1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 40 #include <asm/tlbflush.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/migrate.h> 44 45 #include "internal.h" 46 47 /* 48 * migrate_prep() needs to be called before we start compiling a list of pages 49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 50 * undesirable, use migrate_prep_local() 51 */ 52 int migrate_prep(void) 53 { 54 /* 55 * Clear the LRU lists so pages can be isolated. 56 * Note that pages may be moved off the LRU after we have 57 * drained them. Those pages will fail to migrate like other 58 * pages that may be busy. 59 */ 60 lru_add_drain_all(); 61 62 return 0; 63 } 64 65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 66 int migrate_prep_local(void) 67 { 68 lru_add_drain(); 69 70 return 0; 71 } 72 73 /* 74 * Add isolated pages on the list back to the LRU under page lock 75 * to avoid leaking evictable pages back onto unevictable list. 76 */ 77 void putback_lru_pages(struct list_head *l) 78 { 79 struct page *page; 80 struct page *page2; 81 82 list_for_each_entry_safe(page, page2, l, lru) { 83 list_del(&page->lru); 84 dec_zone_page_state(page, NR_ISOLATED_ANON + 85 page_is_file_cache(page)); 86 putback_lru_page(page); 87 } 88 } 89 90 /* 91 * Put previously isolated pages back onto the appropriate lists 92 * from where they were once taken off for compaction/migration. 93 * 94 * This function shall be used instead of putback_lru_pages(), 95 * whenever the isolated pageset has been built by isolate_migratepages_range() 96 */ 97 void putback_movable_pages(struct list_head *l) 98 { 99 struct page *page; 100 struct page *page2; 101 102 list_for_each_entry_safe(page, page2, l, lru) { 103 if (unlikely(PageHuge(page))) { 104 putback_active_hugepage(page); 105 continue; 106 } 107 list_del(&page->lru); 108 dec_zone_page_state(page, NR_ISOLATED_ANON + 109 page_is_file_cache(page)); 110 if (unlikely(isolated_balloon_page(page))) 111 balloon_page_putback(page); 112 else 113 putback_lru_page(page); 114 } 115 } 116 117 /* 118 * Restore a potential migration pte to a working pte entry 119 */ 120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 121 unsigned long addr, void *old) 122 { 123 struct mm_struct *mm = vma->vm_mm; 124 swp_entry_t entry; 125 pmd_t *pmd; 126 pte_t *ptep, pte; 127 spinlock_t *ptl; 128 129 if (unlikely(PageHuge(new))) { 130 ptep = huge_pte_offset(mm, addr); 131 if (!ptep) 132 goto out; 133 ptl = &mm->page_table_lock; 134 } else { 135 pmd = mm_find_pmd(mm, addr); 136 if (!pmd) 137 goto out; 138 if (pmd_trans_huge(*pmd)) 139 goto out; 140 141 ptep = pte_offset_map(pmd, addr); 142 143 /* 144 * Peek to check is_swap_pte() before taking ptlock? No, we 145 * can race mremap's move_ptes(), which skips anon_vma lock. 146 */ 147 148 ptl = pte_lockptr(mm, pmd); 149 } 150 151 spin_lock(ptl); 152 pte = *ptep; 153 if (!is_swap_pte(pte)) 154 goto unlock; 155 156 entry = pte_to_swp_entry(pte); 157 158 if (!is_migration_entry(entry) || 159 migration_entry_to_page(entry) != old) 160 goto unlock; 161 162 get_page(new); 163 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 164 if (pte_swp_soft_dirty(*ptep)) 165 pte = pte_mksoft_dirty(pte); 166 if (is_write_migration_entry(entry)) 167 pte = pte_mkwrite(pte); 168 #ifdef CONFIG_HUGETLB_PAGE 169 if (PageHuge(new)) { 170 pte = pte_mkhuge(pte); 171 pte = arch_make_huge_pte(pte, vma, new, 0); 172 } 173 #endif 174 flush_dcache_page(new); 175 set_pte_at(mm, addr, ptep, pte); 176 177 if (PageHuge(new)) { 178 if (PageAnon(new)) 179 hugepage_add_anon_rmap(new, vma, addr); 180 else 181 page_dup_rmap(new); 182 } else if (PageAnon(new)) 183 page_add_anon_rmap(new, vma, addr); 184 else 185 page_add_file_rmap(new); 186 187 /* No need to invalidate - it was non-present before */ 188 update_mmu_cache(vma, addr, ptep); 189 unlock: 190 pte_unmap_unlock(ptep, ptl); 191 out: 192 return SWAP_AGAIN; 193 } 194 195 /* 196 * Get rid of all migration entries and replace them by 197 * references to the indicated page. 198 */ 199 static void remove_migration_ptes(struct page *old, struct page *new) 200 { 201 rmap_walk(new, remove_migration_pte, old); 202 } 203 204 /* 205 * Something used the pte of a page under migration. We need to 206 * get to the page and wait until migration is finished. 207 * When we return from this function the fault will be retried. 208 */ 209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 210 spinlock_t *ptl) 211 { 212 pte_t pte; 213 swp_entry_t entry; 214 struct page *page; 215 216 spin_lock(ptl); 217 pte = *ptep; 218 if (!is_swap_pte(pte)) 219 goto out; 220 221 entry = pte_to_swp_entry(pte); 222 if (!is_migration_entry(entry)) 223 goto out; 224 225 page = migration_entry_to_page(entry); 226 227 /* 228 * Once radix-tree replacement of page migration started, page_count 229 * *must* be zero. And, we don't want to call wait_on_page_locked() 230 * against a page without get_page(). 231 * So, we use get_page_unless_zero(), here. Even failed, page fault 232 * will occur again. 233 */ 234 if (!get_page_unless_zero(page)) 235 goto out; 236 pte_unmap_unlock(ptep, ptl); 237 wait_on_page_locked(page); 238 put_page(page); 239 return; 240 out: 241 pte_unmap_unlock(ptep, ptl); 242 } 243 244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 245 unsigned long address) 246 { 247 spinlock_t *ptl = pte_lockptr(mm, pmd); 248 pte_t *ptep = pte_offset_map(pmd, address); 249 __migration_entry_wait(mm, ptep, ptl); 250 } 251 252 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte) 253 { 254 spinlock_t *ptl = &(mm)->page_table_lock; 255 __migration_entry_wait(mm, pte, ptl); 256 } 257 258 #ifdef CONFIG_BLOCK 259 /* Returns true if all buffers are successfully locked */ 260 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 261 enum migrate_mode mode) 262 { 263 struct buffer_head *bh = head; 264 265 /* Simple case, sync compaction */ 266 if (mode != MIGRATE_ASYNC) { 267 do { 268 get_bh(bh); 269 lock_buffer(bh); 270 bh = bh->b_this_page; 271 272 } while (bh != head); 273 274 return true; 275 } 276 277 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 278 do { 279 get_bh(bh); 280 if (!trylock_buffer(bh)) { 281 /* 282 * We failed to lock the buffer and cannot stall in 283 * async migration. Release the taken locks 284 */ 285 struct buffer_head *failed_bh = bh; 286 put_bh(failed_bh); 287 bh = head; 288 while (bh != failed_bh) { 289 unlock_buffer(bh); 290 put_bh(bh); 291 bh = bh->b_this_page; 292 } 293 return false; 294 } 295 296 bh = bh->b_this_page; 297 } while (bh != head); 298 return true; 299 } 300 #else 301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 302 enum migrate_mode mode) 303 { 304 return true; 305 } 306 #endif /* CONFIG_BLOCK */ 307 308 /* 309 * Replace the page in the mapping. 