xref: /openbmc/linux/mm/migrate_device.c (revision e6e8c6c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Device Memory Migration functionality.
4  *
5  * Originally written by Jérôme Glisse.
6  */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm_inline.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/oom.h>
13 #include <linux/pagewalk.h>
14 #include <linux/rmap.h>
15 #include <linux/swapops.h>
16 #include <asm/tlbflush.h>
17 #include "internal.h"
18 
19 static int migrate_vma_collect_skip(unsigned long start,
20 				    unsigned long end,
21 				    struct mm_walk *walk)
22 {
23 	struct migrate_vma *migrate = walk->private;
24 	unsigned long addr;
25 
26 	for (addr = start; addr < end; addr += PAGE_SIZE) {
27 		migrate->dst[migrate->npages] = 0;
28 		migrate->src[migrate->npages++] = 0;
29 	}
30 
31 	return 0;
32 }
33 
34 static int migrate_vma_collect_hole(unsigned long start,
35 				    unsigned long end,
36 				    __always_unused int depth,
37 				    struct mm_walk *walk)
38 {
39 	struct migrate_vma *migrate = walk->private;
40 	unsigned long addr;
41 
42 	/* Only allow populating anonymous memory. */
43 	if (!vma_is_anonymous(walk->vma))
44 		return migrate_vma_collect_skip(start, end, walk);
45 
46 	for (addr = start; addr < end; addr += PAGE_SIZE) {
47 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
48 		migrate->dst[migrate->npages] = 0;
49 		migrate->npages++;
50 		migrate->cpages++;
51 	}
52 
53 	return 0;
54 }
55 
56 static int migrate_vma_collect_pmd(pmd_t *pmdp,
57 				   unsigned long start,
58 				   unsigned long end,
59 				   struct mm_walk *walk)
60 {
61 	struct migrate_vma *migrate = walk->private;
62 	struct vm_area_struct *vma = walk->vma;
63 	struct mm_struct *mm = vma->vm_mm;
64 	unsigned long addr = start, unmapped = 0;
65 	spinlock_t *ptl;
66 	pte_t *ptep;
67 
68 again:
69 	if (pmd_none(*pmdp))
70 		return migrate_vma_collect_hole(start, end, -1, walk);
71 
72 	if (pmd_trans_huge(*pmdp)) {
73 		struct page *page;
74 
75 		ptl = pmd_lock(mm, pmdp);
76 		if (unlikely(!pmd_trans_huge(*pmdp))) {
77 			spin_unlock(ptl);
78 			goto again;
79 		}
80 
81 		page = pmd_page(*pmdp);
82 		if (is_huge_zero_page(page)) {
83 			spin_unlock(ptl);
84 			split_huge_pmd(vma, pmdp, addr);
85 			if (pmd_trans_unstable(pmdp))
86 				return migrate_vma_collect_skip(start, end,
87 								walk);
88 		} else {
89 			int ret;
90 
91 			get_page(page);
92 			spin_unlock(ptl);
93 			if (unlikely(!trylock_page(page)))
94 				return migrate_vma_collect_skip(start, end,
95 								walk);
96 			ret = split_huge_page(page);
97 			unlock_page(page);
98 			put_page(page);
99 			if (ret)
100 				return migrate_vma_collect_skip(start, end,
101 								walk);
102 			if (pmd_none(*pmdp))
103 				return migrate_vma_collect_hole(start, end, -1,
104 								walk);
105 		}
106 	}
107 
108 	if (unlikely(pmd_bad(*pmdp)))
109 		return migrate_vma_collect_skip(start, end, walk);
110 
111 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
112 	arch_enter_lazy_mmu_mode();
113 
114 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
115 		unsigned long mpfn = 0, pfn;
116 		struct page *page;
117 		swp_entry_t entry;
118 		pte_t pte;
119 
120 		pte = *ptep;
121 
122 		if (pte_none(pte)) {
123 			if (vma_is_anonymous(vma)) {
124 				mpfn = MIGRATE_PFN_MIGRATE;
125 				migrate->cpages++;
126 			}
127 			goto next;
128 		}
129 
130 		if (!pte_present(pte)) {
131 			/*
132 			 * Only care about unaddressable device page special
133 			 * page table entry. Other special swap entries are not
134 			 * migratable, and we ignore regular swapped page.
