 504 */ 505 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, 506 unsigned long start, unsigned long end, vm_flags_t newflags) 507 { 508 struct mm_struct *mm = vma->vm_mm; 509 pgoff_t pgoff; 510 int nr_pages; 511 int ret = 0; 512 int lock = !!(newflags & VM_LOCKED); 513 514 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || 515 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) 516 goto out; /* don't set VM_LOCKED, don't count */ 517 518 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 519 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, 520 vma->vm_file, pgoff, vma_policy(vma)); 521 if (*prev) { 522 vma = *prev; 523 goto success; 524 } 525 526 if (start != vma->vm_start) { 527 ret = split_vma(mm, vma, start, 1); 528 if (ret) 529 goto out; 530 } 531 532 if (end != vma->vm_end) { 533 ret = split_vma(mm, vma, end, 0); 534 if (ret) 535 goto out; 536 } 537 538 success: 539 /* 540 * Keep track of amount of locked VM. 541 */ 542 nr_pages = (end - start) >> PAGE_SHIFT; 543 if (!lock) 544 nr_pages = -nr_pages; 545 mm->locked_vm += nr_pages; 546 547 /* 548 * vm_flags is protected by the mmap_sem held in write mode. 549 * It's okay if try_to_unmap_one unmaps a page just after we 550 * set VM_LOCKED, __mlock_vma_pages_range will bring it back. 551 */ 552 553 if (lock) 554 vma->vm_flags = newflags; 555 else 556 munlock_vma_pages_range(vma, start, end); 557 558 out: 559 *prev = vma; 560 return ret; 561 } 562 563 static int do_mlock(unsigned long start, size_t len, int on) 564 { 565 unsigned long nstart, end, tmp; 566 struct vm_area_struct * vma, * prev; 567 int error; 568 569 VM_BUG_ON(start & ~PAGE_MASK); 570 VM_BUG_ON(len != PAGE_ALIGN(len)); 571 end = start + len; 572 if (end < start) 573 return -EINVAL; 574 if (end == start) 575 return 0; 576 vma = find_vma(current->mm, start); 577 if (!vma || vma->vm_start > start) 578 return -ENOMEM; 579 580 prev = vma->vm_prev; 581 if (start > vma->vm_start) 582 prev = vma; 583 584 for (nstart = start ; ; ) { 585 vm_flags_t newflags; 586 587 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ 588 589 newflags = vma->vm_flags & ~VM_LOCKED; 590 if (on) 591 newflags |= VM_LOCKED; 592 593 tmp = vma->vm_end; 594 if (tmp > end) 595 tmp = end; 596 error = mlock_fixup(vma, &prev, nstart, tmp, newflags); 597 if (error) 598 break; 599 nstart = tmp; 600 if (nstart < prev->vm_end) 601 nstart = prev->vm_end; 602 if (nstart >= end) 603 break; 604 605 vma = prev->vm_next; 606 if (!vma || vma->vm_start != nstart) { 607 error = -ENOMEM; 608 break; 609 } 610 } 611 return error; 612 } 613 614 /* 615 * __mm_populate - populate and/or mlock pages within a range of address space. 616 * 617 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 618 * flags. VMAs must be already marked with the desired vm_flags, and 619 * mmap_sem must not be held. 620 */ 621 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 622 { 623 struct mm_struct *mm = current->mm; 624 unsigned long end, nstart, nend; 625 struct vm_area_struct *vma = NULL; 626 int locked = 0; 627 long ret = 0; 628 629 VM_BUG_ON(start & ~PAGE_MASK); 630 VM_BUG_ON(len != PAGE_ALIGN(len)); 631 end = start + len; 632 633 for (nstart = start; nstart < end; nstart = nend) { 634 /* 635 * We want to fault in pages for [nstart; end) address range. 636 * Find first corresponding VMA. 637 */ 638 if (!locked) { 639 locked = 1; 640 down_read(&mm->mmap_sem); 641 vma = find_vma(mm, nstart); 642 } else if (nstart >= vma->vm_end) 643 vma = vma->vm_next; 644 if (!vma || vma->vm_start >= end) 645 break; 646 /* 647 * Set [nstart; nend) to intersection of desired address 648 * range with the first VMA. Also, skip undesirable VMA types. 649 */ 650 nend = min(end, vma->vm_end); 651 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 652 continue; 653 if (nstart < vma->vm_start) 654 nstart = vma->vm_start; 655 /* 656 * Now fault in a range of pages. __mlock_vma_pages_range() 657 * double checks the vma flags, so that it won't mlock pages 658 * if the vma was already munlocked. 