1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm.h> 11 #include <linux/mm_inline.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/oom.h> 14 #include <linux/pagewalk.h> 15 #include <linux/rmap.h> 16 #include <linux/swapops.h> 17 #include <asm/tlbflush.h> 18 #include "internal.h" 19 20 static int migrate_vma_collect_skip(unsigned long start, 21 unsigned long end, 22 struct mm_walk *walk) 23 { 24 struct migrate_vma *migrate = walk->private; 25 unsigned long addr; 26 27 for (addr = start; addr < end; addr += PAGE_SIZE) { 28 migrate->dst[migrate->npages] = 0; 29 migrate->src[migrate->npages++] = 0; 30 } 31 32 return 0; 33 } 34 35 static int migrate_vma_collect_hole(unsigned long start, 36 unsigned long end, 37 __always_unused int depth, 38 struct mm_walk *walk) 39 { 40 struct migrate_vma *migrate = walk->private; 41 unsigned long addr; 42 43 /* Only allow populating anonymous memory. */ 44 if (!vma_is_anonymous(walk->vma)) 45 return migrate_vma_collect_skip(start, end, walk); 46 47 for (addr = start; addr < end; addr += PAGE_SIZE) { 48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 49 migrate->dst[migrate->npages] = 0; 50 migrate->npages++; 51 migrate->cpages++; 52 } 53 54 return 0; 55 } 56 57 static int migrate_vma_collect_pmd(pmd_t *pmdp, 58 unsigned long start, 59 unsigned long end, 60 struct mm_walk *walk) 61 { 62 struct migrate_vma *migrate = walk->private; 63 struct vm_area_struct *vma = walk->vma; 64 struct mm_struct *mm = vma->vm_mm; 65 unsigned long addr = start, unmapped = 0; 66 spinlock_t *ptl; 67 pte_t *ptep; 68 69 again: 70 if (pmd_none(*pmdp)) 71 return migrate_vma_collect_hole(start, end, -1, walk); 72 73 if (pmd_trans_huge(*pmdp)) { 74 struct page *page; 75 76 ptl = pmd_lock(mm, pmdp); 77 if (unlikely(!pmd_trans_huge(*pmdp))) { 78 spin_unlock(ptl); 79 goto again; 80 } 81 82 page = pmd_page(*pmdp); 83 if (is_huge_zero_page(page)) { 84 spin_unlock(ptl); 85 split_huge_pmd(vma, pmdp, addr); 86 if (pmd_trans_unstable(pmdp)) 87 return migrate_vma_collect_skip(start, end, 88 walk); 89 } else { 90 int ret; 91 92 get_page(page); 93 spin_unlock(ptl); 94 if (unlikely(!trylock_page(page))) 95 return migrate_vma_collect_skip(start, end, 96 walk); 97 ret = split_huge_page(page); 98 unlock_page(page); 99 put_page(page); 100 if (ret) 101 return migrate_vma_collect_skip(start, end, 102 walk); 103 if (pmd_none(*pmdp)) 104 return migrate_vma_collect_hole(start, end, -1, 105 walk); 106 } 107 } 108 109 if (unlikely(pmd_bad(*pmdp))) 110 return migrate_vma_collect_skip(start, end, walk); 111 112 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 113 arch_enter_lazy_mmu_mode(); 114 115 for (; addr < end; addr += PAGE_SIZE, ptep++) { 116 unsigned long mpfn = 0, pfn; 117 struct page *page; 118 swp_entry_t entry; 119 pte_t pte; 120 121 pte = *ptep; 122 123 if (pte_none(pte)) { 124 if (vma_is_anonymous(vma)) { 125 mpfn = MIGRATE_PFN_MIGRATE; 126 migrate->cpages++; 127 } 128 goto next; 129 } 130 131 if (!pte_present(pte)) { 132 /* 133 * Only care about unaddressable device page special 134 * page table entry. Other special swap entries are not 135 * migratable, and we ignore regular swapped page. 136 */ 137 entry = pte_to_swp_entry(pte); 138 if (!is_device_private_entry(entry)) 139 goto next; 140 141 page = pfn_swap_entry_to_page(entry); 142 if (!(migrate->flags & 143 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 144 page->pgmap->owner != migrate->pgmap_owner) 145 goto next; 146 147 mpfn = migrate_pfn(page_to_pfn(page)) | 148 MIGRATE_PFN_MIGRATE; 149 if (is_writable_device_private_entry(entry)) 150 mpfn |= MIGRATE_PFN_WRITE; 151 } else { 152 pfn = pte_pfn(pte); 153 if (is_zero_pfn(pfn) && 154 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { 155 mpfn = MIGRATE_PFN_MIGRATE; 156 migrate->cpages++; 157 goto next; 158 } 159 page = vm_normal_page(migrate->vma, addr, pte); 160 if (page && !is_zone_device_page(page) && 161 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 162 goto next; 163 else if (page && is_device_coherent_page(page) && 164 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || 165 page->pgmap->owner != migrate->pgmap_owner)) 166 goto next; 167 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 168 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 169 } 170 171 /* FIXME support THP */ 172 if (!page || !page->mapping || PageTransCompound(page)) { 173 mpfn = 0; 174 goto next; 175 } 176 177 /* 178 * By getting a reference on the page we pin it and that blocks 179 * any kind of migration. Side effect is that it "freezes" the 180 * pte. 181 * 182 * We drop this reference after isolating the page from the lru 183 * for non device page (device page are not on the lru and thus 184 * can't be dropped from it). 