xref: /openbmc/linux/mm/migrate_device.c (revision 6bfb56e93bcef41859c2d5ab234ffd80b691be35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Device Memory Migration functionality.
4  *
5  * Originally written by Jérôme Glisse.
6  */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm_inline.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/oom.h>
13 #include <linux/pagewalk.h>
14 #include <linux/rmap.h>
15 #include <linux/swapops.h>
16 #include <asm/tlbflush.h>
17 #include "internal.h"
18 
19 static int migrate_vma_collect_skip(unsigned long start,
20 				    unsigned long end,
21 				    struct mm_walk *walk)
22 {
23 	struct migrate_vma *migrate = walk->private;
24 	unsigned long addr;
25 
26 	for (addr = start; addr < end; addr += PAGE_SIZE) {
27 		migrate->dst[migrate->npages] = 0;
28 		migrate->src[migrate->npages++] = 0;
29 	}
30 
31 	return 0;
32 }
33 
34 static int migrate_vma_collect_hole(unsigned long start,
35 				    unsigned long end,
36 				    __always_unused int depth,
37 				    struct mm_walk *walk)
38 {
39 	struct migrate_vma *migrate = walk->private;
40 	unsigned long addr;
41 
42 	/* Only allow populating anonymous memory. */
43 	if (!vma_is_anonymous(walk->vma))
44 		return migrate_vma_collect_skip(start, end, walk);
45 
46 	for (addr = start; addr < end; addr += PAGE_SIZE) {
47 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
48 		migrate->dst[migrate->npages] = 0;
49 		migrate->npages++;
50 		migrate->cpages++;
51 	}
52 
53 	return 0;
54 }
55 
56 static int migrate_vma_collect_pmd(pmd_t *pmdp,
57 				   unsigned long start,
58 				   unsigned long end,
59 				   struct mm_walk *walk)
60 {
61 	struct migrate_vma *migrate = walk->private;
62 	struct vm_area_struct *vma = walk->vma;
63 	struct mm_struct *mm = vma->vm_mm;
64 	unsigned long addr = start, unmapped = 0;
65 	spinlock_t *ptl;
66 	pte_t *ptep;
67 
68 again:
69 	if (pmd_none(*pmdp))
70 		return migrate_vma_collect_hole(start, end, -1, walk);
71 
72 	if (pmd_trans_huge(*pmdp)) {
73 		struct page *page;
74 
75 		ptl = pmd_lock(mm, pmdp);
76 		if (unlikely(!pmd_trans_huge(*pmdp))) {
77 			spin_unlock(ptl);
78 			goto again;
79 		}
80 
81 		page = pmd_page(*pmdp);
82 		if (is_huge_zero_page(page)) {
83 			spin_unlock(ptl);
84 			split_huge_pmd(vma, pmdp, addr);
85 			if (pmd_trans_unstable(pmdp))
86 				return migrate_vma_collect_skip(start, end,
87 								walk);
88 		} else {
89 			int ret;
90 
91 			get_page(page);
92 			spin_unlock(ptl);
93 			if (unlikely(!trylock_page(page)))
94 				return migrate_vma_collect_skip(start, end,
95 								walk);
96 			ret = split_huge_page(page);
97 			unlock_page(page);
98 			put_page(page);
99 			if (ret)
100 				return migrate_vma_collect_skip(start, end,
101 								walk);
102 			if (pmd_none(*pmdp))
103 				return migrate_vma_collect_hole(start, end, -1,
104 								walk);
105 		}
106 	}
107 
108 	if (unlikely(pmd_bad(*pmdp)))
109 		return migrate_vma_collect_skip(start, end, walk);
110 
111 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
112 	arch_enter_lazy_mmu_mode();
113 
114 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
115 		unsigned long mpfn = 0, pfn;
116 		struct page *page;
117 		swp_entry_t entry;
118 		pte_t pte;
119 
120 		pte = *ptep;
121 
122 		if (pte_none(pte)) {
123 			if (vma_is_anonymous(vma)) {
124 				mpfn = MIGRATE_PFN_MIGRATE;
125 				migrate->cpages++;
126 			}
127 			goto next;
128 		}
129 
130 		if (!pte_present(pte)) {
131 			/*
132 			 * Only care about unaddressable device page special
133 			 * page table entry. Other special swap entries are not
134 			 * migratable, and we ignore regular swapped page.
