1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm.h> 11 #include <linux/mm_inline.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/oom.h> 14 #include <linux/pagewalk.h> 15 #include <linux/rmap.h> 16 #include <linux/swapops.h> 17 #include <asm/tlbflush.h> 18 #include "internal.h" 19 20 static int migrate_vma_collect_skip(unsigned long start, 21 unsigned long end, 22 struct mm_walk *walk) 23 { 24 struct migrate_vma *migrate = walk->private; 25 unsigned long addr; 26 27 for (addr = start; addr < end; addr += PAGE_SIZE) { 28 migrate->dst[migrate->npages] = 0; 29 migrate->src[migrate->npages++] = 0; 30 } 31 32 return 0; 33 } 34 35 static int migrate_vma_collect_hole(unsigned long start, 36 unsigned long end, 37 __always_unused int depth, 38 struct mm_walk *walk) 39 { 40 struct migrate_vma *migrate = walk->private; 41 unsigned long addr; 42 43 /* Only allow populating anonymous memory. */ 44 if (!vma_is_anonymous(walk->vma)) 45 return migrate_vma_collect_skip(start, end, walk); 46 47 for (addr = start; addr < end; addr += PAGE_SIZE) { 48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 49 migrate->dst[migrate->npages] = 0; 50 migrate->npages++; 51 migrate->cpages++; 52 } 53 54 return 0; 55 } 56 57 static int migrate_vma_collect_pmd(pmd_t *pmdp, 58 unsigned long start, 59 unsigned long end, 60 struct mm_walk *walk) 61 { 62 struct migrate_vma *migrate = walk->private; 63 struct vm_area_struct *vma = walk->vma; 64 struct mm_struct *mm = vma->vm_mm; 65 unsigned long addr = start, unmapped = 0; 66 spinlock_t *ptl; 67 pte_t *ptep; 68 69 again: 70 if (pmd_none(*pmdp)) 71 return migrate_vma_collect_hole(start, end, -1, walk); 72 73 if (pmd_trans_huge(*pmdp)) { 74 struct page *page; 75 76 ptl = pmd_lock(mm, pmdp); 77 if (unlikely(!pmd_trans_huge(*pmdp))) { 78 spin_unlock(ptl); 79 goto again; 80 } 81 82 page = pmd_page(*pmdp); 83 if (is_huge_zero_page(page)) { 84 spin_unlock(ptl); 85 split_huge_pmd(vma, pmdp, addr); 86 if (pmd_trans_unstable(pmdp)) 87 return migrate_vma_collect_skip(start, end, 88 walk); 89 } else { 90 int ret; 91 92 get_page(page); 93 spin_unlock(ptl); 94 if (unlikely(!trylock_page(page))) 95 return migrate_vma_collect_skip(start, end, 96 walk); 97 ret = split_huge_page(page); 98 unlock_page(page); 99 put_page(page); 100 if (ret) 101 return migrate_vma_collect_skip(start, end, 102 walk); 103 if (pmd_none(*pmdp)) 104 return migrate_vma_collect_hole(start, end, -1, 105 walk); 106 } 107 } 108 109 if (unlikely(pmd_bad(*pmdp))) 110 return migrate_vma_collect_skip(start, end, walk); 111 112 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 113 arch_enter_lazy_mmu_mode(); 114 115 for (; addr < end; addr += PAGE_SIZE, ptep++) { 116 unsigned long mpfn = 0, pfn; 117 struct page *page; 118 swp_entry_t entry; 119 pte_t pte; 120 121 pte = *ptep; 122 123 if (pte_none(pte)) { 124 if (vma_is_anonymous(vma)) { 125 mpfn = MIGRATE_PFN_MIGRATE; 126 migrate->cpages++; 127 } 128 goto next; 129 } 130 131 if (!pte_present(pte)) { 132 /* 133 * Only care about unaddressable device page special 134 * page table entry. Other special swap entries are not 135 * migratable, and we ignore regular swapped page. 136 */ 137 entry = pte_to_swp_entry(pte); 138 if (!is_device_private_entry(entry)) 139 goto next; 140 141 page = pfn_swap_entry_to_page(entry); 142 if (!(migrate->flags & 143 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 144 page->pgmap->owner != migrate->pgmap_owner) 145 goto next; 146 147 mpfn = migrate_pfn(page_to_pfn(page)) | 148 MIGRATE_PFN_MIGRATE; 149 if (is_writable_device_private_entry(entry)) 150 mpfn |= MIGRATE_PFN_WRITE; 151 } else { 152 pfn = pte_pfn(pte); 153 if (is_zero_pfn(pfn) && 154 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { 155 mpfn = MIGRATE_PFN_MIGRATE; 156 migrate->cpages++; 157 goto next; 158 } 159 page = vm_normal_page(migrate->vma, addr, pte); 160 if (page && !is_zone_device_page(page) && 161 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 162 goto next; 163 else if (page && is_device_coherent_page(page) && 164 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || 165 page->pgmap->owner != migrate->pgmap_owner)) 166 goto next; 167 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 168 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 169 } 170 171 /* FIXME support THP */ 172 if (!page || !page->mapping || PageTransCompound(page)) { 173 mpfn = 0; 174 goto next; 175 } 176 177 /* 178 * By getting a reference on the page we pin it and that blocks 179 * any kind of migration. Side effect is that it "freezes" the 180 * pte. 181 * 182 * We drop this reference after isolating the page from the lru 183 * for non device page (device page are not on the lru and thus 184 * can't be dropped from it). 