1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -thp_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_device_private_page(new))) { 250 entry = make_device_private_entry(new, pte_write(pte)); 251 pte = swp_entry_to_pte(entry); 252 if (pte_swp_soft_dirty(*pvmw.pte)) 253 pte = pte_swp_mksoft_dirty(pte); 254 if (pte_swp_uffd_wp(*pvmw.pte)) 255 pte = pte_swp_mkuffd_wp(pte); 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device public or private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += thp_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 struct lruvec *old_lruvec, *new_lruvec; 494 struct mem_cgroup *memcg; 495 496 memcg = page_memcg(page); 497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 499 500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); 501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); 502 if (PageSwapBacked(page) && !PageSwapCache(page)) { 503 __dec_lruvec_state(old_lruvec, NR_SHMEM); 504 __inc_lruvec_state(new_lruvec, NR_SHMEM); 505 } 506 if (dirty && mapping_cap_account_dirty(mapping)) { 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 511 } 512 } 513 local_irq_enable(); 514 515 return MIGRATEPAGE_SUCCESS; 516 } 517 EXPORT_SYMBOL(migrate_page_move_mapping); 518 519 /* 520 * The expected number of remaining references is the same as that 521 * of migrate_page_move_mapping(). 522 */ 523 int migrate_huge_page_move_mapping(struct address_space *mapping, 524 struct page *newpage, struct page *page) 525 { 526 XA_STATE(xas, &mapping->i_pages, page_index(page)); 527 int expected_count; 528 529 xas_lock_irq(&xas); 530 expected_count = 2 + page_has_private(page); 531 if (page_count(page) != expected_count || xas_load(&xas) != page) { 532 xas_unlock_irq(&xas); 533 return -EAGAIN; 534 } 535 536 if (!page_ref_freeze(page, expected_count)) { 537 xas_unlock_irq(&xas); 538 return -EAGAIN; 539 } 540 541 newpage->index = page->index; 542 newpage->mapping = page->mapping; 543 544 get_page(newpage); 545 546 xas_store(&xas, newpage); 547 548 page_ref_unfreeze(page, expected_count - 1); 549 550 xas_unlock_irq(&xas); 551 552 return MIGRATEPAGE_SUCCESS; 553 } 554 555 /* 556 * Gigantic pages are so large that we do not guarantee that page++ pointer 557 * arithmetic will work across the entire page. We need something more 558 * specialized. 559 */ 560 static void __copy_gigantic_page(struct page *dst, struct page *src, 561 int nr_pages) 562 { 563 int i; 564 struct page *dst_base = dst; 565 struct page *src_base = src; 566 567 for (i = 0; i < nr_pages; ) { 568 cond_resched(); 569 copy_highpage(dst, src); 570 571 i++; 572 dst = mem_map_next(dst, dst_base, i); 573 src = mem_map_next(src, src_base, i); 574 } 575 } 576 577 static void copy_huge_page(struct page *dst, struct page *src) 578 { 579 int i; 580 int nr_pages; 581 582 if (PageHuge(src)) { 583 /* hugetlbfs page */ 584 struct hstate *h = page_hstate(src); 585 nr_pages = pages_per_huge_page(h); 586 587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 588 __copy_gigantic_page(dst, src, nr_pages); 589 return; 590 } 591 } else { 592 /* thp page */ 593 BUG_ON(!PageTransHuge(src)); 594 nr_pages = thp_nr_pages(src); 595 } 596 597 for (i = 0; i < nr_pages; i++) { 598 cond_resched(); 599 copy_highpage(dst + i, src + i); 600 } 601 } 602 603 /* 604 * Copy the page to its new location 605 */ 606 void migrate_page_states(struct page *newpage, struct page *page) 607 { 608 int cpupid; 609 610 if (PageError(page)) 611 SetPageError(newpage); 612 if (PageReferenced(page)) 613 SetPageReferenced(newpage); 614 if (PageUptodate(page)) 615 SetPageUptodate(newpage); 616 if (TestClearPageActive(page)) { 617 VM_BUG_ON_PAGE(PageUnevictable(page), page); 618 SetPageActive(newpage); 619 } else if (TestClearPageUnevictable(page)) 620 SetPageUnevictable(newpage); 621 if (PageWorkingset(page)) 622 SetPageWorkingset(newpage); 623 if (PageChecked(page)) 624 SetPageChecked(newpage); 625 if (PageMappedToDisk(page)) 626 SetPageMappedToDisk(newpage); 627 628 /* Move dirty on pages not done by migrate_page_move_mapping() */ 629 if (PageDirty(page)) 630 SetPageDirty(newpage); 631 632 if (page_is_young(page)) 633 set_page_young(newpage); 634 if (page_is_idle(page)) 635 set_page_idle(newpage); 636 637 /* 638 * Copy NUMA information to the new page, to prevent over-eager 639 * future migrations of this same page. 640 */ 641 cpupid = page_cpupid_xchg_last(page, -1); 642 page_cpupid_xchg_last(newpage, cpupid); 643 644 ksm_migrate_page(newpage, page); 645 /* 646 * Please do not reorder this without considering how mm/ksm.c's 647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 648 */ 649 if (PageSwapCache(page)) 650 ClearPageSwapCache(page); 651 ClearPagePrivate(page); 652 set_page_private(page, 0); 653 654 /* 655 * If any waiters have accumulated on the new page then 656 * wake them up. 657 */ 658 if (PageWriteback(newpage)) 659 end_page_writeback(newpage); 660 661 /* 662 * PG_readahead shares the same bit with PG_reclaim. The above 663 * end_page_writeback() may clear PG_readahead mistakenly, so set the 664 * bit after that. 665 */ 666 if (PageReadahead(page)) 667 SetPageReadahead(newpage); 668 669 copy_page_owner(page, newpage); 670 671 if (!PageHuge(page)) 672 mem_cgroup_migrate(page, newpage); 673 } 674 EXPORT_SYMBOL(migrate_page_states); 675 676 void migrate_page_copy(struct page *newpage, struct page *page) 677 { 678 if (PageHuge(page) || PageTransHuge(page)) 679 copy_huge_page(newpage, page); 680 else 681 copy_highpage(newpage, page); 682 683 migrate_page_states(newpage, page); 684 } 685 EXPORT_SYMBOL(migrate_page_copy); 686 687 /************************************************************ 688 * Migration functions 689 ***********************************************************/ 690 691 /* 692 * Common logic to directly migrate a single LRU page suitable for 693 * pages that do not use PagePrivate/PagePrivate2. 694 * 695 * Pages are locked upon entry and exit. 696 */ 697 int migrate_page(struct address_space *mapping, 698 struct page *newpage, struct page *page, 699 enum migrate_mode mode) 700 { 701 int rc; 702 703 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 704 705 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 706 707 if (rc != MIGRATEPAGE_SUCCESS) 708 return rc; 709 710 if (mode != MIGRATE_SYNC_NO_COPY) 711 migrate_page_copy(newpage, page); 712 else 713 migrate_page_states(newpage, page); 714 return MIGRATEPAGE_SUCCESS; 715 } 716 EXPORT_SYMBOL(migrate_page); 717 718 #ifdef CONFIG_BLOCK 719 /* Returns true if all buffers are successfully locked */ 720 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 721 enum migrate_mode mode) 722 { 723 struct buffer_head *bh = head; 724 725 /* Simple case, sync compaction */ 726 if (mode != MIGRATE_ASYNC) { 727 do { 728 lock_buffer(bh); 729 bh = bh->b_this_page; 730 731 } while (bh != head); 732 733 return true; 734 } 735 736 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 737 do { 738 if (!trylock_buffer(bh)) { 739 /* 740 * We failed to lock the buffer and cannot stall in 741 * async migration. Release the taken locks 742 */ 743 struct buffer_head *failed_bh = bh; 744 bh = head; 745 while (bh != failed_bh) { 746 unlock_buffer(bh); 747 bh = bh->b_this_page; 748 } 749 return false; 750 } 751 752 bh = bh->b_this_page; 753 } while (bh != head); 754 return true; 755 } 756 757 static int __buffer_migrate_page(struct address_space *mapping, 758 struct page *newpage, struct page *page, enum migrate_mode mode, 759 bool check_refs) 760 { 761 struct buffer_head *bh, *head; 762 int rc; 763 int expected_count; 764 765 if (!page_has_buffers(page)) 766 return migrate_page(mapping, newpage, page, mode); 767 768 /* Check whether page does not have extra refs before we do more work */ 769 expected_count = expected_page_refs(mapping, page); 770 if (page_count(page) != expected_count) 771 return -EAGAIN; 772 773 head = page_buffers(page); 774 if (!buffer_migrate_lock_buffers(head, mode)) 775 return -EAGAIN; 776 777 if (check_refs) { 778 bool busy; 779 bool invalidated = false; 780 781 recheck_buffers: 782 busy = false; 783 spin_lock(&mapping->private_lock); 784 bh = head; 785 do { 786 if (atomic_read(&bh->b_count)) { 787 busy = true; 788 break; 789 } 790 bh = bh->b_this_page; 791 } while (bh != head); 792 if (busy) { 793 if (invalidated) { 794 rc = -EAGAIN; 795 goto unlock_buffers; 796 } 797 spin_unlock(&mapping->private_lock); 798 invalidate_bh_lrus(); 799 invalidated = true; 800 goto recheck_buffers; 801 } 802 } 803 804 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 805 if (rc != MIGRATEPAGE_SUCCESS) 806 goto unlock_buffers; 807 808 attach_page_private(newpage, detach_page_private(page)); 809 810 bh = head; 811 do { 812 set_bh_page(bh, newpage, bh_offset(bh)); 813 bh = bh->b_this_page; 814 815 } while (bh != head); 816 817 if (mode != MIGRATE_SYNC_NO_COPY) 818 migrate_page_copy(newpage, page); 819 else 820 migrate_page_states(newpage, page); 821 822 rc = MIGRATEPAGE_SUCCESS; 823 unlock_buffers: 824 if (check_refs) 825 spin_unlock(&mapping->private_lock); 826 bh = head; 827 do { 828 unlock_buffer(bh); 829 bh = bh->b_this_page; 830 831 } while (bh != head); 832 833 return rc; 834 } 835 836 /* 837 * Migration function for pages with buffers. This function can only be used 838 * if the underlying filesystem guarantees that no other references to "page" 839 * exist. For example attached buffer heads are accessed only under page lock. 840 */ 841 int buffer_migrate_page(struct address_space *mapping, 842 struct page *newpage, struct page *page, enum migrate_mode mode) 843 { 844 return __buffer_migrate_page(mapping, newpage, page, mode, false); 845 } 846 EXPORT_SYMBOL(buffer_migrate_page); 847 848 /* 849 * Same as above except that this variant is more careful and checks that there 850 * are also no buffer head references. This function is the right one for 851 * mappings where buffer heads are directly looked up and referenced (such as 852 * block device mappings). 