1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Device Memory Migration functionality. 4 * 5 * Originally written by Jérôme Glisse. 6 */ 7 #include <linux/export.h> 8 #include <linux/memremap.h> 9 #include <linux/migrate.h> 10 #include <linux/mm_inline.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/oom.h> 13 #include <linux/pagewalk.h> 14 #include <linux/rmap.h> 15 #include <linux/swapops.h> 16 #include <asm/tlbflush.h> 17 #include "internal.h" 18 19 static int migrate_vma_collect_skip(unsigned long start, 20 unsigned long end, 21 struct mm_walk *walk) 22 { 23 struct migrate_vma *migrate = walk->private; 24 unsigned long addr; 25 26 for (addr = start; addr < end; addr += PAGE_SIZE) { 27 migrate->dst[migrate->npages] = 0; 28 migrate->src[migrate->npages++] = 0; 29 } 30 31 return 0; 32 } 33 34 static int migrate_vma_collect_hole(unsigned long start, 35 unsigned long end, 36 __always_unused int depth, 37 struct mm_walk *walk) 38 { 39 struct migrate_vma *migrate = walk->private; 40 unsigned long addr; 41 42 /* Only allow populating anonymous memory. */ 43 if (!vma_is_anonymous(walk->vma)) 44 return migrate_vma_collect_skip(start, end, walk); 45 46 for (addr = start; addr < end; addr += PAGE_SIZE) { 47 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 48 migrate->dst[migrate->npages] = 0; 49 migrate->npages++; 50 migrate->cpages++; 51 } 52 53 return 0; 54 } 55 56 static int migrate_vma_collect_pmd(pmd_t *pmdp, 57 unsigned long start, 58 unsigned long end, 59 struct mm_walk *walk) 60 { 61 struct migrate_vma *migrate = walk->private; 62 struct vm_area_struct *vma = walk->vma; 63 struct mm_struct *mm = vma->vm_mm; 64 unsigned long addr = start, unmapped = 0; 65 spinlock_t *ptl; 66 pte_t *ptep; 67 68 again: 69 if (pmd_none(*pmdp)) 70 return migrate_vma_collect_hole(start, end, -1, walk); 71 72 if (pmd_trans_huge(*pmdp)) { 73 struct page *page; 74 75 ptl = pmd_lock(mm, pmdp); 76 if (unlikely(!pmd_trans_huge(*pmdp))) { 77 spin_unlock(ptl); 78 goto again; 79 } 80 81 page = pmd_page(*pmdp); 82 if (is_huge_zero_page(page)) { 83 spin_unlock(ptl); 84 split_huge_pmd(vma, pmdp, addr); 85 if (pmd_trans_unstable(pmdp)) 86 return migrate_vma_collect_skip(start, end, 87 walk); 88 } else { 89 int ret; 90 91 get_page(page); 92 spin_unlock(ptl); 93 if (unlikely(!trylock_page(page))) 94 return migrate_vma_collect_skip(start, end, 95 walk); 96 ret = split_huge_page(page); 97 unlock_page(page); 98 put_page(page); 99 if (ret) 100 return migrate_vma_collect_skip(start, end, 101 walk); 102 if (pmd_none(*pmdp)) 103 return migrate_vma_collect_hole(start, end, -1, 104 walk); 105 } 106 } 107 108 if (unlikely(pmd_bad(*pmdp))) 109 return migrate_vma_collect_skip(start, end, walk); 110 111 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 112 arch_enter_lazy_mmu_mode(); 113 114 for (; addr < end; addr += PAGE_SIZE, ptep++) { 115 unsigned long mpfn = 0, pfn; 116 struct page *page; 117 swp_entry_t entry; 118 pte_t pte; 119 120 pte = *ptep; 121 122 if (pte_none(pte)) { 123 if (vma_is_anonymous(vma)) { 124 mpfn = MIGRATE_PFN_MIGRATE; 125 migrate->cpages++; 126 } 127 goto next; 128 } 129 130 if (!pte_present(pte)) { 131 /* 132 * Only care about unaddressable device page special 133 * page table entry. Other special swap entries are not 134 * migratable, and we ignore regular swapped page. 135 */ 136 entry = pte_to_swp_entry(pte); 137 if (!is_device_private_entry(entry)) 138 goto next; 139 140 page = pfn_swap_entry_to_page(entry); 141 if (!