135 			 */
136 			entry = pte_to_swp_entry(pte);
137 			if (!is_device_private_entry(entry))
138 				goto next;
139 
140 			page = pfn_swap_entry_to_page(entry);
141 			if (!(migrate->flags &
142 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
143 			    page->pgmap->owner != migrate->pgmap_owner)
144 				goto next;
145 
146 			mpfn = migrate_pfn(page_to_pfn(page)) |
147 					MIGRATE_PFN_MIGRATE;
148 			if (is_writable_device_private_entry(entry))
149 				mpfn |= MIGRATE_PFN_WRITE;
150 		} else {
151 			pfn = pte_pfn(pte);
152 			if (is_zero_pfn(pfn) &&
153 			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
154 				mpfn = MIGRATE_PFN_MIGRATE;
155 				migrate->cpages++;
156 				goto next;
157 			}
158 			page = vm_normal_page(migrate->vma, addr, pte);
159 			if (page && !is_zone_device_page(page) &&
160 			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
161 				goto next;
162 			else if (page && is_device_coherent_page(page) &&
163 			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
164 			     page->pgmap->owner != migrate->pgmap_owner))
165 				goto next;
166 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
167 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
168 		}
169 
170 		/* FIXME support THP */
171 		if (!page || !page->mapping || PageTransCompound(page)) {
172 			mpfn = 0;
173 			goto next;
174 		}
175 
176 		/*
177 		 * By getting a reference on the page we pin it and that blocks
178 		 * any kind of migration. Side effect is that it "freezes" the
179 		 * pte.
180 		 *
181 		 * We drop this reference after isolating the page from the lru
182 		 * for non device page (device page are not on the lru and thus
183 		 * can't be dropped from it).
184 		 */
185 		get_page(page);
186 
187 		/*
188 		 * Optimize for the common case where page is only mapped once
189 		 * in one process. If we can lock the page, then we can safely
190 		 * set up a special migration page table entry now.
191 		 */
192 		if (trylock_page(page)) {
193 			bool anon_exclusive;
194 			pte_t swp_pte;
195 
196 			anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
197 			if (anon_exclusive) {
198 				flush_cache_page(vma, addr, pte_pfn(*ptep));
199 				ptep_clear_flush(vma, addr, ptep);
200 
201 				if (page_try_share_anon_rmap(page)) {
202 					set_pte_at(mm, addr, ptep, pte);
203 					unlock_page(page);
204 					put_page(page);
205 					mpfn = 0;
206 					goto next;
207 				}
208 			} else {
209 				ptep_get_and_clear(mm, addr, ptep);
210 			}
211 
212 			migrate->cpages++;
213 
214 			/* Setup special migration page table entry */
215 			if (mpfn & MIGRATE_PFN_WRITE)
216 				entry = make_writable_migration_entry(
217 							page_to_pfn(page));
218 			else if (anon_exclusive)
219 				entry = make_readable_exclusive_migration_entry(
220 							page_to_pfn(page));
221 			else
222 				entry = make_readable_migration_entry(
223 							page_to_pfn(page));
224 			swp_pte = swp_entry_to_pte(entry);
225 			if (pte_present(pte)) {
226 				if (pte_soft_dirty(pte))
227 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
228 				if (pte_uffd_wp(pte))
229 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
230 			} else {
231 				if (pte_swp_soft_dirty(pte))
232 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
233 				if (pte_swp_uffd_wp(pte))
234 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
235 			}
236 			set_pte_at(mm, addr, ptep, swp_pte);
237 
238 			/*
239 			 * This is like regular unmap: we remove the rmap and
240 			 * drop page refcount. Page won't be freed, as we took
241 			 * a reference just above.
