xref: /openbmc/linux/mm/migrate_device.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Device Memory Migration functionality.
4  *
5  * Originally written by Jérôme Glisse.
6  */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19 
20 static int migrate_vma_collect_skip(unsigned long start,
21 				    unsigned long end,
22 				    struct mm_walk *walk)
23 {
24 	struct migrate_vma *migrate = walk->private;
25 	unsigned long addr;
26 
27 	for (addr = start; addr < end; addr += PAGE_SIZE) {
28 		migrate->dst[migrate->npages] = 0;
29 		migrate->src[migrate->npages++] = 0;
30 	}
31 
32 	return 0;
33 }
34 
35 static int migrate_vma_collect_hole(unsigned long start,
36 				    unsigned long end,
37 				    __always_unused int depth,
38 				    struct mm_walk *walk)
39 {
40 	struct migrate_vma *migrate = walk->private;
41 	unsigned long addr;
42 
43 	/* Only allow populating anonymous memory. */
44 	if (!vma_is_anonymous(walk->vma))
45 		return migrate_vma_collect_skip(start, end, walk);
46 
47 	for (addr = start; addr < end; addr += PAGE_SIZE) {
48 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 		migrate->dst[migrate->npages] = 0;
50 		migrate->npages++;
51 		migrate->cpages++;
52 	}
53 
54 	return 0;
55 }
56 
57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 				   unsigned long start,
59 				   unsigned long end,
60 				   struct mm_walk *walk)
61 {
62 	struct migrate_vma *migrate = walk->private;
63 	struct vm_area_struct *vma = walk->vma;
64 	struct mm_struct *mm = vma->vm_mm;
65 	unsigned long addr = start, unmapped = 0;
66 	spinlock_t *ptl;
67 	pte_t *ptep;
68 
69 again:
70 	if (pmd_none(*pmdp))
71 		return migrate_vma_collect_hole(start, end, -1, walk);
72 
73 	if (pmd_trans_huge(*pmdp)) {
74 		struct page *page;
75 
76 		ptl = pmd_lock(mm, pmdp);
77 		if (unlikely(!pmd_trans_huge(*pmdp))) {
78 			spin_unlock(ptl);
79 			goto again;
80 		}
81 
82 		page = pmd_page(*pmdp);
83 		if (is_huge_zero_page(page)) {
84 			spin_unlock(ptl);
85 			split_huge_pmd(vma, pmdp, addr);
86 			if (pmd_trans_unstable(pmdp))
87 				return migrate_vma_collect_skip(start, end,
88 								walk);
89 		} else {
90 			int ret;
91 
92 			get_page(page);
93 			spin_unlock(ptl);
94 			if (unlikely(!trylock_page(page)))
95 				return migrate_vma_collect_skip(start, end,
96 								walk);
97 			ret = split_huge_page(page);
98 			unlock_page(page);
99 			put_page(page);
100 			if (ret)
101 				return migrate_vma_collect_skip(start, end,
102 								walk);
103 			if (pmd_none(*pmdp))
104 				return migrate_vma_collect_hole(start, end, -1,
105 								walk);
106 		}
107 	}
108 
109 	if (unlikely(pmd_bad(*pmdp)))
110 		return migrate_vma_collect_skip(start, end, walk);
111 
112 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
113 	arch_enter_lazy_mmu_mode();
114 
115 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
116 		unsigned long mpfn = 0, pfn;
117 		struct page *page;
118 		swp_entry_t entry;
119 		pte_t pte;
120 
121 		pte = *ptep;
122 
123 		if (pte_none(pte)) {
124 			if (vma_is_anonymous(vma)) {
125 				mpfn = MIGRATE_PFN_MIGRATE;
126 				migrate->cpages++;
127 			}
128 			goto next;
129 		}
130 
131 		if (!pte_present(pte)) {
132 			/*
133 			 * Only care about unaddressable device page special
134 			 * page table entry. Other special swap entries are not
135 			 * migratable, and we ignore regular swapped page.