185 */ 186 get_page(page); 187 188 /* 189 * We rely on trylock_page() to avoid deadlock between 190 * concurrent migrations where each is waiting on the others 191 * page lock. If we can't immediately lock the page we fail this 192 * migration as it is only best effort anyway. 193 * 194 * If we can lock the page it's safe to set up a migration entry 195 * now. In the common case where the page is mapped once in a 196 * single process setting up the migration entry now is an 197 * optimisation to avoid walking the rmap later with 198 * try_to_migrate(). 199 */ 200 if (trylock_page(page)) { 201 bool anon_exclusive; 202 pte_t swp_pte; 203 204 flush_cache_page(vma, addr, pte_pfn(*ptep)); 205 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 206 if (anon_exclusive) { 207 pte = ptep_clear_flush(vma, addr, ptep); 208 209 if (page_try_share_anon_rmap(page)) { 210 set_pte_at(mm, addr, ptep, pte); 211 unlock_page(page); 212 put_page(page); 213 mpfn = 0; 214 goto next; 215 } 216 } else { 217 pte = ptep_get_and_clear(mm, addr, ptep); 218 } 219 220 migrate->cpages++; 221 222 /* Set the dirty flag on the folio now the pte is gone. */ 223 if (pte_dirty(pte)) 224 folio_mark_dirty(page_folio(page)); 225 226 /* Setup special migration page table entry */ 227 if (mpfn & MIGRATE_PFN_WRITE) 228 entry = make_writable_migration_entry( 229 page_to_pfn(page)); 230 else if (anon_exclusive) 231 entry = make_readable_exclusive_migration_entry( 232 page_to_pfn(page)); 233 else 234 entry = make_readable_migration_entry( 235 page_to_pfn(page)); 236 if (pte_present(pte)) { 237 if (pte_young(pte)) 238 entry = make_migration_entry_young(entry); 239 if (pte_dirty(pte)) 240 entry = make_migration_entry_dirty(entry); 241 } 242 swp_pte = swp_entry_to_pte(entry); 243 if (pte_present(pte)) { 244 if (pte_soft_dirty(pte)) 245 swp_pte = pte_swp_mksoft_dirty(swp_pte); 246 if (pte_uffd_wp(pte)) 247 swp_pte = pte_swp_mkuffd_wp(swp_pte); 248 } else { 249 if (pte_swp_soft_dirty(pte)) 250 swp_pte = pte_swp_mksoft_dirty(swp_pte); 251 if (pte_swp_uffd_wp(pte)) 252 swp_pte = pte_swp_mkuffd_wp(swp_pte); 253 } 254 set_pte_at(mm, addr, ptep, swp_pte); 255 256 /* 257 * This is like regular unmap: we remove the rmap and 258 * drop page refcount. Page won't be freed, as we took 259 * a reference just above. 260 */ 261 page_remove_rmap(page, vma, false); 262 put_page(page); 263 264 if (pte_present(pte)) 265 unmapped++; 266 } else { 267 put_page(page); 268 mpfn = 0; 269 } 270 271 next: 272 migrate->dst[migrate->npages] = 0; 273 migrate->src[migrate->npages++] = mpfn; 274 } 275 276 /* Only flush the TLB if we actually modified any entries */ 277 if (unmapped) 278 flush_tlb_range(walk->vma, start, end); 279 280 arch_leave_lazy_mmu_mode(); 281 pte_unmap_unlock(ptep - 1, ptl); 282 283 return 0; 284 } 285 286 static const struct mm_walk_ops migrate_vma_walk_ops = { 287 .pmd_entry = migrate_vma_collect_pmd, 288 .pte_hole = migrate_vma_collect_hole, 289 }; 290 291 /* 292 * migrate_vma_collect() - collect pages over a range of virtual addresses 293 * @migrate: migrate struct containing all migration information 294 * 295 * This will walk the CPU page table. For each virtual address backed by a 296 * valid page, it updates the src array and takes a reference on the page, in 297 * order to pin the page until we lock it and unmap it. 298 */ 299 static void migrate_vma_collect(struct migrate_vma *migrate) 300 { 301 struct mmu_notifier_range range; 302 303 /* 304 * Note that the pgmap_owner is passed to the mmu notifier callback so 305 * that the registered device driver can skip invalidating device 306 * private page mappings that won't be migrated. 