xref: /openbmc/linux/mm/migrate.c (revision f7777dcc)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		if (unlikely(PageHuge(page))) {
104 			putback_active_hugepage(page);
105 			continue;
106 		}
107 		list_del(&page->lru);
108 		dec_zone_page_state(page, NR_ISOLATED_ANON +
109 				page_is_file_cache(page));
110 		if (unlikely(isolated_balloon_page(page)))
111 			balloon_page_putback(page);
112 		else
113 			putback_lru_page(page);
114 	}
115 }
116 
117 /*
118  * Restore a potential migration pte to a working pte entry
119  */
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 				 unsigned long addr, void *old)
122 {
123 	struct mm_struct *mm = vma->vm_mm;
124 	swp_entry_t entry;
125  	pmd_t *pmd;
126 	pte_t *ptep, pte;
127  	spinlock_t *ptl;
128 
129 	if (unlikely(PageHuge(new))) {
130 		ptep = huge_pte_offset(mm, addr);
131 		if (!ptep)
132 			goto out;
133 		ptl = &mm->page_table_lock;
134 	} else {
135 		pmd = mm_find_pmd(mm, addr);
136 		if (!pmd)
137 			goto out;
138 		if (pmd_trans_huge(*pmd))
139 			goto out;
140 
141 		ptep = pte_offset_map(pmd, addr);
142 
143 		/*
144 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
145 		 * can race mremap's move_ptes(), which skips anon_vma lock.
146 		 */
147 
148 		ptl = pte_lockptr(mm, pmd);
149 	}
150 
151  	spin_lock(ptl);
152 	pte = *ptep;
153 	if (!is_swap_pte(pte))
154 		goto unlock;
155 
156 	entry = pte_to_swp_entry(pte);
157 
158 	if (!is_migration_entry(entry) ||
159 	    migration_entry_to_page(entry) != old)
160 		goto unlock;
161 
162 	get_page(new);
163 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 	if (pte_swp_soft_dirty(*ptep))
165 		pte = pte_mksoft_dirty(pte);
166 	if (is_write_migration_entry(entry))
167 		pte = pte_mkwrite(pte);
168 #ifdef CONFIG_HUGETLB_PAGE
169 	if (PageHuge(new)) {
170 		pte = pte_mkhuge(pte);
171 		pte = arch_make_huge_pte(pte, vma, new, 0);
172 	}
173 #endif
174 	flush_dcache_page(new);
175 	set_pte_at(mm, addr, ptep, pte);
176 
177 	if (PageHuge(new)) {
178 		if (PageAnon(new))
179 			hugepage_add_anon_rmap(new, vma, addr);
180 		else
181 			page_dup_rmap(new);
182 	} else if (PageAnon(new))
183 		page_add_anon_rmap(new, vma, addr);
184 	else
185 		page_add_file_rmap(new);
186 
187 	/* No need to invalidate - it was non-present before */
188 	update_mmu_cache(vma, addr, ptep);
189 unlock:
190 	pte_unmap_unlock(ptep, ptl);
191 out:
192 	return SWAP_AGAIN;
193 }
194 
195 /*
196  * Get rid of all migration entries and replace them by
197  * references to the indicated page.
198  */
199 static void remove_migration_ptes(struct page *old, struct page *new)
200 {
201 	rmap_walk(new, remove_migration_pte, old);
202 }
203 
204 /*
205  * Something used the pte of a page under migration. We need to
206  * get to the page and wait until migration is finished.
207  * When we return from this function the fault will be retried.
208  */
209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210 				spinlock_t *ptl)
211 {
212 	pte_t pte;
213 	swp_entry_t entry;
214 	struct page *page;
215 
216 	spin_lock(ptl);
217 	pte = *ptep;
218 	if (!is_swap_pte(pte))
219 		goto out;
220 
221 	entry = pte_to_swp_entry(pte);
222 	if (!is_migration_entry(entry))
223 		goto out;
224 
225 	page = migration_entry_to_page(entry);
226 
227 	/*
228 	 * Once radix-tree replacement of page migration started, page_count
229 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 	 * against a page without get_page().
231 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 	 * will occur again.
233 	 */
234 	if (!get_page_unless_zero(page))
235 		goto out;
236 	pte_unmap_unlock(ptep, ptl);
237 	wait_on_page_locked(page);
238 	put_page(page);
239 	return;
240 out:
241 	pte_unmap_unlock(ptep, ptl);
242 }
243 
244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245 				unsigned long address)
246 {
247 	spinlock_t *ptl = pte_lockptr(mm, pmd);
248 	pte_t *ptep = pte_offset_map(pmd, address);
249 	__migration_entry_wait(mm, ptep, ptl);
250 }
251 
252 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
253 {
254 	spinlock_t *ptl = &(mm)->page_table_lock;
255 	__migration_entry_wait(mm, pte, ptl);
256 }
257 
258 #ifdef CONFIG_BLOCK
259 /* Returns true if all buffers are successfully locked */
260 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 							enum migrate_mode mode)
262 {
263 	struct buffer_head *bh = head;
264 
265 	/* Simple case, sync compaction */
266 	if (mode != MIGRATE_ASYNC) {
267 		do {
268 			get_bh(bh);
269 			lock_buffer(bh);
270 			bh = bh->b_this_page;
271 
272 		} while (bh != head);
273 
274 		return true;
275 	}
276 
277 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
278 	do {
279 		get_bh(bh);
280 		if (!trylock_buffer(bh)) {
281 			/*
282 			 * We failed to lock the buffer and cannot stall in
283 			 * async migration. Release the taken locks
284 			 */
285 			struct buffer_head *failed_bh = bh;
286 			put_bh(failed_bh);
287 			bh = head;
288 			while (bh != failed_bh) {
289 				unlock_buffer(bh);
290 				put_bh(bh);
291 				bh = bh->b_this_page;
292 			}
293 			return false;
294 		}
295 
296 		bh = bh->b_this_page;
297 	} while (bh != head);
298 	return true;
299 }
300 #else
301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 							enum migrate_mode mode)
303 {
304 	return true;
305 }
306 #endif /* CONFIG_BLOCK */
307 
308 /*
309  * Replace the page in the mapping.