136 			 */
137 			entry = pte_to_swp_entry(pte);
138 			if (!is_device_private_entry(entry))
139 				goto next;
140 
141 			page = pfn_swap_entry_to_page(entry);
142 			if (!(migrate->flags &
143 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
144 			    page->pgmap->owner != migrate->pgmap_owner)
145 				goto next;
146 
147 			mpfn = migrate_pfn(page_to_pfn(page)) |
148 					MIGRATE_PFN_MIGRATE;
149 			if (is_writable_device_private_entry(entry))
150 				mpfn |= MIGRATE_PFN_WRITE;
151 		} else {
152 			pfn = pte_pfn(pte);
153 			if (is_zero_pfn(pfn) &&
154 			    (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
155 				mpfn = MIGRATE_PFN_MIGRATE;
156 				migrate->cpages++;
157 				goto next;
158 			}
159 			page = vm_normal_page(migrate->vma, addr, pte);
160 			if (page && !is_zone_device_page(page) &&
161 			    !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
162 				goto next;
163 			else if (page && is_device_coherent_page(page) &&
164 			    (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
165 			     page->pgmap->owner != migrate->pgmap_owner))
166 				goto next;
167 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
168 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
169 		}
170 
171 		/* FIXME support THP */
172 		if (!page || !page->mapping || PageTransCompound(page)) {
173 			mpfn = 0;
174 			goto next;
175 		}
176 
177 		/*
178 		 * By getting a reference on the page we pin it and that blocks
179 		 * any kind of migration. Side effect is that it "freezes" the
180 		 * pte.
181 		 *
182 		 * We drop this reference after isolating the page from the lru
183 		 * for non device page (device page are not on the lru and thus
184 		 * can't be dropped from it).
185 		 */
186 		get_page(page);
187 
188 		/*
189 		 * We rely on trylock_page() to avoid deadlock between
190 		 * concurrent migrations where each is waiting on the others
191 		 * page lock. If we can't immediately lock the page we fail this
192 		 * migration as it is only best effort anyway.
193 		 *
194 		 * If we can lock the page it's safe to set up a migration entry
195 		 * now. In the common case where the page is mapped once in a
196 		 * single process setting up the migration entry now is an
197 		 * optimisation to avoid walking the rmap later with
198 		 * try_to_migrate().
199 		 */
200 		if (trylock_page(page)) {
201 			bool anon_exclusive;
202 			pte_t swp_pte;
203 
204 			flush_cache_page(vma, addr, pte_pfn(*ptep));
205 			anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
206 			if (anon_exclusive) {
207 				pte = ptep_clear_flush(vma, addr, ptep);
208 
209 				if (page_try_share_anon_rmap(page)) {
210 					set_pte_at(mm, addr, ptep, pte);
211 					unlock_page(page);
212 					put_page(page);
213 					mpfn = 0;
214 					goto next;
215 				}
216 			} else {
217 				pte = ptep_get_and_clear(mm, addr, ptep);
218 			}
219 
220 			migrate->cpages++;
221 
222 			/* Set the dirty flag on the folio now the pte is gone. */
223 			if (pte_dirty(pte))
224 				folio_mark_dirty(page_folio(page));
225 
226 			/* Setup special migration page table entry */
227 			if (mpfn & MIGRATE_PFN_WRITE)
228 				entry = make_writable_migration_entry(
229 							page_to_pfn(page));
230 			else if (anon_exclusive)
231 				entry = make_readable_exclusive_migration_entry(
232 							page_to_pfn(page));
233 			else
234 				entry = make_readable_migration_entry(
235 							page_to_pfn(page));
236 			if (pte_present(pte)) {
237 				if (pte_young(pte))
238 					entry = make_migration_entry_young(entry);
239 				if (pte_dirty(pte))
240 					entry = make_migration_entry_dirty(entry);
241 			}
242 			swp_pte = swp_entry_to_pte(entry);
243 			if (pte_present(pte)) {
244 				if (pte_soft_dirty(pte))
245 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
246 				if (pte_uffd_wp(pte))
247 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
248 			} else {
249 				if (pte_swp_soft_dirty(pte))
250 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
251 				if (pte_swp_uffd_wp(pte))
252 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
253 			}
254 			set_pte_at(mm, addr, ptep, swp_pte);
255 
256 			/*
257 			 * This is like regular unmap: we remove the rmap and
258 			 * drop page refcount. Page won't be freed, as we took
259 			 * a reference just above.