310 * 311 * The number of remaining references must be: 312 * 1 for anonymous pages without a mapping 313 * 2 for pages with a mapping 314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 315 */ 316 int migrate_page_move_mapping(struct address_space *mapping, 317 struct page *newpage, struct page *page, 318 struct buffer_head *head, enum migrate_mode mode) 319 { 320 int expected_count = 0; 321 void **pslot; 322 323 if (!mapping) { 324 /* Anonymous page without mapping */ 325 if (page_count(page) != 1) 326 return -EAGAIN; 327 return MIGRATEPAGE_SUCCESS; 328 } 329 330 spin_lock_irq(&mapping->tree_lock); 331 332 pslot = radix_tree_lookup_slot(&mapping->page_tree, 333 page_index(page)); 334 335 expected_count = 2 + page_has_private(page); 336 if (page_count(page) != expected_count || 337 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 338 spin_unlock_irq(&mapping->tree_lock); 339 return -EAGAIN; 340 } 341 342 if (!page_freeze_refs(page, expected_count)) { 343 spin_unlock_irq(&mapping->tree_lock); 344 return -EAGAIN; 345 } 346 347 /* 348 * In the async migration case of moving a page with buffers, lock the 349 * buffers using trylock before the mapping is moved. If the mapping 350 * was moved, we later failed to lock the buffers and could not move 351 * the mapping back due to an elevated page count, we would have to 352 * block waiting on other references to be dropped. 353 */ 354 if (mode == MIGRATE_ASYNC && head && 355 !buffer_migrate_lock_buffers(head, mode)) { 356 page_unfreeze_refs(page, expected_count); 357 spin_unlock_irq(&mapping->tree_lock); 358 return -EAGAIN; 359 } 360 361 /* 362 * Now we know that no one else is looking at the page. 363 */ 364 get_page(newpage); /* add cache reference */ 365 if (PageSwapCache(page)) { 366 SetPageSwapCache(newpage); 367 set_page_private(newpage, page_private(page)); 368 } 369 370 radix_tree_replace_slot(pslot, newpage); 371 372 /* 373 * Drop cache reference from old page by unfreezing 374 * to one less reference. 375 * We know this isn't the last reference. 376 */ 377 page_unfreeze_refs(page, expected_count - 1); 378 379 /* 380 * If moved to a different zone then also account 381 * the page for that zone. Other VM counters will be 382 * taken care of when we establish references to the 383 * new page and drop references to the old page. 384 * 385 * Note that anonymous pages are accounted for 386 * via NR_FILE_PAGES and NR_ANON_PAGES if they 387 * are mapped to swap space. 388 */ 389 __dec_zone_page_state(page, NR_FILE_PAGES); 390 __inc_zone_page_state(newpage, NR_FILE_PAGES); 391 if (!PageSwapCache(page) && PageSwapBacked(page)) { 392 __dec_zone_page_state(page, NR_SHMEM); 393 __inc_zone_page_state(newpage, NR_SHMEM); 394 } 395 spin_unlock_irq(&mapping->tree_lock); 396 397 return MIGRATEPAGE_SUCCESS; 398 } 399 400 /* 401 * The expected number of remaining references is the same as that 402 * of migrate_page_move_mapping(). 403 */ 404 int migrate_huge_page_move_mapping(struct address_space *mapping, 405 struct page *newpage, struct page *page) 406 { 407 int expected_count; 408 void **pslot; 409 410 if (!mapping) { 411 if (page_count(page) != 1) 412 return -EAGAIN; 413 return MIGRATEPAGE_SUCCESS; 414 } 415 416 spin_lock_irq(&mapping->tree_lock); 417 418 pslot = radix_tree_lookup_slot(&mapping->page_tree, 419 page_index(page)); 420 421 expected_count = 2 + page_has_private(page); 422 if (page_count(page) != expected_count || 423 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 424 spin_unlock_irq(&mapping->tree_lock); 425 return -EAGAIN; 426 } 427 428 if (!page_freeze_refs(page, expected_count)) { 429 spin_unlock_irq(&mapping->tree_lock); 430 return -EAGAIN; 431 } 432 433 get_page(newpage); 434 435 radix_tree_replace_slot(pslot, newpage); 436 437 page_unfreeze_refs(page, expected_count - 1); 438 439 spin_unlock_irq(&mapping->tree_lock); 440 return MIGRATEPAGE_SUCCESS; 441 } 442 443 /* 444 * Copy the page to its new location 445 */ 446 void migrate_page_copy(struct page *newpage, struct page *page) 447 { 448 if (PageHuge(page) || PageTransHuge(page)) 449 copy_huge_page(newpage, page); 450 else 451 copy_highpage(newpage, page); 452 453 if (PageError(page)) 454 SetPageError(newpage); 455 if (PageReferenced(page)) 456 SetPageReferenced(newpage); 457 if (PageUptodate(page)) 458 SetPageUptodate(newpage); 459 if (TestClearPageActive(page)) { 460 VM_BUG_ON(PageUnevictable(page)); 461 SetPageActive(newpage); 462 } else if (TestClearPageUnevictable(page)) 463 SetPageUnevictable(newpage); 464 if (PageChecked(page)) 465 SetPageChecked(newpage); 466 if (PageMappedToDisk(page)) 467 SetPageMappedToDisk(newpage); 468 469 if (PageDirty(page)) { 470 clear_page_dirty_for_io(page); 471 /* 472 * Want to mark the page and the radix tree as dirty, and 473 * redo the accounting that clear_page_dirty_for_io undid, 474 * but we can't use set_page_dirty because that function 475 * is actually a signal that all of the page has become dirty. 476 * Whereas only part of our page may be dirty. 