242 			 */
243 			page_remove_rmap(page, vma, false);
244 			put_page(page);
245 
246 			if (pte_present(pte))
247 				unmapped++;
248 		} else {
249 			put_page(page);
250 			mpfn = 0;
251 		}
252 
253 next:
254 		migrate->dst[migrate->npages] = 0;
255 		migrate->src[migrate->npages++] = mpfn;
256 	}
257 	arch_leave_lazy_mmu_mode();
258 	pte_unmap_unlock(ptep - 1, ptl);
259 
260 	/* Only flush the TLB if we actually modified any entries */
261 	if (unmapped)
262 		flush_tlb_range(walk->vma, start, end);
263 
264 	return 0;
265 }
266 
267 static const struct mm_walk_ops migrate_vma_walk_ops = {
268 	.pmd_entry		= migrate_vma_collect_pmd,
269 	.pte_hole		= migrate_vma_collect_hole,
270 };
271 
272 /*
273  * migrate_vma_collect() - collect pages over a range of virtual addresses
274  * @migrate: migrate struct containing all migration information
275  *
276  * This will walk the CPU page table. For each virtual address backed by a
277  * valid page, it updates the src array and takes a reference on the page, in
278  * order to pin the page until we lock it and unmap it.
279  */
280 static void migrate_vma_collect(struct migrate_vma *migrate)
281 {
282 	struct mmu_notifier_range range;
283 
284 	/*
285 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
286 	 * that the registered device driver can skip invalidating device
287 	 * private page mappings that won't be migrated.
288 	 */
289 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
290 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
291 		migrate->pgmap_owner);
292 	mmu_notifier_invalidate_range_start(&range);
293 
294 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
295 			&migrate_vma_walk_ops, migrate);
296 
297 	mmu_notifier_invalidate_range_end(&range);
298 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
299 }
300 
301 /*
302  * migrate_vma_check_page() - check if page is pinned or not
303  * @page: struct page to check
304  *
305  * Pinned pages cannot be migrated. This is the same test as in
306  * folio_migrate_mapping(), except that here we allow migration of a
307  * ZONE_DEVICE page.
308  */
309 static bool migrate_vma_check_page(struct page *page)
310 {
311 	/*
312 	 * One extra ref because caller holds an extra reference, either from
313 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
314 	 * a device page.
315 	 */
316 	int extra = 1;
317 
318 	/*
319 	 * FIXME support THP (transparent huge page), it is bit more complex to
320 	 * check them than regular pages, because they can be mapped with a pmd
321 	 * or with a pte (split pte mapping).
322 	 */
323 	if (PageCompound(page))
324 		return false;
325 
326 	/* Page from ZONE_DEVICE have one extra reference */
327 	if (is_zone_device_page(page))
328 		extra++;
329 
330 	/* For file back page */
331 	if (page_mapping(page))
332 		extra += 1 + page_has_private(page);
333 
334 	if ((page_count(page) - extra) > page_mapcount(page))
335 		return false;
336 
337 	return true;
338 }
339 
340 /*
341  * migrate_vma_unmap() - replace page mapping with special migration pte entry
342  * @migrate: migrate struct containing all migration information
343  *
344  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
345  * special migration pte entry and check if it has been pinned. Pinned pages are
346  * restored because we cannot migrate them.
347  *
348  * This is the last step before we call the device driver callback to allocate
349  * destination memory and copy contents of original page over to new page.