260 			 */
261 			page_remove_rmap(page, vma, false);
262 			put_page(page);
263 
264 			if (pte_present(pte))
265 				unmapped++;
266 		} else {
267 			put_page(page);
268 			mpfn = 0;
269 		}
270 
271 next:
272 		migrate->dst[migrate->npages] = 0;
273 		migrate->src[migrate->npages++] = mpfn;
274 	}
275 
276 	/* Only flush the TLB if we actually modified any entries */
277 	if (unmapped)
278 		flush_tlb_range(walk->vma, start, end);
279 
280 	arch_leave_lazy_mmu_mode();
281 	pte_unmap_unlock(ptep - 1, ptl);
282 
283 	return 0;
284 }
285 
286 static const struct mm_walk_ops migrate_vma_walk_ops = {
287 	.pmd_entry		= migrate_vma_collect_pmd,
288 	.pte_hole		= migrate_vma_collect_hole,
289 };
290 
291 /*
292  * migrate_vma_collect() - collect pages over a range of virtual addresses
293  * @migrate: migrate struct containing all migration information
294  *
295  * This will walk the CPU page table. For each virtual address backed by a
296  * valid page, it updates the src array and takes a reference on the page, in
297  * order to pin the page until we lock it and unmap it.
298  */
299 static void migrate_vma_collect(struct migrate_vma *migrate)
300 {
301 	struct mmu_notifier_range range;
302 
303 	/*
304 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
305 	 * that the registered device driver can skip invalidating device
306 	 * private page mappings that won't be migrated.
307 	 */
308 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
309 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
310 		migrate->pgmap_owner);
311 	mmu_notifier_invalidate_range_start(&range);
312 
313 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
314 			&migrate_vma_walk_ops, migrate);
315 
316 	mmu_notifier_invalidate_range_end(&range);
317 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
318 }
319 
320 /*
321  * migrate_vma_check_page() - check if page is pinned or not
322  * @page: struct page to check
323  *
324  * Pinned pages cannot be migrated. This is the same test as in
325  * folio_migrate_mapping(), except that here we allow migration of a
326  * ZONE_DEVICE page.
327  */
328 static bool migrate_vma_check_page(struct page *page)
329 {
330 	/*
331 	 * One extra ref because caller holds an extra reference, either from
332 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
333 	 * a device page.
334 	 */
335 	int extra = 1;
336 
337 	/*
338 	 * FIXME support THP (transparent huge page), it is bit more complex to
339 	 * check them than regular pages, because they can be mapped with a pmd
340 	 * or with a pte (split pte mapping).
341 	 */
342 	if (PageCompound(page))
343 		return false;
344 
345 	/* Page from ZONE_DEVICE have one extra reference */
346 	if (is_zone_device_page(page))
347 		extra++;
348 
349 	/* For file back page */
350 	if (page_mapping(page))
351 		extra += 1 + page_has_private(page);
352 
353 	if ((page_count(page) - extra) > page_mapcount(page))
354 		return false;
355 
356 	return true;
357 }
358 
359 /*
360  * migrate_vma_unmap() - replace page mapping with special migration pte entry
361  * @migrate: migrate struct containing all migration information
362  *
363  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
364  * special migration pte entry and check if it has been pinned. Pinned pages are
365  * restored because we cannot migrate them.
366  *
367  * This is the last step before we call the device driver callback to allocate
368  * destination memory and copy contents of original page over to new page.