307 */ 308 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 309 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 310 migrate->pgmap_owner); 311 mmu_notifier_invalidate_range_start(&range); 312 313 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 314 &migrate_vma_walk_ops, migrate); 315 316 mmu_notifier_invalidate_range_end(&range); 317 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 318 } 319 320 /* 321 * migrate_vma_check_page() - check if page is pinned or not 322 * @page: struct page to check 323 * 324 * Pinned pages cannot be migrated. This is the same test as in 325 * folio_migrate_mapping(), except that here we allow migration of a 326 * ZONE_DEVICE page. 327 */ 328 static bool migrate_vma_check_page(struct page *page, struct page *fault_page) 329 { 330 /* 331 * One extra ref because caller holds an extra reference, either from 332 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 333 * a device page. 334 */ 335 int extra = 1 + (page == fault_page); 336 337 /* 338 * FIXME support THP (transparent huge page), it is bit more complex to 339 * check them than regular pages, because they can be mapped with a pmd 340 * or with a pte (split pte mapping). 341 */ 342 if (PageCompound(page)) 343 return false; 344 345 /* Page from ZONE_DEVICE have one extra reference */ 346 if (is_zone_device_page(page)) 347 extra++; 348 349 /* For file back page */ 350 if (page_mapping(page)) 351 extra += 1 + page_has_private(page); 352 353 if ((page_count(page) - extra) > page_mapcount(page)) 354 return false; 355 356 return true; 357 } 358 359 /* 360 * Unmaps pages for migration. Returns number of source pfns marked as 361 * migrating. 362 */ 363 static unsigned long migrate_device_unmap(unsigned long *src_pfns, 364 unsigned long npages, 365 struct page *fault_page) 366 { 367 unsigned long i, restore = 0; 368 bool allow_drain = true; 369 unsigned long unmapped = 0; 370 371 lru_add_drain(); 372 373 for (i = 0; i < npages; i++) { 374 struct page *page = migrate_pfn_to_page(src_pfns[i]); 375 struct folio *folio; 376 377 if (!page) { 378 if (src_pfns[i] & MIGRATE_PFN_MIGRATE) 379 unmapped++; 380 continue; 381 } 382 383 /* ZONE_DEVICE pages are not on LRU */ 384 if (!is_zone_device_page(page)) { 385 if (!PageLRU(page) && allow_drain) { 386 /* Drain CPU's pagevec */ 387 lru_add_drain_all(); 388 allow_drain = false; 389 } 390 391 if (isolate_lru_page(page)) { 392 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 393 restore++; 394 continue; 395 } 396 397 /* Drop the reference we took in collect */ 398 put_page(page); 399 } 400 401 folio = page_folio(page); 402 if (folio_mapped(folio)) 403 try_to_migrate(folio, 0); 404 405 if (page_mapped(page) || 406 !migrate_vma_check_page(page, fault_page)) { 407 if (!is_zone_device_page(page)) { 408 get_page(page); 409 putback_lru_page(page); 410 } 411 412 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 413 restore++; 414 continue; 415 } 416 417 unmapped++; 418 } 419 420 for (i = 0; i < npages && restore; i++) { 421 struct page *page = migrate_pfn_to_page(src_pfns[i]); 422 struct folio *folio; 423 424 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) 425 continue; 426 427 folio = page_folio(page); 428 remove_migration_ptes(folio, folio, false); 429 430 src_pfns[i] = 0; 431 folio_unlock(folio); 432 folio_put(folio); 433 restore--; 434 } 435 436 return unmapped; 437 } 438 439 /* 440 * migrate_vma_unmap() - replace page mapping with special migration pte entry 441 * @migrate: migrate struct containing all migration information 442 * 443 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 444 * special migration pte entry and check if it has been pinned. Pinned pages are 445 * restored because we cannot migrate them. 446 * 447 * This is the last step before we call the device driver callback to allocate 448 * destination memory and copy contents of original page over to new page. 449 */ 450 static void migrate_vma_unmap(struct migrate_vma *migrate) 451 { 452 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, 453 migrate->fault_page); 454 } 455 456 /** 457 * migrate_vma_setup() - prepare to migrate a range of memory 458 * @args: contains the vma, start, and pfns arrays for the migration 459 * 460 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 461 * without an error. 