135 			 */
136 			entry = pte_to_swp_entry(pte);
137 			if (!is_device_private_entry(entry))
138 				goto next;
139 
140 			page = pfn_swap_entry_to_page(entry);
141 			if (!(migrate->flags &
142 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
143 			    page->pgmap->owner != migrate->pgmap_owner)
144 				goto next;
145 
146 			mpfn = migrate_pfn(page_to_pfn(page)) |
147 					MIGRATE_PFN_MIGRATE;
148 			if (is_writable_device_private_entry(entry))
149 				mpfn |= MIGRATE_PFN_WRITE;
150 		} else {
151 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
152 				goto next;
153 			pfn = pte_pfn(pte);
154 			if (is_zero_pfn(pfn)) {
155 				mpfn = MIGRATE_PFN_MIGRATE;
156 				migrate->cpages++;
157 				goto next;
158 			}
159 			page = vm_normal_page(migrate->vma, addr, pte);
160 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
161 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
162 		}
163 
164 		/* FIXME support THP */
165 		if (!page || !page->mapping || PageTransCompound(page)) {
166 			mpfn = 0;
167 			goto next;
168 		}
169 
170 		/*
171 		 * By getting a reference on the page we pin it and that blocks
172 		 * any kind of migration. Side effect is that it "freezes" the
173 		 * pte.
174 		 *
175 		 * We drop this reference after isolating the page from the lru
176 		 * for non device page (device page are not on the lru and thus
177 		 * can't be dropped from it).
178 		 */
179 		get_page(page);
180 
181 		/*
182 		 * Optimize for the common case where page is only mapped once
183 		 * in one process. If we can lock the page, then we can safely
184 		 * set up a special migration page table entry now.
185 		 */
186 		if (trylock_page(page)) {
187 			bool anon_exclusive;
188 			pte_t swp_pte;
189 
190 			anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
191 			if (anon_exclusive) {
192 				flush_cache_page(vma, addr, pte_pfn(*ptep));
193 				ptep_clear_flush(vma, addr, ptep);
194 
195 				if (page_try_share_anon_rmap(page)) {
196 					set_pte_at(mm, addr, ptep, pte);
197 					unlock_page(page);
198 					put_page(page);
199 					mpfn = 0;
200 					goto next;
201 				}
202 			} else {
203 				ptep_get_and_clear(mm, addr, ptep);
204 			}
205 
206 			migrate->cpages++;
207 
208 			/* Setup special migration page table entry */
209 			if (mpfn & MIGRATE_PFN_WRITE)
210 				entry = make_writable_migration_entry(
211 							page_to_pfn(page));
212 			else if (anon_exclusive)
213 				entry = make_readable_exclusive_migration_entry(
214 							page_to_pfn(page));
215 			else
216 				entry = make_readable_migration_entry(
217 							page_to_pfn(page));
218 			swp_pte = swp_entry_to_pte(entry);
219 			if (pte_present(pte)) {
220 				if (pte_soft_dirty(pte))
221 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
222 				if (pte_uffd_wp(pte))
223 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
224 			} else {
225 				if (pte_swp_soft_dirty(pte))
226 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
227 				if (pte_swp_uffd_wp(pte))
228 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
229 			}
230 			set_pte_at(mm, addr, ptep, swp_pte);
231 
232 			/*
233 			 * This is like regular unmap: we remove the rmap and
234 			 * drop page refcount. Page won't be freed, as we took
235 			 * a reference just above.