310  *
311  * The number of remaining references must be:
312  * 1 for anonymous pages without a mapping
313  * 2 for pages with a mapping
314  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315  */
316 int migrate_page_move_mapping(struct address_space *mapping,
317 		struct page *newpage, struct page *page,
318 		struct buffer_head *head, enum migrate_mode mode)
319 {
320 	int expected_count = 0;
321 	void **pslot;
322 
323 	if (!mapping) {
324 		/* Anonymous page without mapping */
325 		if (page_count(page) != 1)
326 			return -EAGAIN;
327 		return MIGRATEPAGE_SUCCESS;
328 	}
329 
330 	spin_lock_irq(&mapping->tree_lock);
331 
332 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
333  					page_index(page));
334 
335 	expected_count = 2 + page_has_private(page);
336 	if (page_count(page) != expected_count ||
337 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
338 		spin_unlock_irq(&mapping->tree_lock);
339 		return -EAGAIN;
340 	}
341 
342 	if (!page_freeze_refs(page, expected_count)) {
343 		spin_unlock_irq(&mapping->tree_lock);
344 		return -EAGAIN;
345 	}
346 
347 	/*
348 	 * In the async migration case of moving a page with buffers, lock the
349 	 * buffers using trylock before the mapping is moved. If the mapping
350 	 * was moved, we later failed to lock the buffers and could not move
351 	 * the mapping back due to an elevated page count, we would have to
352 	 * block waiting on other references to be dropped.
353 	 */
354 	if (mode == MIGRATE_ASYNC && head &&
355 			!buffer_migrate_lock_buffers(head, mode)) {
356 		page_unfreeze_refs(page, expected_count);
357 		spin_unlock_irq(&mapping->tree_lock);
358 		return -EAGAIN;
359 	}
360 
361 	/*
362 	 * Now we know that no one else is looking at the page.
363 	 */
364 	get_page(newpage);	/* add cache reference */
365 	if (PageSwapCache(page)) {
366 		SetPageSwapCache(newpage);
367 		set_page_private(newpage, page_private(page));
368 	}
369 
370 	radix_tree_replace_slot(pslot, newpage);
371 
372 	/*
373 	 * Drop cache reference from old page by unfreezing
374 	 * to one less reference.
375 	 * We know this isn't the last reference.
376 	 */
377 	page_unfreeze_refs(page, expected_count - 1);
378 
379 	/*
380 	 * If moved to a different zone then also account
381 	 * the page for that zone. Other VM counters will be
382 	 * taken care of when we establish references to the
383 	 * new page and drop references to the old page.
384 	 *
385 	 * Note that anonymous pages are accounted for
386 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
387 	 * are mapped to swap space.
388 	 */
389 	__dec_zone_page_state(page, NR_FILE_PAGES);
390 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
391 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
392 		__dec_zone_page_state(page, NR_SHMEM);
393 		__inc_zone_page_state(newpage, NR_SHMEM);
394 	}
395 	spin_unlock_irq(&mapping->tree_lock);
396 
397 	return MIGRATEPAGE_SUCCESS;
398 }
399 
400 /*
401  * The expected number of remaining references is the same as that
402  * of migrate_page_move_mapping().
403  */
404 int migrate_huge_page_move_mapping(struct address_space *mapping,
405 				   struct page *newpage, struct page *page)
406 {
407 	int expected_count;
408 	void **pslot;
409 
410 	if (!mapping) {
411 		if (page_count(page) != 1)
412 			return -EAGAIN;
413 		return MIGRATEPAGE_SUCCESS;
414 	}
415 
416 	spin_lock_irq(&mapping->tree_lock);
417 
418 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
419 					page_index(page));
420 
421 	expected_count = 2 + page_has_private(page);
422 	if (page_count(page) != expected_count ||
423 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
424 		spin_unlock_irq(&mapping->tree_lock);
425 		return -EAGAIN;
426 	}
427 
428 	if (!page_freeze_refs(page, expected_count)) {
429 		spin_unlock_irq(&mapping->tree_lock);
430 		return -EAGAIN;
431 	}
432 
433 	get_page(newpage);
434 
435 	radix_tree_replace_slot(pslot, newpage);
436 
437 	page_unfreeze_refs(page, expected_count - 1);
438 
439 	spin_unlock_irq(&mapping->tree_lock);
440 	return MIGRATEPAGE_SUCCESS;
441 }
442 
443 /*
444  * Copy the page to its new location
445  */
446 void migrate_page_copy(struct page *newpage, struct page *page)
447 {
448 	if (PageHuge(page) || PageTransHuge(page))
449 		copy_huge_page(newpage, page);
450 	else
451 		copy_highpage(newpage, page);
452 
453 	if (PageError(page))
454 		SetPageError(newpage);
455 	if (PageReferenced(page))
456 		SetPageReferenced(newpage);
457 	if (PageUptodate(page))
458 		SetPageUptodate(newpage);
459 	if (TestClearPageActive(page)) {
460 		VM_BUG_ON(PageUnevictable(page));
461 		SetPageActive(newpage);
462 	} else if (TestClearPageUnevictable(page))
463 		SetPageUnevictable(newpage);
464 	if (PageChecked(page))
465 		SetPageChecked(newpage);
466 	if (PageMappedToDisk(page))
467 		SetPageMappedToDisk(newpage);
468 
469 	if (PageDirty(page)) {
470 		clear_page_dirty_for_io(page);
471 		/*
472 		 * Want to mark the page and the radix tree as dirty, and
473 		 * redo the accounting that clear_page_dirty_for_io undid,
474 		 * but we can't use set_page_dirty because that function
475 		 * is actually a signal that all of the page has become dirty.
476 		 * Whereas only part of our page may be dirty.
477 		 */
478 		if (PageSwapBacked(page))
479 			SetPageDirty(newpage);
480 		else
481 			__set_page_dirty_nobuffers(newpage);
482  	}
483 
484 	mlock_migrate_page(newpage, page);
485 	ksm_migrate_page(newpage, page);
486 	/*
487 	 * Please do not reorder this without considering how mm/ksm.c's
488 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
489 	 */
490 	ClearPageSwapCache(page);
491 	ClearPagePrivate(page);
492 	set_page_private(page, 0);
493 
494 	/*
495 	 * If any waiters have accumulated on the new page then
496 	 * wake them up.
497 	 */
498 	if (PageWriteback(newpage))
499 		end_page_writeback(newpage);
500 }
501 
502 /************************************************************
503  *                    Migration functions
504  ***********************************************************/
505 
506 /* Always fail migration. Used for mappings that are not movable */
507 int fail_migrate_page(struct address_space *mapping,
508 			struct page *newpage, struct page *page)
509 {
510 	return -EIO;
511 }
512 EXPORT_SYMBOL(fail_migrate_page);
513 
514 /*
515  * Common logic to directly migrate a single page suitable for
516  * pages that do not use PagePrivate/PagePrivate2.
517  *
518  * Pages are locked upon entry and exit.