369  */
370 static void migrate_vma_unmap(struct migrate_vma *migrate)
371 {
372 	const unsigned long npages = migrate->npages;
373 	unsigned long i, restore = 0;
374 	bool allow_drain = true;
375 
376 	lru_add_drain();
377 
378 	for (i = 0; i < npages; i++) {
379 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
380 		struct folio *folio;
381 
382 		if (!page)
383 			continue;
384 
385 		/* ZONE_DEVICE pages are not on LRU */
386 		if (!is_zone_device_page(page)) {
387 			if (!PageLRU(page) && allow_drain) {
388 				/* Drain CPU's pagevec */
389 				lru_add_drain_all();
390 				allow_drain = false;
391 			}
392 
393 			if (isolate_lru_page(page)) {
394 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
395 				migrate->cpages--;
396 				restore++;
397 				continue;
398 			}
399 
400 			/* Drop the reference we took in collect */
401 			put_page(page);
402 		}
403 
404 		folio = page_folio(page);
405 		if (folio_mapped(folio))
406 			try_to_migrate(folio, 0);
407 
408 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
409 			if (!is_zone_device_page(page)) {
410 				get_page(page);
411 				putback_lru_page(page);
412 			}
413 
414 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
415 			migrate->cpages--;
416 			restore++;
417 			continue;
418 		}
419 	}
420 
421 	for (i = 0; i < npages && restore; i++) {
422 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
423 		struct folio *folio;
424 
425 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
426 			continue;
427 
428 		folio = page_folio(page);
429 		remove_migration_ptes(folio, folio, false);
430 
431 		migrate->src[i] = 0;
432 		folio_unlock(folio);
433 		folio_put(folio);
434 		restore--;
435 	}
436 }
437 
438 /**
439  * migrate_vma_setup() - prepare to migrate a range of memory
440  * @args: contains the vma, start, and pfns arrays for the migration
441  *
442  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
443  * without an error.
444  *
445  * Prepare to migrate a range of memory virtual address range by collecting all
446  * the pages backing each virtual address in the range, saving them inside the
447  * src array.  Then lock those pages and unmap them. Once the pages are locked
448  * and unmapped, check whether each page is pinned or not.  Pages that aren't
449  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
450  * corresponding src array entry.  Then restores any pages that are pinned, by
451  * remapping and unlocking those pages.
452  *
453  * The caller should then allocate destination memory and copy source memory to
454  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
455  * flag set).  Once these are allocated and copied, the caller must update each
456  * corresponding entry in the dst array with the pfn value of the destination
457  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
458  * lock_page().
459  *
460  * Note that the caller does not have to migrate all the pages that are marked
461  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
462  * device memory to system memory.  If the caller cannot migrate a device page
463  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
464  * consequences for the userspace process, so it must be avoided if at all
465  * possible.
466  *
467  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
468  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
469  * allowing the caller to allocate device memory for those unbacked virtual
470  * addresses.  For this the caller simply has to allocate device memory and
471  * properly set the destination entry like for regular migration.  Note that
472  * this can still fail, and thus inside the device driver you must check if the
473  * migration was successful for those entries after calling migrate_vma_pages(),
474  * just like for regular migration.
475  *
476  * After that, the callers must call migrate_vma_pages() to go over each entry
477  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
478  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
479  * then migrate_vma_pages() to migrate struct page information from the source
480  * struct page to the destination struct page.  If it fails to migrate the
481  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
482  * src array.
483  *
484  * At this point all successfully migrated pages have an entry in the src
485  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
486  * array entry with MIGRATE_PFN_VALID flag set.
487  *
488  * Once migrate_vma_pages() returns the caller may inspect which pages were
489  * successfully migrated, and which were not.  Successfully migrated pages will
490  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
491  *
492  * It is safe to update device page table after migrate_vma_pages() because
493  * both destination and source page are still locked, and the mmap_lock is held
494  * in read mode (hence no one can unmap the range being migrated).