185 */ 186 get_page(page); 187 188 /* 189 * We rely on trylock_page() to avoid deadlock between 190 * concurrent migrations where each is waiting on the others 191 * page lock. If we can't immediately lock the page we fail this 192 * migration as it is only best effort anyway. 193 * 194 * If we can lock the page it's safe to set up a migration entry 195 * now. In the common case where the page is mapped once in a 196 * single process setting up the migration entry now is an 197 * optimisation to avoid walking the rmap later with 198 * try_to_migrate(). 199 */ 200 if (trylock_page(page)) { 201 bool anon_exclusive; 202 pte_t swp_pte; 203 204 flush_cache_page(vma, addr, pte_pfn(*ptep)); 205 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 206 if (anon_exclusive) { 207 pte = ptep_clear_flush(vma, addr, ptep); 208 209 if (page_try_share_anon_rmap(page)) { 210 set_pte_at(mm, addr, ptep, pte); 211 unlock_page(page); 212 put_page(page); 213 mpfn = 0; 214 goto next; 215 } 216 } else { 217 pte = ptep_get_and_clear(mm, addr, ptep); 218 } 219 220 migrate->cpages++; 221 222 /* Set the dirty flag on the folio now the pte is gone. */ 223 if (pte_dirty(pte)) 224 folio_mark_dirty(page_folio(page)); 225 226 /* Setup special migration page table entry */ 227 if (mpfn & MIGRATE_PFN_WRITE) 228 entry = make_writable_migration_entry( 229 page_to_pfn(page)); 230 else if (anon_exclusive) 231 entry = make_readable_exclusive_migration_entry( 232 page_to_pfn(page)); 233 else 234 entry = make_readable_migration_entry( 235 page_to_pfn(page)); 236 if (pte_present(pte)) { 237 if (pte_young(pte)) 238 entry = make_migration_entry_young(entry); 239 if (pte_dirty(pte)) 240 entry = make_migration_entry_dirty(entry); 241 } 242 swp_pte = swp_entry_to_pte(entry); 243 if (pte_present(pte)) { 244 if (pte_soft_dirty(pte)) 245 swp_pte = pte_swp_mksoft_dirty(swp_pte); 246 if (pte_uffd_wp(pte)) 247 swp_pte = pte_swp_mkuffd_wp(swp_pte); 248 } else { 249 if (pte_swp_soft_dirty(pte)) 250 swp_pte = pte_swp_mksoft_dirty(swp_pte); 251 if (pte_swp_uffd_wp(pte)) 252 swp_pte = pte_swp_mkuffd_wp(swp_pte); 253 } 254 set_pte_at(mm, addr, ptep, swp_pte); 255 256 /* 257 * This is like regular unmap: we remove the rmap and 258 * drop page refcount. Page won't be freed, as we took 259 * a reference just above. 260 */ 261 page_remove_rmap(page, vma, false); 262 put_page(page); 263 264 if (pte_present(pte)) 265 unmapped++; 266 } else { 267 put_page(page); 268 mpfn = 0; 269 } 270 271 next: 272 migrate->dst[migrate->npages] = 0; 273 migrate->src[migrate->npages++] = mpfn; 274 } 275 276 /* Only flush the TLB if we actually modified any entries */ 277 if (unmapped) 278 flush_tlb_range(walk->vma, start, end); 279 280 arch_leave_lazy_mmu_mode(); 281 pte_unmap_unlock(ptep - 1, ptl); 282 283 return 0; 284 } 285 286 static const struct mm_walk_ops migrate_vma_walk_ops = { 287 .pmd_entry = migrate_vma_collect_pmd, 288 .pte_hole = migrate_vma_collect_hole, 289 }; 290 291 /* 292 * migrate_vma_collect() - collect pages over a range of virtual addresses 293 * @migrate: migrate struct containing all migration information 294 * 295 * This will walk the CPU page table. For each virtual address backed by a 296 * valid page, it updates the src array and takes a reference on the page, in 297 * order to pin the page until we lock it and unmap it. 298 */ 299 static void migrate_vma_collect(struct migrate_vma *migrate) 300 { 301 struct mmu_notifier_range range; 302 303 /* 304 * Note that the pgmap_owner is passed to the mmu notifier callback so 305 * that the registered device driver can skip invalidating device 306 * private page mappings that won't be migrated. 