(migrate->flags & 142 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 143 page->pgmap->owner != migrate->pgmap_owner) 144 goto next; 145 146 mpfn = migrate_pfn(page_to_pfn(page)) | 147 MIGRATE_PFN_MIGRATE; 148 if (is_writable_device_private_entry(entry)) 149 mpfn |= MIGRATE_PFN_WRITE; 150 } else { 151 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 152 goto next; 153 pfn = pte_pfn(pte); 154 if (is_zero_pfn(pfn)) { 155 mpfn = MIGRATE_PFN_MIGRATE; 156 migrate->cpages++; 157 goto next; 158 } 159 page = vm_normal_page(migrate->vma, addr, pte); 160 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 161 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 162 } 163 164 /* FIXME support THP */ 165 if (!page || !page->mapping || PageTransCompound(page)) { 166 mpfn = 0; 167 goto next; 168 } 169 170 /* 171 * By getting a reference on the page we pin it and that blocks 172 * any kind of migration. Side effect is that it "freezes" the 173 * pte. 174 * 175 * We drop this reference after isolating the page from the lru 176 * for non device page (device page are not on the lru and thus 177 * can't be dropped from it). 178 */ 179 get_page(page); 180 181 /* 182 * Optimize for the common case where page is only mapped once 183 * in one process. If we can lock the page, then we can safely 184 * set up a special migration page table entry now. 185 */ 186 if (trylock_page(page)) { 187 pte_t swp_pte; 188 189 migrate->cpages++; 190 ptep_get_and_clear(mm, addr, ptep); 191 192 /* Setup special migration page table entry */ 193 if (mpfn & MIGRATE_PFN_WRITE) 194 entry = make_writable_migration_entry( 195 page_to_pfn(page)); 196 else 197 entry = make_readable_migration_entry( 198 page_to_pfn(page)); 199 swp_pte = swp_entry_to_pte(entry); 200 if (pte_present(pte)) { 201 if (pte_soft_dirty(pte)) 202 swp_pte = pte_swp_mksoft_dirty(swp_pte); 203 if (pte_uffd_wp(pte)) 204 swp_pte = pte_swp_mkuffd_wp(swp_pte); 205 } else { 206 if (pte_swp_soft_dirty(pte)) 207 swp_pte = pte_swp_mksoft_dirty(swp_pte); 208 if (pte_swp_uffd_wp(pte)) 209 swp_pte = pte_swp_mkuffd_wp(swp_pte); 210 } 211 set_pte_at(mm, addr, ptep, swp_pte); 212 213 /* 214 * This is like regular unmap: we remove the rmap and 215 * drop page refcount. Page won't be freed, as we took 216 * a reference just above. 217 */ 218 page_remove_rmap(page, vma, false); 219 put_page(page); 220 221 if (pte_present(pte)) 222 unmapped++; 223 } else { 224 put_page(page); 225 mpfn = 0; 226 } 227 228 next: 229 migrate->dst[migrate->npages] = 0; 230 migrate->src[migrate->npages++] = mpfn; 231 } 232 arch_leave_lazy_mmu_mode(); 233 pte_unmap_unlock(ptep - 1, ptl); 234 235 /* Only flush the TLB if we actually modified any entries */ 236 if (unmapped) 237 flush_tlb_range(walk->vma, start, end); 238 239 return 0; 240 } 241 242 static const struct mm_walk_ops migrate_vma_walk_ops = { 243 .pmd_entry = migrate_vma_collect_pmd, 244 .pte_hole = migrate_vma_collect_hole, 245 }; 246 247 /* 248 * migrate_vma_collect() - collect pages over a range of virtual addresses 249 * @migrate: migrate struct containing all migration information 250 * 251 * This will walk the CPU page table. For each virtual address backed by a 252 * valid page, it updates the src array and takes a reference on the page, in 253 * order to pin the page until we lock it and unmap it. 254 */ 255 static void migrate_vma_collect(struct migrate_vma *migrate) 256 { 257 struct mmu_notifier_range range; 258 259 /* 260 * Note that the pgmap_owner is passed to the mmu notifier callback so 261 * that the registered device driver can skip invalidating device 262 * private page mappings that won't be migrated. 