236 			 */
237 			page_remove_rmap(page, vma, false);
238 			put_page(page);
239 
240 			if (pte_present(pte))
241 				unmapped++;
242 		} else {
243 			put_page(page);
244 			mpfn = 0;
245 		}
246 
247 next:
248 		migrate->dst[migrate->npages] = 0;
249 		migrate->src[migrate->npages++] = mpfn;
250 	}
251 	arch_leave_lazy_mmu_mode();
252 	pte_unmap_unlock(ptep - 1, ptl);
253 
254 	/* Only flush the TLB if we actually modified any entries */
255 	if (unmapped)
256 		flush_tlb_range(walk->vma, start, end);
257 
258 	return 0;
259 }
260 
261 static const struct mm_walk_ops migrate_vma_walk_ops = {
262 	.pmd_entry		= migrate_vma_collect_pmd,
263 	.pte_hole		= migrate_vma_collect_hole,
264 };
265 
266 /*
267  * migrate_vma_collect() - collect pages over a range of virtual addresses
268  * @migrate: migrate struct containing all migration information
269  *
270  * This will walk the CPU page table. For each virtual address backed by a
271  * valid page, it updates the src array and takes a reference on the page, in
272  * order to pin the page until we lock it and unmap it.
273  */
274 static void migrate_vma_collect(struct migrate_vma *migrate)
275 {
276 	struct mmu_notifier_range range;
277 
278 	/*
279 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
280 	 * that the registered device driver can skip invalidating device
281 	 * private page mappings that won't be migrated.
282 	 */
283 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
284 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
285 		migrate->pgmap_owner);
286 	mmu_notifier_invalidate_range_start(&range);
287 
288 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
289 			&migrate_vma_walk_ops, migrate);
290 
291 	mmu_notifier_invalidate_range_end(&range);
292 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
293 }
294 
295 /*
296  * migrate_vma_check_page() - check if page is pinned or not
297  * @page: struct page to check
298  *
299  * Pinned pages cannot be migrated. This is the same test as in
300  * folio_migrate_mapping(), except that here we allow migration of a
301  * ZONE_DEVICE page.
302  */
303 static bool migrate_vma_check_page(struct page *page)
304 {
305 	/*
306 	 * One extra ref because caller holds an extra reference, either from
307 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
308 	 * a device page.
309 	 */
310 	int extra = 1;
311 
312 	/*
313 	 * FIXME support THP (transparent huge page), it is bit more complex to
314 	 * check them than regular pages, because they can be mapped with a pmd
315 	 * or with a pte (split pte mapping).
316 	 */
317 	if (PageCompound(page))
318 		return false;
319 
320 	/* Page from ZONE_DEVICE have one extra reference */
321 	if (is_zone_device_page(page))
322 		extra++;
323 
324 	/* For file back page */
325 	if (page_mapping(page))
326 		extra += 1 + page_has_private(page);
327 
328 	if ((page_count(page) - extra) > page_mapcount(page))
329 		return false;
330 
331 	return true;
332 }
333 
334 /*
335  * migrate_vma_unmap() - replace page mapping with special migration pte entry
336  * @migrate: migrate struct containing all migration information
337  *
338  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
339  * special migration pte entry and check if it has been pinned. Pinned pages are
340  * restored because we cannot migrate them.
341  *
342  * This is the last step before we call the device driver callback to allocate
343  * destination memory and copy contents of original page over to new page.
344  */
345 static void migrate_vma_unmap(struct migrate_vma *migrate)
346 {
347 	const unsigned long npages = migrate->npages;
348 	unsigned long i, restore = 0;
349 	bool allow_drain = true;
350 
351 	lru_add_drain();
352 
353 	for (i = 0; i < npages; i++) {
354 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
355 		struct folio *folio;
356 
357 		if (!page)
358 			continue;
359 
360 		/* ZONE_DEVICE pages are not on LRU */
361 		if (!is_zone_device_page(page)) {
362 			if (!PageLRU(page) && allow_drain) {
363 				/* Drain CPU's pagevec */
364 				lru_add_drain_all();
365 				allow_drain = false;
366 			}
367 
368 			if (isolate_lru_page(page)) {
369 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
370 				migrate->cpages--;
371 				restore++;
372 				continue;
373 			}
374 
375 			/* Drop the reference we took in collect */
376 			put_page(page);
377 		}
378 
379 		folio = page_folio(page);
380 		if (folio_mapped(folio))
381 			try_to_migrate(folio, 0);
382 
383 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
384 			if (!is_zone_device_page(page)) {
385 				get_page(page);
386 				putback_lru_page(page);
387 			}
388 
389 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
390 			migrate->cpages--;
391 			restore++;
392 			continue;
393 		}
394 	}
395 
396 	for (i = 0; i < npages && restore; i++) {
397 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
398 		struct folio *folio;
399 
400 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
401 			continue;
402 
403 		folio = page_folio(page);
404 		remove_migration_ptes(folio, folio, false);
405 
406 		migrate->src[i] = 0;
407 		folio_unlock(folio);
408 		folio_put(folio);
409 		restore--;
410 	}
411 }
412 
413 /**
414  * migrate_vma_setup() - prepare to migrate a range of memory
415  * @args: contains the vma, start, and pfns arrays for the migration
416  *
417  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
418  * without an error.