307 */ 308 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 309 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 310 migrate->pgmap_owner); 311 mmu_notifier_invalidate_range_start(&range); 312 313 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 314 &migrate_vma_walk_ops, migrate); 315 316 mmu_notifier_invalidate_range_end(&range); 317 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 318 } 319 320 /* 321 * migrate_vma_check_page() - check if page is pinned or not 322 * @page: struct page to check 323 * 324 * Pinned pages cannot be migrated. This is the same test as in 325 * folio_migrate_mapping(), except that here we allow migration of a 326 * ZONE_DEVICE page. 327 */ 328 static bool migrate_vma_check_page(struct page *page, struct page *fault_page) 329 { 330 /* 331 * One extra ref because caller holds an extra reference, either from 332 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 333 * a device page. 334 */ 335 int extra = 1 + (page == fault_page); 336 337 /* 338 * FIXME support THP (transparent huge page), it is bit more complex to 339 * check them than regular pages, because they can be mapped with a pmd 340 * or with a pte (split pte mapping). 341 */ 342 if (PageCompound(page)) 343 return false; 344 345 /* Page from ZONE_DEVICE have one extra reference */ 346 if (is_zone_device_page(page)) 347 extra++; 348 349 /* For file back page */ 350 if (page_mapping(page)) 351 extra += 1 + page_has_private(page); 352 353 if ((page_count(page) - extra) > page_mapcount(page)) 354 return false; 355 356 return true; 357 } 358 359 /* 360 * Unmaps pages for migration. Returns number of unmapped pages. 361 */ 362 static unsigned long migrate_device_unmap(unsigned long *src_pfns, 363 unsigned long npages, 364 struct page *fault_page) 365 { 366 unsigned long i, restore = 0; 367 bool allow_drain = true; 368 unsigned long unmapped = 0; 369 370 lru_add_drain(); 371 372 for (i = 0; i < npages; i++) { 373 struct page *page = migrate_pfn_to_page(src_pfns[i]); 374 struct folio *folio; 375 376 if (!page) 377 continue; 378 379 /* ZONE_DEVICE pages are not on LRU */ 380 if (!is_zone_device_page(page)) { 381 if (!PageLRU(page) && allow_drain) { 382 /* Drain CPU's pagevec */ 383 lru_add_drain_all(); 384 allow_drain = false; 385 } 386 387 if (isolate_lru_page(page)) { 388 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 389 restore++; 390 continue; 391 } 392 393 /* Drop the reference we took in collect */ 394 put_page(page); 395 } 396 397 folio = page_folio(page); 398 if (folio_mapped(folio)) 399 try_to_migrate(folio, 0); 400 401 if (page_mapped(page) || 402 !migrate_vma_check_page(page, fault_page)) { 403 if (!is_zone_device_page(page)) { 404 get_page(page); 405 putback_lru_page(page); 406 } 407 408 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 409 restore++; 410 continue; 411 } 412 413 unmapped++; 414 } 415 416 for (i = 0; i < npages && restore; i++) { 417 struct page *page = migrate_pfn_to_page(src_pfns[i]); 418 struct folio *folio; 419 420 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) 421 continue; 422 423 folio = page_folio(page); 424 remove_migration_ptes(folio, folio, false); 425 426 src_pfns[i] = 0; 427 folio_unlock(folio); 428 folio_put(folio); 429 restore--; 430 } 431 432 return unmapped; 433 } 434 435 /* 436 * migrate_vma_unmap() - replace page mapping with special migration pte entry 437 * @migrate: migrate struct containing all migration information 438 * 439 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 440 * special migration pte entry and check if it has been pinned. Pinned pages are 441 * restored because we cannot migrate them. 442 * 443 * This is the last step before we call the device driver callback to allocate 444 * destination memory and copy contents of original page over to new page. 445 */ 446 static void migrate_vma_unmap(struct migrate_vma *migrate) 447 { 448 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, 449 migrate->fault_page); 450 } 451 452 /** 453 * migrate_vma_setup() - prepare to migrate a range of memory 454 * @args: contains the vma, start, and pfns arrays for the migration 455 * 456 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 457 * without an error. 