1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __PageMovable because LRU folio's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 if (pte_swp_soft_dirty(old_pte)) 215 pte = pte_mksoft_dirty(pte); 216 217 entry = pte_to_swp_entry(old_pte); 218 if (!is_migration_entry_young(entry)) 219 pte = pte_mkold(pte); 220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 221 pte = pte_mkdirty(pte); 222 if (is_writable_migration_entry(entry)) 223 pte = pte_mkwrite(pte); 224 else if (pte_swp_uffd_wp(old_pte)) 225 pte = pte_mkuffd_wp(pte); 226 227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 228 rmap_flags |= RMAP_EXCLUSIVE; 229 230 if (unlikely(is_device_private_page(new))) { 231 if (pte_write(pte)) 232 entry = make_writable_device_private_entry( 233 page_to_pfn(new)); 234 else 235 entry = make_readable_device_private_entry( 236 page_to_pfn(new)); 237 pte = swp_entry_to_pte(entry); 238 if (pte_swp_soft_dirty(old_pte)) 239 pte = pte_swp_mksoft_dirty(pte); 240 if (pte_swp_uffd_wp(old_pte)) 241 pte = pte_swp_mkuffd_wp(pte); 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 if (folio_test_hugetlb(folio)) { 246 unsigned int shift = huge_page_shift(hstate_vma(vma)); 247 248 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 249 if (folio_test_anon(folio)) 250 hugepage_add_anon_rmap(new, vma, pvmw.address, 251 rmap_flags); 252 else 253 page_dup_file_rmap(new, true); 254 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 255 } else 256 #endif 257 { 258 if (folio_test_anon(folio)) 259 page_add_anon_rmap(new, vma, pvmw.address, 260 rmap_flags); 261 else 262 page_add_file_rmap(new, vma, false); 263 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 264 } 265 if (vma->vm_flags & VM_LOCKED) 266 mlock_drain_local(); 267 268 trace_remove_migration_pte(pvmw.address, pte_val(pte), 269 compound_order(new)); 270 271 /* No need to invalidate - it was non-present before */ 272 update_mmu_cache(vma, pvmw.address, pvmw.pte); 273 } 274 275 return true; 276 } 277 278 /* 279 * Get rid of all migration entries and replace them by 280 * references to the indicated page. 281 */ 282 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 283 { 284 struct rmap_walk_control rwc = { 285 .rmap_one = remove_migration_pte, 286 .arg = src, 287 }; 288 289 if (locked) 290 rmap_walk_locked(dst, &rwc); 291 else 292 rmap_walk(dst, &rwc); 293 } 294 295 /* 296 * Something used the pte of a page under migration. We need to 297 * get to the page and wait until migration is finished. 298 * When we return from this function the fault will be retried. 299 */ 300 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 301 unsigned long address) 302 { 303 spinlock_t *ptl; 304 pte_t *ptep; 305 pte_t pte; 306 swp_entry_t entry; 307 308 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 309 if (!ptep) 310 return; 311 312 pte = ptep_get(ptep); 313 pte_unmap(ptep); 314 315 if (!is_swap_pte(pte)) 316 goto out; 317 318 entry = pte_to_swp_entry(pte); 319 if (!is_migration_entry(entry)) 320 goto out; 321 322 migration_entry_wait_on_locked(entry, ptl); 323 return; 324 out: 325 spin_unlock(ptl); 326 } 327 328 #ifdef CONFIG_HUGETLB_PAGE 329 /* 330 * The vma read lock must be held upon entry. Holding that lock prevents either 331 * the pte or the ptl from being freed. 332 * 333 * This function will release the vma lock before returning. 334 */ 335 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 336 { 337 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 338 pte_t pte; 339 340 hugetlb_vma_assert_locked(vma); 341 spin_lock(ptl); 342 pte = huge_ptep_get(ptep); 343 344 if (unlikely(!is_hugetlb_entry_migration(pte))) { 345 spin_unlock(ptl); 346 hugetlb_vma_unlock_read(vma); 347 } else { 348 /* 349 * If migration entry existed, safe to release vma lock 350 * here because the pgtable page won't be freed without the 351 * pgtable lock released. See comment right above pgtable 352 * lock release in migration_entry_wait_on_locked(). 353 */ 354 hugetlb_vma_unlock_read(vma); 355 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 356 } 357 } 358 #endif 359 360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 362 { 363 spinlock_t *ptl; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 369 return; 370 unlock: 371 spin_unlock(ptl); 372 } 373 #endif 374 375 static int folio_expected_refs(struct address_space *mapping, 376 struct folio *folio) 377 { 378 int refs = 1; 379 if (!mapping) 380 return refs; 381 382 refs += folio_nr_pages(folio); 383 if (folio_test_private(folio)) 384 refs++; 385 386 return refs; 387 } 388 389 /* 390 * Replace the page in the mapping. 391 * 392 * The number of remaining references must be: 393 * 1 for anonymous pages without a mapping 394 * 2 for pages with a mapping 395 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 396 */ 397 int folio_migrate_mapping(struct address_space *mapping, 398 struct folio *newfolio, struct folio *folio, int extra_count) 399 { 400 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 401 struct zone *oldzone, *newzone; 402 int dirty; 403 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 404 long nr = folio_nr_pages(folio); 405 406 if (!mapping) { 407 /* Anonymous page without mapping */ 408 if (folio_ref_count(folio) != expected_count) 409 return -EAGAIN; 410 411 /* No turning back from here */ 412 newfolio->index = folio->index; 413 newfolio->mapping = folio->mapping; 414 if (folio_test_swapbacked(folio)) 415 __folio_set_swapbacked(newfolio); 416 417 return MIGRATEPAGE_SUCCESS; 418 } 419 420 oldzone = folio_zone(folio); 421 newzone = folio_zone(newfolio); 422 423 xas_lock_irq(&xas); 424 if (!folio_ref_freeze(folio, expected_count)) { 425 xas_unlock_irq(&xas); 426 return -EAGAIN; 427 } 428 429 /* 430 * Now we know that no one else is looking at the folio: 431 * no turning back from here. 432 */ 433 newfolio->index = folio->index; 434 newfolio->mapping = folio->mapping; 435 folio_ref_add(newfolio, nr); /* add cache reference */ 436 if (folio_test_swapbacked(folio)) { 437 __folio_set_swapbacked(newfolio); 438 if (folio_test_swapcache(folio)) { 439 folio_set_swapcache(newfolio); 440 newfolio->private = folio_get_private(folio); 441 } 442 } else { 443 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 444 } 445 446 /* Move dirty while page refs frozen and newpage not yet exposed */ 447 dirty = folio_test_dirty(folio); 448 if (dirty) { 449 folio_clear_dirty(folio); 450 folio_set_dirty(newfolio); 451 } 452 453 xas_store(&xas, newfolio); 454 455 /* 456 * Drop cache reference from old page by unfreezing 457 * to one less reference. 