477 */ 478 if (PageSwapBacked(page)) 479 SetPageDirty(newpage); 480 else 481 __set_page_dirty_nobuffers(newpage); 482 } 483 484 mlock_migrate_page(newpage, page); 485 ksm_migrate_page(newpage, page); 486 /* 487 * Please do not reorder this without considering how mm/ksm.c's 488 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 489 */ 490 ClearPageSwapCache(page); 491 ClearPagePrivate(page); 492 set_page_private(page, 0); 493 494 /* 495 * If any waiters have accumulated on the new page then 496 * wake them up. 497 */ 498 if (PageWriteback(newpage)) 499 end_page_writeback(newpage); 500 } 501 502 /************************************************************ 503 * Migration functions 504 ***********************************************************/ 505 506 /* Always fail migration. Used for mappings that are not movable */ 507 int fail_migrate_page(struct address_space *mapping, 508 struct page *newpage, struct page *page) 509 { 510 return -EIO; 511 } 512 EXPORT_SYMBOL(fail_migrate_page); 513 514 /* 515 * Common logic to directly migrate a single page suitable for 516 * pages that do not use PagePrivate/PagePrivate2. 517 * 518 * Pages are locked upon entry and exit. 519 */ 520 int migrate_page(struct address_space *mapping, 521 struct page *newpage, struct page *page, 522 enum migrate_mode mode) 523 { 524 int rc; 525 526 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 527 528 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); 529 530 if (rc != MIGRATEPAGE_SUCCESS) 531 return rc; 532 533 migrate_page_copy(newpage, page); 534 return MIGRATEPAGE_SUCCESS; 535 } 536 EXPORT_SYMBOL(migrate_page); 537 538 #ifdef CONFIG_BLOCK 539 /* 540 * Migration function for pages with buffers. This function can only be used 541 * if the underlying filesystem guarantees that no other references to "page" 542 * exist. 543 */ 544 int buffer_migrate_page(struct address_space *mapping, 545 struct page *newpage, struct page *page, enum migrate_mode mode) 546 { 547 struct buffer_head *bh, *head; 548 int rc; 549 550 if (!page_has_buffers(page)) 551 return migrate_page(mapping, newpage, page, mode); 552 553 head = page_buffers(page); 554 555 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); 556 557 if (rc != MIGRATEPAGE_SUCCESS) 558 return rc; 559 560 /* 561 * In the async case, migrate_page_move_mapping locked the buffers 562 * with an IRQ-safe spinlock held. In the sync case, the buffers 563 * need to be locked now 564 */ 565 if (mode != MIGRATE_ASYNC) 566 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 567 568 ClearPagePrivate(page); 569 set_page_private(newpage, page_private(page)); 570 set_page_private(page, 0); 571 put_page(page); 572 get_page(newpage); 573 574 bh = head; 575 do { 576 set_bh_page(bh, newpage, bh_offset(bh)); 577 bh = bh->b_this_page; 578 579 } while (bh != head); 580 581 SetPagePrivate(newpage); 582 583 migrate_page_copy(newpage, page); 584 585 bh = head; 586 do { 587 unlock_buffer(bh); 588 put_bh(bh); 589 bh = bh->b_this_page; 590 591 } while (bh != head); 592 593 return MIGRATEPAGE_SUCCESS; 594 } 595 EXPORT_SYMBOL(buffer_migrate_page); 596 #endif 597 598 /* 599 * Writeback a page to clean the dirty state 600 */ 601 static int writeout(struct address_space *mapping, struct page *page) 602 { 603 struct writeback_control wbc = { 604 .sync_mode = WB_SYNC_NONE, 605 .nr_to_write = 1, 606 .range_start = 0, 607 .range_end = LLONG_MAX, 608 .for_reclaim = 1 609 }; 610 int rc; 611 612 if (!mapping->a_ops->writepage) 613 /* No write method for the address space */ 614 return -EINVAL; 615 616 if (!clear_page_dirty_for_io(page)) 617 /* Someone else already triggered a write */ 618 return -EAGAIN; 619 620 /* 621 * A dirty page may imply that the underlying filesystem has 622 * the page on some queue. So the page must be clean for 623 * migration. Writeout may mean we loose the lock and the 624 * page state is no longer what we checked for earlier. 625 * At this point we know that the migration attempt cannot 626 * be successful. 627 */ 628 remove_migration_ptes(page, page); 629 630 rc = mapping->a_ops->writepage(page, &wbc); 631 632 if (rc != AOP_WRITEPAGE_ACTIVATE) 633 /* unlocked. Relock */ 634 lock_page(page); 635 636 return (rc < 0) ? -EIO : -EAGAIN; 637 } 638 639 /* 640 * Default handling if a filesystem does not provide a migration function. 641 */ 642 static int fallback_migrate_page(struct address_space *mapping, 643 struct page *newpage, struct page *page, enum migrate_mode mode) 644 { 645 if (PageDirty(page)) { 646 /* Only writeback pages in full synchronous migration */ 647 if (mode != MIGRATE_SYNC) 648 return -EBUSY; 649 return writeout(mapping, page); 650 } 651 652 /* 653 * Buffers may be managed in a filesystem specific way. 654 * We must have no buffers or drop them. 655 */ 656 if (page_has_private(page) && 657 !try_to_release_page(page, GFP_KERNEL)) 658 return -EAGAIN; 659 660 return migrate_page(mapping, newpage, page, mode); 661 } 662 663 /* 664 * Move a page to a newly allocated page 665 * The page is locked and all ptes have been successfully removed. 666 * 667 * The new page will have replaced the old page if this function 668 * is successful. 669 * 670 * Return value: 671 * < 0 - error code 672 * MIGRATEPAGE_SUCCESS - success 673 */ 674 static int move_to_new_page(struct page *newpage, struct page *page, 675 int remap_swapcache, enum migrate_mode mode) 676 { 677 struct address_space *mapping; 678 int rc; 679 680 /* 681 * Block others from accessing the page when we get around to 682 * establishing additional references. We are the only one 683 * holding a reference to the new page at this point. 684 */ 685 if (!trylock_page(newpage)) 686 BUG(); 687 688 /* Prepare mapping for the new page.*/ 689 newpage->index = page->index; 690 newpage->mapping = page->mapping; 691 if (PageSwapBacked(page)) 692 SetPageSwapBacked(newpage); 693 694 mapping = page_mapping(page); 695 if (!mapping) 696 rc = migrate_page(mapping, newpage, page, mode); 697 else if (mapping->a_ops->migratepage) 698 /* 699 * Most pages have a mapping and most filesystems provide a 700 * migratepage callback. Anonymous pages are part of swap 701 * space which also has its own migratepage callback. This 702 * is the most common path for page migration. 