462 * 463 * Prepare to migrate a range of memory virtual address range by collecting all 464 * the pages backing each virtual address in the range, saving them inside the 465 * src array. Then lock those pages and unmap them. Once the pages are locked 466 * and unmapped, check whether each page is pinned or not. Pages that aren't 467 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 468 * corresponding src array entry. Then restores any pages that are pinned, by 469 * remapping and unlocking those pages. 470 * 471 * The caller should then allocate destination memory and copy source memory to 472 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 473 * flag set). Once these are allocated and copied, the caller must update each 474 * corresponding entry in the dst array with the pfn value of the destination 475 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 476 * lock_page(). 477 * 478 * Note that the caller does not have to migrate all the pages that are marked 479 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 480 * device memory to system memory. If the caller cannot migrate a device page 481 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 482 * consequences for the userspace process, so it must be avoided if at all 483 * possible. 484 * 485 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 486 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 487 * allowing the caller to allocate device memory for those unbacked virtual 488 * addresses. For this the caller simply has to allocate device memory and 489 * properly set the destination entry like for regular migration. Note that 490 * this can still fail, and thus inside the device driver you must check if the 491 * migration was successful for those entries after calling migrate_vma_pages(), 492 * just like for regular migration. 493 * 494 * After that, the callers must call migrate_vma_pages() to go over each entry 495 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 496 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 497 * then migrate_vma_pages() to migrate struct page information from the source 498 * struct page to the destination struct page. If it fails to migrate the 499 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 500 * src array. 501 * 502 * At this point all successfully migrated pages have an entry in the src 503 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 504 * array entry with MIGRATE_PFN_VALID flag set. 505 * 506 * Once migrate_vma_pages() returns the caller may inspect which pages were 507 * successfully migrated, and which were not. Successfully migrated pages will 508 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 509 * 510 * It is safe to update device page table after migrate_vma_pages() because 511 * both destination and source page are still locked, and the mmap_lock is held 512 * in read mode (hence no one can unmap the range being migrated). 513 * 514 * Once the caller is done cleaning up things and updating its page table (if it 515 * chose to do so, this is not an obligation) it finally calls 516 * migrate_vma_finalize() to update the CPU page table to point to new pages 517 * for successfully migrated pages or otherwise restore the CPU page table to 518 * point to the original source pages. 519 */ 520 int migrate_vma_setup(struct migrate_vma *args) 521 { 522 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 523 524 args->start &= PAGE_MASK; 525 args->end &= PAGE_MASK; 526 if (!args->vma || is_vm_hugetlb_page(args->vma) || 527 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 528 return -EINVAL; 529 if (nr_pages <= 0) 530 return -EINVAL; 531 if (args->start < args->vma->vm_start || 532 args->start >= args->vma->vm_end) 533 return -EINVAL; 534 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 535 return -EINVAL; 536 if (!args->src || !args->dst) 537 return -EINVAL; 538 if (args->fault_page && !is_device_private_page(args->fault_page)) 539 return -EINVAL; 540 541 memset(args->src, 0, sizeof(*args->src) * nr_pages); 542 args->cpages = 0; 543 args->npages = 0; 544 545 migrate_vma_collect(args); 546 547 if (args->cpages) 548 migrate_vma_unmap(args); 549 550 /* 551 * At this point pages are locked and unmapped, and thus they have 552 * stable content and can safely be copied to destination memory that 553 * is allocated by the drivers. 