350  */
351 static void migrate_vma_unmap(struct migrate_vma *migrate)
352 {
353 	const unsigned long npages = migrate->npages;
354 	unsigned long i, restore = 0;
355 	bool allow_drain = true;
356 
357 	lru_add_drain();
358 
359 	for (i = 0; i < npages; i++) {
360 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
361 		struct folio *folio;
362 
363 		if (!page)
364 			continue;
365 
366 		/* ZONE_DEVICE pages are not on LRU */
367 		if (!is_zone_device_page(page)) {
368 			if (!PageLRU(page) && allow_drain) {
369 				/* Drain CPU's pagevec */
370 				lru_add_drain_all();
371 				allow_drain = false;
372 			}
373 
374 			if (isolate_lru_page(page)) {
375 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
376 				migrate->cpages--;
377 				restore++;
378 				continue;
379 			}
380 
381 			/* Drop the reference we took in collect */
382 			put_page(page);
383 		}
384 
385 		folio = page_folio(page);
386 		if (folio_mapped(folio))
387 			try_to_migrate(folio, 0);
388 
389 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
390 			if (!is_zone_device_page(page)) {
391 				get_page(page);
392 				putback_lru_page(page);
393 			}
394 
395 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
396 			migrate->cpages--;
397 			restore++;
398 			continue;
399 		}
400 	}
401 
402 	for (i = 0; i < npages && restore; i++) {
403 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
404 		struct folio *folio;
405 
406 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
407 			continue;
408 
409 		folio = page_folio(page);
410 		remove_migration_ptes(folio, folio, false);
411 
412 		migrate->src[i] = 0;
413 		folio_unlock(folio);
414 		folio_put(folio);
415 		restore--;
416 	}
417 }
418 
419 /**
420  * migrate_vma_setup() - prepare to migrate a range of memory
421  * @args: contains the vma, start, and pfns arrays for the migration
422  *
423  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
424  * without an error.
425  *
426  * Prepare to migrate a range of memory virtual address range by collecting all
427  * the pages backing each virtual address in the range, saving them inside the
428  * src array.  Then lock those pages and unmap them. Once the pages are locked
429  * and unmapped, check whether each page is pinned or not.  Pages that aren't
430  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
431  * corresponding src array entry.  Then restores any pages that are pinned, by
432  * remapping and unlocking those pages.
433  *
434  * The caller should then allocate destination memory and copy source memory to
435  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
436  * flag set).  Once these are allocated and copied, the caller must update each
437  * corresponding entry in the dst array with the pfn value of the destination
438  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
439  * lock_page().
440  *
441  * Note that the caller does not have to migrate all the pages that are marked
442  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
443  * device memory to system memory.  If the caller cannot migrate a device page
444  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
445  * consequences for the userspace process, so it must be avoided if at all
446  * possible.
447  *
448  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
449  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
450  * allowing the caller to allocate device memory for those unbacked virtual
451  * addresses.  For this the caller simply has to allocate device memory and
452  * properly set the destination entry like for regular migration.  Note that
453  * this can still fail, and thus inside the device driver you must check if the
454  * migration was successful for those entries after calling migrate_vma_pages(),
455  * just like for regular migration.
456  *
457  * After that, the callers must call migrate_vma_pages() to go over each entry
458  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
459  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
460  * then migrate_vma_pages() to migrate struct page information from the source
461  * struct page to the destination struct page.  If it fails to migrate the
462  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
463  * src array.
464  *
465  * At this point all successfully migrated pages have an entry in the src
466  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
467  * array entry with MIGRATE_PFN_VALID flag set.
468  *
469  * Once migrate_vma_pages() returns the caller may inspect which pages were
470  * successfully migrated, and which were not.  Successfully migrated pages will
471  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
472  *
473  * It is safe to update device page table after migrate_vma_pages() because
474  * both destination and source page are still locked, and the mmap_lock is held
475  * in read mode (hence no one can unmap the range being migrated).
476  *
477  * Once the caller is done cleaning up things and updating its page table (if it
478  * chose to do so, this is not an obligation) it finally calls
479  * migrate_vma_finalize() to update the CPU page table to point to new pages
480  * for successfully migrated pages or otherwise restore the CPU page table to
481  * point to the original source pages.