703 */ 704 rc = mapping->a_ops->migratepage(mapping, 705 newpage, page, mode); 706 else 707 rc = fallback_migrate_page(mapping, newpage, page, mode); 708 709 if (rc != MIGRATEPAGE_SUCCESS) { 710 newpage->mapping = NULL; 711 } else { 712 if (remap_swapcache) 713 remove_migration_ptes(page, newpage); 714 page->mapping = NULL; 715 } 716 717 unlock_page(newpage); 718 719 return rc; 720 } 721 722 static int __unmap_and_move(struct page *page, struct page *newpage, 723 int force, enum migrate_mode mode) 724 { 725 int rc = -EAGAIN; 726 int remap_swapcache = 1; 727 struct mem_cgroup *mem; 728 struct anon_vma *anon_vma = NULL; 729 730 if (!trylock_page(page)) { 731 if (!force || mode == MIGRATE_ASYNC) 732 goto out; 733 734 /* 735 * It's not safe for direct compaction to call lock_page. 736 * For example, during page readahead pages are added locked 737 * to the LRU. Later, when the IO completes the pages are 738 * marked uptodate and unlocked. However, the queueing 739 * could be merging multiple pages for one bio (e.g. 740 * mpage_readpages). If an allocation happens for the 741 * second or third page, the process can end up locking 742 * the same page twice and deadlocking. Rather than 743 * trying to be clever about what pages can be locked, 744 * avoid the use of lock_page for direct compaction 745 * altogether. 746 */ 747 if (current->flags & PF_MEMALLOC) 748 goto out; 749 750 lock_page(page); 751 } 752 753 /* charge against new page */ 754 mem_cgroup_prepare_migration(page, newpage, &mem); 755 756 if (PageWriteback(page)) { 757 /* 758 * Only in the case of a full synchronous migration is it 759 * necessary to wait for PageWriteback. In the async case, 760 * the retry loop is too short and in the sync-light case, 761 * the overhead of stalling is too much 762 */ 763 if (mode != MIGRATE_SYNC) { 764 rc = -EBUSY; 765 goto uncharge; 766 } 767 if (!force) 768 goto uncharge; 769 wait_on_page_writeback(page); 770 } 771 /* 772 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 773 * we cannot notice that anon_vma is freed while we migrates a page. 774 * This get_anon_vma() delays freeing anon_vma pointer until the end 775 * of migration. File cache pages are no problem because of page_lock() 776 * File Caches may use write_page() or lock_page() in migration, then, 777 * just care Anon page here. 778 */ 779 if (PageAnon(page) && !PageKsm(page)) { 780 /* 781 * Only page_lock_anon_vma_read() understands the subtleties of 782 * getting a hold on an anon_vma from outside one of its mms. 783 */ 784 anon_vma = page_get_anon_vma(page); 785 if (anon_vma) { 786 /* 787 * Anon page 788 */ 789 } else if (PageSwapCache(page)) { 790 /* 791 * We cannot be sure that the anon_vma of an unmapped 792 * swapcache page is safe to use because we don't 793 * know in advance if the VMA that this page belonged 794 * to still exists. If the VMA and others sharing the 795 * data have been freed, then the anon_vma could 796 * already be invalid. 797 * 798 * To avoid this possibility, swapcache pages get 799 * migrated but are not remapped when migration 800 * completes 801 */ 802 remap_swapcache = 0; 803 } else { 804 goto uncharge; 805 } 806 } 807 808 if (unlikely(balloon_page_movable(page))) { 809 /* 810 * A ballooned page does not need any special attention from 811 * physical to virtual reverse mapping procedures. 812 * Skip any attempt to unmap PTEs or to remap swap cache, 813 * in order to avoid burning cycles at rmap level, and perform 814 * the page migration right away (proteced by page lock). 815 */ 816 rc = balloon_page_migrate(newpage, page, mode); 817 goto uncharge; 818 } 819 820 /* 821 * Corner case handling: 822 * 1. When a new swap-cache page is read into, it is added to the LRU 823 * and treated as swapcache but it has no rmap yet. 824 * Calling try_to_unmap() against a page->mapping==NULL page will 825 * trigger a BUG. So handle it here. 826 * 2. An orphaned page (see truncate_complete_page) might have 827 * fs-private metadata. The page can be picked up due to memory 828 * offlining. Everywhere else except page reclaim, the page is 829 * invisible to the vm, so the page can not be migrated. So try to 830 * free the metadata, so the page can be freed. 831 */ 832 if (!page->mapping) { 833 VM_BUG_ON(PageAnon(page)); 834 if (page_has_private(page)) { 835 try_to_free_buffers(page); 836 goto uncharge; 837 } 838 goto skip_unmap; 839 } 840 841 /* Establish migration ptes or remove ptes */ 842 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 843 844 skip_unmap: 845 if (!page_mapped(page)) 846 rc = move_to_new_page(newpage, page, remap_swapcache, mode); 847 848 if (rc && remap_swapcache) 849 remove_migration_ptes(page, page); 850 851 /* Drop an anon_vma reference if we took one */ 852 if (anon_vma) 853 put_anon_vma(anon_vma); 854 855 uncharge: 856 mem_cgroup_end_migration(mem, page, newpage, 857 (rc == MIGRATEPAGE_SUCCESS || 858 rc == MIGRATEPAGE_BALLOON_SUCCESS)); 859 unlock_page(page); 860 out: 861 return rc; 862 } 863 864 /* 865 * Obtain the lock on page, remove all ptes and migrate the page 866 * to the newly allocated page in newpage. 867 */ 868 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 869 struct page *page, int force, enum migrate_mode mode) 870 { 871 int rc = 0; 872 int *result = NULL; 873 struct page *newpage = get_new_page(page, private, &result); 874 875 if (!newpage) 876 return -ENOMEM; 877 878 if (page_count(page) == 1) { 879 /* page was freed from under us. So we are done. */ 880 goto out; 881 } 882 883 if (unlikely(PageTransHuge(page))) 884 if (unlikely(split_huge_page(page))) 885 goto out; 886 887 rc = __unmap_and_move(page, newpage, force, mode); 888 889 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) { 890 /* 891 * A ballooned page has been migrated already. 892 * Now, it's the time to wrap-up counters, 893 * handle the page back to Buddy and return. 894 */ 895 dec_zone_page_state(page, NR_ISOLATED_ANON + 896 page_is_file_cache(page)); 897 balloon_page_free(page); 898 return MIGRATEPAGE_SUCCESS; 899 } 900 out: 901 if (rc != -EAGAIN) { 902 /* 903 * A page that has been migrated has all references 904 * removed and will be freed. A page that has not been 905 * migrated will have kepts its references and be 906 * restored. 