853 */ 854 int buffer_migrate_page_norefs(struct address_space *mapping, 855 struct page *newpage, struct page *page, enum migrate_mode mode) 856 { 857 return __buffer_migrate_page(mapping, newpage, page, mode, true); 858 } 859 #endif 860 861 /* 862 * Writeback a page to clean the dirty state 863 */ 864 static int writeout(struct address_space *mapping, struct page *page) 865 { 866 struct writeback_control wbc = { 867 .sync_mode = WB_SYNC_NONE, 868 .nr_to_write = 1, 869 .range_start = 0, 870 .range_end = LLONG_MAX, 871 .for_reclaim = 1 872 }; 873 int rc; 874 875 if (!mapping->a_ops->writepage) 876 /* No write method for the address space */ 877 return -EINVAL; 878 879 if (!clear_page_dirty_for_io(page)) 880 /* Someone else already triggered a write */ 881 return -EAGAIN; 882 883 /* 884 * A dirty page may imply that the underlying filesystem has 885 * the page on some queue. So the page must be clean for 886 * migration. Writeout may mean we loose the lock and the 887 * page state is no longer what we checked for earlier. 888 * At this point we know that the migration attempt cannot 889 * be successful. 890 */ 891 remove_migration_ptes(page, page, false); 892 893 rc = mapping->a_ops->writepage(page, &wbc); 894 895 if (rc != AOP_WRITEPAGE_ACTIVATE) 896 /* unlocked. Relock */ 897 lock_page(page); 898 899 return (rc < 0) ? -EIO : -EAGAIN; 900 } 901 902 /* 903 * Default handling if a filesystem does not provide a migration function. 904 */ 905 static int fallback_migrate_page(struct address_space *mapping, 906 struct page *newpage, struct page *page, enum migrate_mode mode) 907 { 908 if (PageDirty(page)) { 909 /* Only writeback pages in full synchronous migration */ 910 switch (mode) { 911 case MIGRATE_SYNC: 912 case MIGRATE_SYNC_NO_COPY: 913 break; 914 default: 915 return -EBUSY; 916 } 917 return writeout(mapping, page); 918 } 919 920 /* 921 * Buffers may be managed in a filesystem specific way. 922 * We must have no buffers or drop them. 923 */ 924 if (page_has_private(page) && 925 !try_to_release_page(page, GFP_KERNEL)) 926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 927 928 return migrate_page(mapping, newpage, page, mode); 929 } 930 931 /* 932 * Move a page to a newly allocated page 933 * The page is locked and all ptes have been successfully removed. 934 * 935 * The new page will have replaced the old page if this function 936 * is successful. 937 * 938 * Return value: 939 * < 0 - error code 940 * MIGRATEPAGE_SUCCESS - success 941 */ 942 static int move_to_new_page(struct page *newpage, struct page *page, 943 enum migrate_mode mode) 944 { 945 struct address_space *mapping; 946 int rc = -EAGAIN; 947 bool is_lru = !__PageMovable(page); 948 949 VM_BUG_ON_PAGE(!PageLocked(page), page); 950 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 951 952 mapping = page_mapping(page); 953 954 if (likely(is_lru)) { 955 if (!mapping) 956 rc = migrate_page(mapping, newpage, page, mode); 957 else if (mapping->a_ops->migratepage) 958 /* 959 * Most pages have a mapping and most filesystems 960 * provide a migratepage callback. Anonymous pages 961 * are part of swap space which also has its own 962 * migratepage callback. This is the most common path 963 * for page migration. 964 */ 965 rc = mapping->a_ops->migratepage(mapping, newpage, 966 page, mode); 967 else 968 rc = fallback_migrate_page(mapping, newpage, 969 page, mode); 970 } else { 971 /* 972 * In case of non-lru page, it could be released after 973 * isolation step. In that case, we shouldn't try migration. 974 */ 975 VM_BUG_ON_PAGE(!PageIsolated(page), page); 976 if (!PageMovable(page)) { 977 rc = MIGRATEPAGE_SUCCESS; 978 __ClearPageIsolated(page); 979 goto out; 980 } 981 982 rc = mapping->a_ops->migratepage(mapping, newpage, 983 page, mode); 984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 985 !PageIsolated(page)); 986 } 987 988 /* 989 * When successful, old pagecache page->mapping must be cleared before 990 * page is freed; but stats require that PageAnon be left as PageAnon. 991 */ 992 if (rc == MIGRATEPAGE_SUCCESS) { 993 if (__PageMovable(page)) { 994 VM_BUG_ON_PAGE(!PageIsolated(page), page); 995 996 /* 997 * We clear PG_movable under page_lock so any compactor 998 * cannot try to migrate this page. 999 */ 1000 __ClearPageIsolated(page); 1001 } 1002 1003 /* 1004 * Anonymous and movable page->mapping will be cleared by 1005 * free_pages_prepare so don't reset it here for keeping 1006 * the type to work PageAnon, for example. 1007 */ 1008 if (!PageMappingFlags(page)) 1009 page->mapping = NULL; 1010 1011 if (likely(!is_zone_device_page(newpage))) 1012 flush_dcache_page(newpage); 1013 1014 } 1015 out: 1016 return rc; 1017 } 1018 1019 static int __unmap_and_move(struct page *page, struct page *newpage, 1020 int force, enum migrate_mode mode) 1021 { 1022 int rc = -EAGAIN; 1023 int page_was_mapped = 0; 1024 struct anon_vma *anon_vma = NULL; 1025 bool is_lru = !__PageMovable(page); 1026 1027 if (!trylock_page(page)) { 1028 if (!force || mode == MIGRATE_ASYNC) 1029 goto out; 1030 1031 /* 1032 * It's not safe for direct compaction to call lock_page. 1033 * For example, during page readahead pages are added locked 1034 * to the LRU. Later, when the IO completes the pages are 1035 * marked uptodate and unlocked. However, the queueing 1036 * could be merging multiple pages for one bio (e.g. 1037 * mpage_readahead). If an allocation happens for the 1038 * second or third page, the process can end up locking 1039 * the same page twice and deadlocking. Rather than 1040 * trying to be clever about what pages can be locked, 1041 * avoid the use of lock_page for direct compaction 1042 * altogether. 1043 */ 1044 if (current->flags & PF_MEMALLOC) 1045 goto out; 1046 1047 lock_page(page); 1048 } 1049 1050 if (PageWriteback(page)) { 1051 /* 1052 * Only in the case of a full synchronous migration is it 1053 * necessary to wait for PageWriteback. In the async case, 1054 * the retry loop is too short and in the sync-light case, 1055 * the overhead of stalling is too much 1056 */ 1057 switch (mode) { 1058 case MIGRATE_SYNC: 1059 case MIGRATE_SYNC_NO_COPY: 1060 break; 1061 default: 1062 rc = -EBUSY; 1063 goto out_unlock; 1064 } 1065 if (!force) 1066 goto out_unlock; 1067 wait_on_page_writeback(page); 1068 } 1069 1070 /* 1071 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1072 * we cannot notice that anon_vma is freed while we migrates a page. 1073 * This get_anon_vma() delays freeing anon_vma pointer until the end 1074 * of migration. File cache pages are no problem because of page_lock() 1075 * File Caches may use write_page() or lock_page() in migration, then, 1076 * just care Anon page here. 1077 * 1078 * Only page_get_anon_vma() understands the subtleties of 1079 * getting a hold on an anon_vma from outside one of its mms. 1080 * But if we cannot get anon_vma, then we won't need it anyway, 1081 * because that implies that the anon page is no longer mapped 1082 * (and cannot be remapped so long as we hold the page lock). 1083 */ 1084 if (PageAnon(page) && !PageKsm(page)) 1085 anon_vma = page_get_anon_vma(page); 1086 1087 /* 1088 * Block others from accessing the new page when we get around to 1089 * establishing additional references. We are usually the only one 1090 * holding a reference to newpage at this point. We used to have a BUG 1091 * here if trylock_page(newpage) fails, but would like to allow for 1092 * cases where there might be a race with the previous use of newpage. 1093 * This is much like races on refcount of oldpage: just don't BUG(). 1094 */ 1095 if (unlikely(!trylock_page(newpage))) 1096 goto out_unlock; 1097 1098 if (unlikely(!is_lru)) { 1099 rc = move_to_new_page(newpage, page, mode); 1100 goto out_unlock_both; 1101 } 1102 1103 /* 1104 * Corner case handling: 1105 * 1. When a new swap-cache page is read into, it is added to the LRU 1106 * and treated as swapcache but it has no rmap yet. 1107 * Calling try_to_unmap() against a page->mapping==NULL page will 1108 * trigger a BUG. So handle it here. 1109 * 2. An orphaned page (see truncate_complete_page) might have 1110 * fs-private metadata. The page can be picked up due to memory 1111 * offlining. Everywhere else except page reclaim, the page is 1112 * invisible to the vm, so the page can not be migrated. So try to 1113 * free the metadata, so the page can be freed. 1114 */ 1115 if (!page->mapping) { 1116 VM_BUG_ON_PAGE(PageAnon(page), page); 1117 if (page_has_private(page)) { 1118 try_to_free_buffers(page); 1119 goto out_unlock_both; 1120 } 1121 } else if (page_mapped(page)) { 1122 /* Establish migration ptes */ 1123 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1124 page); 1125 try_to_unmap(page, 1126 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1127 page_was_mapped = 1; 1128 } 1129 1130 if (!page_mapped(page)) 1131 rc = move_to_new_page(newpage, page, mode); 1132 1133 if (page_was_mapped) 1134 remove_migration_ptes(page, 1135 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1136 1137 out_unlock_both: 1138 unlock_page(newpage); 1139 out_unlock: 1140 /* Drop an anon_vma reference if we took one */ 1141 if (anon_vma) 1142 put_anon_vma(anon_vma); 1143 unlock_page(page); 1144 out: 1145 /* 1146 * If migration is successful, decrease refcount of the newpage 1147 * which will not free the page because new page owner increased 1148 * refcounter. As well, if it is LRU page, add the page to LRU 1149 * list in here. Use the old state of the isolated source page to 1150 * determine if we migrated a LRU page. newpage was already unlocked 1151 * and possibly modified by its owner - don't rely on the page 1152 * state. 