554 */ 555 return 0; 556 557 } 558 EXPORT_SYMBOL(migrate_vma_setup); 559 560 /* 561 * This code closely matches the code in: 562 * __handle_mm_fault() 563 * handle_pte_fault() 564 * do_anonymous_page() 565 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 566 * private or coherent page. 567 */ 568 static void migrate_vma_insert_page(struct migrate_vma *migrate, 569 unsigned long addr, 570 struct page *page, 571 unsigned long *src) 572 { 573 struct vm_area_struct *vma = migrate->vma; 574 struct mm_struct *mm = vma->vm_mm; 575 bool flush = false; 576 spinlock_t *ptl; 577 pte_t entry; 578 pgd_t *pgdp; 579 p4d_t *p4dp; 580 pud_t *pudp; 581 pmd_t *pmdp; 582 pte_t *ptep; 583 584 /* Only allow populating anonymous memory */ 585 if (!vma_is_anonymous(vma)) 586 goto abort; 587 588 pgdp = pgd_offset(mm, addr); 589 p4dp = p4d_alloc(mm, pgdp, addr); 590 if (!p4dp) 591 goto abort; 592 pudp = pud_alloc(mm, p4dp, addr); 593 if (!pudp) 594 goto abort; 595 pmdp = pmd_alloc(mm, pudp, addr); 596 if (!pmdp) 597 goto abort; 598 599 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 600 goto abort; 601 602 /* 603 * Use pte_alloc() instead of pte_alloc_map(). We can't run 604 * pte_offset_map() on pmds where a huge pmd might be created 605 * from a different thread. 606 * 607 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 608 * parallel threads are excluded by other means. 609 * 610 * Here we only have mmap_read_lock(mm). 611 */ 612 if (pte_alloc(mm, pmdp)) 613 goto abort; 614 615 /* See the comment in pte_alloc_one_map() */ 616 if (unlikely(pmd_trans_unstable(pmdp))) 617 goto abort; 618 619 if (unlikely(anon_vma_prepare(vma))) 620 goto abort; 621 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 622 goto abort; 623 624 /* 625 * The memory barrier inside __SetPageUptodate makes sure that 626 * preceding stores to the page contents become visible before 627 * the set_pte_at() write. 628 */ 629 __SetPageUptodate(page); 630 631 if (is_device_private_page(page)) { 632 swp_entry_t swp_entry; 633 634 if (vma->vm_flags & VM_WRITE) 635 swp_entry = make_writable_device_private_entry( 636 page_to_pfn(page)); 637 else 638 swp_entry = make_readable_device_private_entry( 639 page_to_pfn(page)); 640 entry = swp_entry_to_pte(swp_entry); 641 } else { 642 if (is_zone_device_page(page) && 643 !is_device_coherent_page(page)) { 644 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 645 goto abort; 646 } 647 entry = mk_pte(page, vma->vm_page_prot); 648 if (vma->vm_flags & VM_WRITE) 649 entry = pte_mkwrite(pte_mkdirty(entry)); 650 } 651 652 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 653 654 if (check_stable_address_space(mm)) 655 goto unlock_abort; 656 657 if (pte_present(*ptep)) { 658 unsigned long pfn = pte_pfn(*ptep); 659 660 if (!is_zero_pfn(pfn)) 661 goto unlock_abort; 662 flush = true; 663 } else if (!pte_none(*ptep)) 664 goto unlock_abort; 665 666 /* 667 * Check for userfaultfd but do not deliver the fault. Instead, 668 * just back off. 669 */ 670 if (userfaultfd_missing(vma)) 671 goto unlock_abort; 672 673 inc_mm_counter(mm, MM_ANONPAGES); 674 page_add_new_anon_rmap(page, vma, addr); 675 if (!is_zone_device_page(page)) 676 lru_cache_add_inactive_or_unevictable(page, vma); 677 get_page(page); 678 679 if (flush) { 680 flush_cache_page(vma, addr, pte_pfn(*ptep)); 681 ptep_clear_flush_notify(vma, addr, ptep); 682 set_pte_at_notify(mm, addr, ptep, entry); 683 update_mmu_cache(vma, addr, ptep); 684 } else { 685 /* No need to invalidate - it was non-present before */ 686 set_pte_at(mm, addr, ptep, entry); 687 update_mmu_cache(vma, addr, ptep); 688 } 689 690 pte_unmap_unlock(ptep, ptl); 691 *src = MIGRATE_PFN_MIGRATE; 692 return; 693 694 unlock_abort: 695 pte_unmap_unlock(ptep, ptl); 696 abort: 697 *src &= ~MIGRATE_PFN_MIGRATE; 698 } 699 700 static void __migrate_device_pages(unsigned long *src_pfns, 701 unsigned long *dst_pfns, unsigned long npages, 702 