907 */ 908 list_del(&page->lru); 909 dec_zone_page_state(page, NR_ISOLATED_ANON + 910 page_is_file_cache(page)); 911 putback_lru_page(page); 912 } 913 /* 914 * Move the new page to the LRU. If migration was not successful 915 * then this will free the page. 916 */ 917 putback_lru_page(newpage); 918 if (result) { 919 if (rc) 920 *result = rc; 921 else 922 *result = page_to_nid(newpage); 923 } 924 return rc; 925 } 926 927 /* 928 * Counterpart of unmap_and_move_page() for hugepage migration. 929 * 930 * This function doesn't wait the completion of hugepage I/O 931 * because there is no race between I/O and migration for hugepage. 932 * Note that currently hugepage I/O occurs only in direct I/O 933 * where no lock is held and PG_writeback is irrelevant, 934 * and writeback status of all subpages are counted in the reference 935 * count of the head page (i.e. if all subpages of a 2MB hugepage are 936 * under direct I/O, the reference of the head page is 512 and a bit more.) 937 * This means that when we try to migrate hugepage whose subpages are 938 * doing direct I/O, some references remain after try_to_unmap() and 939 * hugepage migration fails without data corruption. 940 * 941 * There is also no race when direct I/O is issued on the page under migration, 942 * because then pte is replaced with migration swap entry and direct I/O code 943 * will wait in the page fault for migration to complete. 944 */ 945 static int unmap_and_move_huge_page(new_page_t get_new_page, 946 unsigned long private, struct page *hpage, 947 int force, enum migrate_mode mode) 948 { 949 int rc = 0; 950 int *result = NULL; 951 struct page *new_hpage = get_new_page(hpage, private, &result); 952 struct anon_vma *anon_vma = NULL; 953 954 /* 955 * Movability of hugepages depends on architectures and hugepage size. 956 * This check is necessary because some callers of hugepage migration 957 * like soft offline and memory hotremove don't walk through page 958 * tables or check whether the hugepage is pmd-based or not before 959 * kicking migration. 960 */ 961 if (!hugepage_migration_support(page_hstate(hpage))) 962 return -ENOSYS; 963 964 if (!new_hpage) 965 return -ENOMEM; 966 967 rc = -EAGAIN; 968 969 if (!trylock_page(hpage)) { 970 if (!force || mode != MIGRATE_SYNC) 971 goto out; 972 lock_page(hpage); 973 } 974 975 if (PageAnon(hpage)) 976 anon_vma = page_get_anon_vma(hpage); 977 978 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 979 980 if (!page_mapped(hpage)) 981 rc = move_to_new_page(new_hpage, hpage, 1, mode); 982 983 if (rc) 984 remove_migration_ptes(hpage, hpage); 985 986 if (anon_vma) 987 put_anon_vma(anon_vma); 988 989 if (!rc) 990 hugetlb_cgroup_migrate(hpage, new_hpage); 991 992 unlock_page(hpage); 993 out: 994 if (rc != -EAGAIN) 995 putback_active_hugepage(hpage); 996 put_page(new_hpage); 997 if (result) { 998 if (rc) 999 *result = rc; 1000 else 1001 *result = page_to_nid(new_hpage); 1002 } 1003 return rc; 1004 } 1005 1006 /* 1007 * migrate_pages - migrate the pages specified in a list, to the free pages 1008 * supplied as the target for the page migration 1009 * 1010 * @from: The list of pages to be migrated. 1011 * @get_new_page: The function used to allocate free pages to be used 1012 * as the target of the page migration. 1013 * @private: Private data to be passed on to get_new_page() 1014 * @mode: The migration mode that specifies the constraints for 1015 * page migration, if any. 1016 * @reason: The reason for page migration. 1017 * 1018 * The function returns after 10 attempts or if no pages are movable any more 1019 * because the list has become empty or no retryable pages exist any more. 1020 * The caller should call putback_lru_pages() to return pages to the LRU 1021 * or free list only if ret != 0. 1022 * 1023 * Returns the number of pages that were not migrated, or an error code. 1024 */ 1025 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1026 unsigned long private, enum migrate_mode mode, int reason) 1027 { 1028 int retry = 1; 1029 int nr_failed = 0; 1030 int nr_succeeded = 0; 1031 int pass = 0; 1032 struct page *page; 1033 struct page *page2; 1034 int swapwrite = current->flags & PF_SWAPWRITE; 1035 int rc; 1036 1037 if (!swapwrite) 1038 current->flags |= PF_SWAPWRITE; 1039 1040 for(pass = 0; pass < 10 && retry; pass++) { 1041 retry = 0; 1042 1043 list_for_each_entry_safe(page, page2, from, lru) { 1044 cond_resched(); 1045 1046 if (PageHuge(page)) 1047 rc = unmap_and_move_huge_page(get_new_page, 1048 private, page, pass > 2, mode); 1049 else 1050 rc = unmap_and_move(get_new_page, private, 1051 page, pass > 2, mode); 1052 1053 switch(rc) { 1054 case -ENOMEM: 1055 goto out; 1056 case -EAGAIN: 1057 retry++; 1058 break; 1059 case MIGRATEPAGE_SUCCESS: 1060 nr_succeeded++; 1061 break; 1062 default: 1063 /* Permanent failure */ 1064 nr_failed++; 1065 break; 1066 } 1067 } 1068 } 1069 rc = nr_failed + retry; 1070 out: 1071 if (nr_succeeded) 1072 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1073 if (nr_failed) 1074 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1075 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1076 1077 if (!swapwrite) 1078 current->flags &= ~PF_SWAPWRITE; 1079 1080 return rc; 1081 } 1082 1083 #ifdef CONFIG_NUMA 1084 /* 1085 * Move a list of individual pages 1086 */ 1087 struct page_to_node { 1088 unsigned long addr; 1089 struct page *page; 1090 int node; 1091 int status; 1092 }; 1093 1094 static struct page *new_page_node(struct page *p, unsigned long private, 1095 int **result) 1096 { 1097 struct page_to_node *pm = (struct page_to_node *)private; 1098 1099 while (pm->node != MAX_NUMNODES && pm->page != p) 1100 pm++; 1101 1102 if (pm->node == MAX_NUMNODES) 1103 return NULL; 1104 1105 *result = &pm->status; 1106 1107 if (PageHuge(p)) 1108 return alloc_huge_page_node(page_hstate(compound_head(p)), 1109 pm->node); 1110 else 1111 return alloc_pages_exact_node(pm->node, 1112 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 1113 } 1114 1115 /* 1116 * Move a set of pages as indicated in the pm array. The addr 1117 * field must be set to the virtual address of the page to be moved 1118 * and the node number must contain a valid target node. 1119 * The pm array ends with node = MAX_NUMNODES. 