519  */
520 int migrate_page(struct address_space *mapping,
521 		struct page *newpage, struct page *page,
522 		enum migrate_mode mode)
523 {
524 	int rc;
525 
526 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
527 
528 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
529 
530 	if (rc != MIGRATEPAGE_SUCCESS)
531 		return rc;
532 
533 	migrate_page_copy(newpage, page);
534 	return MIGRATEPAGE_SUCCESS;
535 }
536 EXPORT_SYMBOL(migrate_page);
537 
538 #ifdef CONFIG_BLOCK
539 /*
540  * Migration function for pages with buffers. This function can only be used
541  * if the underlying filesystem guarantees that no other references to "page"
542  * exist.
543  */
544 int buffer_migrate_page(struct address_space *mapping,
545 		struct page *newpage, struct page *page, enum migrate_mode mode)
546 {
547 	struct buffer_head *bh, *head;
548 	int rc;
549 
550 	if (!page_has_buffers(page))
551 		return migrate_page(mapping, newpage, page, mode);
552 
553 	head = page_buffers(page);
554 
555 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
556 
557 	if (rc != MIGRATEPAGE_SUCCESS)
558 		return rc;
559 
560 	/*
561 	 * In the async case, migrate_page_move_mapping locked the buffers
562 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
563 	 * need to be locked now
564 	 */
565 	if (mode != MIGRATE_ASYNC)
566 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
567 
568 	ClearPagePrivate(page);
569 	set_page_private(newpage, page_private(page));
570 	set_page_private(page, 0);
571 	put_page(page);
572 	get_page(newpage);
573 
574 	bh = head;
575 	do {
576 		set_bh_page(bh, newpage, bh_offset(bh));
577 		bh = bh->b_this_page;
578 
579 	} while (bh != head);
580 
581 	SetPagePrivate(newpage);
582 
583 	migrate_page_copy(newpage, page);
584 
585 	bh = head;
586 	do {
587 		unlock_buffer(bh);
588  		put_bh(bh);
589 		bh = bh->b_this_page;
590 
591 	} while (bh != head);
592 
593 	return MIGRATEPAGE_SUCCESS;
594 }
595 EXPORT_SYMBOL(buffer_migrate_page);
596 #endif
597 
598 /*
599  * Writeback a page to clean the dirty state
600  */
601 static int writeout(struct address_space *mapping, struct page *page)
602 {
603 	struct writeback_control wbc = {
604 		.sync_mode = WB_SYNC_NONE,
605 		.nr_to_write = 1,
606 		.range_start = 0,
607 		.range_end = LLONG_MAX,
608 		.for_reclaim = 1
609 	};
610 	int rc;
611 
612 	if (!mapping->a_ops->writepage)
613 		/* No write method for the address space */
614 		return -EINVAL;
615 
616 	if (!clear_page_dirty_for_io(page))
617 		/* Someone else already triggered a write */
618 		return -EAGAIN;
619 
620 	/*
621 	 * A dirty page may imply that the underlying filesystem has
622 	 * the page on some queue. So the page must be clean for
623 	 * migration. Writeout may mean we loose the lock and the
624 	 * page state is no longer what we checked for earlier.
625 	 * At this point we know that the migration attempt cannot
626 	 * be successful.
627 	 */
628 	remove_migration_ptes(page, page);
629 
630 	rc = mapping->a_ops->writepage(page, &wbc);
631 
632 	if (rc != AOP_WRITEPAGE_ACTIVATE)
633 		/* unlocked. Relock */
634 		lock_page(page);
635 
636 	return (rc < 0) ? -EIO : -EAGAIN;
637 }
638 
639 /*
640  * Default handling if a filesystem does not provide a migration function.
641  */
642 static int fallback_migrate_page(struct address_space *mapping,
643 	struct page *newpage, struct page *page, enum migrate_mode mode)
644 {
645 	if (PageDirty(page)) {
646 		/* Only writeback pages in full synchronous migration */
647 		if (mode != MIGRATE_SYNC)
648 			return -EBUSY;
649 		return writeout(mapping, page);
650 	}
651 
652 	/*
653 	 * Buffers may be managed in a filesystem specific way.
654 	 * We must have no buffers or drop them.
655 	 */
656 	if (page_has_private(page) &&
657 	    !try_to_release_page(page, GFP_KERNEL))
658 		return -EAGAIN;
659 
660 	return migrate_page(mapping, newpage, page, mode);
661 }
662 
663 /*
664  * Move a page to a newly allocated page
665  * The page is locked and all ptes have been successfully removed.
666  *
667  * The new page will have replaced the old page if this function
668  * is successful.
669  *
670  * Return value:
671  *   < 0 - error code
672  *  MIGRATEPAGE_SUCCESS - success
673  */
674 static int move_to_new_page(struct page *newpage, struct page *page,
675 				int remap_swapcache, enum migrate_mode mode)
676 {
677 	struct address_space *mapping;
678 	int rc;
679 
680 	/*
681 	 * Block others from accessing the page when we get around to
682 	 * establishing additional references. We are the only one
683 	 * holding a reference to the new page at this point.
684 	 */
685 	if (!trylock_page(newpage))
686 		BUG();
687 
688 	/* Prepare mapping for the new page.*/
689 	newpage->index = page->index;
690 	newpage->mapping = page->mapping;
691 	if (PageSwapBacked(page))
692 		SetPageSwapBacked(newpage);
693 
694 	mapping = page_mapping(page);
695 	if (!mapping)
696 		rc = migrate_page(mapping, newpage, page, mode);
697 	else if (mapping->a_ops->migratepage)
698 		/*
699 		 * Most pages have a mapping and most filesystems provide a
700 		 * migratepage callback. Anonymous pages are part of swap
701 		 * space which also has its own migratepage callback. This
702 		 * is the most common path for page migration.
703 		 */
704 		rc = mapping->a_ops->migratepage(mapping,
705 						newpage, page, mode);
706 	else
707 		rc = fallback_migrate_page(mapping, newpage, page, mode);
708 
709 	if (rc != MIGRATEPAGE_SUCCESS) {
710 		newpage->mapping = NULL;
711 	} else {
712 		if (remap_swapcache)
713 			remove_migration_ptes(page, newpage);
714 		page->mapping = NULL;
715 	}
716 
717 	unlock_page(newpage);
718 
719 	return rc;
720 }
721 
722 static int __unmap_and_move(struct page *page, struct page *newpage,
723 				int force, enum migrate_mode mode)
724 {
725 	int rc = -EAGAIN;
726 	int remap_swapcache = 1;
727 	struct mem_cgroup *mem;
728 	struct anon_vma *anon_vma = NULL;
729 
730 	if (!trylock_page(page)) {
731 		if (!force || mode == MIGRATE_ASYNC)
732 			goto out;
733 
734 		/*
735 		 * It's not safe for direct compaction to call lock_page.