458 * 459 * Prepare to migrate a range of memory virtual address range by collecting all 460 * the pages backing each virtual address in the range, saving them inside the 461 * src array. Then lock those pages and unmap them. Once the pages are locked 462 * and unmapped, check whether each page is pinned or not. Pages that aren't 463 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 464 * corresponding src array entry. Then restores any pages that are pinned, by 465 * remapping and unlocking those pages. 466 * 467 * The caller should then allocate destination memory and copy source memory to 468 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 469 * flag set). Once these are allocated and copied, the caller must update each 470 * corresponding entry in the dst array with the pfn value of the destination 471 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 472 * lock_page(). 473 * 474 * Note that the caller does not have to migrate all the pages that are marked 475 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 476 * device memory to system memory. If the caller cannot migrate a device page 477 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 478 * consequences for the userspace process, so it must be avoided if at all 479 * possible. 480 * 481 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 482 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 483 * allowing the caller to allocate device memory for those unbacked virtual 484 * addresses. For this the caller simply has to allocate device memory and 485 * properly set the destination entry like for regular migration. Note that 486 * this can still fail, and thus inside the device driver you must check if the 487 * migration was successful for those entries after calling migrate_vma_pages(), 488 * just like for regular migration. 489 * 490 * After that, the callers must call migrate_vma_pages() to go over each entry 491 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 492 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 493 * then migrate_vma_pages() to migrate struct page information from the source 494 * struct page to the destination struct page. If it fails to migrate the 495 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 496 * src array. 497 * 498 * At this point all successfully migrated pages have an entry in the src 499 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 500 * array entry with MIGRATE_PFN_VALID flag set. 501 * 502 * Once migrate_vma_pages() returns the caller may inspect which pages were 503 * successfully migrated, and which were not. Successfully migrated pages will 504 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 505 * 506 * It is safe to update device page table after migrate_vma_pages() because 507 * both destination and source page are still locked, and the mmap_lock is held 508 * in read mode (hence no one can unmap the range being migrated). 509 * 510 * Once the caller is done cleaning up things and updating its page table (if it 511 * chose to do so, this is not an obligation) it finally calls 512 * migrate_vma_finalize() to update the CPU page table to point to new pages 513 * for successfully migrated pages or otherwise restore the CPU page table to 514 * point to the original source pages. 515 */ 516 int migrate_vma_setup(struct migrate_vma *args) 517 { 518 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 519 520 args->start &= PAGE_MASK; 521 args->end &= PAGE_MASK; 522 if (!args->vma || is_vm_hugetlb_page(args->vma) || 523 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 524 return -EINVAL; 525 if (nr_pages <= 0) 526 return -EINVAL; 527 if (args->start < args->vma->vm_start || 528 args->start >= args->vma->vm_end) 529 return -EINVAL; 530 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 531 return -EINVAL; 532 if (!args->src || !args->dst) 533 return -EINVAL; 534 if (args->fault_page && !is_device_private_page(args->fault_page)) 535 return -EINVAL; 536 537 memset(args->src, 0, sizeof(*args->src) * nr_pages); 538 args->cpages = 0; 539 args->npages = 0; 540 541 migrate_vma_collect(args); 542 543 if (args->cpages) 544 migrate_vma_unmap(args); 545 546 /* 547 * At this point pages are locked and unmapped, and thus they have 548 * stable content and can safely be copied to destination memory that 549 * is allocated by the drivers. 