1120 */ 1121 static int do_move_page_to_node_array(struct mm_struct *mm, 1122 struct page_to_node *pm, 1123 int migrate_all) 1124 { 1125 int err; 1126 struct page_to_node *pp; 1127 LIST_HEAD(pagelist); 1128 1129 down_read(&mm->mmap_sem); 1130 1131 /* 1132 * Build a list of pages to migrate 1133 */ 1134 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1135 struct vm_area_struct *vma; 1136 struct page *page; 1137 1138 err = -EFAULT; 1139 vma = find_vma(mm, pp->addr); 1140 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1141 goto set_status; 1142 1143 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1144 1145 err = PTR_ERR(page); 1146 if (IS_ERR(page)) 1147 goto set_status; 1148 1149 err = -ENOENT; 1150 if (!page) 1151 goto set_status; 1152 1153 /* Use PageReserved to check for zero page */ 1154 if (PageReserved(page)) 1155 goto put_and_set; 1156 1157 pp->page = page; 1158 err = page_to_nid(page); 1159 1160 if (err == pp->node) 1161 /* 1162 * Node already in the right place 1163 */ 1164 goto put_and_set; 1165 1166 err = -EACCES; 1167 if (page_mapcount(page) > 1 && 1168 !migrate_all) 1169 goto put_and_set; 1170 1171 if (PageHuge(page)) { 1172 isolate_huge_page(page, &pagelist); 1173 goto put_and_set; 1174 } 1175 1176 err = isolate_lru_page(page); 1177 if (!err) { 1178 list_add_tail(&page->lru, &pagelist); 1179 inc_zone_page_state(page, NR_ISOLATED_ANON + 1180 page_is_file_cache(page)); 1181 } 1182 put_and_set: 1183 /* 1184 * Either remove the duplicate refcount from 1185 * isolate_lru_page() or drop the page ref if it was 1186 * not isolated. 1187 */ 1188 put_page(page); 1189 set_status: 1190 pp->status = err; 1191 } 1192 1193 err = 0; 1194 if (!list_empty(&pagelist)) { 1195 err = migrate_pages(&pagelist, new_page_node, 1196 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1197 if (err) 1198 putback_movable_pages(&pagelist); 1199 } 1200 1201 up_read(&mm->mmap_sem); 1202 return err; 1203 } 1204 1205 /* 1206 * Migrate an array of page address onto an array of nodes and fill 1207 * the corresponding array of status. 1208 */ 1209 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1210 unsigned long nr_pages, 1211 const void __user * __user *pages, 1212 const int __user *nodes, 1213 int __user *status, int flags) 1214 { 1215 struct page_to_node *pm; 1216 unsigned long chunk_nr_pages; 1217 unsigned long chunk_start; 1218 int err; 1219 1220 err = -ENOMEM; 1221 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1222 if (!pm) 1223 goto out; 1224 1225 migrate_prep(); 1226 1227 /* 1228 * Store a chunk of page_to_node array in a page, 1229 * but keep the last one as a marker 1230 */ 1231 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1232 1233 for (chunk_start = 0; 1234 chunk_start < nr_pages; 1235 chunk_start += chunk_nr_pages) { 1236 int j; 1237 1238 if (chunk_start + chunk_nr_pages > nr_pages) 1239 chunk_nr_pages = nr_pages - chunk_start; 1240 1241 /* fill the chunk pm with addrs and nodes from user-space */ 1242 for (j = 0; j < chunk_nr_pages; j++) { 1243 const void __user *p; 1244 int node; 1245 1246 err = -EFAULT; 1247 if (get_user(p, pages + j + chunk_start)) 1248 goto out_pm; 1249 pm[j].addr = (unsigned long) p; 1250 1251 if (get_user(node, nodes + j + chunk_start)) 1252 goto out_pm; 1253 1254 err = -ENODEV; 1255 if (node < 0 || node >= MAX_NUMNODES) 1256 goto out_pm; 1257 1258 if (!node_state(node, N_MEMORY)) 1259 goto out_pm; 1260 1261 err = -EACCES; 1262 if (!node_isset(node, task_nodes)) 1263 goto out_pm; 1264 1265 pm[j].node = node; 1266 } 1267 1268 /* End marker for this chunk */ 1269 pm[chunk_nr_pages].node = MAX_NUMNODES; 1270 1271 /* Migrate this chunk */ 1272 err = do_move_page_to_node_array(mm, pm, 1273 flags & MPOL_MF_MOVE_ALL); 1274 if (err < 0) 1275 goto out_pm; 1276 1277 /* Return status information */ 1278 for (j = 0; j < chunk_nr_pages; j++) 1279 if (put_user(pm[j].status, status + j + chunk_start)) { 1280 err = -EFAULT; 1281 goto out_pm; 1282 } 1283 } 1284 err = 0; 1285 1286 out_pm: 1287 free_page((unsigned long)pm); 1288 out: 1289 return err; 1290 } 1291 1292 /* 1293 * Determine the nodes of an array of pages and store it in an array of status. 1294 */ 1295 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1296 const void __user **pages, int *status) 1297 { 1298 unsigned long i; 1299 1300 down_read(&mm->mmap_sem); 1301 1302 for (i = 0; i < nr_pages; i++) { 1303 unsigned long addr = (unsigned long)(*pages); 1304 struct vm_area_struct *vma; 1305 struct page *page; 1306 int err = -EFAULT; 1307 1308 vma = find_vma(mm, addr); 1309 if (!vma || addr < vma->vm_start) 1310 goto set_status; 1311 1312 page = follow_page(vma, addr, 0); 1313 1314 err = PTR_ERR(page); 1315 if (IS_ERR(page)) 1316 goto set_status; 1317 1318 err = -ENOENT; 1319 /* Use PageReserved to check for zero page */ 1320 if (!page || PageReserved(page)) 1321 goto set_status; 1322 1323 err = page_to_nid(page); 1324 set_status: 1325 *status = err; 1326 1327 pages++; 1328 status++; 1329 } 1330 1331 up_read(&mm->mmap_sem); 1332 } 1333 1334 /* 1335 * Determine the nodes of a user array of pages and store it in 1336 * a user array of status. 1337 */ 1338 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1339 const void __user * __user *pages, 1340 int __user *status) 1341 { 1342 #define DO_PAGES_STAT_CHUNK_NR 16 1343 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1344 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1345 1346 while (nr_pages) { 1347 unsigned long chunk_nr; 1348 1349 chunk_nr = nr_pages; 1350 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1351 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1352 1353 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1354 break; 1355 1356 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1357 1358 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1359 break; 1360 1361 pages += chunk_nr; 1362 status += chunk_nr; 1363 nr_pages -= chunk_nr; 1364 } 1365 return nr_pages ? -EFAULT : 0; 1366 } 1367 1368 /* 1369 * Move a list of pages in the address space of the currently executing 1370 * process. 