263 */ 264 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 265 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 266 migrate->pgmap_owner); 267 mmu_notifier_invalidate_range_start(&range); 268 269 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 270 &migrate_vma_walk_ops, migrate); 271 272 mmu_notifier_invalidate_range_end(&range); 273 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 274 } 275 276 /* 277 * migrate_vma_check_page() - check if page is pinned or not 278 * @page: struct page to check 279 * 280 * Pinned pages cannot be migrated. This is the same test as in 281 * folio_migrate_mapping(), except that here we allow migration of a 282 * ZONE_DEVICE page. 283 */ 284 static bool migrate_vma_check_page(struct page *page) 285 { 286 /* 287 * One extra ref because caller holds an extra reference, either from 288 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 289 * a device page. 290 */ 291 int extra = 1; 292 293 /* 294 * FIXME support THP (transparent huge page), it is bit more complex to 295 * check them than regular pages, because they can be mapped with a pmd 296 * or with a pte (split pte mapping). 297 */ 298 if (PageCompound(page)) 299 return false; 300 301 /* Page from ZONE_DEVICE have one extra reference */ 302 if (is_zone_device_page(page)) 303 extra++; 304 305 /* For file back page */ 306 if (page_mapping(page)) 307 extra += 1 + page_has_private(page); 308 309 if ((page_count(page) - extra) > page_mapcount(page)) 310 return false; 311 312 return true; 313 } 314 315 /* 316 * migrate_vma_unmap() - replace page mapping with special migration pte entry 317 * @migrate: migrate struct containing all migration information 318 * 319 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 320 * special migration pte entry and check if it has been pinned. Pinned pages are 321 * restored because we cannot migrate them. 322 * 323 * This is the last step before we call the device driver callback to allocate 324 * destination memory and copy contents of original page over to new page. 325 */ 326 static void migrate_vma_unmap(struct migrate_vma *migrate) 327 { 328 const unsigned long npages = migrate->npages; 329 unsigned long i, restore = 0; 330 bool allow_drain = true; 331 332 lru_add_drain(); 333 334 for (i = 0; i < npages; i++) { 335 struct page *page = migrate_pfn_to_page(migrate->src[i]); 336 struct folio *folio; 337 338 if (!page) 339 continue; 340 341 /* ZONE_DEVICE pages are not on LRU */ 342 if (!is_zone_device_page(page)) { 343 if (!PageLRU(page) && allow_drain) { 344 /* Drain CPU's pagevec */ 345 lru_add_drain_all(); 346 allow_drain = false; 347 } 348 349 if (isolate_lru_page(page)) { 350 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 351 migrate->cpages--; 352 restore++; 353 continue; 354 } 355 356 /* Drop the reference we took in collect */ 357 put_page(page); 358 } 359 360 folio = page_folio(page); 361 if (folio_mapped(folio)) 362 try_to_migrate(folio, 0); 363 364 if (page_mapped(page) || !migrate_vma_check_page(page)) { 365 if (!is_zone_device_page(page)) { 366 get_page(page); 367 putback_lru_page(page); 368 } 369 370 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 371 migrate->cpages--; 372 restore++; 373 continue; 374 } 375 } 376 377 for (i = 0; i < npages && restore; i++) { 378 struct page *page = migrate_pfn_to_page(migrate->src[i]); 379 struct folio *folio; 380 381 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 382 continue; 383 384 folio = page_folio(page); 385 remove_migration_ptes(folio, folio, false); 386 387 migrate->src[i] = 0; 388 folio_unlock(folio); 389 folio_put(folio); 390 restore--; 391 } 392 } 393 394 /** 395 * migrate_vma_setup() - prepare to migrate a range of memory 396 * @args: contains the vma, start, and pfns arrays for the migration 397 * 398 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 399 * without an error. 400 * 401 * Prepare to migrate a range of memory virtual address range by collecting all 402 * the pages backing each virtual address in the range, saving them inside the 403 * src array. Then lock those pages and unmap them. Once the pages are locked 404 * and unmapped, check whether each page is pinned or not. Pages that aren't 405 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 406 * corresponding src array entry. Then restores any pages that are pinned, by 407 * remapping and unlocking those pages. 