419  *
420  * Prepare to migrate a range of memory virtual address range by collecting all
421  * the pages backing each virtual address in the range, saving them inside the
422  * src array.  Then lock those pages and unmap them. Once the pages are locked
423  * and unmapped, check whether each page is pinned or not.  Pages that aren't
424  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
425  * corresponding src array entry.  Then restores any pages that are pinned, by
426  * remapping and unlocking those pages.
427  *
428  * The caller should then allocate destination memory and copy source memory to
429  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
430  * flag set).  Once these are allocated and copied, the caller must update each
431  * corresponding entry in the dst array with the pfn value of the destination
432  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
433  * lock_page().
434  *
435  * Note that the caller does not have to migrate all the pages that are marked
436  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
437  * device memory to system memory.  If the caller cannot migrate a device page
438  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
439  * consequences for the userspace process, so it must be avoided if at all
440  * possible.
441  *
442  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
443  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
444  * allowing the caller to allocate device memory for those unbacked virtual
445  * addresses.  For this the caller simply has to allocate device memory and
446  * properly set the destination entry like for regular migration.  Note that
447  * this can still fail, and thus inside the device driver you must check if the
448  * migration was successful for those entries after calling migrate_vma_pages(),
449  * just like for regular migration.
450  *
451  * After that, the callers must call migrate_vma_pages() to go over each entry
452  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
453  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
454  * then migrate_vma_pages() to migrate struct page information from the source
455  * struct page to the destination struct page.  If it fails to migrate the
456  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
457  * src array.
458  *
459  * At this point all successfully migrated pages have an entry in the src
460  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
461  * array entry with MIGRATE_PFN_VALID flag set.
462  *
463  * Once migrate_vma_pages() returns the caller may inspect which pages were
464  * successfully migrated, and which were not.  Successfully migrated pages will
465  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
466  *
467  * It is safe to update device page table after migrate_vma_pages() because
468  * both destination and source page are still locked, and the mmap_lock is held
469  * in read mode (hence no one can unmap the range being migrated).
470  *
471  * Once the caller is done cleaning up things and updating its page table (if it
472  * chose to do so, this is not an obligation) it finally calls
473  * migrate_vma_finalize() to update the CPU page table to point to new pages
474  * for successfully migrated pages or otherwise restore the CPU page table to
475  * point to the original source pages.
476  */
477 int migrate_vma_setup(struct migrate_vma *args)
478 {
479 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
480 
481 	args->start &= PAGE_MASK;
482 	args->end &= PAGE_MASK;
483 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
484 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
485 		return -EINVAL;
486 	if (nr_pages <= 0)
487 		return -EINVAL;
488 	if (args->start < args->vma->vm_start ||
489 	    args->start >= args->vma->vm_end)
490 		return -EINVAL;
491 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
492 		return -EINVAL;
493 	if (!args->src || !args->dst)
494 		return -EINVAL;
495 
496 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
497 	args->cpages = 0;
498 	args->npages = 0;
499 
500 	migrate_vma_collect(args);
501 
502 	if (args->cpages)
503 		migrate_vma_unmap(args);
504 
505 	/*
506 	 * At this point pages are locked and unmapped, and thus they have
507 	 * stable content and can safely be copied to destination memory that
508 	 * is allocated by the drivers.
509 	 */
510 	return 0;
511 
512 }
513 EXPORT_SYMBOL(migrate_vma_setup);
514 
515 /*
516  * This code closely matches the code in:
517  *   __handle_mm_fault()
518  *     handle_pte_fault()
519  *       do_anonymous_page()
520  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
521  * private page.