1371 */ 1372 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1373 const void __user * __user *, pages, 1374 const int __user *, nodes, 1375 int __user *, status, int, flags) 1376 { 1377 const struct cred *cred = current_cred(), *tcred; 1378 struct task_struct *task; 1379 struct mm_struct *mm; 1380 int err; 1381 nodemask_t task_nodes; 1382 1383 /* Check flags */ 1384 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1385 return -EINVAL; 1386 1387 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1388 return -EPERM; 1389 1390 /* Find the mm_struct */ 1391 rcu_read_lock(); 1392 task = pid ? find_task_by_vpid(pid) : current; 1393 if (!task) { 1394 rcu_read_unlock(); 1395 return -ESRCH; 1396 } 1397 get_task_struct(task); 1398 1399 /* 1400 * Check if this process has the right to modify the specified 1401 * process. The right exists if the process has administrative 1402 * capabilities, superuser privileges or the same 1403 * userid as the target process. 1404 */ 1405 tcred = __task_cred(task); 1406 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1407 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1408 !capable(CAP_SYS_NICE)) { 1409 rcu_read_unlock(); 1410 err = -EPERM; 1411 goto out; 1412 } 1413 rcu_read_unlock(); 1414 1415 err = security_task_movememory(task); 1416 if (err) 1417 goto out; 1418 1419 task_nodes = cpuset_mems_allowed(task); 1420 mm = get_task_mm(task); 1421 put_task_struct(task); 1422 1423 if (!mm) 1424 return -EINVAL; 1425 1426 if (nodes) 1427 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1428 nodes, status, flags); 1429 else 1430 err = do_pages_stat(mm, nr_pages, pages, status); 1431 1432 mmput(mm); 1433 return err; 1434 1435 out: 1436 put_task_struct(task); 1437 return err; 1438 } 1439 1440 /* 1441 * Call migration functions in the vma_ops that may prepare 1442 * memory in a vm for migration. migration functions may perform 1443 * the migration for vmas that do not have an underlying page struct. 1444 */ 1445 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1446 const nodemask_t *from, unsigned long flags) 1447 { 1448 struct vm_area_struct *vma; 1449 int err = 0; 1450 1451 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1452 if (vma->vm_ops && vma->vm_ops->migrate) { 1453 err = vma->vm_ops->migrate(vma, to, from, flags); 1454 if (err) 1455 break; 1456 } 1457 } 1458 return err; 1459 } 1460 1461 #ifdef CONFIG_NUMA_BALANCING 1462 /* 1463 * Returns true if this is a safe migration target node for misplaced NUMA 1464 * pages. Currently it only checks the watermarks which crude 1465 */ 1466 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1467 unsigned long nr_migrate_pages) 1468 { 1469 int z; 1470 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1471 struct zone *zone = pgdat->node_zones + z; 1472 1473 if (!populated_zone(zone)) 1474 continue; 1475 1476 if (!zone_reclaimable(zone)) 1477 continue; 1478 1479 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1480 if (!zone_watermark_ok(zone, 0, 1481 high_wmark_pages(zone) + 1482 nr_migrate_pages, 1483 0, 0)) 1484 continue; 1485 return true; 1486 } 1487 return false; 1488 } 1489 1490 static struct page *alloc_misplaced_dst_page(struct page *page, 1491 unsigned long data, 1492 int **result) 1493 { 1494 int nid = (int) data; 1495 struct page *newpage; 1496 1497 newpage = alloc_pages_exact_node(nid, 1498 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE | 1499 __GFP_NOMEMALLOC | __GFP_NORETRY | 1500 __GFP_NOWARN) & 1501 ~GFP_IOFS, 0); 1502 if (newpage) 1503 page_nid_xchg_last(newpage, page_nid_last(page)); 1504 1505 return newpage; 1506 } 1507 1508 /* 1509 * page migration rate limiting control. 1510 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1511 * window of time. Default here says do not migrate more than 1280M per second. 1512 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1513 * as it is faults that reset the window, pte updates will happen unconditionally 1514 * if there has not been a fault since @pteupdate_interval_millisecs after the 1515 * throttle window closed. 1516 */ 1517 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1518 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1519 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1520 1521 /* Returns true if NUMA migration is currently rate limited */ 1522 bool migrate_ratelimited(int node) 1523 { 1524 pg_data_t *pgdat = NODE_DATA(node); 1525 1526 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1527 msecs_to_jiffies(pteupdate_interval_millisecs))) 1528 return false; 1529 1530 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1531 return false; 1532 1533 return true; 1534 } 1535 1536 /* Returns true if the node is migrate rate-limited after the update */ 1537 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages) 1538 { 1539 bool rate_limited = false; 1540 1541 /* 1542 * Rate-limit the amount of data that is being migrated to a node. 1543 * Optimal placement is no good if the memory bus is saturated and 1544 * all the time is being spent migrating! 1545 */ 1546 spin_lock(&pgdat->numabalancing_migrate_lock); 1547 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1548 pgdat->numabalancing_migrate_nr_pages = 0; 1549 pgdat->numabalancing_migrate_next_window = jiffies + 1550 msecs_to_jiffies(migrate_interval_millisecs); 1551 } 1552 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) 1553 rate_limited = true; 1554 else 1555 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1556 spin_unlock(&pgdat->numabalancing_migrate_lock); 1557 1558 return rate_limited; 1559 } 1560 1561 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1562 { 1563 int page_lru; 1564 1565 VM_BUG_ON(compound_order(page) && !PageTransHuge(page)); 1566 1567 /* Avoid migrating to a node that is nearly full */ 1568 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1569 return 0; 1570 1571 if (isolate_lru_page(page)) 1572 return 0; 1573 1574 /* 1575 * migrate_misplaced_transhuge_page() skips page migration's usual 1576 * check on page_count(), so we must do it here, now that the page 1577 * has been isolated: a GUP pin, or any other pin, prevents migration. 