408 * 409 * The caller should then allocate destination memory and copy source memory to 410 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 411 * flag set). Once these are allocated and copied, the caller must update each 412 * corresponding entry in the dst array with the pfn value of the destination 413 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 414 * lock_page(). 415 * 416 * Note that the caller does not have to migrate all the pages that are marked 417 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 418 * device memory to system memory. If the caller cannot migrate a device page 419 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 420 * consequences for the userspace process, so it must be avoided if at all 421 * possible. 422 * 423 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 424 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 425 * allowing the caller to allocate device memory for those unbacked virtual 426 * addresses. For this the caller simply has to allocate device memory and 427 * properly set the destination entry like for regular migration. Note that 428 * this can still fail, and thus inside the device driver you must check if the 429 * migration was successful for those entries after calling migrate_vma_pages(), 430 * just like for regular migration. 431 * 432 * After that, the callers must call migrate_vma_pages() to go over each entry 433 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 434 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 435 * then migrate_vma_pages() to migrate struct page information from the source 436 * struct page to the destination struct page. If it fails to migrate the 437 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 438 * src array. 439 * 440 * At this point all successfully migrated pages have an entry in the src 441 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 442 * array entry with MIGRATE_PFN_VALID flag set. 443 * 444 * Once migrate_vma_pages() returns the caller may inspect which pages were 445 * successfully migrated, and which were not. Successfully migrated pages will 446 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 447 * 448 * It is safe to update device page table after migrate_vma_pages() because 449 * both destination and source page are still locked, and the mmap_lock is held 450 * in read mode (hence no one can unmap the range being migrated). 451 * 452 * Once the caller is done cleaning up things and updating its page table (if it 453 * chose to do so, this is not an obligation) it finally calls 454 * migrate_vma_finalize() to update the CPU page table to point to new pages 455 * for successfully migrated pages or otherwise restore the CPU page table to 456 * point to the original source pages. 457 */ 458 int migrate_vma_setup(struct migrate_vma *args) 459 { 460 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 461 462 args->start &= PAGE_MASK; 463 args->end &= PAGE_MASK; 464 if (!args->vma || is_vm_hugetlb_page(args->vma) || 465 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 466 return -EINVAL; 467 if (nr_pages <= 0) 468 return -EINVAL; 469 if (args->start < args->vma->vm_start || 470 args->start >= args->vma->vm_end) 471 return -EINVAL; 472 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 473 return -EINVAL; 474 if (!args->src || !args->dst) 475 return -EINVAL; 476 477 memset(args->src, 0, sizeof(*args->src) * nr_pages); 478 args->cpages = 0; 479 args->npages = 0; 480 481 migrate_vma_collect(args); 482 483 if (args->cpages) 484 migrate_vma_unmap(args); 485 486 /* 487 * At this point pages are locked and unmapped, and thus they have 488 * stable content and can safely be copied to destination memory that 489 * is allocated by the drivers. 