550 */ 551 return 0; 552 553 } 554 EXPORT_SYMBOL(migrate_vma_setup); 555 556 /* 557 * This code closely matches the code in: 558 * __handle_mm_fault() 559 * handle_pte_fault() 560 * do_anonymous_page() 561 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 562 * private or coherent page. 563 */ 564 static void migrate_vma_insert_page(struct migrate_vma *migrate, 565 unsigned long addr, 566 struct page *page, 567 unsigned long *src) 568 { 569 struct vm_area_struct *vma = migrate->vma; 570 struct mm_struct *mm = vma->vm_mm; 571 bool flush = false; 572 spinlock_t *ptl; 573 pte_t entry; 574 pgd_t *pgdp; 575 p4d_t *p4dp; 576 pud_t *pudp; 577 pmd_t *pmdp; 578 pte_t *ptep; 579 580 /* Only allow populating anonymous memory */ 581 if (!vma_is_anonymous(vma)) 582 goto abort; 583 584 pgdp = pgd_offset(mm, addr); 585 p4dp = p4d_alloc(mm, pgdp, addr); 586 if (!p4dp) 587 goto abort; 588 pudp = pud_alloc(mm, p4dp, addr); 589 if (!pudp) 590 goto abort; 591 pmdp = pmd_alloc(mm, pudp, addr); 592 if (!pmdp) 593 goto abort; 594 595 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 596 goto abort; 597 598 /* 599 * Use pte_alloc() instead of pte_alloc_map(). We can't run 600 * pte_offset_map() on pmds where a huge pmd might be created 601 * from a different thread. 602 * 603 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 604 * parallel threads are excluded by other means. 605 * 606 * Here we only have mmap_read_lock(mm). 607 */ 608 if (pte_alloc(mm, pmdp)) 609 goto abort; 610 611 /* See the comment in pte_alloc_one_map() */ 612 if (unlikely(pmd_trans_unstable(pmdp))) 613 goto abort; 614 615 if (unlikely(anon_vma_prepare(vma))) 616 goto abort; 617 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 618 goto abort; 619 620 /* 621 * The memory barrier inside __SetPageUptodate makes sure that 622 * preceding stores to the page contents become visible before 623 * the set_pte_at() write. 624 */ 625 __SetPageUptodate(page); 626 627 if (is_device_private_page(page)) { 628 swp_entry_t swp_entry; 629 630 if (vma->vm_flags & VM_WRITE) 631 swp_entry = make_writable_device_private_entry( 632 page_to_pfn(page)); 633 else 634 swp_entry = make_readable_device_private_entry( 635 page_to_pfn(page)); 636 entry = swp_entry_to_pte(swp_entry); 637 } else { 638 if (is_zone_device_page(page) && 639 !is_device_coherent_page(page)) { 640 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 641 goto abort; 642 } 643 entry = mk_pte(page, vma->vm_page_prot); 644 if (vma->vm_flags & VM_WRITE) 645 entry = pte_mkwrite(pte_mkdirty(entry)); 646 } 647 648 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 649 650 if (check_stable_address_space(mm)) 651 goto unlock_abort; 652 653 if (pte_present(*ptep)) { 654 unsigned long pfn = pte_pfn(*ptep); 655 656 if (!is_zero_pfn(pfn)) 657 goto unlock_abort; 658 flush = true; 659 } else if (!pte_none(*ptep)) 660 goto unlock_abort; 661 662 /* 663 * Check for userfaultfd but do not deliver the fault. Instead, 664 * just back off. 665 */ 666 if (userfaultfd_missing(vma)) 667 goto unlock_abort; 668 669 inc_mm_counter(mm, MM_ANONPAGES); 670 page_add_new_anon_rmap(page, vma, addr); 671 if (!is_zone_device_page(page)) 672 lru_cache_add_inactive_or_unevictable(page, vma); 673 get_page(page); 674 675 if (flush) { 676 flush_cache_page(vma, addr, pte_pfn(*ptep)); 677 ptep_clear_flush_notify(vma, addr, ptep); 678 set_pte_at_notify(mm, addr, ptep, entry); 679 update_mmu_cache(vma, addr, ptep); 680 } else { 681 /* No need to invalidate - it was non-present before */ 682 set_pte_at(mm, addr, ptep, entry); 683 update_mmu_cache(vma, addr, ptep); 684 } 685 686 pte_unmap_unlock(ptep, ptl); 687 *src = MIGRATE_PFN_MIGRATE; 688 return; 689 690 unlock_abort: 691 pte_unmap_unlock(ptep, ptl); 692 abort: 693 *src &= ~MIGRATE_PFN_MIGRATE; 694 } 695 696 static void __migrate_device_pages(unsigned long *src_pfns, 697 unsigned long *dst_pfns, unsigned long npages, 698 struct migrate_vma *migrate) 699 { 700 