482  */
483 int migrate_vma_setup(struct migrate_vma *args)
484 {
485 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
486 
487 	args->start &= PAGE_MASK;
488 	args->end &= PAGE_MASK;
489 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
490 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
491 		return -EINVAL;
492 	if (nr_pages <= 0)
493 		return -EINVAL;
494 	if (args->start < args->vma->vm_start ||
495 	    args->start >= args->vma->vm_end)
496 		return -EINVAL;
497 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
498 		return -EINVAL;
499 	if (!args->src || !args->dst)
500 		return -EINVAL;
501 
502 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
503 	args->cpages = 0;
504 	args->npages = 0;
505 
506 	migrate_vma_collect(args);
507 
508 	if (args->cpages)
509 		migrate_vma_unmap(args);
510 
511 	/*
512 	 * At this point pages are locked and unmapped, and thus they have
513 	 * stable content and can safely be copied to destination memory that
514 	 * is allocated by the drivers.
515 	 */
516 	return 0;
517 
518 }
519 EXPORT_SYMBOL(migrate_vma_setup);
520 
521 /*
522  * This code closely matches the code in:
523  *   __handle_mm_fault()
524  *     handle_pte_fault()
525  *       do_anonymous_page()
526  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
527  * private or coherent page.
528  */
529 static void migrate_vma_insert_page(struct migrate_vma *migrate,
530 				    unsigned long addr,
531 				    struct page *page,
532 				    unsigned long *src)
533 {
534 	struct vm_area_struct *vma = migrate->vma;
535 	struct mm_struct *mm = vma->vm_mm;
536 	bool flush = false;
537 	spinlock_t *ptl;
538 	pte_t entry;
539 	pgd_t *pgdp;
540 	p4d_t *p4dp;
541 	pud_t *pudp;
542 	pmd_t *pmdp;
543 	pte_t *ptep;
544 
545 	/* Only allow populating anonymous memory */
546 	if (!vma_is_anonymous(vma))
547 		goto abort;
548 
549 	pgdp = pgd_offset(mm, addr);
550 	p4dp = p4d_alloc(mm, pgdp, addr);
551 	if (!p4dp)
552 		goto abort;
553 	pudp = pud_alloc(mm, p4dp, addr);
554 	if (!pudp)
555 		goto abort;
556 	pmdp = pmd_alloc(mm, pudp, addr);
557 	if (!pmdp)
558 		goto abort;
559 
560 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
561 		goto abort;
562 
563 	/*
564 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
565 	 * pte_offset_map() on pmds where a huge pmd might be created
566 	 * from a different thread.
567 	 *
568 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
569 	 * parallel threads are excluded by other means.
570 	 *
571 	 * Here we only have mmap_read_lock(mm).
572 	 */
573 	if (pte_alloc(mm, pmdp))
574 		goto abort;
575 
576 	/* See the comment in pte_alloc_one_map() */
577 	if (unlikely(pmd_trans_unstable(pmdp)))
578 		goto abort;
579 
580 	if (unlikely(anon_vma_prepare(vma)))
581 		goto abort;
582 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
583 		goto abort;
584 
585 	/*
586 	 * The memory barrier inside __SetPageUptodate makes sure that
587 	 * preceding stores to the page contents become visible before
588 	 * the set_pte_at() write.