1153 */ 1154 if (rc == MIGRATEPAGE_SUCCESS) { 1155 if (unlikely(!is_lru)) 1156 put_page(newpage); 1157 else 1158 putback_lru_page(newpage); 1159 } 1160 1161 return rc; 1162 } 1163 1164 /* 1165 * Obtain the lock on page, remove all ptes and migrate the page 1166 * to the newly allocated page in newpage. 1167 */ 1168 static int unmap_and_move(new_page_t get_new_page, 1169 free_page_t put_new_page, 1170 unsigned long private, struct page *page, 1171 int force, enum migrate_mode mode, 1172 enum migrate_reason reason) 1173 { 1174 int rc = MIGRATEPAGE_SUCCESS; 1175 struct page *newpage = NULL; 1176 1177 if (!thp_migration_supported() && PageTransHuge(page)) 1178 return -ENOMEM; 1179 1180 if (page_count(page) == 1) { 1181 /* page was freed from under us. So we are done. */ 1182 ClearPageActive(page); 1183 ClearPageUnevictable(page); 1184 if (unlikely(__PageMovable(page))) { 1185 lock_page(page); 1186 if (!PageMovable(page)) 1187 __ClearPageIsolated(page); 1188 unlock_page(page); 1189 } 1190 goto out; 1191 } 1192 1193 newpage = get_new_page(page, private); 1194 if (!newpage) 1195 return -ENOMEM; 1196 1197 rc = __unmap_and_move(page, newpage, force, mode); 1198 if (rc == MIGRATEPAGE_SUCCESS) 1199 set_page_owner_migrate_reason(newpage, reason); 1200 1201 out: 1202 if (rc != -EAGAIN) { 1203 /* 1204 * A page that has been migrated has all references 1205 * removed and will be freed. A page that has not been 1206 * migrated will have kept its references and be restored. 1207 */ 1208 list_del(&page->lru); 1209 1210 /* 1211 * Compaction can migrate also non-LRU pages which are 1212 * not accounted to NR_ISOLATED_*. They can be recognized 1213 * as __PageMovable 1214 */ 1215 if (likely(!__PageMovable(page))) 1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1217 page_is_file_lru(page), -thp_nr_pages(page)); 1218 } 1219 1220 /* 1221 * If migration is successful, releases reference grabbed during 1222 * isolation. Otherwise, restore the page to right list unless 1223 * we want to retry. 1224 */ 1225 if (rc == MIGRATEPAGE_SUCCESS) { 1226 put_page(page); 1227 if (reason == MR_MEMORY_FAILURE) { 1228 /* 1229 * Set PG_HWPoison on just freed page 1230 * intentionally. Although it's rather weird, 1231 * it's how HWPoison flag works at the moment. 1232 */ 1233 if (set_hwpoison_free_buddy_page(page)) 1234 num_poisoned_pages_inc(); 1235 } 1236 } else { 1237 if (rc != -EAGAIN) { 1238 if (likely(!__PageMovable(page))) { 1239 putback_lru_page(page); 1240 goto put_new; 1241 } 1242 1243 lock_page(page); 1244 if (PageMovable(page)) 1245 putback_movable_page(page); 1246 else 1247 __ClearPageIsolated(page); 1248 unlock_page(page); 1249 put_page(page); 1250 } 1251 put_new: 1252 if (put_new_page) 1253 put_new_page(newpage, private); 1254 else 1255 put_page(newpage); 1256 } 1257 1258 return rc; 1259 } 1260 1261 /* 1262 * Counterpart of unmap_and_move_page() for hugepage migration. 1263 * 1264 * This function doesn't wait the completion of hugepage I/O 1265 * because there is no race between I/O and migration for hugepage. 1266 * Note that currently hugepage I/O occurs only in direct I/O 1267 * where no lock is held and PG_writeback is irrelevant, 1268 * and writeback status of all subpages are counted in the reference 1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1270 * under direct I/O, the reference of the head page is 512 and a bit more.) 1271 * This means that when we try to migrate hugepage whose subpages are 1272 * doing direct I/O, some references remain after try_to_unmap() and 1273 * hugepage migration fails without data corruption. 1274 * 1275 * There is also no race when direct I/O is issued on the page under migration, 1276 * because then pte is replaced with migration swap entry and direct I/O code 1277 * will wait in the page fault for migration to complete. 1278 */ 1279 static int unmap_and_move_huge_page(new_page_t get_new_page, 1280 free_page_t put_new_page, unsigned long private, 1281 struct page *hpage, int force, 1282 enum migrate_mode mode, int reason) 1283 { 1284 int rc = -EAGAIN; 1285 int page_was_mapped = 0; 1286 struct page *new_hpage; 1287 struct anon_vma *anon_vma = NULL; 1288 struct address_space *mapping = NULL; 1289 1290 /* 1291 * Migratability of hugepages depends on architectures and their size. 1292 * This check is necessary because some callers of hugepage migration 1293 * like soft offline and memory hotremove don't walk through page 1294 * tables or check whether the hugepage is pmd-based or not before 1295 * kicking migration. 1296 */ 1297 if (!hugepage_migration_supported(page_hstate(hpage))) { 1298 putback_active_hugepage(hpage); 1299 return -ENOSYS; 1300 } 1301 1302 new_hpage = get_new_page(hpage, private); 1303 if (!new_hpage) 1304 return -ENOMEM; 1305 1306 if (!trylock_page(hpage)) { 1307 if (!force) 1308 goto out; 1309 switch (mode) { 1310 case MIGRATE_SYNC: 1311 case MIGRATE_SYNC_NO_COPY: 1312 break; 1313 default: 1314 goto out; 1315 } 1316 lock_page(hpage); 1317 } 1318 1319 /* 1320 * Check for pages which are in the process of being freed. Without 1321 * page_mapping() set, hugetlbfs specific move page routine will not 1322 * be called and we could leak usage counts for subpools. 1323 */ 1324 if (page_private(hpage) && !page_mapping(hpage)) { 1325 rc = -EBUSY; 1326 goto out_unlock; 1327 } 1328 1329 if (PageAnon(hpage)) 1330 anon_vma = page_get_anon_vma(hpage); 1331 1332 if (unlikely(!trylock_page(new_hpage))) 1333 goto put_anon; 1334 1335 if (page_mapped(hpage)) { 1336 /* 1337 * try_to_unmap could potentially call huge_pmd_unshare. 1338 * Because of this, take semaphore in write mode here and 1339 * set TTU_RMAP_LOCKED to let lower levels know we have 1340 * taken the lock. 1341 */ 1342 mapping = hugetlb_page_mapping_lock_write(hpage); 1343 if (unlikely(!mapping)) 1344 goto unlock_put_anon; 1345 1346 try_to_unmap(hpage, 1347 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| 1348 TTU_RMAP_LOCKED); 1349 page_was_mapped = 1; 1350 /* 1351 * Leave mapping locked until after subsequent call to 1352 * remove_migration_ptes() 1353 */ 1354 } 1355 1356 if (!page_mapped(hpage)) 1357 rc = move_to_new_page(new_hpage, hpage, mode); 1358 1359 if (page_was_mapped) { 1360 remove_migration_ptes(hpage, 1361 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); 1362 i_mmap_unlock_write(mapping); 1363 } 1364 1365 unlock_put_anon: 1366 unlock_page(new_hpage); 1367 1368 put_anon: 1369 if (anon_vma) 1370 put_anon_vma(anon_vma); 1371 1372 if (rc == MIGRATEPAGE_SUCCESS) { 1373 move_hugetlb_state(hpage, new_hpage, reason); 1374 put_new_page = NULL; 1375 } 1376 1377 out_unlock: 1378 unlock_page(hpage); 1379 out: 1380 if (rc != -EAGAIN) 1381 putback_active_hugepage(hpage); 1382 1383 /* 1384 * If migration was not successful and there's a freeing callback, use 1385 * it. Otherwise, put_page() will drop the reference grabbed during 1386 * isolation. 1387 */ 1388 if (put_new_page) 1389 put_new_page(new_hpage, private); 1390 else 1391 putback_active_hugepage(new_hpage); 1392 1393 return rc; 1394 } 1395 1396 /* 1397 * migrate_pages - migrate the pages specified in a list, to the free pages 1398 * supplied as the target for the page migration 1399 * 1400 * @from: The list of pages to be migrated. 1401 * @get_new_page: The function used to allocate free pages to be used 1402 * as the target of the page migration. 1403 * @put_new_page: The function used to free target pages if migration 1404 * fails, or NULL if no special handling is necessary. 1405 * @private: Private data to be passed on to get_new_page() 1406 * @mode: The migration mode that specifies the constraints for 1407 * page migration, if any. 1408 * @reason: The reason for page migration. 1409 * 1410 * The function returns after 10 attempts or if no pages are movable any more 1411 * because the list has become empty or no retryable pages exist any more. 1412 * The caller should call putback_movable_pages() to return pages to the LRU 1413 * or free list only if ret != 0. 1414 * 1415 * Returns the number of pages that were not migrated, or an error code. 1416 */ 1417 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1418 free_page_t put_new_page, unsigned long private, 1419 enum migrate_mode mode, int reason) 1420 { 1421 int retry = 1; 1422 int thp_retry = 1; 1423 int nr_failed = 0; 1424 int nr_succeeded = 0; 1425 int nr_thp_succeeded = 0; 1426 int nr_thp_failed = 0; 1427 int nr_thp_split = 0; 1428 int pass = 0; 1429 bool is_thp = false; 1430 struct page *page; 1431 struct page *page2; 1432 int swapwrite = current->flags & PF_SWAPWRITE; 1433 int rc, nr_subpages; 1434 1435 if (!swapwrite) 1436 current->flags |= PF_SWAPWRITE; 1437 1438 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1439 retry = 0; 1440 thp_retry = 0; 1441 1442 list_for_each_entry_safe(page, page2, from, lru) { 1443 retry: 1444 /* 1445 * THP statistics is based on the source huge page. 1446 * Capture required information that might get lost 1447 * during migration. 