495  *
496  * Once the caller is done cleaning up things and updating its page table (if it
497  * chose to do so, this is not an obligation) it finally calls
498  * migrate_vma_finalize() to update the CPU page table to point to new pages
499  * for successfully migrated pages or otherwise restore the CPU page table to
500  * point to the original source pages.
501  */
502 int migrate_vma_setup(struct migrate_vma *args)
503 {
504 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
505 
506 	args->start &= PAGE_MASK;
507 	args->end &= PAGE_MASK;
508 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
509 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
510 		return -EINVAL;
511 	if (nr_pages <= 0)
512 		return -EINVAL;
513 	if (args->start < args->vma->vm_start ||
514 	    args->start >= args->vma->vm_end)
515 		return -EINVAL;
516 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
517 		return -EINVAL;
518 	if (!args->src || !args->dst)
519 		return -EINVAL;
520 
521 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
522 	args->cpages = 0;
523 	args->npages = 0;
524 
525 	migrate_vma_collect(args);
526 
527 	if (args->cpages)
528 		migrate_vma_unmap(args);
529 
530 	/*
531 	 * At this point pages are locked and unmapped, and thus they have
532 	 * stable content and can safely be copied to destination memory that
533 	 * is allocated by the drivers.
534 	 */
535 	return 0;
536 
537 }
538 EXPORT_SYMBOL(migrate_vma_setup);
539 
540 /*
541  * This code closely matches the code in:
542  *   __handle_mm_fault()
543  *     handle_pte_fault()
544  *       do_anonymous_page()
545  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
546  * private or coherent page.
547  */
548 static void migrate_vma_insert_page(struct migrate_vma *migrate,
549 				    unsigned long addr,
550 				    struct page *page,
551 				    unsigned long *src)
552 {
553 	struct vm_area_struct *vma = migrate->vma;
554 	struct mm_struct *mm = vma->vm_mm;
555 	bool flush = false;
556 	spinlock_t *ptl;
557 	pte_t entry;
558 	pgd_t *pgdp;
559 	p4d_t *p4dp;
560 	pud_t *pudp;
561 	pmd_t *pmdp;
562 	pte_t *ptep;
563 
564 	/* Only allow populating anonymous memory */
565 	if (!vma_is_anonymous(vma))
566 		goto abort;
567 
568 	pgdp = pgd_offset(mm, addr);
569 	p4dp = p4d_alloc(mm, pgdp, addr);
570 	if (!p4dp)
571 		goto abort;
572 	pudp = pud_alloc(mm, p4dp, addr);
573 	if (!pudp)
574 		goto abort;
575 	pmdp = pmd_alloc(mm, pudp, addr);
576 	if (!pmdp)
577 		goto abort;
578 
579 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
580 		goto abort;
581 
582 	/*
583 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
584 	 * pte_offset_map() on pmds where a huge pmd might be created
585 	 * from a different thread.
586 	 *
587 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
588 	 * parallel threads are excluded by other means.
589 	 *
590 	 * Here we only have mmap_read_lock(mm).
591 	 */
592 	if (pte_alloc(mm, pmdp))
593 		goto abort;
594 
595 	/* See the comment in pte_alloc_one_map() */
596 	if (unlikely(pmd_trans_unstable(pmdp)))
597 		goto abort;
598 
599 	if (unlikely(anon_vma_prepare(vma)))
600 		goto abort;
601 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
602 		goto abort;
603 
604 	/*
605 	 * The memory barrier inside __SetPageUptodate makes sure that
606 	 * preceding stores to the page contents become visible before
607 	 * the set_pte_at() write.