struct mmu_notifier_range range; 701 unsigned long i; 702 bool notified = false; 703 704 for (i = 0; i < npages; i++) { 705 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 706 struct page *page = migrate_pfn_to_page(src_pfns[i]); 707 struct address_space *mapping; 708 int r; 709 710 if (!newpage) { 711 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 712 continue; 713 } 714 715 if (!page) { 716 unsigned long addr; 717 718 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) 719 continue; 720 721 /* 722 * The only time there is no vma is when called from 723 * migrate_device_coherent_page(). However this isn't 724 * called if the page could not be unmapped. 725 */ 726 VM_BUG_ON(!migrate); 727 addr = migrate->start + i*PAGE_SIZE; 728 if (!notified) { 729 notified = true; 730 731 mmu_notifier_range_init_owner(&range, 732 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 733 migrate->vma->vm_mm, addr, migrate->end, 734 migrate->pgmap_owner); 735 mmu_notifier_invalidate_range_start(&range); 736 } 737 migrate_vma_insert_page(migrate, addr, newpage, 738 &src_pfns[i]); 739 continue; 740 } 741 742 mapping = page_mapping(page); 743 744 if (is_device_private_page(newpage) || 745 is_device_coherent_page(newpage)) { 746 /* 747 * For now only support anonymous memory migrating to 748 * device private or coherent memory. 749 */ 750 if (mapping) { 751 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 752 continue; 753 } 754 } else if (is_zone_device_page(newpage)) { 755 /* 756 * Other types of ZONE_DEVICE page are not supported. 757 */ 758 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 759 continue; 760 } 761 762 if (migrate && migrate->fault_page == page) 763 r = migrate_folio_extra(mapping, page_folio(newpage), 764 page_folio(page), 765 MIGRATE_SYNC_NO_COPY, 1); 766 else 767 r = migrate_folio(mapping, page_folio(newpage), 768 page_folio(page), MIGRATE_SYNC_NO_COPY); 769 if (r != MIGRATEPAGE_SUCCESS) 770 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; 771 } 772 773 /* 774 * No need to double call mmu_notifier->invalidate_range() callback as 775 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 776 * did already call it. 777 */ 778 if (notified) 779 mmu_notifier_invalidate_range_only_end(&range); 780 } 781 782 /** 783 * migrate_device_pages() - migrate meta-data from src page to dst page 784 * @src_pfns: src_pfns returned from migrate_device_range() 785 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 786 * @npages: number of pages in the range 787 * 788 * Equivalent to migrate_vma_pages(). This is called to migrate struct page 789 * meta-data from source struct page to destination. 790 */ 791 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, 792 unsigned long npages) 793 { 794 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); 795 } 796 EXPORT_SYMBOL(migrate_device_pages); 797 798 /** 799 * migrate_vma_pages() - migrate meta-data from src page to dst page 800 * @migrate: migrate struct containing all migration information 801 * 802 * This migrates struct page meta-data from source struct page to destination 803 * struct page. This effectively finishes the migration from source page to the 804 * destination page. 805 */ 806 void migrate_vma_pages(struct migrate_vma *migrate) 807 { 808 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); 809 } 810 EXPORT_SYMBOL(migrate_vma_pages); 811 812 /* 813 * migrate_device_finalize() - complete page migration 814 * @src_pfns: src_pfns returned from migrate_device_range() 815 * @dst_pfns: array of pfns allocated by the driver to migrate memory to 816 * @npages: number of pages in the range 817 * 818 * Completes migration of the page by removing special migration entries. 