1448 */ 1449 is_thp = PageTransHuge(page) && !PageHuge(page); 1450 nr_subpages = thp_nr_pages(page); 1451 cond_resched(); 1452 1453 if (PageHuge(page)) 1454 rc = unmap_and_move_huge_page(get_new_page, 1455 put_new_page, private, page, 1456 pass > 2, mode, reason); 1457 else 1458 rc = unmap_and_move(get_new_page, put_new_page, 1459 private, page, pass > 2, mode, 1460 reason); 1461 1462 switch(rc) { 1463 case -ENOMEM: 1464 /* 1465 * THP migration might be unsupported or the 1466 * allocation could've failed so we should 1467 * retry on the same page with the THP split 1468 * to base pages. 1469 * 1470 * Head page is retried immediately and tail 1471 * pages are added to the tail of the list so 1472 * we encounter them after the rest of the list 1473 * is processed. 1474 */ 1475 if (is_thp) { 1476 lock_page(page); 1477 rc = split_huge_page_to_list(page, from); 1478 unlock_page(page); 1479 if (!rc) { 1480 list_safe_reset_next(page, page2, lru); 1481 nr_thp_split++; 1482 goto retry; 1483 } 1484 1485 nr_thp_failed++; 1486 nr_failed += nr_subpages; 1487 goto out; 1488 } 1489 nr_failed++; 1490 goto out; 1491 case -EAGAIN: 1492 if (is_thp) { 1493 thp_retry++; 1494 break; 1495 } 1496 retry++; 1497 break; 1498 case MIGRATEPAGE_SUCCESS: 1499 if (is_thp) { 1500 nr_thp_succeeded++; 1501 nr_succeeded += nr_subpages; 1502 break; 1503 } 1504 nr_succeeded++; 1505 break; 1506 default: 1507 /* 1508 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1509 * unlike -EAGAIN case, the failed page is 1510 * removed from migration page list and not 1511 * retried in the next outer loop. 1512 */ 1513 if (is_thp) { 1514 nr_thp_failed++; 1515 nr_failed += nr_subpages; 1516 break; 1517 } 1518 nr_failed++; 1519 break; 1520 } 1521 } 1522 } 1523 nr_failed += retry + thp_retry; 1524 nr_thp_failed += thp_retry; 1525 rc = nr_failed; 1526 out: 1527 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1528 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1529 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1530 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1531 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1532 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1533 nr_thp_failed, nr_thp_split, mode, reason); 1534 1535 if (!swapwrite) 1536 current->flags &= ~PF_SWAPWRITE; 1537 1538 return rc; 1539 } 1540 1541 struct page *alloc_migration_target(struct page *page, unsigned long private) 1542 { 1543 struct migration_target_control *mtc; 1544 gfp_t gfp_mask; 1545 unsigned int order = 0; 1546 struct page *new_page = NULL; 1547 int nid; 1548 int zidx; 1549 1550 mtc = (struct migration_target_control *)private; 1551 gfp_mask = mtc->gfp_mask; 1552 nid = mtc->nid; 1553 if (nid == NUMA_NO_NODE) 1554 nid = page_to_nid(page); 1555 1556 if (PageHuge(page)) { 1557 struct hstate *h = page_hstate(compound_head(page)); 1558 1559 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1560 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1561 } 1562 1563 if (PageTransHuge(page)) { 1564 /* 1565 * clear __GFP_RECLAIM to make the migration callback 1566 * consistent with regular THP allocations. 1567 */ 1568 gfp_mask &= ~__GFP_RECLAIM; 1569 gfp_mask |= GFP_TRANSHUGE; 1570 order = HPAGE_PMD_ORDER; 1571 } 1572 zidx = zone_idx(page_zone(page)); 1573 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1574 gfp_mask |= __GFP_HIGHMEM; 1575 1576 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1577 1578 if (new_page && PageTransHuge(new_page)) 1579 prep_transhuge_page(new_page); 1580 1581 return new_page; 1582 } 1583 1584 #ifdef CONFIG_NUMA 1585 1586 static int store_status(int __user *status, int start, int value, int nr) 1587 { 1588 while (nr-- > 0) { 1589 if (put_user(value, status + start)) 1590 return -EFAULT; 1591 start++; 1592 } 1593 1594 return 0; 1595 } 1596 1597 static int do_move_pages_to_node(struct mm_struct *mm, 1598 struct list_head *pagelist, int node) 1599 { 1600 int err; 1601 struct migration_target_control mtc = { 1602 .nid = node, 1603 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1604 }; 1605 1606 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1607 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1608 if (err) 1609 putback_movable_pages(pagelist); 1610 return err; 1611 } 1612 1613 /* 1614 * Resolves the given address to a struct page, isolates it from the LRU and 1615 * puts it to the given pagelist. 1616 * Returns: 1617 * errno - if the page cannot be found/isolated 1618 * 0 - when it doesn't have to be migrated because it is already on the 1619 * target node 1620 * 1 - when it has been queued 1621 */ 1622 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1623 int node, struct list_head *pagelist, bool migrate_all) 1624 { 1625 struct vm_area_struct *vma; 1626 struct page *page; 1627 unsigned int follflags; 1628 int err; 1629 1630 mmap_read_lock(mm); 1631 err = -EFAULT; 1632 vma = find_vma(mm, addr); 1633 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1634 goto out; 1635 1636 /* FOLL_DUMP to ignore special (like zero) pages */ 1637 follflags = FOLL_GET | FOLL_DUMP; 1638 page = follow_page(vma, addr, follflags); 1639 1640 err = PTR_ERR(page); 1641 if (IS_ERR(page)) 1642 goto out; 1643 1644 err = -ENOENT; 1645 if (!page) 1646 goto out; 1647 1648 err = 0; 1649 if (page_to_nid(page) == node) 1650 goto out_putpage; 1651 1652 err = -EACCES; 1653 if (page_mapcount(page) > 1 && !migrate_all) 1654 goto out_putpage; 1655 1656 if (PageHuge(page)) { 1657 if (PageHead(page)) { 1658 isolate_huge_page(page, pagelist); 1659 err = 1; 1660 } 1661 } else { 1662 struct page *head; 1663 1664 head = compound_head(page); 1665 err = isolate_lru_page(head); 1666 if (err) 1667 goto out_putpage; 1668 1669 err = 1; 1670 list_add_tail(&head->lru, pagelist); 1671 mod_node_page_state(page_pgdat(head), 1672 NR_ISOLATED_ANON + page_is_file_lru(head), 1673 thp_nr_pages(head)); 1674 } 1675 out_putpage: 1676 /* 1677 * Either remove the duplicate refcount from 1678 * isolate_lru_page() or drop the page ref if it was 1679 * not isolated. 1680 */ 1681 put_page(page); 1682 out: 1683 mmap_read_unlock(mm); 1684 return err; 1685 } 1686 1687 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1688 struct list_head *pagelist, int __user *status, 1689 int start, int i, unsigned long nr_pages) 1690 { 1691 int err; 1692 1693 if (list_empty(pagelist)) 1694 return 0; 1695 1696 err = do_move_pages_to_node(mm, pagelist, node); 1697 if (err) { 1698 /* 1699 * Positive err means the number of failed 1700 * pages to migrate. Since we are going to 1701 * abort and return the number of non-migrated 1702 * pages, so need to incude the rest of the 1703 * nr_pages that have not been attempted as 1704 * well. 1705 */ 1706 if (err > 0) 1707 err += nr_pages - i - 1; 1708 return err; 1709 } 1710 return store_status(status, start, node, i - start); 1711 } 1712 1713 /* 1714 * Migrate an array of page address onto an array of nodes and fill 1715 * the corresponding array of status. 1716 */ 1717 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1718 unsigned long nr_pages, 1719 const void __user * __user *pages, 1720 const int __user *nodes, 1721 int __user *status, int flags) 1722 { 1723 int current_node = NUMA_NO_NODE; 1724 LIST_HEAD(pagelist); 1725 int start, i; 1726 int err = 0, err1; 1727 1728 migrate_prep(); 1729 1730 for (i = start = 0; i < nr_pages; i++) { 1731 const void __user *p; 1732 unsigned long addr; 1733 int node; 1734 1735 err = -EFAULT; 1736 if (get_user(p, pages + i)) 1737 goto out_flush; 1738 if (get_user(node, nodes + i)) 1739 goto out_flush; 1740 addr = (unsigned long)untagged_addr(p); 1741 1742 err = -ENODEV; 1743 if (node < 0 || node >= MAX_NUMNODES) 1744 goto out_flush; 1745 if (!node_state(node, N_MEMORY)) 1746 goto out_flush; 1747 1748 err = -EACCES; 1749 if (!node_isset(node, task_nodes)) 1750 goto out_flush; 1751 1752 if (current_node == NUMA_NO_NODE) { 1753 current_node = node; 1754 start = i; 1755 } else if (node != current_node) { 1756 err = move_pages_and_store_status(mm, current_node, 1757 &pagelist, status, start, i, nr_pages); 1758 if (err) 1759 goto out; 1760 start = i; 1761 current_node = node; 1762 } 1763 1764 /* 1765 * Errors in the page lookup or isolation are not fatal and we simply 1766 * report them via status 1767 */ 1768 err = add_page_for_migration(mm, addr, current_node, 1769 &pagelist, flags & MPOL_MF_MOVE_ALL); 1770 1771 if (err > 0) { 1772 /* The page is successfully queued for migration */ 1773 continue; 1774 } 1775 1776 /* 1777 * If the page is already on the target node (!err), store the 1778 * node, otherwise, store the err. 1779 */ 1780 err = store_status(status, i, err ? : current_node, 1); 1781 if (err) 1782 goto out_flush; 1783 1784 err = move_pages_and_store_status(mm, current_node, &pagelist, 1785 status, start, i, nr_pages); 1786 if (err) 1787 goto out; 1788 current_node = NUMA_NO_NODE; 1789 } 1790 out_flush: 1791 /* Make sure we do not overwrite the existing error */ 1792 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1793 status, start, i, nr_pages); 1794 if (err >= 0) 1795 err = err1; 1796 out: 1797 return err; 1798 } 1799 1800 /* 1801 * Determine the nodes of an array of pages and store it in an array of status. 1802 */ 1803 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1804 const void __user **pages, int *status) 1805 { 1806 unsigned long i; 1807 1808 mmap_read_lock(mm); 1809 1810 for (i = 0; i < nr_pages; i++) { 1811 unsigned long addr = (unsigned long)(*pages); 1812 struct vm_area_struct *vma; 1813 struct page *page; 1814 int err = -EFAULT; 1815 1816 vma = find_vma(mm, addr); 1817 if (!vma || addr < vma->vm_start) 1818 goto set_status; 1819 1820 /* FOLL_DUMP to ignore special (like zero) pages */ 1821 page = follow_page(vma, addr, FOLL_DUMP); 1822 1823 err = PTR_ERR(page); 1824 if (IS_ERR(page)) 1825 goto set_status; 1826 1827 err = page ? page_to_nid(page) : -ENOENT; 1828 set_status: 1829 *status = err; 1830 1831 pages++; 1832 status++; 1833 } 1834 1835 mmap_read_unlock(mm); 1836 } 1837 1838 /* 1839 * Determine the nodes of a user array of pages and store it in 1840 * a user array of status. 