522  */
523 static void migrate_vma_insert_page(struct migrate_vma *migrate,
524 				    unsigned long addr,
525 				    struct page *page,
526 				    unsigned long *src)
527 {
528 	struct vm_area_struct *vma = migrate->vma;
529 	struct mm_struct *mm = vma->vm_mm;
530 	bool flush = false;
531 	spinlock_t *ptl;
532 	pte_t entry;
533 	pgd_t *pgdp;
534 	p4d_t *p4dp;
535 	pud_t *pudp;
536 	pmd_t *pmdp;
537 	pte_t *ptep;
538 
539 	/* Only allow populating anonymous memory */
540 	if (!vma_is_anonymous(vma))
541 		goto abort;
542 
543 	pgdp = pgd_offset(mm, addr);
544 	p4dp = p4d_alloc(mm, pgdp, addr);
545 	if (!p4dp)
546 		goto abort;
547 	pudp = pud_alloc(mm, p4dp, addr);
548 	if (!pudp)
549 		goto abort;
550 	pmdp = pmd_alloc(mm, pudp, addr);
551 	if (!pmdp)
552 		goto abort;
553 
554 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
555 		goto abort;
556 
557 	/*
558 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
559 	 * pte_offset_map() on pmds where a huge pmd might be created
560 	 * from a different thread.
561 	 *
562 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
563 	 * parallel threads are excluded by other means.
564 	 *
565 	 * Here we only have mmap_read_lock(mm).
566 	 */
567 	if (pte_alloc(mm, pmdp))
568 		goto abort;
569 
570 	/* See the comment in pte_alloc_one_map() */
571 	if (unlikely(pmd_trans_unstable(pmdp)))
572 		goto abort;
573 
574 	if (unlikely(anon_vma_prepare(vma)))
575 		goto abort;
576 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
577 		goto abort;
578 
579 	/*
580 	 * The memory barrier inside __SetPageUptodate makes sure that
581 	 * preceding stores to the page contents become visible before
582 	 * the set_pte_at() write.
583 	 */
584 	__SetPageUptodate(page);
585 
586 	if (is_device_private_page(page)) {
587 		swp_entry_t swp_entry;
588 
589 		if (vma->vm_flags & VM_WRITE)
590 			swp_entry = make_writable_device_private_entry(
591 						page_to_pfn(page));
592 		else
593 			swp_entry = make_readable_device_private_entry(
594 						page_to_pfn(page));
595 		entry = swp_entry_to_pte(swp_entry);
596 	} else {
597 		/*
598 		 * For now we only support migrating to un-addressable device
599 		 * memory.
600 		 */
601 		if (is_zone_device_page(page)) {
602 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
603 			goto abort;
604 		}
605 		entry = mk_pte(page, vma->vm_page_prot);
606 		if (vma->vm_flags & VM_WRITE)
607 			entry = pte_mkwrite(pte_mkdirty(entry));
608 	}
609 
610 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
611 
612 	if (check_stable_address_space(mm))
613 		goto unlock_abort;
614 
615 	if (pte_present(*ptep)) {
616 		unsigned long pfn = pte_pfn(*ptep);
617 
618 		if (!is_zero_pfn(pfn))
619 			goto unlock_abort;
620 		flush = true;
621 	} else if (!pte_none(*ptep))
622 		goto unlock_abort;
623 
624 	/*
625 	 * Check for userfaultfd but do not deliver the fault. Instead,
626 	 * just back off.
627 	 */
628 	if (userfaultfd_missing(vma))
629 		goto unlock_abort;
630 
631 	inc_mm_counter(mm, MM_ANONPAGES);
632 	page_add_new_anon_rmap(page, vma, addr);
633 	if (!is_zone_device_page(page))
634 		lru_cache_add_inactive_or_unevictable(page, vma);
635 	get_page(page);
636 
637 	if (flush) {
638 		flush_cache_page(vma, addr, pte_pfn(*ptep));
639 		ptep_clear_flush_notify(vma, addr, ptep);
640 		set_pte_at_notify(mm, addr, ptep, entry);
641 		update_mmu_cache(vma, addr, ptep);
642 	} else {
643 		/* No need to invalidate - it was non-present before */
644 		set_pte_at(mm, addr, ptep, entry);
645 		update_mmu_cache(vma, addr, ptep);
646 	}
647 
648 	pte_unmap_unlock(ptep, ptl);
649 	*src = MIGRATE_PFN_MIGRATE;
650 	return;
651 
652 unlock_abort:
653 	pte_unmap_unlock(ptep, ptl);
654 abort:
655 	*src &= ~MIGRATE_PFN_MIGRATE;
656 }
657 
658 /**
659  * migrate_vma_pages() - migrate meta-data from src page to dst page
660  * @migrate: migrate struct containing all migration information
661  *
662  * This migrates struct page meta-data from source struct page to destination
663  * struct page. This effectively finishes the migration from source page to the
664  * destination page.