736 		 * For example, during page readahead pages are added locked
737 		 * to the LRU. Later, when the IO completes the pages are
738 		 * marked uptodate and unlocked. However, the queueing
739 		 * could be merging multiple pages for one bio (e.g.
740 		 * mpage_readpages). If an allocation happens for the
741 		 * second or third page, the process can end up locking
742 		 * the same page twice and deadlocking. Rather than
743 		 * trying to be clever about what pages can be locked,
744 		 * avoid the use of lock_page for direct compaction
745 		 * altogether.
746 		 */
747 		if (current->flags & PF_MEMALLOC)
748 			goto out;
749 
750 		lock_page(page);
751 	}
752 
753 	/* charge against new page */
754 	mem_cgroup_prepare_migration(page, newpage, &mem);
755 
756 	if (PageWriteback(page)) {
757 		/*
758 		 * Only in the case of a full synchronous migration is it
759 		 * necessary to wait for PageWriteback. In the async case,
760 		 * the retry loop is too short and in the sync-light case,
761 		 * the overhead of stalling is too much
762 		 */
763 		if (mode != MIGRATE_SYNC) {
764 			rc = -EBUSY;
765 			goto uncharge;
766 		}
767 		if (!force)
768 			goto uncharge;
769 		wait_on_page_writeback(page);
770 	}
771 	/*
772 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
773 	 * we cannot notice that anon_vma is freed while we migrates a page.
774 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
775 	 * of migration. File cache pages are no problem because of page_lock()
776 	 * File Caches may use write_page() or lock_page() in migration, then,
777 	 * just care Anon page here.
778 	 */
779 	if (PageAnon(page) && !PageKsm(page)) {
780 		/*
781 		 * Only page_lock_anon_vma_read() understands the subtleties of
782 		 * getting a hold on an anon_vma from outside one of its mms.
783 		 */
784 		anon_vma = page_get_anon_vma(page);
785 		if (anon_vma) {
786 			/*
787 			 * Anon page
788 			 */
789 		} else if (PageSwapCache(page)) {
790 			/*
791 			 * We cannot be sure that the anon_vma of an unmapped
792 			 * swapcache page is safe to use because we don't
793 			 * know in advance if the VMA that this page belonged
794 			 * to still exists. If the VMA and others sharing the
795 			 * data have been freed, then the anon_vma could
796 			 * already be invalid.
797 			 *
798 			 * To avoid this possibility, swapcache pages get
799 			 * migrated but are not remapped when migration
800 			 * completes
801 			 */
802 			remap_swapcache = 0;
803 		} else {
804 			goto uncharge;
805 		}
806 	}
807 
808 	if (unlikely(balloon_page_movable(page))) {
809 		/*
810 		 * A ballooned page does not need any special attention from
811 		 * physical to virtual reverse mapping procedures.
812 		 * Skip any attempt to unmap PTEs or to remap swap cache,
813 		 * in order to avoid burning cycles at rmap level, and perform
814 		 * the page migration right away (proteced by page lock).
815 		 */
816 		rc = balloon_page_migrate(newpage, page, mode);
817 		goto uncharge;
818 	}
819 
820 	/*
821 	 * Corner case handling:
822 	 * 1. When a new swap-cache page is read into, it is added to the LRU
823 	 * and treated as swapcache but it has no rmap yet.
824 	 * Calling try_to_unmap() against a page->mapping==NULL page will
825 	 * trigger a BUG.  So handle it here.
826 	 * 2. An orphaned page (see truncate_complete_page) might have
827 	 * fs-private metadata. The page can be picked up due to memory
828 	 * offlining.  Everywhere else except page reclaim, the page is
829 	 * invisible to the vm, so the page can not be migrated.  So try to
830 	 * free the metadata, so the page can be freed.
831 	 */
832 	if (!page->mapping) {
833 		VM_BUG_ON(PageAnon(page));
834 		if (page_has_private(page)) {
835 			try_to_free_buffers(page);
836 			goto uncharge;
837 		}
838 		goto skip_unmap;
839 	}
840 
841 	/* Establish migration ptes or remove ptes */
842 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
843 
844 skip_unmap:
845 	if (!page_mapped(page))
846 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
847 
848 	if (rc && remap_swapcache)
849 		remove_migration_ptes(page, page);
850 
851 	/* Drop an anon_vma reference if we took one */
852 	if (anon_vma)
853 		put_anon_vma(anon_vma);
854 
855 uncharge:
856 	mem_cgroup_end_migration(mem, page, newpage,
857 				 (rc == MIGRATEPAGE_SUCCESS ||
858 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
859 	unlock_page(page);
860 out:
861 	return rc;
862 }
863 
864 /*
865  * Obtain the lock on page, remove all ptes and migrate the page
866  * to the newly allocated page in newpage.
867  */
868 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
869 			struct page *page, int force, enum migrate_mode mode)
870 {
871 	int rc = 0;
872 	int *result = NULL;
873 	struct page *newpage = get_new_page(page, private, &result);
874 
875 	if (!newpage)
876 		return -ENOMEM;
877 
878 	if (page_count(page) == 1) {
879 		/* page was freed from under us. So we are done. */
880 		goto out;
881 	}
882 
883 	if (unlikely(PageTransHuge(page)))
884 		if (unlikely(split_huge_page(page)))
885 			goto out;
886 
887 	rc = __unmap_and_move(page, newpage, force, mode);
888 
889 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
890 		/*
891 		 * A ballooned page has been migrated already.
892 		 * Now, it's the time to wrap-up counters,
893 		 * handle the page back to Buddy and return.
894 		 */
895 		dec_zone_page_state(page, NR_ISOLATED_ANON +
896 				    page_is_file_cache(page));
897 		balloon_page_free(page);
898 		return MIGRATEPAGE_SUCCESS;
899 	}
900 out:
901 	if (rc != -EAGAIN) {
902 		/*
903 		 * A page that has been migrated has all references
904 		 * removed and will be freed. A page that has not been
905 		 * migrated will have kepts its references and be
906 		 * restored.
907 		 */
908 		list_del(&page->lru);
909 		dec_zone_page_state(page, NR_ISOLATED_ANON +
910 				page_is_file_cache(page));
911 		putback_lru_page(page);
912 	}
913 	/*
914 	 * Move the new page to the LRU. If migration was not successful
915 	 * then this will free the page.
