1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm.h> 11 #include <linux/mm_inline.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/oom.h> 14 #include <linux/pagewalk.h> 15 #include <linux/rmap.h> 16 #include <linux/swapops.h> 17 #include <asm/tlbflush.h> 18 #include "internal.h" 19 20 static int migrate_vma_collect_skip(unsigned long start, 21 unsigned long end, 22 struct mm_walk *walk) 23 { 24 struct migrate_vma *migrate = walk->private; 25 unsigned long addr; 26 27 for (addr = start; addr < end; addr += PAGE_SIZE) { 28 migrate->dst[migrate->npages] = 0; 29 migrate->src[migrate->npages++] = 0; 30 } 31 32 return 0; 33 } 34 35 static int migrate_vma_collect_hole(unsigned long start, 36 unsigned long end, 37 __always_unused int depth, 38 struct mm_walk *walk) 39 { 40 struct migrate_vma *migrate = walk->private; 41 unsigned long addr; 42 43 /* Only allow populating anonymous memory. */ 44 if (!vma_is_anonymous(walk->vma)) 45 return migrate_vma_collect_skip(start, end, walk); 46 47 for (addr = start; addr < end; addr += PAGE_SIZE) { 48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 49 migrate->dst[migrate->npages] = 0; 50 migrate->npages++; 51 migrate->cpages++; 52 } 53 54 return 0; 55 } 56 57 static int migrate_vma_collect_pmd(pmd_t *pmdp, 58 unsigned long start, 59 unsigned long end, 60 struct mm_walk *walk) 61 { 62 struct migrate_vma *migrate = walk->private; 63 struct vm_area_struct *vma = walk->vma; 64 struct mm_struct *mm = vma->vm_mm; 65 unsigned long addr = start, unmapped = 0; 66 spinlock_t *ptl; 67 pte_t *ptep; 68 69 again: 70 if (pmd_none(*pmdp)) 71 return migrate_vma_collect_hole(start, end, -1, walk); 72 73 if (pmd_trans_huge(*pmdp)) { 74 struct page *page; 75 76 ptl = pmd_lock(mm, pmdp); 77 if (unlikely(!pmd_trans_huge(*pmdp))) { 78 spin_unlock(ptl); 79 goto again; 80 } 81 82 page = pmd_page(*pmdp); 83 if (is_huge_zero_page(page)) { 84 spin_unlock(ptl); 85 split_huge_pmd(vma, pmdp, addr); 86 } else { 87 int ret; 88 89 get_page(page); 90 spin_unlock(ptl); 91 if (unlikely(!trylock_page(page))) 92 return migrate_vma_collect_skip(start, end, 93 walk); 94 ret = split_huge_page(page); 95 unlock_page(page); 96 put_page(page); 97 if (ret) 98 return migrate_vma_collect_skip(start, end, 99 walk); 100 } 101 } 102 103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 104 if (!ptep) 105 goto again; 106 arch_enter_lazy_mmu_mode(); 107 108 for (; addr < end; addr += PAGE_SIZE, ptep++) { 109 unsigned long mpfn = 0, pfn; 110 struct page *page; 111 swp_entry_t entry; 112 pte_t pte; 113 114 pte = ptep_get(ptep); 115 116 if (pte_none(pte)) { 117 if (vma_is_anonymous(vma)) { 118 mpfn = MIGRATE_PFN_MIGRATE; 119 migrate->cpages++; 120 } 121 goto next; 122 } 123 124 if (!pte_present(pte)) { 125 /* 126 * Only care about unaddressable device page special 127 * page table entry. Other special swap entries are not 128 * migratable, and we ignore regular swapped page. 129 */ 130 entry = pte_to_swp_entry(pte); 131 if (!is_device_private_entry(entry)) 132 goto next; 133 134 page = pfn_swap_entry_to_page(entry); 135 if (!(migrate->flags & 136 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 137 page->pgmap->owner != migrate->pgmap_owner) 138 goto next; 139 140 mpfn = migrate_pfn(page_to_pfn(page)) | 141 MIGRATE_PFN_MIGRATE; 142 if (is_writable_device_private_entry(entry)) 143 mpfn |= MIGRATE_PFN_WRITE; 144 } else { 145 pfn = pte_pfn(pte); 146 if (is_zero_pfn(pfn) && 147 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { 148 mpfn = MIGRATE_PFN_MIGRATE; 149 migrate->cpages++; 150 goto next; 151 } 152 page = vm_normal_page(migrate->vma, addr, pte); 153 if (page && !is_zone_device_page(page) && 154 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 155 goto next; 156 else if (page && is_device_coherent_page(page) && 157 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || 158 page->pgmap->owner != migrate->pgmap_owner)) 159 goto next; 160 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 161 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 162 } 163 164 /* FIXME support THP */ 165 if (!page || !page->mapping || PageTransCompound(page)) { 166 mpfn = 0; 167 goto next; 168 } 169 170 /* 171 * By getting a reference on the page we pin it and that blocks 172 * any kind of migration. Side effect is that it "freezes" the 173 * pte. 174 * 175 * We drop this reference after isolating the page from the lru 176 * for non device page (device page are not on the lru and thus 177 * can't be dropped from it). 