1841 */ 1842 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1843 const void __user * __user *pages, 1844 int __user *status) 1845 { 1846 #define DO_PAGES_STAT_CHUNK_NR 16 1847 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1848 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1849 1850 while (nr_pages) { 1851 unsigned long chunk_nr; 1852 1853 chunk_nr = nr_pages; 1854 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1855 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1856 1857 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1858 break; 1859 1860 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1861 1862 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1863 break; 1864 1865 pages += chunk_nr; 1866 status += chunk_nr; 1867 nr_pages -= chunk_nr; 1868 } 1869 return nr_pages ? -EFAULT : 0; 1870 } 1871 1872 /* 1873 * Move a list of pages in the address space of the currently executing 1874 * process. 1875 */ 1876 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1877 const void __user * __user *pages, 1878 const int __user *nodes, 1879 int __user *status, int flags) 1880 { 1881 struct task_struct *task; 1882 struct mm_struct *mm; 1883 int err; 1884 nodemask_t task_nodes; 1885 1886 /* Check flags */ 1887 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1888 return -EINVAL; 1889 1890 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1891 return -EPERM; 1892 1893 /* Find the mm_struct */ 1894 rcu_read_lock(); 1895 task = pid ? find_task_by_vpid(pid) : current; 1896 if (!task) { 1897 rcu_read_unlock(); 1898 return -ESRCH; 1899 } 1900 get_task_struct(task); 1901 1902 /* 1903 * Check if this process has the right to modify the specified 1904 * process. Use the regular "ptrace_may_access()" checks. 1905 */ 1906 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1907 rcu_read_unlock(); 1908 err = -EPERM; 1909 goto out; 1910 } 1911 rcu_read_unlock(); 1912 1913 err = security_task_movememory(task); 1914 if (err) 1915 goto out; 1916 1917 task_nodes = cpuset_mems_allowed(task); 1918 mm = get_task_mm(task); 1919 put_task_struct(task); 1920 1921 if (!mm) 1922 return -EINVAL; 1923 1924 if (nodes) 1925 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1926 nodes, status, flags); 1927 else 1928 err = do_pages_stat(mm, nr_pages, pages, status); 1929 1930 mmput(mm); 1931 return err; 1932 1933 out: 1934 put_task_struct(task); 1935 return err; 1936 } 1937 1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1939 const void __user * __user *, pages, 1940 const int __user *, nodes, 1941 int __user *, status, int, flags) 1942 { 1943 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1944 } 1945 1946 #ifdef CONFIG_COMPAT 1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1948 compat_uptr_t __user *, pages32, 1949 const int __user *, nodes, 1950 int __user *, status, 1951 int, flags) 1952 { 1953 const void __user * __user *pages; 1954 int i; 1955 1956 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1957 for (i = 0; i < nr_pages; i++) { 1958 compat_uptr_t p; 1959 1960 if (get_user(p, pages32 + i) || 1961 put_user(compat_ptr(p), pages + i)) 1962 return -EFAULT; 1963 } 1964 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1965 } 1966 #endif /* CONFIG_COMPAT */ 1967 1968 #ifdef CONFIG_NUMA_BALANCING 1969 /* 1970 * Returns true if this is a safe migration target node for misplaced NUMA 1971 * pages. Currently it only checks the watermarks which crude 1972 */ 1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1974 unsigned long nr_migrate_pages) 1975 { 1976 int z; 1977 1978 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1979 struct zone *zone = pgdat->node_zones + z; 1980 1981 if (!populated_zone(zone)) 1982 continue; 1983 1984 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1985 if (!zone_watermark_ok(zone, 0, 1986 high_wmark_pages(zone) + 1987 nr_migrate_pages, 1988 ZONE_MOVABLE, 0)) 1989 continue; 1990 return true; 1991 } 1992 return false; 1993 } 1994 1995 static struct page *alloc_misplaced_dst_page(struct page *page, 1996 unsigned long data) 1997 { 1998 int nid = (int) data; 1999 struct page *newpage; 2000 2001 newpage = __alloc_pages_node(nid, 2002 (GFP_HIGHUSER_MOVABLE | 2003 __GFP_THISNODE | __GFP_NOMEMALLOC | 2004 __GFP_NORETRY | __GFP_NOWARN) & 2005 ~__GFP_RECLAIM, 0); 2006 2007 return newpage; 2008 } 2009 2010 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2011 { 2012 int page_lru; 2013 2014 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2015 2016 /* Avoid migrating to a node that is nearly full */ 2017 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2018 return 0; 2019 2020 if (isolate_lru_page(page)) 2021 return 0; 2022 2023 /* 2024 * migrate_misplaced_transhuge_page() skips page migration's usual 2025 * check on page_count(), so we must do it here, now that the page 2026 * has been isolated: a GUP pin, or any other pin, prevents migration. 2027 * The expected page count is 3: 1 for page's mapcount and 1 for the 2028 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2029 */ 2030 if (PageTransHuge(page) && page_count(page) != 3) { 2031 putback_lru_page(page); 2032 return 0; 2033 } 2034 2035 page_lru = page_is_file_lru(page); 2036 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2037 thp_nr_pages(page)); 2038 2039 /* 2040 * Isolating the page has taken another reference, so the 2041 * caller's reference can be safely dropped without the page 2042 * disappearing underneath us during migration. 2043 */ 2044 put_page(page); 2045 return 1; 2046 } 2047 2048 bool pmd_trans_migrating(pmd_t pmd) 2049 { 2050 struct page *page = pmd_page(pmd); 2051 return PageLocked(page); 2052 } 2053 2054 /* 2055 * Attempt to migrate a misplaced page to the specified destination 2056 * node. Caller is expected to have an elevated reference count on 2057 * the page that will be dropped by this function before returning. 2058 */ 2059 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2060 int node) 2061 { 2062 pg_data_t *pgdat = NODE_DATA(node); 2063 int isolated; 2064 int nr_remaining; 2065 LIST_HEAD(migratepages); 2066 2067 /* 2068 * Don't migrate file pages that are mapped in multiple processes 2069 * with execute permissions as they are probably shared libraries. 2070 */ 2071 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2072 (vma->vm_flags & VM_EXEC)) 2073 goto out; 2074 2075 /* 2076 * Also do not migrate dirty pages as not all filesystems can move 2077 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2078 */ 2079 if (page_is_file_lru(page) && PageDirty(page)) 2080 goto out; 2081 2082 isolated = numamigrate_isolate_page(pgdat, page); 2083 if (!isolated) 2084 goto out; 2085 2086 list_add(&page->lru, &migratepages); 2087 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2088 NULL, node, MIGRATE_ASYNC, 2089 MR_NUMA_MISPLACED); 2090 if (nr_remaining) { 2091 if (!list_empty(&migratepages)) { 2092 list_del(&page->lru); 2093 dec_node_page_state(page, NR_ISOLATED_ANON + 2094 page_is_file_lru(page)); 2095 putback_lru_page(page); 2096 } 2097 isolated = 0; 2098 } else 2099 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2100 BUG_ON(!list_empty(&migratepages)); 2101 return isolated; 2102 2103 out: 2104 put_page(page); 2105 return 0; 2106 } 2107 #endif /* CONFIG_NUMA_BALANCING */ 2108 2109 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2110 /* 2111 * Migrates a THP to a given target node. page must be locked and is unlocked 2112 * before returning. 2113 */ 2114 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2115 struct vm_area_struct *vma, 2116 pmd_t *pmd, pmd_t entry, 2117 unsigned long address, 2118 struct page *page, int node) 2119 { 2120 spinlock_t *ptl; 2121 pg_data_t *pgdat = NODE_DATA(node); 2122 int isolated = 0; 2123 struct page *new_page = NULL; 2124 int page_lru = page_is_file_lru(page); 2125 unsigned long start = address & HPAGE_PMD_MASK; 2126 2127 new_page = alloc_pages_node(node, 2128 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2129 HPAGE_PMD_ORDER); 2130 if (!new_page) 2131 goto out_fail; 2132 prep_transhuge_page(new_page); 2133 2134 isolated = numamigrate_isolate_page(pgdat, page); 2135 if (!isolated) { 2136 put_page(new_page); 2137 goto out_fail; 2138 } 2139 2140 /* Prepare a page as a migration target */ 2141 __SetPageLocked(new_page); 2142 if (PageSwapBacked(page)) 2143 __SetPageSwapBacked(new_page); 2144 2145 /* anon mapping, we can simply copy page->mapping to the new page: */ 2146 new_page->mapping = page->mapping; 2147 new_page->index = page->index; 2148 /* flush the cache before copying using the kernel virtual address */ 2149 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2150 migrate_page_copy(new_page, page); 2151 WARN_ON(PageLRU(new_page)); 2152 2153 /* Recheck the target PMD */ 2154 ptl = pmd_lock(mm, pmd); 2155 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2156 spin_unlock(ptl); 2157 2158 /* Reverse changes made by migrate_page_copy() */ 2159 if (TestClearPageActive(new_page)) 2160 SetPageActive(page); 2161 if (TestClearPageUnevictable(new_page)) 2162 SetPageUnevictable(page); 2163 2164 unlock_page(new_page); 2165 put_page(new_page); /* Free it */ 2166 2167 /* Retake the callers reference and putback on LRU */ 2168 get_page(page); 2169 putback_lru_page(page); 2170 mod_node_page_state(page_pgdat(page), 2171 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2172 2173 goto out_unlock; 2174 } 2175 2176 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2177 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2178 2179 /* 2180 * Overwrite the old entry under pagetable lock and establish 2181 * the new PTE. Any parallel GUP will either observe the old 2182 * page blocking on the page lock, block on the page table 2183 * lock or observe the new page. The SetPageUptodate on the 2184 * new page and page_add_new_anon_rmap guarantee the copy is 2185 * visible before the pagetable update. 