665  */
666 void migrate_vma_pages(struct migrate_vma *migrate)
667 {
668 	const unsigned long npages = migrate->npages;
669 	const unsigned long start = migrate->start;
670 	struct mmu_notifier_range range;
671 	unsigned long addr, i;
672 	bool notified = false;
673 
674 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
675 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
676 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
677 		struct address_space *mapping;
678 		int r;
679 
680 		if (!newpage) {
681 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
682 			continue;
683 		}
684 
685 		if (!page) {
686 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
687 				continue;
688 			if (!notified) {
689 				notified = true;
690 
691 				mmu_notifier_range_init_owner(&range,
692 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
693 					migrate->vma->vm_mm, addr, migrate->end,
694 					migrate->pgmap_owner);
695 				mmu_notifier_invalidate_range_start(&range);
696 			}
697 			migrate_vma_insert_page(migrate, addr, newpage,
698 						&migrate->src[i]);
699 			continue;
700 		}
701 
702 		mapping = page_mapping(page);
703 
704 		if (is_device_private_page(newpage)) {
705 			/*
706 			 * For now only support private anonymous when migrating
707 			 * to un-addressable device memory.
708 			 */
709 			if (mapping) {
710 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
711 				continue;
712 			}
713 		} else if (is_zone_device_page(newpage)) {
714 			/*
715 			 * Other types of ZONE_DEVICE page are not supported.
716 			 */
717 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
718 			continue;
719 		}
720 
721 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
722 		if (r != MIGRATEPAGE_SUCCESS)
723 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
724 	}
725 
726 	/*
727 	 * No need to double call mmu_notifier->invalidate_range() callback as
728 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
729 	 * did already call it.
730 	 */
731 	if (notified)
732 		mmu_notifier_invalidate_range_only_end(&range);
733 }
734 EXPORT_SYMBOL(migrate_vma_pages);
735 
736 /**
737  * migrate_vma_finalize() - restore CPU page table entry
738  * @migrate: migrate struct containing all migration information
739  *
740  * This replaces the special migration pte entry with either a mapping to the
741  * new page if migration was successful for that page, or to the original page
742  * otherwise.
743  *
744  * This also unlocks the pages and puts them back on the lru, or drops the extra
745  * refcount, for device pages.
746  */
747 void migrate_vma_finalize(struct migrate_vma *migrate)
748 {
749 	const unsigned long npages = migrate->npages;
750 	unsigned long i;
751 
752 	for (i = 0; i < npages; i++) {
753 		struct folio *dst, *src;
754 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
755 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
756 
757 		if (!page) {
758 			if (newpage) {
759 				unlock_page(newpage);
760 				put_page(newpage);
761 			}
762 			continue;
763 		}
764 
765 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
766 			if (newpage) {
767 				unlock_page(newpage);
768 				put_page(newpage);
769 			}
770 			newpage = page;
771 		}
772 
773 		src = page_folio(page);
774 		dst = page_folio(newpage);
775 		remove_migration_ptes(src, dst, false);
776 		folio_unlock(src);
777 
778 		if (is_zone_device_page(page))
779 			put_page(page);
780 		else
781 			putback_lru_page(page);
782 
783 		if (newpage != page) {
784 			unlock_page(newpage);
785 			if (is_zone_device_page(newpage))
786 				put_page(newpage);
787 			else
788 				putback_lru_page(newpage);
789 		}
790 	}
791 }
792 EXPORT_SYMBOL(migrate_vma_finalize);
793