608 	 */
609 	__SetPageUptodate(page);
610 
611 	if (is_device_private_page(page)) {
612 		swp_entry_t swp_entry;
613 
614 		if (vma->vm_flags & VM_WRITE)
615 			swp_entry = make_writable_device_private_entry(
616 						page_to_pfn(page));
617 		else
618 			swp_entry = make_readable_device_private_entry(
619 						page_to_pfn(page));
620 		entry = swp_entry_to_pte(swp_entry);
621 	} else {
622 		if (is_zone_device_page(page) &&
623 		    !is_device_coherent_page(page)) {
624 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
625 			goto abort;
626 		}
627 		entry = mk_pte(page, vma->vm_page_prot);
628 		if (vma->vm_flags & VM_WRITE)
629 			entry = pte_mkwrite(pte_mkdirty(entry));
630 	}
631 
632 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
633 
634 	if (check_stable_address_space(mm))
635 		goto unlock_abort;
636 
637 	if (pte_present(*ptep)) {
638 		unsigned long pfn = pte_pfn(*ptep);
639 
640 		if (!is_zero_pfn(pfn))
641 			goto unlock_abort;
642 		flush = true;
643 	} else if (!pte_none(*ptep))
644 		goto unlock_abort;
645 
646 	/*
647 	 * Check for userfaultfd but do not deliver the fault. Instead,
648 	 * just back off.
649 	 */
650 	if (userfaultfd_missing(vma))
651 		goto unlock_abort;
652 
653 	inc_mm_counter(mm, MM_ANONPAGES);
654 	page_add_new_anon_rmap(page, vma, addr);
655 	if (!is_zone_device_page(page))
656 		lru_cache_add_inactive_or_unevictable(page, vma);
657 	get_page(page);
658 
659 	if (flush) {
660 		flush_cache_page(vma, addr, pte_pfn(*ptep));
661 		ptep_clear_flush_notify(vma, addr, ptep);
662 		set_pte_at_notify(mm, addr, ptep, entry);
663 		update_mmu_cache(vma, addr, ptep);
664 	} else {
665 		/* No need to invalidate - it was non-present before */
666 		set_pte_at(mm, addr, ptep, entry);
667 		update_mmu_cache(vma, addr, ptep);
668 	}
669 
670 	pte_unmap_unlock(ptep, ptl);
671 	*src = MIGRATE_PFN_MIGRATE;
672 	return;
673 
674 unlock_abort:
675 	pte_unmap_unlock(ptep, ptl);
676 abort:
677 	*src &= ~MIGRATE_PFN_MIGRATE;
678 }
679 
680 /**
681  * migrate_vma_pages() - migrate meta-data from src page to dst page
682  * @migrate: migrate struct containing all migration information
683  *
684  * This migrates struct page meta-data from source struct page to destination
685  * struct page. This effectively finishes the migration from source page to the
686  * destination page.
687  */
688 void migrate_vma_pages(struct migrate_vma *migrate)
689 {
690 	const unsigned long npages = migrate->npages;
691 	const unsigned long start = migrate->start;
692 	struct mmu_notifier_range range;
693 	unsigned long addr, i;
694 	bool notified = false;
695 
696 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
697 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
698 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
699 		struct address_space *mapping;
700 		int r;
701 
702 		if (!newpage) {
703 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
704 			continue;
705 		}
706 
707 		if (!page) {
708 			/*
709 			 * The only time there is no vma is when called from
710 			 * migrate_device_coherent_page(). However this isn't
711 			 * called if the page could not be unmapped.
712 			 */
713 			VM_BUG_ON(!migrate->vma);
714 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
715 				continue;
716 			if (!notified) {
717 				notified = true;
718 
719 				mmu_notifier_range_init_owner(&range,
720 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
721 					migrate->vma->vm_mm, addr, migrate->end,
722 					migrate->pgmap_owner);
723 				mmu_notifier_invalidate_range_start(&range);
724 			}
725 			migrate_vma_insert_page(migrate, addr, newpage,
726 						&migrate->src[i]);
727 			continue;
728 		}
729 
730 		mapping = page_mapping(page);
731 
732 		if (is_device_private_page(newpage) ||
733 		    is_device_coherent_page(newpage)) {
734 			/*
735 			 * For now only support anonymous memory migrating to
736 			 * device private or coherent memory.
737 			 */
738 			if (mapping) {
739 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
740 				continue;
741 			}
742 		} else if (is_zone_device_page(newpage)) {
743 			/*
744 			 * Other types of ZONE_DEVICE page are not supported.