178 */ 179 get_page(page); 180 181 /* 182 * We rely on trylock_page() to avoid deadlock between 183 * concurrent migrations where each is waiting on the others 184 * page lock. If we can't immediately lock the page we fail this 185 * migration as it is only best effort anyway. 186 * 187 * If we can lock the page it's safe to set up a migration entry 188 * now. In the common case where the page is mapped once in a 189 * single process setting up the migration entry now is an 190 * optimisation to avoid walking the rmap later with 191 * try_to_migrate(). 192 */ 193 if (trylock_page(page)) { 194 bool anon_exclusive; 195 pte_t swp_pte; 196 197 flush_cache_page(vma, addr, pte_pfn(pte)); 198 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 199 if (anon_exclusive) { 200 pte = ptep_clear_flush(vma, addr, ptep); 201 202 if (page_try_share_anon_rmap(page)) { 203 set_pte_at(mm, addr, ptep, pte); 204 unlock_page(page); 205 put_page(page); 206 mpfn = 0; 207 goto next; 208 } 209 } else { 210 pte = ptep_get_and_clear(mm, addr, ptep); 211 } 212 213 migrate->cpages++; 214 215 /* Set the dirty flag on the folio now the pte is gone. */ 216 if (pte_dirty(pte)) 217 folio_mark_dirty(page_folio(page)); 218 219 /* Setup special migration page table entry */ 220 if (mpfn & MIGRATE_PFN_WRITE) 221 entry = make_writable_migration_entry( 222 page_to_pfn(page)); 223 else if (anon_exclusive) 224 entry = make_readable_exclusive_migration_entry( 225 page_to_pfn(page)); 226 else 227 entry = make_readable_migration_entry( 228 page_to_pfn(page)); 229 if (pte_present(pte)) { 230 if (pte_young(pte)) 231 entry = make_migration_entry_young(entry); 232 if (pte_dirty(pte)) 233 entry = make_migration_entry_dirty(entry); 234 } 235 swp_pte = swp_entry_to_pte(entry); 236 if (pte_present(pte)) { 237 if (pte_soft_dirty(pte)) 238 swp_pte = pte_swp_mksoft_dirty(swp_pte); 239 if (pte_uffd_wp(pte)) 240 swp_pte = pte_swp_mkuffd_wp(swp_pte); 241 } else { 242 if (pte_swp_soft_dirty(pte)) 243 swp_pte = pte_swp_mksoft_dirty(swp_pte); 244 if (pte_swp_uffd_wp(pte)) 245 swp_pte = pte_swp_mkuffd_wp(swp_pte); 246 } 247 set_pte_at(mm, addr, ptep, swp_pte); 248 249 /* 250 * This is like regular unmap: we remove the rmap and 251 * drop page refcount. Page won't be freed, as we took 252 * a reference just above. 253 */ 254 page_remove_rmap(page, vma, false); 255 put_page(page); 256 257 if (pte_present(pte)) 258 unmapped++; 259 } else { 260 put_page(page); 261 mpfn = 0; 262 } 263 264 next: 265 migrate->dst[migrate->npages] = 0; 266 migrate->src[migrate->npages++] = mpfn; 267 } 268 269 /* Only flush the TLB if we actually modified any entries */ 270 if (unmapped) 271 flush_tlb_range(walk->vma, start, end); 272 273 arch_leave_lazy_mmu_mode(); 274 pte_unmap_unlock(ptep - 1, ptl); 275 276 return 0; 277 } 278 279 static const struct mm_walk_ops migrate_vma_walk_ops = { 280 .pmd_entry = migrate_vma_collect_pmd, 281 .pte_hole = migrate_vma_collect_hole, 282 }; 283 284 /* 285 * migrate_vma_collect() - collect pages over a range of virtual addresses 286 * @migrate: migrate struct containing all migration information 287 * 288 * This will walk the CPU page table. For each virtual address backed by a 289 * valid page, it updates the src array and takes a reference on the page, in 290 * order to pin the page until we lock it and unmap it. 291 */ 292 static void migrate_vma_collect(struct migrate_vma *migrate) 293 { 294 struct mmu_notifier_range range; 295 296 /* 297 * Note that the pgmap_owner is passed to the mmu notifier callback so 298 * that the registered device driver can skip invalidating device 299 * private page mappings that won't be migrated. 