490 */ 491 return 0; 492 493 } 494 EXPORT_SYMBOL(migrate_vma_setup); 495 496 /* 497 * This code closely matches the code in: 498 * __handle_mm_fault() 499 * handle_pte_fault() 500 * do_anonymous_page() 501 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 502 * private page. 503 */ 504 static void migrate_vma_insert_page(struct migrate_vma *migrate, 505 unsigned long addr, 506 struct page *page, 507 unsigned long *src) 508 { 509 struct vm_area_struct *vma = migrate->vma; 510 struct mm_struct *mm = vma->vm_mm; 511 bool flush = false; 512 spinlock_t *ptl; 513 pte_t entry; 514 pgd_t *pgdp; 515 p4d_t *p4dp; 516 pud_t *pudp; 517 pmd_t *pmdp; 518 pte_t *ptep; 519 520 /* Only allow populating anonymous memory */ 521 if (!vma_is_anonymous(vma)) 522 goto abort; 523 524 pgdp = pgd_offset(mm, addr); 525 p4dp = p4d_alloc(mm, pgdp, addr); 526 if (!p4dp) 527 goto abort; 528 pudp = pud_alloc(mm, p4dp, addr); 529 if (!pudp) 530 goto abort; 531 pmdp = pmd_alloc(mm, pudp, addr); 532 if (!pmdp) 533 goto abort; 534 535 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 536 goto abort; 537 538 /* 539 * Use pte_alloc() instead of pte_alloc_map(). We can't run 540 * pte_offset_map() on pmds where a huge pmd might be created 541 * from a different thread. 542 * 543 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 544 * parallel threads are excluded by other means. 545 * 546 * Here we only have mmap_read_lock(mm). 547 */ 548 if (pte_alloc(mm, pmdp)) 549 goto abort; 550 551 /* See the comment in pte_alloc_one_map() */ 552 if (unlikely(pmd_trans_unstable(pmdp))) 553 goto abort; 554 555 if (unlikely(anon_vma_prepare(vma))) 556 goto abort; 557 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 558 goto abort; 559 560 /* 561 * The memory barrier inside __SetPageUptodate makes sure that 562 * preceding stores to the page contents become visible before 563 * the set_pte_at() write. 564 */ 565 __SetPageUptodate(page); 566 567 if (is_device_private_page(page)) { 568 swp_entry_t swp_entry; 569 570 if (vma->vm_flags & VM_WRITE) 571 swp_entry = make_writable_device_private_entry( 572 page_to_pfn(page)); 573 else 574 swp_entry = make_readable_device_private_entry( 575 page_to_pfn(page)); 576 entry = swp_entry_to_pte(swp_entry); 577 } else { 578 /* 579 * For now we only support migrating to un-addressable device 580 * memory. 581 */ 582 if (is_zone_device_page(page)) { 583 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 584 goto abort; 585 } 586 entry = mk_pte(page, vma->vm_page_prot); 587 if (vma->vm_flags & VM_WRITE) 588 entry = pte_mkwrite(pte_mkdirty(entry)); 589 } 590 591 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 592 593 if (check_stable_address_space(mm)) 594 goto unlock_abort; 595 596 if (pte_present(*ptep)) { 597 unsigned long pfn = pte_pfn(*ptep); 598 599 if (!is_zero_pfn(pfn)) 600 goto unlock_abort; 601 flush = true; 602 } else if (!pte_none(*ptep)) 603 goto unlock_abort; 604 605 /* 606 * Check for userfaultfd but do not deliver the fault. Instead, 607 * just back off. 608 */ 609 if (userfaultfd_missing(vma)) 610 goto unlock_abort; 611 612 inc_mm_counter(mm, MM_ANONPAGES); 613 page_add_new_anon_rmap(page, vma, addr, false); 614 if (!is_zone_device_page(page)) 615 lru_cache_add_inactive_or_unevictable(page, vma); 616 get_page(page); 617 618 if (flush) { 619 flush_cache_page(vma, addr, pte_pfn(*ptep)); 620 ptep_clear_flush_notify(vma, addr, ptep); 621 set_pte_at_notify(mm, addr, ptep, entry); 622 update_mmu_cache(vma, addr, ptep); 623 } else { 624 /* No need to invalidate - it was non-present before */ 625 set_pte_at(mm, addr, ptep, entry); 626 update_mmu_cache(vma, addr, ptep); 627 } 628 629 pte_unmap_unlock(ptep, ptl); 630 *src = MIGRATE_PFN_MIGRATE; 631 return; 632 633 unlock_abort: 634 pte_unmap_unlock(ptep, ptl); 635 abort: 636 *src &= ~MIGRATE_PFN_MIGRATE; 637 } 638 639 /** 640 * migrate_vma_pages() - migrate meta-data from src page to dst page 641 * @migrate: migrate struct containing all migration information 642 * 643 * This migrates struct page meta-data from source struct page to destination 644 * struct page. This effectively finishes the migration from source page to the 645 * destination page. 646 */ 647 void migrate_vma_pages(struct migrate_vma *migrate) 648 { 649 const unsigned long npages = migrate->npages; 650 const unsigned long start = migrate->start; 651 struct mmu_notifier_range range; 652 unsigned long addr, i; 653 bool notified = false; 654 655 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 656 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 657 struct page *page = migrate_pfn_to_page(migrate->src[i]); 658 struct address_space *mapping; 659 int r; 660 661 if (!newpage) { 662 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 663 continue; 664 } 665 666 if (!page) { 667 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 668 continue; 669 if (!notified) { 670 notified = true; 671 672 mmu_notifier_range_init_owner(&range, 673 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 674 migrate->vma->vm_mm, addr, migrate->end, 675 migrate->pgmap_owner); 676 mmu_notifier_invalidate_range_start(&range); 677 } 678 migrate_vma_insert_page(migrate, addr, newpage, 679 &migrate->src[i]); 680 continue; 681 } 682 683 mapping = page_mapping(page); 684 685 if (is_device_private_page(newpage)) { 686 /* 687 * For now only support private anonymous when migrating 688 * to un-addressable device memory. 689 */ 690 if (mapping) { 691 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 692 continue; 693 } 694 } else if (is_zone_device_page(newpage)) { 695 /* 696 * Other types of ZONE_DEVICE page are not supported. 697 */ 698 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 699 continue; 700 } 701 702 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 703 if (r != MIGRATEPAGE_SUCCESS) 704 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 705 } 706 707 /* 708 * No need to double call mmu_notifier->invalidate_range() callback as 709 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 710 * did already call it. 711 */ 712 if (notified) 713 mmu_notifier_invalidate_range_only_end(&range); 714 } 715 EXPORT_SYMBOL(migrate_vma_pages); 716 717 /** 718 * migrate_vma_finalize() - restore CPU page table entry 719 * @migrate: migrate struct containing all migration information 720 * 721 * This replaces the special migration pte entry with either a mapping to the 722 * new page if migration was successful for that page, or to the original page 723 * otherwise. 724 * 725 * This also unlocks the pages and puts them back on the lru, or drops the extra 726 * refcount, for device pages. 727 */ 728 void migrate_vma_finalize(struct migrate_vma *migrate) 729 { 730 const unsigned long npages = migrate->npages; 731 unsigned long i; 732 733 for (i = 0; i < npages; i++) { 734 struct folio *dst, *src; 735 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 736 struct page *page = migrate_pfn_to_page(migrate->src[i]); 737 738 if (!page) { 739 if (newpage) { 740 unlock_page(newpage); 741 put_page(newpage); 742 } 743 continue; 744 } 745 746 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 747 if (newpage) { 748 unlock_page(newpage); 749 put_page(newpage); 750 } 751 newpage = page; 752 } 753 754 src = page_folio(page); 755 dst = page_folio(newpage); 756 remove_migration_ptes(src, dst, false); 757 folio_unlock(src); 758 759 if (is_zone_device_page(page)) 760 put_page(page); 761 else 762 putback_lru_page(page); 763 764 if (newpage != page) { 765 unlock_page(newpage); 766 if (is_zone_device_page(newpage)) 767 put_page(newpage); 768 else 769 putback_lru_page(newpage); 770 } 771 } 772 } 773 EXPORT_SYMBOL(migrate_vma_finalize); 774