819 * Drivers must ensure copying of page data is complete and visible to the CPU 820 * before calling this. 821 */ 822 void migrate_device_finalize(unsigned long *src_pfns, 823 unsigned long *dst_pfns, unsigned long npages) 824 { 825 unsigned long i; 826 827 for (i = 0; i < npages; i++) { 828 struct folio *dst, *src; 829 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); 830 struct page *page = migrate_pfn_to_page(src_pfns[i]); 831 832 if (!page) { 833 if (newpage) { 834 unlock_page(newpage); 835 put_page(newpage); 836 } 837 continue; 838 } 839 840 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 841 if (newpage) { 842 unlock_page(newpage); 843 put_page(newpage); 844 } 845 newpage = page; 846 } 847 848 src = page_folio(page); 849 dst = page_folio(newpage); 850 remove_migration_ptes(src, dst, false); 851 folio_unlock(src); 852 853 if (is_zone_device_page(page)) 854 put_page(page); 855 else 856 putback_lru_page(page); 857 858 if (newpage != page) { 859 unlock_page(newpage); 860 if (is_zone_device_page(newpage)) 861 put_page(newpage); 862 else 863 putback_lru_page(newpage); 864 } 865 } 866 } 867 EXPORT_SYMBOL(migrate_device_finalize); 868 869 /** 870 * migrate_vma_finalize() - restore CPU page table entry 871 * @migrate: migrate struct containing all migration information 872 * 873 * This replaces the special migration pte entry with either a mapping to the 874 * new page if migration was successful for that page, or to the original page 875 * otherwise. 876 * 877 * This also unlocks the pages and puts them back on the lru, or drops the extra 878 * refcount, for device pages. 879 */ 880 void migrate_vma_finalize(struct migrate_vma *migrate) 881 { 882 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); 883 } 884 EXPORT_SYMBOL(migrate_vma_finalize); 885 886 /** 887 * migrate_device_range() - migrate device private pfns to normal memory. 888 * @src_pfns: array large enough to hold migrating source device private pfns. 889 * @start: starting pfn in the range to migrate. 890 * @npages: number of pages to migrate. 891 * 892 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that 893 * instead of looking up pages based on virtual address mappings a range of 894 * device pfns that should be migrated to system memory is used instead. 895 * 896 * This is useful when a driver needs to free device memory but doesn't know the 897 * virtual mappings of every page that may be in device memory. For example this 898 * is often the case when a driver is being unloaded or unbound from a device. 899 * 900 * Like migrate_vma_setup() this function will take a reference and lock any 901 * migrating pages that aren't free before unmapping them. Drivers may then 902 * allocate destination pages and start copying data from the device to CPU 903 * memory before calling migrate_device_pages(). 904 */ 905 int migrate_device_range(unsigned long *src_pfns, unsigned long start, 906 unsigned long npages) 907 { 908 unsigned long i, pfn; 909 910 for (pfn = start, i = 0; i < npages; pfn++, i++) { 911 struct page *page = pfn_to_page(pfn); 912 913 if (!get_page_unless_zero(page)) { 914 src_pfns[i] = 0; 915 continue; 916 } 917 918 if (!trylock_page(page)) { 919 src_pfns[i] = 0; 920 put_page(page); 921 continue; 922 } 923 924 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 925 } 926 927 migrate_device_unmap(src_pfns, npages, NULL); 928 929 return 0; 930 } 931 EXPORT_SYMBOL(migrate_device_range); 932 933 /* 934 * Migrate a device coherent page back to normal memory. The caller should have 935 * a reference on page which will be copied to the new page if migration is 936 * successful or dropped on failure. 937 */ 938 int migrate_device_coherent_page(struct page *page) 939 { 940 unsigned long src_pfn, dst_pfn = 0; 941 struct page *dpage; 942 943 WARN_ON_ONCE(PageCompound(page)); 944 945 lock_page(page); 946 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; 947 948 /* 949 * We don't have a VMA and don't need to walk the page tables to find 950 * the source page. So call migrate_vma_unmap() directly to unmap the 951 * page as migrate_vma_setup() will fail if args.vma == NULL. 952 */ 953 migrate_device_unmap(&src_pfn, 1, NULL); 954 if (!(src_pfn & MIGRATE_PFN_MIGRATE)) 955 return -EBUSY; 956 957 dpage = alloc_page(GFP_USER | __GFP_NOWARN); 958 if (dpage) { 959 lock_page(dpage); 960 dst_pfn = migrate_pfn(page_to_pfn(dpage)); 961 } 962 963 migrate_device_pages(&src_pfn, &dst_pfn, 1); 964 if (src_pfn & MIGRATE_PFN_MIGRATE) 965 copy_highpage(dpage, page); 966 migrate_device_finalize(&src_pfn, &dst_pfn, 1); 967 968 if (src_pfn & MIGRATE_PFN_MIGRATE) 969 return 0; 970 return -EBUSY; 971 } 972