2186 */ 2187 page_add_anon_rmap(new_page, vma, start, true); 2188 /* 2189 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2190 * has already been flushed globally. So no TLB can be currently 2191 * caching this non present pmd mapping. There's no need to clear the 2192 * pmd before doing set_pmd_at(), nor to flush the TLB after 2193 * set_pmd_at(). Clearing the pmd here would introduce a race 2194 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2195 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2196 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2197 * pmd. 2198 */ 2199 set_pmd_at(mm, start, pmd, entry); 2200 update_mmu_cache_pmd(vma, address, &entry); 2201 2202 page_ref_unfreeze(page, 2); 2203 mlock_migrate_page(new_page, page); 2204 page_remove_rmap(page, true); 2205 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2206 2207 spin_unlock(ptl); 2208 2209 /* Take an "isolate" reference and put new page on the LRU. */ 2210 get_page(new_page); 2211 putback_lru_page(new_page); 2212 2213 unlock_page(new_page); 2214 unlock_page(page); 2215 put_page(page); /* Drop the rmap reference */ 2216 put_page(page); /* Drop the LRU isolation reference */ 2217 2218 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2219 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2220 2221 mod_node_page_state(page_pgdat(page), 2222 NR_ISOLATED_ANON + page_lru, 2223 -HPAGE_PMD_NR); 2224 return isolated; 2225 2226 out_fail: 2227 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2228 ptl = pmd_lock(mm, pmd); 2229 if (pmd_same(*pmd, entry)) { 2230 entry = pmd_modify(entry, vma->vm_page_prot); 2231 set_pmd_at(mm, start, pmd, entry); 2232 update_mmu_cache_pmd(vma, address, &entry); 2233 } 2234 spin_unlock(ptl); 2235 2236 out_unlock: 2237 unlock_page(page); 2238 put_page(page); 2239 return 0; 2240 } 2241 #endif /* CONFIG_NUMA_BALANCING */ 2242 2243 #endif /* CONFIG_NUMA */ 2244 2245 #ifdef CONFIG_DEVICE_PRIVATE 2246 static int migrate_vma_collect_hole(unsigned long start, 2247 unsigned long end, 2248 __always_unused int depth, 2249 struct mm_walk *walk) 2250 { 2251 struct migrate_vma *migrate = walk->private; 2252 unsigned long addr; 2253 2254 /* Only allow populating anonymous memory. */ 2255 if (!vma_is_anonymous(walk->vma)) { 2256 for (addr = start; addr < end; addr += PAGE_SIZE) { 2257 migrate->src[migrate->npages] = 0; 2258 migrate->dst[migrate->npages] = 0; 2259 migrate->npages++; 2260 } 2261 return 0; 2262 } 2263 2264 for (addr = start; addr < end; addr += PAGE_SIZE) { 2265 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2266 migrate->dst[migrate->npages] = 0; 2267 migrate->npages++; 2268 migrate->cpages++; 2269 } 2270 2271 return 0; 2272 } 2273 2274 static int migrate_vma_collect_skip(unsigned long start, 2275 unsigned long end, 2276 struct mm_walk *walk) 2277 { 2278 struct migrate_vma *migrate = walk->private; 2279 unsigned long addr; 2280 2281 for (addr = start; addr < end; addr += PAGE_SIZE) { 2282 migrate->dst[migrate->npages] = 0; 2283 migrate->src[migrate->npages++] = 0; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2290 unsigned long start, 2291 unsigned long end, 2292 struct mm_walk *walk) 2293 { 2294 struct migrate_vma *migrate = walk->private; 2295 struct vm_area_struct *vma = walk->vma; 2296 struct mm_struct *mm = vma->vm_mm; 2297 unsigned long addr = start, unmapped = 0; 2298 spinlock_t *ptl; 2299 pte_t *ptep; 2300 2301 again: 2302 if (pmd_none(*pmdp)) 2303 return migrate_vma_collect_hole(start, end, -1, walk); 2304 2305 if (pmd_trans_huge(*pmdp)) { 2306 struct page *page; 2307 2308 ptl = pmd_lock(mm, pmdp); 2309 if (unlikely(!pmd_trans_huge(*pmdp))) { 2310 spin_unlock(ptl); 2311 goto again; 2312 } 2313 2314 page = pmd_page(*pmdp); 2315 if (is_huge_zero_page(page)) { 2316 spin_unlock(ptl); 2317 split_huge_pmd(vma, pmdp, addr); 2318 if (pmd_trans_unstable(pmdp)) 2319 return migrate_vma_collect_skip(start, end, 2320 walk); 2321 } else { 2322 int ret; 2323 2324 get_page(page); 2325 spin_unlock(ptl); 2326 if (unlikely(!trylock_page(page))) 2327 return migrate_vma_collect_skip(start, end, 2328 walk); 2329 ret = split_huge_page(page); 2330 unlock_page(page); 2331 put_page(page); 2332 if (ret) 2333 return migrate_vma_collect_skip(start, end, 2334 walk); 2335 if (pmd_none(*pmdp)) 2336 return migrate_vma_collect_hole(start, end, -1, 2337 walk); 2338 } 2339 } 2340 2341 if (unlikely(pmd_bad(*pmdp))) 2342 return migrate_vma_collect_skip(start, end, walk); 2343 2344 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2345 arch_enter_lazy_mmu_mode(); 2346 2347 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2348 unsigned long mpfn = 0, pfn; 2349 struct page *page; 2350 swp_entry_t entry; 2351 pte_t pte; 2352 2353 pte = *ptep; 2354 2355 if (pte_none(pte)) { 2356 if (vma_is_anonymous(vma)) { 2357 mpfn = MIGRATE_PFN_MIGRATE; 2358 migrate->cpages++; 2359 } 2360 goto next; 2361 } 2362 2363 if (!pte_present(pte)) { 2364 /* 2365 * Only care about unaddressable device page special 2366 * page table entry. Other special swap entries are not 2367 * migratable, and we ignore regular swapped page. 2368 */ 2369 entry = pte_to_swp_entry(pte); 2370 if (!is_device_private_entry(entry)) 2371 goto next; 2372 2373 page = device_private_entry_to_page(entry); 2374 if (!(migrate->flags & 2375 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2376 page->pgmap->owner != migrate->pgmap_owner) 2377 goto next; 2378 2379 mpfn = migrate_pfn(page_to_pfn(page)) | 2380 MIGRATE_PFN_MIGRATE; 2381 if (is_write_device_private_entry(entry)) 2382 mpfn |= MIGRATE_PFN_WRITE; 2383 } else { 2384 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2385 goto next; 2386 pfn = pte_pfn(pte); 2387 if (is_zero_pfn(pfn)) { 2388 mpfn = MIGRATE_PFN_MIGRATE; 2389 migrate->cpages++; 2390 goto next; 2391 } 2392 page = vm_normal_page(migrate->vma, addr, pte); 2393 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2394 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2395 } 2396 2397 /* FIXME support THP */ 2398 if (!page || !page->mapping || PageTransCompound(page)) { 2399 mpfn = 0; 2400 goto next; 2401 } 2402 2403 /* 2404 * By getting a reference on the page we pin it and that blocks 2405 * any kind of migration. Side effect is that it "freezes" the 2406 * pte. 2407 * 2408 * We drop this reference after isolating the page from the lru 2409 * for non device page (device page are not on the lru and thus 2410 * can't be dropped from it). 2411 */ 2412 get_page(page); 2413 migrate->cpages++; 2414 2415 /* 2416 * Optimize for the common case where page is only mapped once 2417 * in one process. If we can lock the page, then we can safely 2418 * set up a special migration page table entry now. 2419 */ 2420 if (trylock_page(page)) { 2421 pte_t swp_pte; 2422 2423 mpfn |= MIGRATE_PFN_LOCKED; 2424 ptep_get_and_clear(mm, addr, ptep); 2425 2426 /* Setup special migration page table entry */ 2427 entry = make_migration_entry(page, mpfn & 2428 MIGRATE_PFN_WRITE); 2429 swp_pte = swp_entry_to_pte(entry); 2430 if (pte_present(pte)) { 2431 if (pte_soft_dirty(pte)) 2432 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2433 if (pte_uffd_wp(pte)) 2434 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2435 } else { 2436 if (pte_swp_soft_dirty(pte)) 2437 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2438 if (pte_swp_uffd_wp(pte)) 2439 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2440 } 2441 set_pte_at(mm, addr, ptep, swp_pte); 2442 2443 /* 2444 * This is like regular unmap: we remove the rmap and 2445 * drop page refcount. Page won't be freed, as we took 2446 * a reference just above. 2447 */ 2448 page_remove_rmap(page, false); 2449 put_page(page); 2450 2451 if (pte_present(pte)) 2452 unmapped++; 2453 } 2454 2455 next: 2456 migrate->dst[migrate->npages] = 0; 2457 migrate->src[migrate->npages++] = mpfn; 2458 } 2459 arch_leave_lazy_mmu_mode(); 2460 pte_unmap_unlock(ptep - 1, ptl); 2461 2462 /* Only flush the TLB if we actually modified any entries */ 2463 if (unmapped) 2464 flush_tlb_range(walk->vma, start, end); 2465 2466 return 0; 2467 } 2468 2469 static const struct mm_walk_ops migrate_vma_walk_ops = { 2470 .pmd_entry = migrate_vma_collect_pmd, 2471 .pte_hole = migrate_vma_collect_hole, 2472 }; 2473 2474 /* 2475 * migrate_vma_collect() - collect pages over a range of virtual addresses 2476 * @migrate: migrate struct containing all migration information 2477 * 2478 * This will walk the CPU page table. For each virtual address backed by a 2479 * valid page, it updates the src array and takes a reference on the page, in 2480 * order to pin the page until we lock it and unmap it. 2481 */ 2482 static void migrate_vma_collect(struct migrate_vma *migrate) 2483 { 2484 struct mmu_notifier_range range; 2485 2486 /* 2487 * Note that the pgmap_owner is passed to the mmu notifier callback so 2488 * that the registered device driver can skip invalidating device 2489 * private page mappings that won't be migrated. 