1578 * The expected page count is 3: 1 for page's mapcount and 1 for the 1579 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1580 */ 1581 if (PageTransHuge(page) && page_count(page) != 3) { 1582 putback_lru_page(page); 1583 return 0; 1584 } 1585 1586 page_lru = page_is_file_cache(page); 1587 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1588 hpage_nr_pages(page)); 1589 1590 /* 1591 * Isolating the page has taken another reference, so the 1592 * caller's reference can be safely dropped without the page 1593 * disappearing underneath us during migration. 1594 */ 1595 put_page(page); 1596 return 1; 1597 } 1598 1599 /* 1600 * Attempt to migrate a misplaced page to the specified destination 1601 * node. Caller is expected to have an elevated reference count on 1602 * the page that will be dropped by this function before returning. 1603 */ 1604 int migrate_misplaced_page(struct page *page, int node) 1605 { 1606 pg_data_t *pgdat = NODE_DATA(node); 1607 int isolated; 1608 int nr_remaining; 1609 LIST_HEAD(migratepages); 1610 1611 /* 1612 * Don't migrate pages that are mapped in multiple processes. 1613 * TODO: Handle false sharing detection instead of this hammer 1614 */ 1615 if (page_mapcount(page) != 1) 1616 goto out; 1617 1618 /* 1619 * Rate-limit the amount of data that is being migrated to a node. 1620 * Optimal placement is no good if the memory bus is saturated and 1621 * all the time is being spent migrating! 1622 */ 1623 if (numamigrate_update_ratelimit(pgdat, 1)) 1624 goto out; 1625 1626 isolated = numamigrate_isolate_page(pgdat, page); 1627 if (!isolated) 1628 goto out; 1629 1630 list_add(&page->lru, &migratepages); 1631 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1632 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED); 1633 if (nr_remaining) { 1634 putback_lru_pages(&migratepages); 1635 isolated = 0; 1636 } else 1637 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1638 BUG_ON(!list_empty(&migratepages)); 1639 return isolated; 1640 1641 out: 1642 put_page(page); 1643 return 0; 1644 } 1645 #endif /* CONFIG_NUMA_BALANCING */ 1646 1647 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1648 /* 1649 * Migrates a THP to a given target node. page must be locked and is unlocked 1650 * before returning. 1651 */ 1652 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1653 struct vm_area_struct *vma, 1654 pmd_t *pmd, pmd_t entry, 1655 unsigned long address, 1656 struct page *page, int node) 1657 { 1658 unsigned long haddr = address & HPAGE_PMD_MASK; 1659 pg_data_t *pgdat = NODE_DATA(node); 1660 int isolated = 0; 1661 struct page *new_page = NULL; 1662 struct mem_cgroup *memcg = NULL; 1663 int page_lru = page_is_file_cache(page); 1664 1665 /* 1666 * Don't migrate pages that are mapped in multiple processes. 1667 * TODO: Handle false sharing detection instead of this hammer 1668 */ 1669 if (page_mapcount(page) != 1) 1670 goto out_dropref; 1671 1672 /* 1673 * Rate-limit the amount of data that is being migrated to a node. 1674 * Optimal placement is no good if the memory bus is saturated and 1675 * all the time is being spent migrating! 1676 */ 1677 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1678 goto out_dropref; 1679 1680 new_page = alloc_pages_node(node, 1681 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER); 1682 if (!new_page) 1683 goto out_fail; 1684 1685 page_nid_xchg_last(new_page, page_nid_last(page)); 1686 1687 isolated = numamigrate_isolate_page(pgdat, page); 1688 if (!isolated) { 1689 put_page(new_page); 1690 goto out_fail; 1691 } 1692 1693 /* Prepare a page as a migration target */ 1694 __set_page_locked(new_page); 1695 SetPageSwapBacked(new_page); 1696 1697 /* anon mapping, we can simply copy page->mapping to the new page: */ 1698 new_page->mapping = page->mapping; 1699 new_page->index = page->index; 1700 migrate_page_copy(new_page, page); 1701 WARN_ON(PageLRU(new_page)); 1702 1703 /* Recheck the target PMD */ 1704 spin_lock(&mm->page_table_lock); 1705 if (unlikely(!pmd_same(*pmd, entry))) { 1706 spin_unlock(&mm->page_table_lock); 1707 1708 /* Reverse changes made by migrate_page_copy() */ 1709 if (TestClearPageActive(new_page)) 1710 SetPageActive(page); 1711 if (TestClearPageUnevictable(new_page)) 1712 SetPageUnevictable(page); 1713 mlock_migrate_page(page, new_page); 1714 1715 unlock_page(new_page); 1716 put_page(new_page); /* Free it */ 1717 1718 unlock_page(page); 1719 putback_lru_page(page); 1720 1721 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1722 isolated = 0; 1723 goto out; 1724 } 1725 1726 /* 1727 * Traditional migration needs to prepare the memcg charge 1728 * transaction early to prevent the old page from being 1729 * uncharged when installing migration entries. Here we can 1730 * save the potential rollback and start the charge transfer 1731 * only when migration is already known to end successfully. 1732 */ 1733 mem_cgroup_prepare_migration(page, new_page, &memcg); 1734 1735 entry = mk_pmd(new_page, vma->vm_page_prot); 1736 entry = pmd_mknonnuma(entry); 1737 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1738 entry = pmd_mkhuge(entry); 1739 1740 page_add_new_anon_rmap(new_page, vma, haddr); 1741 1742 set_pmd_at(mm, haddr, pmd, entry); 1743 update_mmu_cache_pmd(vma, address, &entry); 1744 page_remove_rmap(page); 1745 /* 1746 * Finish the charge transaction under the page table lock to 1747 * prevent split_huge_page() from dividing up the charge 1748 * before it's fully transferred to the new page. 1749 */ 1750 mem_cgroup_end_migration(memcg, page, new_page, true); 1751 spin_unlock(&mm->page_table_lock); 1752 1753 unlock_page(new_page); 1754 unlock_page(page); 1755 put_page(page); /* Drop the rmap reference */ 1756 put_page(page); /* Drop the LRU isolation reference */ 1757 1758 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1759 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1760 1761 out: 1762 mod_zone_page_state(page_zone(page), 1763 NR_ISOLATED_ANON + page_lru, 1764 -HPAGE_PMD_NR); 1765 return isolated; 1766 1767 out_fail: 1768 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1769 out_dropref: 1770 unlock_page(page); 1771 put_page(page); 1772 return 0; 1773 } 1774 #endif /* CONFIG_NUMA_BALANCING */ 1775 1776 #endif /* CONFIG_NUMA */ 1777