589 	 */
590 	__SetPageUptodate(page);
591 
592 	if (is_device_private_page(page)) {
593 		swp_entry_t swp_entry;
594 
595 		if (vma->vm_flags & VM_WRITE)
596 			swp_entry = make_writable_device_private_entry(
597 						page_to_pfn(page));
598 		else
599 			swp_entry = make_readable_device_private_entry(
600 						page_to_pfn(page));
601 		entry = swp_entry_to_pte(swp_entry);
602 	} else {
603 		if (is_zone_device_page(page) &&
604 		    !is_device_coherent_page(page)) {
605 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
606 			goto abort;
607 		}
608 		entry = mk_pte(page, vma->vm_page_prot);
609 		if (vma->vm_flags & VM_WRITE)
610 			entry = pte_mkwrite(pte_mkdirty(entry));
611 	}
612 
613 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
614 
615 	if (check_stable_address_space(mm))
616 		goto unlock_abort;
617 
618 	if (pte_present(*ptep)) {
619 		unsigned long pfn = pte_pfn(*ptep);
620 
621 		if (!is_zero_pfn(pfn))
622 			goto unlock_abort;
623 		flush = true;
624 	} else if (!pte_none(*ptep))
625 		goto unlock_abort;
626 
627 	/*
628 	 * Check for userfaultfd but do not deliver the fault. Instead,
629 	 * just back off.
630 	 */
631 	if (userfaultfd_missing(vma))
632 		goto unlock_abort;
633 
634 	inc_mm_counter(mm, MM_ANONPAGES);
635 	page_add_new_anon_rmap(page, vma, addr);
636 	if (!is_zone_device_page(page))
637 		lru_cache_add_inactive_or_unevictable(page, vma);
638 	get_page(page);
639 
640 	if (flush) {
641 		flush_cache_page(vma, addr, pte_pfn(*ptep));
642 		ptep_clear_flush_notify(vma, addr, ptep);
643 		set_pte_at_notify(mm, addr, ptep, entry);
644 		update_mmu_cache(vma, addr, ptep);
645 	} else {
646 		/* No need to invalidate - it was non-present before */
647 		set_pte_at(mm, addr, ptep, entry);
648 		update_mmu_cache(vma, addr, ptep);
649 	}
650 
651 	pte_unmap_unlock(ptep, ptl);
652 	*src = MIGRATE_PFN_MIGRATE;
653 	return;
654 
655 unlock_abort:
656 	pte_unmap_unlock(ptep, ptl);
657 abort:
658 	*src &= ~MIGRATE_PFN_MIGRATE;
659 }
660 
661 /**
662  * migrate_vma_pages() - migrate meta-data from src page to dst page
663  * @migrate: migrate struct containing all migration information
664  *
665  * This migrates struct page meta-data from source struct page to destination
666  * struct page. This effectively finishes the migration from source page to the
667  * destination page.
668  */
669 void migrate_vma_pages(struct migrate_vma *migrate)
670 {
671 	const unsigned long npages = migrate->npages;
672 	const unsigned long start = migrate->start;
673 	struct mmu_notifier_range range;
674 	unsigned long addr, i;
675 	bool notified = false;
676 
677 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
678 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
679 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
680 		struct address_space *mapping;
681 		int r;
682 
683 		if (!newpage) {
684 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
685 			continue;
686 		}
687 
688 		if (!page) {
689 			/*
690 			 * The only time there is no vma is when called from
691 			 * migrate_device_coherent_page(). However this isn't
692 			 * called if the page could not be unmapped.
693 			 */
694 			VM_BUG_ON(!migrate->vma);
695 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
696 				continue;
697 			if (!notified) {
698 				notified = true;
699 
700 				mmu_notifier_range_init_owner(&range,
701 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
702 					migrate->vma->vm_mm, addr, migrate->end,
703 					migrate->pgmap_owner);
704 				mmu_notifier_invalidate_range_start(&range);
705 			}
706 			migrate_vma_insert_page(migrate, addr, newpage,
707 						&migrate->src[i]);
708 			continue;
709 		}
710 
711 		mapping = page_mapping(page);
712 
713 		if (is_device_private_page(newpage) ||
714 		    is_device_coherent_page(newpage)) {
715 			/*
716 			 * For now only support anonymous memory migrating to
717 			 * device private or coherent memory.