struct migrate_vma *migrate) 703 { 704 struct mmu_notifier_range range; 705 unsigned long i; 706 bool notified = false; 707 708 for (i = 0; i < npages; i++) { 709 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 710 struct page *page = migrate_pfn_to_page(src_pfns[i]); 711 struct address_space *mapping; 712 int r; 713 714 if (!newpage) { 715 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 716 continue; 717 } 718 719 if (!page) { 720 unsigned long addr; 721 722 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) 723 continue; 724 725 /* 726 * The only time there is no vma is when called from 727 * migrate_device_coherent_page(). However this isn't 728 * called if the page could not be unmapped. 729 */ 730 VM_BUG_ON(!migrate); 731 addr = migrate->start + i*PAGE_SIZE; 732 if (!notified) { 733 notified = true; 734 735 mmu_notifier_range_init_owner(&range, 736 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 737 migrate->vma->vm_mm, addr, migrate->end, 738 migrate->pgmap_owner); 739 mmu_notifier_invalidate_range_start(&range); 740 } 741 migrate_vma_insert_page(migrate, addr, newpage, 742 &src_pfns[i]); 743 continue; 744 } 745 746 mapping = page_mapping(page); 747 748 if (is_device_private_page(newpage) || 749 is_device_coherent_page(newpage)) { 750 /* 751 * For now only support anonymous memory migrating to 752 * device private or coherent memory. 753 */ 754 if (mapping) { 755 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 756 continue; 757 } 758 } else if (is_zone_device_page(newpage)) { 759 /* 760 * Other types of ZONE_DEVICE page are not supported. 761 */ 762 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 763 continue; 764 } 765 766 if (migrate && migrate->fault_page == page) 767 r = migrate_folio_extra(mapping, page_folio(newpage), 768 page_folio(page), 769 MIGRATE_SYNC_NO_COPY, 1); 770 else 771 r = migrate_folio(mapping, page_folio(newpage), 772 page_folio(page), MIGRATE_SYNC_NO_COPY); 773 if (r != MIGRATEPAGE_SUCCESS) 774 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 775 } 776 777 /* 778 * No need to double call mmu_notifier->invalidate_range() callback as 779 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 780 * did already call it. 781 */ 782 if (notified) 783 mmu_notifier_invalidate_range_only_end(&range); 784 } 785 786 /** 787 * migrate_device_pages() - migrate meta-data from src page to dst page 788 * @src_pfns: src_pfns returned from migrate_device_range() 789 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 790 * @npages: number of pages in the range 791 * 792 * Equivalent to migrate_vma_pages(). This is called to migrate struct page 793 * meta-data from source struct page to destination. 794 */ 795 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, 796 unsigned long npages) 797 { 798 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); 799 } 800 EXPORT_SYMBOL(migrate_device_pages); 801 802 /** 803 * migrate_vma_pages() - migrate meta-data from src page to dst page 804 * @migrate: migrate struct containing all migration information 805 * 806 * This migrates struct page meta-data from source struct page to destination 807 * struct page. This effectively finishes the migration from source page to the 808 * destination page. 809 */ 810 void migrate_vma_pages(struct migrate_vma *migrate) 811 { 812 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); 813 } 814 EXPORT_SYMBOL(migrate_vma_pages); 815 816 /* 817 * migrate_device_finalize() - complete page migration 818 * @src_pfns: src_pfns returned from migrate_device_range() 819 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 820 * @npages: number of pages in the range 821 * 822 * Completes migration of the page by removing special migration entries. 