300 */ 301 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 302 migrate->vma->vm_mm, migrate->start, migrate->end, 303 migrate->pgmap_owner); 304 mmu_notifier_invalidate_range_start(&range); 305 306 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 307 &migrate_vma_walk_ops, migrate); 308 309 mmu_notifier_invalidate_range_end(&range); 310 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 311 } 312 313 /* 314 * migrate_vma_check_page() - check if page is pinned or not 315 * @page: struct page to check 316 * 317 * Pinned pages cannot be migrated. This is the same test as in 318 * folio_migrate_mapping(), except that here we allow migration of a 319 * ZONE_DEVICE page. 320 */ 321 static bool migrate_vma_check_page(struct page *page, struct page *fault_page) 322 { 323 /* 324 * One extra ref because caller holds an extra reference, either from 325 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 326 * a device page. 327 */ 328 int extra = 1 + (page == fault_page); 329 330 /* 331 * FIXME support THP (transparent huge page), it is bit more complex to 332 * check them than regular pages, because they can be mapped with a pmd 333 * or with a pte (split pte mapping). 334 */ 335 if (PageCompound(page)) 336 return false; 337 338 /* Page from ZONE_DEVICE have one extra reference */ 339 if (is_zone_device_page(page)) 340 extra++; 341 342 /* For file back page */ 343 if (page_mapping(page)) 344 extra += 1 + page_has_private(page); 345 346 if ((page_count(page) - extra) > page_mapcount(page)) 347 return false; 348 349 return true; 350 } 351 352 /* 353 * Unmaps pages for migration. Returns number of source pfns marked as 354 * migrating. 355 */ 356 static unsigned long migrate_device_unmap(unsigned long *src_pfns, 357 unsigned long npages, 358 struct page *fault_page) 359 { 360 unsigned long i, restore = 0; 361 bool allow_drain = true; 362 unsigned long unmapped = 0; 363 364 lru_add_drain(); 365 366 for (i = 0; i < npages; i++) { 367 struct page *page = migrate_pfn_to_page(src_pfns[i]); 368 struct folio *folio; 369 370 if (!page) { 371 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) 372 unmapped++; 373 continue; 374 } 375 376 /* ZONE_DEVICE pages are not on LRU */ 377 if (!is_zone_device_page(page)) { 378 if (!PageLRU(page) && allow_drain) { 379 /* Drain CPU's lru cache */ 380 lru_add_drain_all(); 381 allow_drain = false; 382 } 383 384 if (!isolate_lru_page(page)) { 385 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 386 restore++; 387 continue; 388 } 389 390 /* Drop the reference we took in collect */ 391 put_page(page); 392 } 393 394 folio = page_folio(page); 395 if (folio_mapped(folio)) 396 try_to_migrate(folio, 0); 397 398 if (page_mapped(page) || 399 !migrate_vma_check_page(page, fault_page)) { 400 if (!is_zone_device_page(page)) { 401 get_page(page); 402 putback_lru_page(page); 403 } 404 405 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 406 restore++; 407 continue; 408 } 409 410 unmapped++; 411 } 412 413 for (i = 0; i < npages && restore; i++) { 414 struct page *page = migrate_pfn_to_page(src_pfns[i]); 415 struct folio *folio; 416 417 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) 418 continue; 419 420 folio = page_folio(page); 421 remove_migration_ptes(folio, folio, false); 422 423 src_pfns[i] = 0; 424 folio_unlock(folio); 425 folio_put(folio); 426 restore--; 427 } 428 429 return unmapped; 430 } 431 432 /* 433 * migrate_vma_unmap() - replace page mapping with special migration pte entry 434 * @migrate: migrate struct containing all migration information 435 * 436 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 437 * special migration pte entry and check if it has been pinned. Pinned pages are 438 * restored because we cannot migrate them. 439 * 440 * This is the last step before we call the device driver callback to allocate 441 * destination memory and copy contents of original page over to new page. 442 */ 443 static void migrate_vma_unmap(struct migrate_vma *migrate) 444 { 445 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, 446 migrate->fault_page); 447 } 448 449 /** 450 * migrate_vma_setup() - prepare to migrate a range of memory 451 * @args: contains the vma, start, and pfns arrays for the migration 452 * 453 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 454 * without an error. 