718 			 */
719 			if (mapping) {
720 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
721 				continue;
722 			}
723 		} else if (is_zone_device_page(newpage)) {
724 			/*
725 			 * Other types of ZONE_DEVICE page are not supported.
726 			 */
727 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
728 			continue;
729 		}
730 
731 		r = migrate_folio(mapping, page_folio(newpage),
732 				page_folio(page), MIGRATE_SYNC_NO_COPY);
733 		if (r != MIGRATEPAGE_SUCCESS)
734 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
735 	}
736 
737 	/*
738 	 * No need to double call mmu_notifier->invalidate_range() callback as
739 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
740 	 * did already call it.
741 	 */
742 	if (notified)
743 		mmu_notifier_invalidate_range_only_end(&range);
744 }
745 EXPORT_SYMBOL(migrate_vma_pages);
746 
747 /**
748  * migrate_vma_finalize() - restore CPU page table entry
749  * @migrate: migrate struct containing all migration information
750  *
751  * This replaces the special migration pte entry with either a mapping to the
752  * new page if migration was successful for that page, or to the original page
753  * otherwise.
754  *
755  * This also unlocks the pages and puts them back on the lru, or drops the extra
756  * refcount, for device pages.
757  */
758 void migrate_vma_finalize(struct migrate_vma *migrate)
759 {
760 	const unsigned long npages = migrate->npages;
761 	unsigned long i;
762 
763 	for (i = 0; i < npages; i++) {
764 		struct folio *dst, *src;
765 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
766 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
767 
768 		if (!page) {
769 			if (newpage) {
770 				unlock_page(newpage);
771 				put_page(newpage);
772 			}
773 			continue;
774 		}
775 
776 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
777 			if (newpage) {
778 				unlock_page(newpage);
779 				put_page(newpage);
780 			}
781 			newpage = page;
782 		}
783 
784 		src = page_folio(page);
785 		dst = page_folio(newpage);
786 		remove_migration_ptes(src, dst, false);
787 		folio_unlock(src);
788 
789 		if (is_zone_device_page(page))
790 			put_page(page);
791 		else
792 			putback_lru_page(page);
793 
794 		if (newpage != page) {
795 			unlock_page(newpage);
796 			if (is_zone_device_page(newpage))
797 				put_page(newpage);
798 			else
799 				putback_lru_page(newpage);
800 		}
801 	}
802 }
803 EXPORT_SYMBOL(migrate_vma_finalize);
804 
805 /*
806  * Migrate a device coherent page back to normal memory. The caller should have
807  * a reference on page which will be copied to the new page if migration is
808  * successful or dropped on failure.
809  */
810 int migrate_device_coherent_page(struct page *page)
811 {
812 	unsigned long src_pfn, dst_pfn = 0;
813 	struct migrate_vma args;
814 	struct page *dpage;
815 
816 	WARN_ON_ONCE(PageCompound(page));
817 
818 	lock_page(page);
819 	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
820 	args.src = &src_pfn;
821 	args.dst = &dst_pfn;
822 	args.cpages = 1;
823 	args.npages = 1;
824 	args.vma = NULL;
825 
826 	/*
827 	 * We don't have a VMA and don't need to walk the page tables to find
828 	 * the source page. So call migrate_vma_unmap() directly to unmap the
829 	 * page as migrate_vma_setup() will fail if args.vma == NULL.
830 	 */
831 	migrate_vma_unmap(&args);
832 	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
833 		return -EBUSY;
834 
835 	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
836 	if (dpage) {
837 		lock_page(dpage);
838 		dst_pfn = migrate_pfn(page_to_pfn(dpage));
839 	}
840 
841 	migrate_vma_pages(&args);
842 	if (src_pfn & MIGRATE_PFN_MIGRATE)
843 		copy_highpage(dpage, page);
844 	migrate_vma_finalize(&args);
845 
846 	if (src_pfn & MIGRATE_PFN_MIGRATE)
847 		return 0;
848 	return -EBUSY;
849 }
850