659 */ 660 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked); 661 if (ret < 0) { 662 if (ignore_errors) { 663 ret = 0; 664 continue; /* continue at next VMA */ 665 } 666 ret = __mlock_posix_error_return(ret); 667 break; 668 } 669 nend = nstart + ret * PAGE_SIZE; 670 ret = 0; 671 } 672 if (locked) 673 up_read(&mm->mmap_sem); 674 return ret; /* 0 or negative error code */ 675 } 676 677 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) 678 { 679 unsigned long locked; 680 unsigned long lock_limit; 681 int error = -ENOMEM; 682 683 if (!can_do_mlock()) 684 return -EPERM; 685 686 lru_add_drain_all(); /* flush pagevec */ 687 688 down_write(¤t->mm->mmap_sem); 689 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 690 start &= PAGE_MASK; 691 692 locked = len >> PAGE_SHIFT; 693 locked += current->mm->locked_vm; 694 695 lock_limit = rlimit(RLIMIT_MEMLOCK); 696 lock_limit >>= PAGE_SHIFT; 697 698 /* check against resource limits */ 699 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) 700 error = do_mlock(start, len, 1); 701 up_write(¤t->mm->mmap_sem); 702 if (!error) 703 error = __mm_populate(start, len, 0); 704 return error; 705 } 706 707 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) 708 { 709 int ret; 710 711 down_write(¤t->mm->mmap_sem); 712 len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); 713 start &= PAGE_MASK; 714 ret = do_mlock(start, len, 0); 715 up_write(¤t->mm->mmap_sem); 716 return ret; 717 } 718 719 static int do_mlockall(int flags) 720 { 721 struct vm_area_struct * vma, * prev = NULL; 722 723 if (flags & MCL_FUTURE) 724 current->mm->def_flags |= VM_LOCKED; 725 else 726 current->mm->def_flags &= ~VM_LOCKED; 727 if (flags == MCL_FUTURE) 728 goto out; 729 730 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { 731 vm_flags_t newflags; 732 733 newflags = vma->vm_flags & ~VM_LOCKED; 734 if (flags & MCL_CURRENT) 735 newflags |= VM_LOCKED; 736 737 /* Ignore errors */ 738 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); 739 cond_resched(); 740 } 741 out: 742 return 0; 743 } 744 745 SYSCALL_DEFINE1(mlockall, int, flags) 746 { 747 unsigned long lock_limit; 748 int ret = -EINVAL; 749 750 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) 751 goto out; 752 753 ret = -EPERM; 754 if (!can_do_mlock()) 755 goto out; 756 757 if (flags & MCL_CURRENT) 758 lru_add_drain_all(); /* flush pagevec */ 759 760 down_write(¤t->mm->mmap_sem); 761 762 lock_limit = rlimit(RLIMIT_MEMLOCK); 763 lock_limit >>= PAGE_SHIFT; 764 765 ret = -ENOMEM; 766 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || 767 capable(CAP_IPC_LOCK)) 768 ret = do_mlockall(flags); 769 up_write(¤t->mm->mmap_sem); 770 if (!ret && (flags & MCL_CURRENT)) 771 mm_populate(0, TASK_SIZE); 772 out: 773 return ret; 774 } 775 776 SYSCALL_DEFINE0(munlockall) 777 { 778 int ret; 779 780 down_write(¤t->mm->mmap_sem); 781 ret = do_mlockall(0); 782 up_write(¤t->mm->mmap_sem); 783 return ret; 784 } 785 786 /* 787 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB 788 * shm segments) get accounted against the user_struct instead. 789 */ 790 static DEFINE_SPINLOCK(shmlock_user_lock); 791 792 int user_shm_lock(size_t size, struct user_struct *user) 793 { 794 unsigned long lock_limit, locked; 795 int allowed = 0; 796 797 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 798 lock_limit = rlimit(RLIMIT_MEMLOCK); 799 if (lock_limit == RLIM_INFINITY) 800 allowed = 1; 801 lock_limit >>= PAGE_SHIFT; 802 spin_lock(&shmlock_user_lock); 803 if (!allowed && 804 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) 805 goto out; 806 get_uid(user); 807 user->locked_shm += locked; 808 allowed = 1; 809 out: 810 spin_unlock(&shmlock_user_lock); 811 return allowed; 812 } 813 814 void user_shm_unlock(size_t size, struct user_struct *user) 815 { 816 spin_lock(&shmlock_user_lock); 817 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 818 spin_unlock(&shmlock_user_lock); 819 free_uid(user); 820 } 821