455 * 456 * Prepare to migrate a range of memory virtual address range by collecting all 457 * the pages backing each virtual address in the range, saving them inside the 458 * src array. Then lock those pages and unmap them. Once the pages are locked 459 * and unmapped, check whether each page is pinned or not. Pages that aren't 460 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 461 * corresponding src array entry. Then restores any pages that are pinned, by 462 * remapping and unlocking those pages. 463 * 464 * The caller should then allocate destination memory and copy source memory to 465 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 466 * flag set). Once these are allocated and copied, the caller must update each 467 * corresponding entry in the dst array with the pfn value of the destination 468 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 469 * lock_page(). 470 * 471 * Note that the caller does not have to migrate all the pages that are marked 472 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 473 * device memory to system memory. If the caller cannot migrate a device page 474 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 475 * consequences for the userspace process, so it must be avoided if at all 476 * possible. 477 * 478 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 479 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 480 * allowing the caller to allocate device memory for those unbacked virtual 481 * addresses. For this the caller simply has to allocate device memory and 482 * properly set the destination entry like for regular migration. Note that 483 * this can still fail, and thus inside the device driver you must check if the 484 * migration was successful for those entries after calling migrate_vma_pages(), 485 * just like for regular migration. 486 * 487 * After that, the callers must call migrate_vma_pages() to go over each entry 488 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 489 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 490 * then migrate_vma_pages() to migrate struct page information from the source 491 * struct page to the destination struct page. If it fails to migrate the 492 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 493 * src array. 494 * 495 * At this point all successfully migrated pages have an entry in the src 496 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 497 * array entry with MIGRATE_PFN_VALID flag set. 498 * 499 * Once migrate_vma_pages() returns the caller may inspect which pages were 500 * successfully migrated, and which were not. Successfully migrated pages will 501 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 502 * 503 * It is safe to update device page table after migrate_vma_pages() because 504 * both destination and source page are still locked, and the mmap_lock is held 505 * in read mode (hence no one can unmap the range being migrated). 506 * 507 * Once the caller is done cleaning up things and updating its page table (if it 508 * chose to do so, this is not an obligation) it finally calls 509 * migrate_vma_finalize() to update the CPU page table to point to new pages 510 * for successfully migrated pages or otherwise restore the CPU page table to 511 * point to the original source pages. 512 */ 513 int migrate_vma_setup(struct migrate_vma *args) 514 { 515 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 516 517 args->start &= PAGE_MASK; 518 args->end &= PAGE_MASK; 519 if (!args->vma || is_vm_hugetlb_page(args->vma) || 520 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 521 return -EINVAL; 522 if (nr_pages <= 0) 523 return -EINVAL; 524 if (args->start < args->vma->vm_start || 525 args->start >= args->vma->vm_end) 526 return -EINVAL; 527 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 528 return -EINVAL; 529 if (!args->src || !args->dst) 530 return -EINVAL; 531 if (args->fault_page && !is_device_private_page(args->fault_page)) 532 return -EINVAL; 533 534 memset(args->src, 0, sizeof(*args->src) * nr_pages); 535 args->cpages = 0; 536 args->npages = 0; 537 538 migrate_vma_collect(args); 539 540 if (args->cpages) 541 migrate_vma_unmap(args); 542 543 /* 544 * At this point pages are locked and unmapped, and thus they have 545 * stable content and can safely be copied to destination memory that 546 * is allocated by the drivers. 