2490 */ 2491 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2492 migrate->vma->vm_mm, migrate->start, migrate->end, 2493 migrate->pgmap_owner); 2494 mmu_notifier_invalidate_range_start(&range); 2495 2496 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2497 &migrate_vma_walk_ops, migrate); 2498 2499 mmu_notifier_invalidate_range_end(&range); 2500 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2501 } 2502 2503 /* 2504 * migrate_vma_check_page() - check if page is pinned or not 2505 * @page: struct page to check 2506 * 2507 * Pinned pages cannot be migrated. This is the same test as in 2508 * migrate_page_move_mapping(), except that here we allow migration of a 2509 * ZONE_DEVICE page. 2510 */ 2511 static bool migrate_vma_check_page(struct page *page) 2512 { 2513 /* 2514 * One extra ref because caller holds an extra reference, either from 2515 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2516 * a device page. 2517 */ 2518 int extra = 1; 2519 2520 /* 2521 * FIXME support THP (transparent huge page), it is bit more complex to 2522 * check them than regular pages, because they can be mapped with a pmd 2523 * or with a pte (split pte mapping). 2524 */ 2525 if (PageCompound(page)) 2526 return false; 2527 2528 /* Page from ZONE_DEVICE have one extra reference */ 2529 if (is_zone_device_page(page)) { 2530 /* 2531 * Private page can never be pin as they have no valid pte and 2532 * GUP will fail for those. Yet if there is a pending migration 2533 * a thread might try to wait on the pte migration entry and 2534 * will bump the page reference count. Sadly there is no way to 2535 * differentiate a regular pin from migration wait. Hence to 2536 * avoid 2 racing thread trying to migrate back to CPU to enter 2537 * infinite loop (one stoping migration because the other is 2538 * waiting on pte migration entry). We always return true here. 2539 * 2540 * FIXME proper solution is to rework migration_entry_wait() so 2541 * it does not need to take a reference on page. 2542 */ 2543 return is_device_private_page(page); 2544 } 2545 2546 /* For file back page */ 2547 if (page_mapping(page)) 2548 extra += 1 + page_has_private(page); 2549 2550 if ((page_count(page) - extra) > page_mapcount(page)) 2551 return false; 2552 2553 return true; 2554 } 2555 2556 /* 2557 * migrate_vma_prepare() - lock pages and isolate them from the lru 2558 * @migrate: migrate struct containing all migration information 2559 * 2560 * This locks pages that have been collected by migrate_vma_collect(). Once each 2561 * page is locked it is isolated from the lru (for non-device pages). Finally, 2562 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2563 * migrated by concurrent kernel threads. 2564 */ 2565 static void migrate_vma_prepare(struct migrate_vma *migrate) 2566 { 2567 const unsigned long npages = migrate->npages; 2568 const unsigned long start = migrate->start; 2569 unsigned long addr, i, restore = 0; 2570 bool allow_drain = true; 2571 2572 lru_add_drain(); 2573 2574 for (i = 0; (i < npages) && migrate->cpages; i++) { 2575 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2576 bool remap = true; 2577 2578 if (!page) 2579 continue; 2580 2581 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2582 /* 2583 * Because we are migrating several pages there can be 2584 * a deadlock between 2 concurrent migration where each 2585 * are waiting on each other page lock. 2586 * 2587 * Make migrate_vma() a best effort thing and backoff 2588 * for any page we can not lock right away. 2589 */ 2590 if (!trylock_page(page)) { 2591 migrate->src[i] = 0; 2592 migrate->cpages--; 2593 put_page(page); 2594 continue; 2595 } 2596 remap = false; 2597 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2598 } 2599 2600 /* ZONE_DEVICE pages are not on LRU */ 2601 if (!is_zone_device_page(page)) { 2602 if (!PageLRU(page) && allow_drain) { 2603 /* Drain CPU's pagevec */ 2604 lru_add_drain_all(); 2605 allow_drain = false; 2606 } 2607 2608 if (isolate_lru_page(page)) { 2609 if (remap) { 2610 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2611 migrate->cpages--; 2612 restore++; 2613 } else { 2614 migrate->src[i] = 0; 2615 unlock_page(page); 2616 migrate->cpages--; 2617 put_page(page); 2618 } 2619 continue; 2620 } 2621 2622 /* Drop the reference we took in collect */ 2623 put_page(page); 2624 } 2625 2626 if (!migrate_vma_check_page(page)) { 2627 if (remap) { 2628 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2629 migrate->cpages--; 2630 restore++; 2631 2632 if (!is_zone_device_page(page)) { 2633 get_page(page); 2634 putback_lru_page(page); 2635 } 2636 } else { 2637 migrate->src[i] = 0; 2638 unlock_page(page); 2639 migrate->cpages--; 2640 2641 if (!is_zone_device_page(page)) 2642 putback_lru_page(page); 2643 else 2644 put_page(page); 2645 } 2646 } 2647 } 2648 2649 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2650 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2651 2652 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2653 continue; 2654 2655 remove_migration_pte(page, migrate->vma, addr, page); 2656 2657 migrate->src[i] = 0; 2658 unlock_page(page); 2659 put_page(page); 2660 restore--; 2661 } 2662 } 2663 2664 /* 2665 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2666 * @migrate: migrate struct containing all migration information 2667 * 2668 * Replace page mapping (CPU page table pte) with a special migration pte entry 2669 * and check again if it has been pinned. Pinned pages are restored because we 2670 * cannot migrate them. 2671 * 2672 * This is the last step before we call the device driver callback to allocate 2673 * destination memory and copy contents of original page over to new page. 2674 */ 2675 static void migrate_vma_unmap(struct migrate_vma *migrate) 2676 { 2677 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2678 const unsigned long npages = migrate->npages; 2679 const unsigned long start = migrate->start; 2680 unsigned long addr, i, restore = 0; 2681 2682 for (i = 0; i < npages; i++) { 2683 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2684 2685 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2686 continue; 2687 2688 if (page_mapped(page)) { 2689 try_to_unmap(page, flags); 2690 if (page_mapped(page)) 2691 goto restore; 2692 } 2693 2694 if (migrate_vma_check_page(page)) 2695 continue; 2696 2697 restore: 2698 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2699 migrate->cpages--; 2700 restore++; 2701 } 2702 2703 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2704 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2705 2706 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2707 continue; 2708 2709 remove_migration_ptes(page, page, false); 2710 2711 migrate->src[i] = 0; 2712 unlock_page(page); 2713 restore--; 2714 2715 if (is_zone_device_page(page)) 2716 put_page(page); 2717 else 2718 putback_lru_page(page); 2719 } 2720 } 2721 2722 /** 2723 * migrate_vma_setup() - prepare to migrate a range of memory 2724 * @args: contains the vma, start, and pfns arrays for the migration 2725 * 2726 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2727 * without an error. 2728 * 2729 * Prepare to migrate a range of memory virtual address range by collecting all 2730 * the pages backing each virtual address in the range, saving them inside the 2731 * src array. Then lock those pages and unmap them. Once the pages are locked 2732 * and unmapped, check whether each page is pinned or not. Pages that aren't 2733 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2734 * corresponding src array entry. Then restores any pages that are pinned, by 2735 * remapping and unlocking those pages. 2736 * 2737 * The caller should then allocate destination memory and copy source memory to 2738 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2739 * flag set). Once these are allocated and copied, the caller must update each 2740 * corresponding entry in the dst array with the pfn value of the destination 2741 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2742 * (destination pages must have their struct pages locked, via lock_page()). 2743 * 2744 * Note that the caller does not have to migrate all the pages that are marked 2745 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2746 * device memory to system memory. If the caller cannot migrate a device page 2747 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2748 * consequences for the userspace process, so it must be avoided if at all 2749 * possible. 2750 * 2751 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2752 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2753 * allowing the caller to allocate device memory for those unback virtual 2754 * address. For this the caller simply has to allocate device memory and 2755 * properly set the destination entry like for regular migration. Note that 2756 * this can still fails and thus inside the device driver must check if the 2757 * migration was successful for those entries after calling migrate_vma_pages() 2758 * just like for regular migration. 2759 * 2760 * After that, the callers must call migrate_vma_pages() to go over each entry 2761 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2762 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2763 * then migrate_vma_pages() to migrate struct page information from the source 2764 * struct page to the destination struct page. If it fails to migrate the 2765 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2766 * src array. 