916 	 */
917 	putback_lru_page(newpage);
918 	if (result) {
919 		if (rc)
920 			*result = rc;
921 		else
922 			*result = page_to_nid(newpage);
923 	}
924 	return rc;
925 }
926 
927 /*
928  * Counterpart of unmap_and_move_page() for hugepage migration.
929  *
930  * This function doesn't wait the completion of hugepage I/O
931  * because there is no race between I/O and migration for hugepage.
932  * Note that currently hugepage I/O occurs only in direct I/O
933  * where no lock is held and PG_writeback is irrelevant,
934  * and writeback status of all subpages are counted in the reference
935  * count of the head page (i.e. if all subpages of a 2MB hugepage are
936  * under direct I/O, the reference of the head page is 512 and a bit more.)
937  * This means that when we try to migrate hugepage whose subpages are
938  * doing direct I/O, some references remain after try_to_unmap() and
939  * hugepage migration fails without data corruption.
940  *
941  * There is also no race when direct I/O is issued on the page under migration,
942  * because then pte is replaced with migration swap entry and direct I/O code
943  * will wait in the page fault for migration to complete.
944  */
945 static int unmap_and_move_huge_page(new_page_t get_new_page,
946 				unsigned long private, struct page *hpage,
947 				int force, enum migrate_mode mode)
948 {
949 	int rc = 0;
950 	int *result = NULL;
951 	struct page *new_hpage = get_new_page(hpage, private, &result);
952 	struct anon_vma *anon_vma = NULL;
953 
954 	/*
955 	 * Movability of hugepages depends on architectures and hugepage size.
956 	 * This check is necessary because some callers of hugepage migration
957 	 * like soft offline and memory hotremove don't walk through page
958 	 * tables or check whether the hugepage is pmd-based or not before
959 	 * kicking migration.
960 	 */
961 	if (!hugepage_migration_support(page_hstate(hpage)))
962 		return -ENOSYS;
963 
964 	if (!new_hpage)
965 		return -ENOMEM;
966 
967 	rc = -EAGAIN;
968 
969 	if (!trylock_page(hpage)) {
970 		if (!force || mode != MIGRATE_SYNC)
971 			goto out;
972 		lock_page(hpage);
973 	}
974 
975 	if (PageAnon(hpage))
976 		anon_vma = page_get_anon_vma(hpage);
977 
978 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
979 
980 	if (!page_mapped(hpage))
981 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
982 
983 	if (rc)
984 		remove_migration_ptes(hpage, hpage);
985 
986 	if (anon_vma)
987 		put_anon_vma(anon_vma);
988 
989 	if (!rc)
990 		hugetlb_cgroup_migrate(hpage, new_hpage);
991 
992 	unlock_page(hpage);
993 out:
994 	if (rc != -EAGAIN)
995 		putback_active_hugepage(hpage);
996 	put_page(new_hpage);
997 	if (result) {
998 		if (rc)
999 			*result = rc;
1000 		else
1001 			*result = page_to_nid(new_hpage);
1002 	}
1003 	return rc;
1004 }
1005 
1006 /*
1007  * migrate_pages - migrate the pages specified in a list, to the free pages
1008  *		   supplied as the target for the page migration
1009  *
1010  * @from:		The list of pages to be migrated.
1011  * @get_new_page:	The function used to allocate free pages to be used
1012  *			as the target of the page migration.
1013  * @private:		Private data to be passed on to get_new_page()
1014  * @mode:		The migration mode that specifies the constraints for
1015  *			page migration, if any.
1016  * @reason:		The reason for page migration.
1017  *
1018  * The function returns after 10 attempts or if no pages are movable any more
1019  * because the list has become empty or no retryable pages exist any more.
1020  * The caller should call putback_lru_pages() to return pages to the LRU
1021  * or free list only if ret != 0.
1022  *
1023  * Returns the number of pages that were not migrated, or an error code.
1024  */
1025 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1026 		unsigned long private, enum migrate_mode mode, int reason)
1027 {
1028 	int retry = 1;
1029 	int nr_failed = 0;
1030 	int nr_succeeded = 0;
1031 	int pass = 0;
1032 	struct page *page;
1033 	struct page *page2;
1034 	int swapwrite = current->flags & PF_SWAPWRITE;
1035 	int rc;
1036 
1037 	if (!swapwrite)
1038 		current->flags |= PF_SWAPWRITE;
1039 
1040 	for(pass = 0; pass < 10 && retry; pass++) {
1041 		retry = 0;
1042 
1043 		list_for_each_entry_safe(page, page2, from, lru) {
1044 			cond_resched();
1045 
1046 			if (PageHuge(page))
1047 				rc = unmap_and_move_huge_page(get_new_page,
1048 						private, page, pass > 2, mode);
1049 			else
1050 				rc = unmap_and_move(get_new_page, private,
1051 						page, pass > 2, mode);
1052 
1053 			switch(rc) {
1054 			case -ENOMEM:
1055 				goto out;
1056 			case -EAGAIN:
1057 				retry++;
1058 				break;
1059 			case MIGRATEPAGE_SUCCESS:
1060 				nr_succeeded++;
1061 				break;
1062 			default:
1063 				/* Permanent failure */
1064 				nr_failed++;
1065 				break;
1066 			}
1067 		}
1068 	}
1069 	rc = nr_failed + retry;
1070 out:
1071 	if (nr_succeeded)
1072 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1073 	if (nr_failed)
1074 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1075 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1076 
1077 	if (!swapwrite)
1078 		current->flags &= ~PF_SWAPWRITE;
1079 
1080 	return rc;
1081 }
1082 
1083 #ifdef CONFIG_NUMA
1084 /*
1085  * Move a list of individual pages
1086  */
1087 struct page_to_node {
1088 	unsigned long addr;
1089 	struct page *page;
1090 	int node;
1091 	int status;
1092 };
1093 
1094 static struct page *new_page_node(struct page *p, unsigned long private,
1095 		int **result)
1096 {
1097 	struct page_to_node *pm = (struct page_to_node *)private;
1098 
1099 	while (pm->node != MAX_NUMNODES && pm->page != p)
1100 		pm++;
1101 
1102 	if (pm->node == MAX_NUMNODES)
1103 		return NULL;
1104 
1105 	*result = &pm->status;
1106 
1107 	if (PageHuge(p))
1108 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1109 					pm->node);
1110 	else
1111 		return alloc_pages_exact_node(pm->node,
1112 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1113 }
1114 
1115 /*
1116  * Move a set of pages as indicated in the pm array. The addr
1117  * field must be set to the virtual address of the page to be moved
1118  * and the node number must contain a valid target node.
1119  * The pm array ends with node = MAX_NUMNODES.