547 */ 548 return 0; 549 550 } 551 EXPORT_SYMBOL(migrate_vma_setup); 552 553 /* 554 * This code closely matches the code in: 555 * __handle_mm_fault() 556 * handle_pte_fault() 557 * do_anonymous_page() 558 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 559 * private or coherent page. 560 */ 561 static void migrate_vma_insert_page(struct migrate_vma *migrate, 562 unsigned long addr, 563 struct page *page, 564 unsigned long *src) 565 { 566 struct vm_area_struct *vma = migrate->vma; 567 struct mm_struct *mm = vma->vm_mm; 568 bool flush = false; 569 spinlock_t *ptl; 570 pte_t entry; 571 pgd_t *pgdp; 572 p4d_t *p4dp; 573 pud_t *pudp; 574 pmd_t *pmdp; 575 pte_t *ptep; 576 pte_t orig_pte; 577 578 /* Only allow populating anonymous memory */ 579 if (!vma_is_anonymous(vma)) 580 goto abort; 581 582 pgdp = pgd_offset(mm, addr); 583 p4dp = p4d_alloc(mm, pgdp, addr); 584 if (!p4dp) 585 goto abort; 586 pudp = pud_alloc(mm, p4dp, addr); 587 if (!pudp) 588 goto abort; 589 pmdp = pmd_alloc(mm, pudp, addr); 590 if (!pmdp) 591 goto abort; 592 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 593 goto abort; 594 if (pte_alloc(mm, pmdp)) 595 goto abort; 596 if (unlikely(anon_vma_prepare(vma))) 597 goto abort; 598 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 599 goto abort; 600 601 /* 602 * The memory barrier inside __SetPageUptodate makes sure that 603 * preceding stores to the page contents become visible before 604 * the set_pte_at() write. 605 */ 606 __SetPageUptodate(page); 607 608 if (is_device_private_page(page)) { 609 swp_entry_t swp_entry; 610 611 if (vma->vm_flags & VM_WRITE) 612 swp_entry = make_writable_device_private_entry( 613 page_to_pfn(page)); 614 else 615 swp_entry = make_readable_device_private_entry( 616 page_to_pfn(page)); 617 entry = swp_entry_to_pte(swp_entry); 618 } else { 619 if (is_zone_device_page(page) && 620 !is_device_coherent_page(page)) { 621 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 622 goto abort; 623 } 624 entry = mk_pte(page, vma->vm_page_prot); 625 if (vma->vm_flags & VM_WRITE) 626 entry = pte_mkwrite(pte_mkdirty(entry)); 627 } 628 629 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 630 if (!ptep) 631 goto abort; 632 orig_pte = ptep_get(ptep); 633 634 if (check_stable_address_space(mm)) 635 goto unlock_abort; 636 637 if (pte_present(orig_pte)) { 638 unsigned long pfn = pte_pfn(orig_pte); 639 640 if (!is_zero_pfn(pfn)) 641 goto unlock_abort; 642 flush = true; 643 } else if (!pte_none(orig_pte)) 644 goto unlock_abort; 645 646 /* 647 * Check for userfaultfd but do not deliver the fault. Instead, 648 * just back off. 649 */ 650 if (userfaultfd_missing(vma)) 651 goto unlock_abort; 652 653 inc_mm_counter(mm, MM_ANONPAGES); 654 page_add_new_anon_rmap(page, vma, addr); 655 if (!is_zone_device_page(page)) 656 lru_cache_add_inactive_or_unevictable(page, vma); 657 get_page(page); 658 659 if (flush) { 660 flush_cache_page(vma, addr, pte_pfn(orig_pte)); 661 ptep_clear_flush_notify(vma, addr, ptep); 662 set_pte_at_notify(mm, addr, ptep, entry); 663 update_mmu_cache(vma, addr, ptep); 664 } else { 665 /* No need to invalidate - it was non-present before */ 666 set_pte_at(mm, addr, ptep, entry); 667 update_mmu_cache(vma, addr, ptep); 668 } 669 670 pte_unmap_unlock(ptep, ptl); 671 *src = MIGRATE_PFN_MIGRATE; 672 return; 673 674 unlock_abort: 675 pte_unmap_unlock(ptep, ptl); 676 abort: 677 *src &= ~MIGRATE_PFN_MIGRATE; 678 } 679 680 static void __migrate_device_pages(unsigned long *src_pfns, 681 unsigned long *dst_pfns, unsigned long npages, 682 struct migrate_vma *migrate) 683 { 684 struct mmu_notifier_range range; 685 unsigned long i; 686 bool notified = false; 687 688 for (i = 0; i < npages; i++) { 689 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 690 struct page *page = migrate_pfn_to_page(src_pfns[i]); 691 struct address_space *mapping; 692 int r; 693 694 if (!newpage) { 695 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 696 continue; 697 } 698 699 if (!page) { 700 unsigned long addr; 701 702 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) 703 continue; 704 705 /* 706 * The only time there is no vma is when called from 707 * migrate_device_coherent_page(). However this isn't 708 * called if the page could not be unmapped. 