823 * Drivers must ensure copying of page data is complete and visible to the CPU 824 * before calling this. 825 */ 826 void migrate_device_finalize(unsigned long *src_pfns, 827 unsigned long *dst_pfns, unsigned long npages) 828 { 829 unsigned long i; 830 831 for (i = 0; i < npages; i++) { 832 struct folio *dst, *src; 833 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 834 struct page *page = migrate_pfn_to_page(src_pfns[i]); 835 836 if (!page) { 837 if (newpage) { 838 unlock_page(newpage); 839 put_page(newpage); 840 } 841 continue; 842 } 843 844 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 845 if (newpage) { 846 unlock_page(newpage); 847 put_page(newpage); 848 } 849 newpage = page; 850 } 851 852 src = page_folio(page); 853 dst = page_folio(newpage); 854 remove_migration_ptes(src, dst, false); 855 folio_unlock(src); 856 857 if (is_zone_device_page(page)) 858 put_page(page); 859 else 860 putback_lru_page(page); 861 862 if (newpage != page) { 863 unlock_page(newpage); 864 if (is_zone_device_page(newpage)) 865 put_page(newpage); 866 else 867 putback_lru_page(newpage); 868 } 869 } 870 } 871 EXPORT_SYMBOL(migrate_device_finalize); 872 873 /** 874 * migrate_vma_finalize() - restore CPU page table entry 875 * @migrate: migrate struct containing all migration information 876 * 877 * This replaces the special migration pte entry with either a mapping to the 878 * new page if migration was successful for that page, or to the original page 879 * otherwise. 880 * 881 * This also unlocks the pages and puts them back on the lru, or drops the extra 882 * refcount, for device pages. 883 */ 884 void migrate_vma_finalize(struct migrate_vma *migrate) 885 { 886 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); 887 } 888 EXPORT_SYMBOL(migrate_vma_finalize); 889 890 /** 891 * migrate_device_range() - migrate device private pfns to normal memory. 892 * @src_pfns: array large enough to hold migrating source device private pfns. 893 * @start: starting pfn in the range to migrate. 894 * @npages: number of pages to migrate. 895 * 896 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that 897 * instead of looking up pages based on virtual address mappings a range of 898 * device pfns that should be migrated to system memory is used instead. 899 * 900 * This is useful when a driver needs to free device memory but doesn't know the 901 * virtual mappings of every page that may be in device memory. For example this 902 * is often the case when a driver is being unloaded or unbound from a device. 903 * 904 * Like migrate_vma_setup() this function will take a reference and lock any 905 * migrating pages that aren't free before unmapping them. Drivers may then 906 * allocate destination pages and start copying data from the device to CPU 907 * memory before calling migrate_device_pages(). 908 */ 909 int migrate_device_range(unsigned long *src_pfns, unsigned long start, 910 unsigned long npages) 911 { 912 unsigned long i, pfn; 913 914 for (pfn = start, i = 0; i < npages; pfn++, i++) { 915 struct page *page = pfn_to_page(pfn); 916 917 if (!get_page_unless_zero(page)) { 918 src_pfns[i] = 0; 919 continue; 920 } 921 922 if (!trylock_page(page)) { 923 src_pfns[i] = 0; 924 put_page(page); 925 continue; 926 } 927 928 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 929 } 930 931 migrate_device_unmap(src_pfns, npages, NULL); 932 933 return 0; 934 } 935 EXPORT_SYMBOL(migrate_device_range); 936 937 /* 938 * Migrate a device coherent page back to normal memory. The caller should have 939 * a reference on page which will be copied to the new page if migration is 940 * successful or dropped on failure. 941 */ 942 int migrate_device_coherent_page(struct page *page) 943 { 944 unsigned long src_pfn, dst_pfn = 0; 945 struct page *dpage; 946 947 WARN_ON_ONCE(PageCompound(page)); 948 949 lock_page(page); 950 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; 951 952 /* 953 * We don't have a VMA and don't need to walk the page tables to find 954 * the source page. So call migrate_vma_unmap() directly to unmap the 955 * page as migrate_vma_setup() will fail if args.vma == NULL. 956 */ 957 migrate_device_unmap(&src_pfn, 1, NULL); 958 if (!(src_pfn & MIGRATE_PFN_MIGRATE)) 959 return -EBUSY; 960 961 dpage = alloc_page(GFP_USER | __GFP_NOWARN); 962 if (dpage) { 963 lock_page(dpage); 964 dst_pfn = migrate_pfn(page_to_pfn(dpage)); 965 } 966 967 migrate_device_pages(&src_pfn, &dst_pfn, 1); 968 if (src_pfn & MIGRATE_PFN_MIGRATE) 969 copy_highpage(dpage, page); 970 migrate_device_finalize(&src_pfn, &dst_pfn, 1); 971 972 if (src_pfn & MIGRATE_PFN_MIGRATE) 973 return 0; 974 return -EBUSY; 975 } 976