1120  */
1121 static int do_move_page_to_node_array(struct mm_struct *mm,
1122 				      struct page_to_node *pm,
1123 				      int migrate_all)
1124 {
1125 	int err;
1126 	struct page_to_node *pp;
1127 	LIST_HEAD(pagelist);
1128 
1129 	down_read(&mm->mmap_sem);
1130 
1131 	/*
1132 	 * Build a list of pages to migrate
1133 	 */
1134 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1135 		struct vm_area_struct *vma;
1136 		struct page *page;
1137 
1138 		err = -EFAULT;
1139 		vma = find_vma(mm, pp->addr);
1140 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1141 			goto set_status;
1142 
1143 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1144 
1145 		err = PTR_ERR(page);
1146 		if (IS_ERR(page))
1147 			goto set_status;
1148 
1149 		err = -ENOENT;
1150 		if (!page)
1151 			goto set_status;
1152 
1153 		/* Use PageReserved to check for zero page */
1154 		if (PageReserved(page))
1155 			goto put_and_set;
1156 
1157 		pp->page = page;
1158 		err = page_to_nid(page);
1159 
1160 		if (err == pp->node)
1161 			/*
1162 			 * Node already in the right place
1163 			 */
1164 			goto put_and_set;
1165 
1166 		err = -EACCES;
1167 		if (page_mapcount(page) > 1 &&
1168 				!migrate_all)
1169 			goto put_and_set;
1170 
1171 		if (PageHuge(page)) {
1172 			isolate_huge_page(page, &pagelist);
1173 			goto put_and_set;
1174 		}
1175 
1176 		err = isolate_lru_page(page);
1177 		if (!err) {
1178 			list_add_tail(&page->lru, &pagelist);
1179 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1180 					    page_is_file_cache(page));
1181 		}
1182 put_and_set:
1183 		/*
1184 		 * Either remove the duplicate refcount from
1185 		 * isolate_lru_page() or drop the page ref if it was
1186 		 * not isolated.
1187 		 */
1188 		put_page(page);
1189 set_status:
1190 		pp->status = err;
1191 	}
1192 
1193 	err = 0;
1194 	if (!list_empty(&pagelist)) {
1195 		err = migrate_pages(&pagelist, new_page_node,
1196 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1197 		if (err)
1198 			putback_movable_pages(&pagelist);
1199 	}
1200 
1201 	up_read(&mm->mmap_sem);
1202 	return err;
1203 }
1204 
1205 /*
1206  * Migrate an array of page address onto an array of nodes and fill
1207  * the corresponding array of status.
1208  */
1209 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1210 			 unsigned long nr_pages,
1211 			 const void __user * __user *pages,
1212 			 const int __user *nodes,
1213 			 int __user *status, int flags)
1214 {
1215 	struct page_to_node *pm;
1216 	unsigned long chunk_nr_pages;
1217 	unsigned long chunk_start;
1218 	int err;
1219 
1220 	err = -ENOMEM;
1221 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1222 	if (!pm)
1223 		goto out;
1224 
1225 	migrate_prep();
1226 
1227 	/*
1228 	 * Store a chunk of page_to_node array in a page,
1229 	 * but keep the last one as a marker
1230 	 */
1231 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1232 
1233 	for (chunk_start = 0;
1234 	     chunk_start < nr_pages;
1235 	     chunk_start += chunk_nr_pages) {
1236 		int j;
1237 
1238 		if (chunk_start + chunk_nr_pages > nr_pages)
1239 			chunk_nr_pages = nr_pages - chunk_start;
1240 
1241 		/* fill the chunk pm with addrs and nodes from user-space */
1242 		for (j = 0; j < chunk_nr_pages; j++) {
1243 			const void __user *p;
1244 			int node;
1245 
1246 			err = -EFAULT;
1247 			if (get_user(p, pages + j + chunk_start))
1248 				goto out_pm;
1249 			pm[j].addr = (unsigned long) p;
1250 
1251 			if (get_user(node, nodes + j + chunk_start))
1252 				goto out_pm;
1253 
1254 			err = -ENODEV;
1255 			if (node < 0 || node >= MAX_NUMNODES)
1256 				goto out_pm;
1257 
1258 			if (!node_state(node, N_MEMORY))
1259 				goto out_pm;
1260 
1261 			err = -EACCES;
1262 			if (!node_isset(node, task_nodes))
1263 				goto out_pm;
1264 
1265 			pm[j].node = node;
1266 		}
1267 
1268 		/* End marker for this chunk */
1269 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1270 
1271 		/* Migrate this chunk */
1272 		err = do_move_page_to_node_array(mm, pm,
1273 						 flags & MPOL_MF_MOVE_ALL);
1274 		if (err < 0)
1275 			goto out_pm;
1276 
1277 		/* Return status information */
1278 		for (j = 0; j < chunk_nr_pages; j++)
1279 			if (put_user(pm[j].status, status + j + chunk_start)) {
1280 				err = -EFAULT;
1281 				goto out_pm;
1282 			}
1283 	}
1284 	err = 0;
1285 
1286 out_pm:
1287 	free_page((unsigned long)pm);
1288 out:
1289 	return err;
1290 }
1291 
1292 /*
1293  * Determine the nodes of an array of pages and store it in an array of status.
1294  */
1295 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1296 				const void __user **pages, int *status)
1297 {
1298 	unsigned long i;
1299 
1300 	down_read(&mm->mmap_sem);
1301 
1302 	for (i = 0; i < nr_pages; i++) {
1303 		unsigned long addr = (unsigned long)(*pages);
1304 		struct vm_area_struct *vma;
1305 		struct page *page;
1306 		int err = -EFAULT;
1307 
1308 		vma = find_vma(mm, addr);
1309 		if (!vma || addr < vma->vm_start)
1310 			goto set_status;
1311 
1312 		page = follow_page(vma, addr, 0);
1313 
1314 		err = PTR_ERR(page);
1315 		if (IS_ERR(page))
1316 			goto set_status;
1317 
1318 		err = -ENOENT;
1319 		/* Use PageReserved to check for zero page */
1320 		if (!page || PageReserved(page))
1321 			goto set_status;
1322 
1323 		err = page_to_nid(page);
1324 set_status:
1325 		*status = err;
1326 
1327 		pages++;
1328 		status++;
1329 	}
1330 
1331 	up_read(&mm->mmap_sem);
1332 }
1333 
1334 /*
1335  * Determine the nodes of a user array of pages and store it in
1336  * a user array of status.