709 */ 710 VM_BUG_ON(!migrate); 711 addr = migrate->start + i*PAGE_SIZE; 712 if (!notified) { 713 notified = true; 714 715 mmu_notifier_range_init_owner(&range, 716 MMU_NOTIFY_MIGRATE, 0, 717 migrate->vma->vm_mm, addr, migrate->end, 718 migrate->pgmap_owner); 719 mmu_notifier_invalidate_range_start(&range); 720 } 721 migrate_vma_insert_page(migrate, addr, newpage, 722 &src_pfns[i]); 723 continue; 724 } 725 726 mapping = page_mapping(page); 727 728 if (is_device_private_page(newpage) || 729 is_device_coherent_page(newpage)) { 730 if (mapping) { 731 struct folio *folio; 732 733 folio = page_folio(page); 734 735 /* 736 * For now only support anonymous memory migrating to 737 * device private or coherent memory. 738 * 739 * Try to get rid of swap cache if possible. 740 */ 741 if (!folio_test_anon(folio) || 742 !folio_free_swap(folio)) { 743 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 744 continue; 745 } 746 } 747 } else if (is_zone_device_page(newpage)) { 748 /* 749 * Other types of ZONE_DEVICE page are not supported. 750 */ 751 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 752 continue; 753 } 754 755 if (migrate && migrate->fault_page == page) 756 r = migrate_folio_extra(mapping, page_folio(newpage), 757 page_folio(page), 758 MIGRATE_SYNC_NO_COPY, 1); 759 else 760 r = migrate_folio(mapping, page_folio(newpage), 761 page_folio(page), MIGRATE_SYNC_NO_COPY); 762 if (r != MIGRATEPAGE_SUCCESS) 763 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 764 } 765 766 /* 767 * No need to double call mmu_notifier->invalidate_range() callback as 768 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 769 * did already call it. 770 */ 771 if (notified) 772 mmu_notifier_invalidate_range_only_end(&range); 773 } 774 775 /** 776 * migrate_device_pages() - migrate meta-data from src page to dst page 777 * @src_pfns: src_pfns returned from migrate_device_range() 778 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 779 * @npages: number of pages in the range 780 * 781 * Equivalent to migrate_vma_pages(). This is called to migrate struct page 782 * meta-data from source struct page to destination. 783 */ 784 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, 785 unsigned long npages) 786 { 787 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); 788 } 789 EXPORT_SYMBOL(migrate_device_pages); 790 791 /** 792 * migrate_vma_pages() - migrate meta-data from src page to dst page 793 * @migrate: migrate struct containing all migration information 794 * 795 * This migrates struct page meta-data from source struct page to destination 796 * struct page. This effectively finishes the migration from source page to the 797 * destination page. 798 */ 799 void migrate_vma_pages(struct migrate_vma *migrate) 800 { 801 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); 802 } 803 EXPORT_SYMBOL(migrate_vma_pages); 804 805 /* 806 * migrate_device_finalize() - complete page migration 807 * @src_pfns: src_pfns returned from migrate_device_range() 808 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 809 * @npages: number of pages in the range 810 * 811 * Completes migration of the page by removing special migration entries. 