2767 * 2768 * At this point all successfully migrated pages have an entry in the src 2769 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2770 * array entry with MIGRATE_PFN_VALID flag set. 2771 * 2772 * Once migrate_vma_pages() returns the caller may inspect which pages were 2773 * successfully migrated, and which were not. Successfully migrated pages will 2774 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2775 * 2776 * It is safe to update device page table after migrate_vma_pages() because 2777 * both destination and source page are still locked, and the mmap_lock is held 2778 * in read mode (hence no one can unmap the range being migrated). 2779 * 2780 * Once the caller is done cleaning up things and updating its page table (if it 2781 * chose to do so, this is not an obligation) it finally calls 2782 * migrate_vma_finalize() to update the CPU page table to point to new pages 2783 * for successfully migrated pages or otherwise restore the CPU page table to 2784 * point to the original source pages. 2785 */ 2786 int migrate_vma_setup(struct migrate_vma *args) 2787 { 2788 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2789 2790 args->start &= PAGE_MASK; 2791 args->end &= PAGE_MASK; 2792 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2793 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2794 return -EINVAL; 2795 if (nr_pages <= 0) 2796 return -EINVAL; 2797 if (args->start < args->vma->vm_start || 2798 args->start >= args->vma->vm_end) 2799 return -EINVAL; 2800 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2801 return -EINVAL; 2802 if (!args->src || !args->dst) 2803 return -EINVAL; 2804 2805 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2806 args->cpages = 0; 2807 args->npages = 0; 2808 2809 migrate_vma_collect(args); 2810 2811 if (args->cpages) 2812 migrate_vma_prepare(args); 2813 if (args->cpages) 2814 migrate_vma_unmap(args); 2815 2816 /* 2817 * At this point pages are locked and unmapped, and thus they have 2818 * stable content and can safely be copied to destination memory that 2819 * is allocated by the drivers. 2820 */ 2821 return 0; 2822 2823 } 2824 EXPORT_SYMBOL(migrate_vma_setup); 2825 2826 /* 2827 * This code closely matches the code in: 2828 * __handle_mm_fault() 2829 * handle_pte_fault() 2830 * do_anonymous_page() 2831 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2832 * private page. 2833 */ 2834 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2835 unsigned long addr, 2836 struct page *page, 2837 unsigned long *src, 2838 unsigned long *dst) 2839 { 2840 struct vm_area_struct *vma = migrate->vma; 2841 struct mm_struct *mm = vma->vm_mm; 2842 bool flush = false; 2843 spinlock_t *ptl; 2844 pte_t entry; 2845 pgd_t *pgdp; 2846 p4d_t *p4dp; 2847 pud_t *pudp; 2848 pmd_t *pmdp; 2849 pte_t *ptep; 2850 2851 /* Only allow populating anonymous memory */ 2852 if (!vma_is_anonymous(vma)) 2853 goto abort; 2854 2855 pgdp = pgd_offset(mm, addr); 2856 p4dp = p4d_alloc(mm, pgdp, addr); 2857 if (!p4dp) 2858 goto abort; 2859 pudp = pud_alloc(mm, p4dp, addr); 2860 if (!pudp) 2861 goto abort; 2862 pmdp = pmd_alloc(mm, pudp, addr); 2863 if (!pmdp) 2864 goto abort; 2865 2866 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2867 goto abort; 2868 2869 /* 2870 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2871 * pte_offset_map() on pmds where a huge pmd might be created 2872 * from a different thread. 2873 * 2874 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2875 * parallel threads are excluded by other means. 2876 * 2877 * Here we only have mmap_read_lock(mm). 2878 */ 2879 if (pte_alloc(mm, pmdp)) 2880 goto abort; 2881 2882 /* See the comment in pte_alloc_one_map() */ 2883 if (unlikely(pmd_trans_unstable(pmdp))) 2884 goto abort; 2885 2886 if (unlikely(anon_vma_prepare(vma))) 2887 goto abort; 2888 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2889 goto abort; 2890 2891 /* 2892 * The memory barrier inside __SetPageUptodate makes sure that 2893 * preceding stores to the page contents become visible before 2894 * the set_pte_at() write. 2895 */ 2896 __SetPageUptodate(page); 2897 2898 if (is_zone_device_page(page)) { 2899 if (is_device_private_page(page)) { 2900 swp_entry_t swp_entry; 2901 2902 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2903 entry = swp_entry_to_pte(swp_entry); 2904 } 2905 } else { 2906 entry = mk_pte(page, vma->vm_page_prot); 2907 if (vma->vm_flags & VM_WRITE) 2908 entry = pte_mkwrite(pte_mkdirty(entry)); 2909 } 2910 2911 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2912 2913 if (check_stable_address_space(mm)) 2914 goto unlock_abort; 2915 2916 if (pte_present(*ptep)) { 2917 unsigned long pfn = pte_pfn(*ptep); 2918 2919 if (!is_zero_pfn(pfn)) 2920 goto unlock_abort; 2921 flush = true; 2922 } else if (!pte_none(*ptep)) 2923 goto unlock_abort; 2924 2925 /* 2926 * Check for userfaultfd but do not deliver the fault. Instead, 2927 * just back off. 2928 */ 2929 if (userfaultfd_missing(vma)) 2930 goto unlock_abort; 2931 2932 inc_mm_counter(mm, MM_ANONPAGES); 2933 page_add_new_anon_rmap(page, vma, addr, false); 2934 if (!is_zone_device_page(page)) 2935 lru_cache_add_inactive_or_unevictable(page, vma); 2936 get_page(page); 2937 2938 if (flush) { 2939 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2940 ptep_clear_flush_notify(vma, addr, ptep); 2941 set_pte_at_notify(mm, addr, ptep, entry); 2942 update_mmu_cache(vma, addr, ptep); 2943 } else { 2944 /* No need to invalidate - it was non-present before */ 2945 set_pte_at(mm, addr, ptep, entry); 2946 update_mmu_cache(vma, addr, ptep); 2947 } 2948 2949 pte_unmap_unlock(ptep, ptl); 2950 *src = MIGRATE_PFN_MIGRATE; 2951 return; 2952 2953 unlock_abort: 2954 pte_unmap_unlock(ptep, ptl); 2955 abort: 2956 *src &= ~MIGRATE_PFN_MIGRATE; 2957 } 2958 2959 /** 2960 * migrate_vma_pages() - migrate meta-data from src page to dst page 2961 * @migrate: migrate struct containing all migration information 2962 * 2963 * This migrates struct page meta-data from source struct page to destination 2964 * struct page. This effectively finishes the migration from source page to the 2965 * destination page. 2966 */ 2967 void migrate_vma_pages(struct migrate_vma *migrate) 2968 { 2969 const unsigned long npages = migrate->npages; 2970 const unsigned long start = migrate->start; 2971 struct mmu_notifier_range range; 2972 unsigned long addr, i; 2973 bool notified = false; 2974 2975 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2976 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2977 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2978 struct address_space *mapping; 2979 int r; 2980 2981 if (!newpage) { 2982 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2983 continue; 2984 } 2985 2986 if (!page) { 2987 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2988 continue; 2989 if (!notified) { 2990 notified = true; 2991 2992 mmu_notifier_range_init(&range, 2993 MMU_NOTIFY_CLEAR, 0, 2994 NULL, 2995 migrate->vma->vm_mm, 2996 addr, migrate->end); 2997 mmu_notifier_invalidate_range_start(&range); 2998 } 2999 migrate_vma_insert_page(migrate, addr, newpage, 3000 &migrate->src[i], 3001 &migrate->dst[i]); 3002 continue; 3003 } 3004 3005 mapping = page_mapping(page); 3006 3007 if (is_zone_device_page(newpage)) { 3008 if (is_device_private_page(newpage)) { 3009 /* 3010 * For now only support private anonymous when 3011 * migrating to un-addressable device memory. 3012 */ 3013 if (mapping) { 3014 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3015 continue; 3016 } 3017 } else { 3018 /* 3019 * Other types of ZONE_DEVICE page are not 3020 * supported. 3021 */ 3022 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3023 continue; 3024 } 3025 } 3026 3027 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3028 if (r != MIGRATEPAGE_SUCCESS) 3029 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3030 } 3031 3032 /* 3033 * No need to double call mmu_notifier->invalidate_range() callback as 3034 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3035 * did already call it. 3036 */ 3037 if (notified) 3038 mmu_notifier_invalidate_range_only_end(&range); 3039 } 3040 EXPORT_SYMBOL(migrate_vma_pages); 3041 3042 /** 3043 * migrate_vma_finalize() - restore CPU page table entry 3044 * @migrate: migrate struct containing all migration information 3045 * 3046 * This replaces the special migration pte entry with either a mapping to the 3047 * new page if migration was successful for that page, or to the original page 3048 * otherwise. 3049 * 3050 * This also unlocks the pages and puts them back on the lru, or drops the extra 3051 * refcount, for device pages. 3052 */ 3053 void migrate_vma_finalize(struct migrate_vma *migrate) 3054 { 3055 const unsigned long npages = migrate->npages; 3056 unsigned long i; 3057 3058 for (i = 0; i < npages; i++) { 3059 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3060 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3061 3062 if (!page) { 3063 if (newpage) { 3064 unlock_page(newpage); 3065 put_page(newpage); 3066 } 3067 continue; 3068 } 3069 3070 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3071 if (newpage) { 3072 unlock_page(newpage); 3073 put_page(newpage); 3074 } 3075 newpage = page; 3076 } 3077 3078 remove_migration_ptes(page, newpage, false); 3079 unlock_page(page); 3080 migrate->cpages--; 3081 3082 if (is_zone_device_page(page)) 3083 put_page(page); 3084 else 3085 putback_lru_page(page); 3086 3087 if (newpage != page) { 3088 unlock_page(newpage); 3089 if (is_zone_device_page(newpage)) 3090 put_page(newpage); 3091 else 3092 putback_lru_page(newpage); 3093 } 3094 } 3095 } 3096 EXPORT_SYMBOL(migrate_vma_finalize); 3097 #endif /* CONFIG_DEVICE_PRIVATE */ 3098