1337  */
1338 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1339 			 const void __user * __user *pages,
1340 			 int __user *status)
1341 {
1342 #define DO_PAGES_STAT_CHUNK_NR 16
1343 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1344 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1345 
1346 	while (nr_pages) {
1347 		unsigned long chunk_nr;
1348 
1349 		chunk_nr = nr_pages;
1350 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1351 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1352 
1353 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1354 			break;
1355 
1356 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1357 
1358 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1359 			break;
1360 
1361 		pages += chunk_nr;
1362 		status += chunk_nr;
1363 		nr_pages -= chunk_nr;
1364 	}
1365 	return nr_pages ? -EFAULT : 0;
1366 }
1367 
1368 /*
1369  * Move a list of pages in the address space of the currently executing
1370  * process.
1371  */
1372 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1373 		const void __user * __user *, pages,
1374 		const int __user *, nodes,
1375 		int __user *, status, int, flags)
1376 {
1377 	const struct cred *cred = current_cred(), *tcred;
1378 	struct task_struct *task;
1379 	struct mm_struct *mm;
1380 	int err;
1381 	nodemask_t task_nodes;
1382 
1383 	/* Check flags */
1384 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1385 		return -EINVAL;
1386 
1387 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1388 		return -EPERM;
1389 
1390 	/* Find the mm_struct */
1391 	rcu_read_lock();
1392 	task = pid ? find_task_by_vpid(pid) : current;
1393 	if (!task) {
1394 		rcu_read_unlock();
1395 		return -ESRCH;
1396 	}
1397 	get_task_struct(task);
1398 
1399 	/*
1400 	 * Check if this process has the right to modify the specified
1401 	 * process. The right exists if the process has administrative
1402 	 * capabilities, superuser privileges or the same
1403 	 * userid as the target process.
1404 	 */
1405 	tcred = __task_cred(task);
1406 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1407 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1408 	    !capable(CAP_SYS_NICE)) {
1409 		rcu_read_unlock();
1410 		err = -EPERM;
1411 		goto out;
1412 	}
1413 	rcu_read_unlock();
1414 
1415  	err = security_task_movememory(task);
1416  	if (err)
1417 		goto out;
1418 
1419 	task_nodes = cpuset_mems_allowed(task);
1420 	mm = get_task_mm(task);
1421 	put_task_struct(task);
1422 
1423 	if (!mm)
1424 		return -EINVAL;
1425 
1426 	if (nodes)
1427 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1428 				    nodes, status, flags);
1429 	else
1430 		err = do_pages_stat(mm, nr_pages, pages, status);
1431 
1432 	mmput(mm);
1433 	return err;
1434 
1435 out:
1436 	put_task_struct(task);
1437 	return err;
1438 }
1439 
1440 /*
1441  * Call migration functions in the vma_ops that may prepare
1442  * memory in a vm for migration. migration functions may perform
1443  * the migration for vmas that do not have an underlying page struct.
1444  */
1445 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1446 	const nodemask_t *from, unsigned long flags)
1447 {
1448  	struct vm_area_struct *vma;
1449  	int err = 0;
1450 
1451 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1452  		if (vma->vm_ops && vma->vm_ops->migrate) {
1453  			err = vma->vm_ops->migrate(vma, to, from, flags);
1454  			if (err)
1455  				break;
1456  		}
1457  	}
1458  	return err;
1459 }
1460 
1461 #ifdef CONFIG_NUMA_BALANCING
1462 /*
1463  * Returns true if this is a safe migration target node for misplaced NUMA
1464  * pages. Currently it only checks the watermarks which crude
1465  */
1466 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1467 				   unsigned long nr_migrate_pages)
1468 {
1469 	int z;
1470 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1471 		struct zone *zone = pgdat->node_zones + z;
1472 
1473 		if (!populated_zone(zone))
1474 			continue;
1475 
1476 		if (!zone_reclaimable(zone))
1477 			continue;
1478 
1479 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1480 		if (!zone_watermark_ok(zone, 0,
1481 				       high_wmark_pages(zone) +
1482 				       nr_migrate_pages,
1483 				       0, 0))
1484 			continue;
1485 		return true;
1486 	}
1487 	return false;
1488 }
1489 
1490 static struct page *alloc_misplaced_dst_page(struct page *page,
1491 					   unsigned long data,
1492 					   int **result)
1493 {
1494 	int nid = (int) data;
1495 	struct page *newpage;
1496 
1497 	newpage = alloc_pages_exact_node(nid,
1498 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1499 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1500 					  __GFP_NOWARN) &
1501 					 ~GFP_IOFS, 0);
1502 	if (newpage)
1503 		page_nid_xchg_last(newpage, page_nid_last(page));
1504 
1505 	return newpage;
1506 }
1507 
1508 /*
1509  * page migration rate limiting control.
1510  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1511  * window of time. Default here says do not migrate more than 1280M per second.
1512  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1513  * as it is faults that reset the window, pte updates will happen unconditionally
1514  * if there has not been a fault since @pteupdate_interval_millisecs after the
1515  * throttle window closed.
1516  */
1517 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1518 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1519 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1520 
1521 /* Returns true if NUMA migration is currently rate limited */
1522 bool migrate_ratelimited(int node)
1523 {
1524 	pg_data_t *pgdat = NODE_DATA(node);
1525 
1526 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1527 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1528 		return false;
1529 
1530 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1531 		return false;
1532 
1533 	return true;
1534 }
1535 
1536 /* Returns true if the node is migrate rate-limited after the update */
1537 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1538 {
1539 	bool rate_limited = false;
1540 
1541 	/*
1542 	 * Rate-limit the amount of data that is being migrated to a node.
1543 	 * Optimal placement is no good if the memory bus is saturated and
1544 	 * all the time is being spent migrating!
1545 	 */
1546 	spin_lock(&pgdat->numabalancing_migrate_lock);
1547 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1548 		pgdat->numabalancing_migrate_nr_pages = 0;
1549 		pgdat->numabalancing_migrate_next_window = jiffies +
1550 			msecs_to_jiffies(migrate_interval_millisecs);
1551 	}
1552 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1553 		rate_limited = true;
1554 	else
1555 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1556 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1557 
1558 	return rate_limited;
1559 }
1560 
1561 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1562 {
1563 	int page_lru;
1564 
1565 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1566 
1567 	/* Avoid migrating to a node that is nearly full */
1568 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1569 		return 0;
1570 
1571 	if (isolate_lru_page(page))
1572 		return 0;
1573 
1574 	/*
1575 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1576 	 * check on page_count(), so we must do it here, now that the page
1577 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1578 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1579 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1580 	 */
1581 	if (PageTransHuge(page) && page_count(page) != 3) {
1582 		putback_lru_page(page);
1583 		return 0;
1584 	}
1585 
1586 	page_lru = page_is_file_cache(page);
1587 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1588 				hpage_nr_pages(page));
1589 
1590 	/*
1591 	 * Isolating the page has taken another reference, so the
1592 	 * caller's reference can be safely dropped without the page
1593 	 * disappearing underneath us during migration.