745 			 */
746 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
747 			continue;
748 		}
749 
750 		r = migrate_folio(mapping, page_folio(newpage),
751 				page_folio(page), MIGRATE_SYNC_NO_COPY);
752 		if (r != MIGRATEPAGE_SUCCESS)
753 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
754 	}
755 
756 	/*
757 	 * No need to double call mmu_notifier->invalidate_range() callback as
758 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
759 	 * did already call it.
760 	 */
761 	if (notified)
762 		mmu_notifier_invalidate_range_only_end(&range);
763 }
764 EXPORT_SYMBOL(migrate_vma_pages);
765 
766 /**
767  * migrate_vma_finalize() - restore CPU page table entry
768  * @migrate: migrate struct containing all migration information
769  *
770  * This replaces the special migration pte entry with either a mapping to the
771  * new page if migration was successful for that page, or to the original page
772  * otherwise.
773  *
774  * This also unlocks the pages and puts them back on the lru, or drops the extra
775  * refcount, for device pages.
776  */
777 void migrate_vma_finalize(struct migrate_vma *migrate)
778 {
779 	const unsigned long npages = migrate->npages;
780 	unsigned long i;
781 
782 	for (i = 0; i < npages; i++) {
783 		struct folio *dst, *src;
784 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
785 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
786 
787 		if (!page) {
788 			if (newpage) {
789 				unlock_page(newpage);
790 				put_page(newpage);
791 			}
792 			continue;
793 		}
794 
795 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
796 			if (newpage) {
797 				unlock_page(newpage);
798 				put_page(newpage);
799 			}
800 			newpage = page;
801 		}
802 
803 		src = page_folio(page);
804 		dst = page_folio(newpage);
805 		remove_migration_ptes(src, dst, false);
806 		folio_unlock(src);
807 
808 		if (is_zone_device_page(page))
809 			put_page(page);
810 		else
811 			putback_lru_page(page);
812 
813 		if (newpage != page) {
814 			unlock_page(newpage);
815 			if (is_zone_device_page(newpage))
816 				put_page(newpage);
817 			else
818 				putback_lru_page(newpage);
819 		}
820 	}
821 }
822 EXPORT_SYMBOL(migrate_vma_finalize);
823 
824 /*
825  * Migrate a device coherent page back to normal memory. The caller should have
826  * a reference on page which will be copied to the new page if migration is
827  * successful or dropped on failure.
828  */
829 int migrate_device_coherent_page(struct page *page)
830 {
831 	unsigned long src_pfn, dst_pfn = 0;
832 	struct migrate_vma args;
833 	struct page *dpage;
834 
835 	WARN_ON_ONCE(PageCompound(page));
836 
837 	lock_page(page);
838 	src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
839 	args.src = &src_pfn;
840 	args.dst = &dst_pfn;
841 	args.cpages = 1;
842 	args.npages = 1;
843 	args.vma = NULL;
844 
845 	/*
846 	 * We don't have a VMA and don't need to walk the page tables to find
847 	 * the source page. So call migrate_vma_unmap() directly to unmap the
848 	 * page as migrate_vma_setup() will fail if args.vma == NULL.
849 	 */
850 	migrate_vma_unmap(&args);
851 	if (!(src_pfn & MIGRATE_PFN_MIGRATE))
852 		return -EBUSY;
853 
854 	dpage = alloc_page(GFP_USER | __GFP_NOWARN);
855 	if (dpage) {
856 		lock_page(dpage);
857 		dst_pfn = migrate_pfn(page_to_pfn(dpage));
858 	}
859 
860 	migrate_vma_pages(&args);
861 	if (src_pfn & MIGRATE_PFN_MIGRATE)
862 		copy_highpage(dpage, page);
863 	migrate_vma_finalize(&args);
864 
865 	if (src_pfn & MIGRATE_PFN_MIGRATE)
866 		return 0;
867 	return -EBUSY;
868 }
869