812 * Drivers must ensure copying of page data is complete and visible to the CPU 813 * before calling this. 814 */ 815 void migrate_device_finalize(unsigned long *src_pfns, 816 unsigned long *dst_pfns, unsigned long npages) 817 { 818 unsigned long i; 819 820 for (i = 0; i < npages; i++) { 821 struct folio *dst, *src; 822 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 823 struct page *page = migrate_pfn_to_page(src_pfns[i]); 824 825 if (!page) { 826 if (newpage) { 827 unlock_page(newpage); 828 put_page(newpage); 829 } 830 continue; 831 } 832 833 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 834 if (newpage) { 835 unlock_page(newpage); 836 put_page(newpage); 837 } 838 newpage = page; 839 } 840 841 src = page_folio(page); 842 dst = page_folio(newpage); 843 remove_migration_ptes(src, dst, false); 844 folio_unlock(src); 845 846 if (is_zone_device_page(page)) 847 put_page(page); 848 else 849 putback_lru_page(page); 850 851 if (newpage != page) { 852 unlock_page(newpage); 853 if (is_zone_device_page(newpage)) 854 put_page(newpage); 855 else 856 putback_lru_page(newpage); 857 } 858 } 859 } 860 EXPORT_SYMBOL(migrate_device_finalize); 861 862 /** 863 * migrate_vma_finalize() - restore CPU page table entry 864 * @migrate: migrate struct containing all migration information 865 * 866 * This replaces the special migration pte entry with either a mapping to the 867 * new page if migration was successful for that page, or to the original page 868 * otherwise. 869 * 870 * This also unlocks the pages and puts them back on the lru, or drops the extra 871 * refcount, for device pages. 872 */ 873 void migrate_vma_finalize(struct migrate_vma *migrate) 874 { 875 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); 876 } 877 EXPORT_SYMBOL(migrate_vma_finalize); 878 879 /** 880 * migrate_device_range() - migrate device private pfns to normal memory. 881 * @src_pfns: array large enough to hold migrating source device private pfns. 882 * @start: starting pfn in the range to migrate. 883 * @npages: number of pages to migrate. 884 * 885 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that 886 * instead of looking up pages based on virtual address mappings a range of 887 * device pfns that should be migrated to system memory is used instead. 888 * 889 * This is useful when a driver needs to free device memory but doesn't know the 890 * virtual mappings of every page that may be in device memory. For example this 891 * is often the case when a driver is being unloaded or unbound from a device. 892 * 893 * Like migrate_vma_setup() this function will take a reference and lock any 894 * migrating pages that aren't free before unmapping them. Drivers may then 895 * allocate destination pages and start copying data from the device to CPU 896 * memory before calling migrate_device_pages(). 897 */ 898 int migrate_device_range(unsigned long *src_pfns, unsigned long start, 899 unsigned long npages) 900 { 901 unsigned long i, pfn; 902 903 for (pfn = start, i = 0; i < npages; pfn++, i++) { 904 struct page *page = pfn_to_page(pfn); 905 906 if (!get_page_unless_zero(page)) { 907 src_pfns[i] = 0; 908 continue; 909 } 910 911 if (!trylock_page(page)) { 912 src_pfns[i] = 0; 913 put_page(page); 914 continue; 915 } 916 917 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 918 } 919 920 migrate_device_unmap(src_pfns, npages, NULL); 921 922 return 0; 923 } 924 EXPORT_SYMBOL(migrate_device_range); 925 926 /* 927 * Migrate a device coherent page back to normal memory. The caller should have 928 * a reference on page which will be copied to the new page if migration is 929 * successful or dropped on failure. 930 */ 931 int migrate_device_coherent_page(struct page *page) 932 { 933 unsigned long src_pfn, dst_pfn = 0; 934 struct page *dpage; 935 936 WARN_ON_ONCE(PageCompound(page)); 937 938 lock_page(page); 939 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; 940 941 /* 942 * We don't have a VMA and don't need to walk the page tables to find 943 * the source page. So call migrate_vma_unmap() directly to unmap the 944 * page as migrate_vma_setup() will fail if args.vma == NULL. 945 */ 946 migrate_device_unmap(&src_pfn, 1, NULL); 947 if (!(src_pfn & MIGRATE_PFN_MIGRATE)) 948 return -EBUSY; 949 950 dpage = alloc_page(GFP_USER | __GFP_NOWARN); 951 if (dpage) { 952 lock_page(dpage); 953 dst_pfn = migrate_pfn(page_to_pfn(dpage)); 954 } 955 956 migrate_device_pages(&src_pfn, &dst_pfn, 1); 957 if (src_pfn & MIGRATE_PFN_MIGRATE) 958 copy_highpage(dpage, page); 959 migrate_device_finalize(&src_pfn, &dst_pfn, 1); 960 961 if (src_pfn & MIGRATE_PFN_MIGRATE) 962 return 0; 963 return -EBUSY; 964 } 965