1594 	 */
1595 	put_page(page);
1596 	return 1;
1597 }
1598 
1599 /*
1600  * Attempt to migrate a misplaced page to the specified destination
1601  * node. Caller is expected to have an elevated reference count on
1602  * the page that will be dropped by this function before returning.
1603  */
1604 int migrate_misplaced_page(struct page *page, int node)
1605 {
1606 	pg_data_t *pgdat = NODE_DATA(node);
1607 	int isolated;
1608 	int nr_remaining;
1609 	LIST_HEAD(migratepages);
1610 
1611 	/*
1612 	 * Don't migrate pages that are mapped in multiple processes.
1613 	 * TODO: Handle false sharing detection instead of this hammer
1614 	 */
1615 	if (page_mapcount(page) != 1)
1616 		goto out;
1617 
1618 	/*
1619 	 * Rate-limit the amount of data that is being migrated to a node.
1620 	 * Optimal placement is no good if the memory bus is saturated and
1621 	 * all the time is being spent migrating!
1622 	 */
1623 	if (numamigrate_update_ratelimit(pgdat, 1))
1624 		goto out;
1625 
1626 	isolated = numamigrate_isolate_page(pgdat, page);
1627 	if (!isolated)
1628 		goto out;
1629 
1630 	list_add(&page->lru, &migratepages);
1631 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1632 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1633 	if (nr_remaining) {
1634 		putback_lru_pages(&migratepages);
1635 		isolated = 0;
1636 	} else
1637 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1638 	BUG_ON(!list_empty(&migratepages));
1639 	return isolated;
1640 
1641 out:
1642 	put_page(page);
1643 	return 0;
1644 }
1645 #endif /* CONFIG_NUMA_BALANCING */
1646 
1647 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1648 /*
1649  * Migrates a THP to a given target node. page must be locked and is unlocked
1650  * before returning.
1651  */
1652 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1653 				struct vm_area_struct *vma,
1654 				pmd_t *pmd, pmd_t entry,
1655 				unsigned long address,
1656 				struct page *page, int node)
1657 {
1658 	unsigned long haddr = address & HPAGE_PMD_MASK;
1659 	pg_data_t *pgdat = NODE_DATA(node);
1660 	int isolated = 0;
1661 	struct page *new_page = NULL;
1662 	struct mem_cgroup *memcg = NULL;
1663 	int page_lru = page_is_file_cache(page);
1664 
1665 	/*
1666 	 * Don't migrate pages that are mapped in multiple processes.
1667 	 * TODO: Handle false sharing detection instead of this hammer
1668 	 */
1669 	if (page_mapcount(page) != 1)
1670 		goto out_dropref;
1671 
1672 	/*
1673 	 * Rate-limit the amount of data that is being migrated to a node.
1674 	 * Optimal placement is no good if the memory bus is saturated and
1675 	 * all the time is being spent migrating!
1676 	 */
1677 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1678 		goto out_dropref;
1679 
1680 	new_page = alloc_pages_node(node,
1681 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1682 	if (!new_page)
1683 		goto out_fail;
1684 
1685 	page_nid_xchg_last(new_page, page_nid_last(page));
1686 
1687 	isolated = numamigrate_isolate_page(pgdat, page);
1688 	if (!isolated) {
1689 		put_page(new_page);
1690 		goto out_fail;
1691 	}
1692 
1693 	/* Prepare a page as a migration target */
1694 	__set_page_locked(new_page);
1695 	SetPageSwapBacked(new_page);
1696 
1697 	/* anon mapping, we can simply copy page->mapping to the new page: */
1698 	new_page->mapping = page->mapping;
1699 	new_page->index = page->index;
1700 	migrate_page_copy(new_page, page);
1701 	WARN_ON(PageLRU(new_page));
1702 
1703 	/* Recheck the target PMD */
1704 	spin_lock(&mm->page_table_lock);
1705 	if (unlikely(!pmd_same(*pmd, entry))) {
1706 		spin_unlock(&mm->page_table_lock);
1707 
1708 		/* Reverse changes made by migrate_page_copy() */
1709 		if (TestClearPageActive(new_page))
1710 			SetPageActive(page);
1711 		if (TestClearPageUnevictable(new_page))
1712 			SetPageUnevictable(page);
1713 		mlock_migrate_page(page, new_page);
1714 
1715 		unlock_page(new_page);
1716 		put_page(new_page);		/* Free it */
1717 
1718 		unlock_page(page);
1719 		putback_lru_page(page);
1720 
1721 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1722 		isolated = 0;
1723 		goto out;
1724 	}
1725 
1726 	/*
1727 	 * Traditional migration needs to prepare the memcg charge
1728 	 * transaction early to prevent the old page from being
1729 	 * uncharged when installing migration entries.  Here we can
1730 	 * save the potential rollback and start the charge transfer
1731 	 * only when migration is already known to end successfully.
1732 	 */
1733 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1734 
1735 	entry = mk_pmd(new_page, vma->vm_page_prot);
1736 	entry = pmd_mknonnuma(entry);
1737 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1738 	entry = pmd_mkhuge(entry);
1739 
1740 	page_add_new_anon_rmap(new_page, vma, haddr);
1741 
1742 	set_pmd_at(mm, haddr, pmd, entry);
1743 	update_mmu_cache_pmd(vma, address, &entry);
1744 	page_remove_rmap(page);
1745 	/*
1746 	 * Finish the charge transaction under the page table lock to
1747 	 * prevent split_huge_page() from dividing up the charge
1748 	 * before it's fully transferred to the new page.
1749 	 */
1750 	mem_cgroup_end_migration(memcg, page, new_page, true);
1751 	spin_unlock(&mm->page_table_lock);
1752 
1753 	unlock_page(new_page);
1754 	unlock_page(page);
1755 	put_page(page);			/* Drop the rmap reference */
1756 	put_page(page);			/* Drop the LRU isolation reference */
1757 
1758 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1759 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1760 
1761 out:
1762 	mod_zone_page_state(page_zone(page),
1763 			NR_ISOLATED_ANON + page_lru,
1764 			-HPAGE_PMD_NR);
1765 	return isolated;
1766 
1767 out_fail:
1768 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1769 out_dropref:
1770 	unlock_page(page);
1771 	put_page(page);
1772 	return 0;
1773 }
1774 #endif /* CONFIG_NUMA_BALANCING */
1775 
1776 #endif /* CONFIG_NUMA */
1777