458 * We know this isn't the last reference. 459 */ 460 folio_ref_unfreeze(folio, expected_count - nr); 461 462 xas_unlock(&xas); 463 /* Leave irq disabled to prevent preemption while updating stats */ 464 465 /* 466 * If moved to a different zone then also account 467 * the page for that zone. Other VM counters will be 468 * taken care of when we establish references to the 469 * new page and drop references to the old page. 470 * 471 * Note that anonymous pages are accounted for 472 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 473 * are mapped to swap space. 474 */ 475 if (newzone != oldzone) { 476 struct lruvec *old_lruvec, *new_lruvec; 477 struct mem_cgroup *memcg; 478 479 memcg = folio_memcg(folio); 480 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 481 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 482 483 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 484 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 485 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 486 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 487 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 488 489 if (folio_test_pmd_mappable(folio)) { 490 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 491 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 492 } 493 } 494 #ifdef CONFIG_SWAP 495 if (folio_test_swapcache(folio)) { 496 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 497 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 498 } 499 #endif 500 if (dirty && mapping_can_writeback(mapping)) { 501 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 502 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 503 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 504 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 505 } 506 } 507 local_irq_enable(); 508 509 return MIGRATEPAGE_SUCCESS; 510 } 511 EXPORT_SYMBOL(folio_migrate_mapping); 512 513 /* 514 * The expected number of remaining references is the same as that 515 * of folio_migrate_mapping(). 516 */ 517 int migrate_huge_page_move_mapping(struct address_space *mapping, 518 struct folio *dst, struct folio *src) 519 { 520 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 521 int expected_count; 522 523 xas_lock_irq(&xas); 524 expected_count = 2 + folio_has_private(src); 525 if (!folio_ref_freeze(src, expected_count)) { 526 xas_unlock_irq(&xas); 527 return -EAGAIN; 528 } 529 530 dst->index = src->index; 531 dst->mapping = src->mapping; 532 533 folio_get(dst); 534 535 xas_store(&xas, dst); 536 537 folio_ref_unfreeze(src, expected_count - 1); 538 539 xas_unlock_irq(&xas); 540 541 return MIGRATEPAGE_SUCCESS; 542 } 543 544 /* 545 * Copy the flags and some other ancillary information 546 */ 547 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 548 { 549 int cpupid; 550 551 if (folio_test_error(folio)) 552 folio_set_error(newfolio); 553 if (folio_test_referenced(folio)) 554 folio_set_referenced(newfolio); 555 if (folio_test_uptodate(folio)) 556 folio_mark_uptodate(newfolio); 557 if (folio_test_clear_active(folio)) { 558 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 559 folio_set_active(newfolio); 560 } else if (folio_test_clear_unevictable(folio)) 561 folio_set_unevictable(newfolio); 562 if (folio_test_workingset(folio)) 563 folio_set_workingset(newfolio); 564 if (folio_test_checked(folio)) 565 folio_set_checked(newfolio); 566 /* 567 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 568 * migration entries. We can still have PG_anon_exclusive set on an 569 * effectively unmapped and unreferenced first sub-pages of an 570 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 571 */ 572 if (folio_test_mappedtodisk(folio)) 573 folio_set_mappedtodisk(newfolio); 574 575 /* Move dirty on pages not done by folio_migrate_mapping() */ 576 if (folio_test_dirty(folio)) 577 folio_set_dirty(newfolio); 578 579 if (folio_test_young(folio)) 580 folio_set_young(newfolio); 581 if (folio_test_idle(folio)) 582 folio_set_idle(newfolio); 583 584 /* 585 * Copy NUMA information to the new page, to prevent over-eager 586 * future migrations of this same page. 587 */ 588 cpupid = page_cpupid_xchg_last(&folio->page, -1); 589 /* 590 * For memory tiering mode, when migrate between slow and fast 591 * memory node, reset cpupid, because that is used to record 592 * page access time in slow memory node. 593 */ 594 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 595 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 596 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 597 598 if (f_toptier != t_toptier) 599 cpupid = -1; 600 } 601 page_cpupid_xchg_last(&newfolio->page, cpupid); 602 603 folio_migrate_ksm(newfolio, folio); 604 /* 605 * Please do not reorder this without considering how mm/ksm.c's 606 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 607 */ 608 if (folio_test_swapcache(folio)) 609 folio_clear_swapcache(folio); 610 folio_clear_private(folio); 611 612 /* page->private contains hugetlb specific flags */ 613 if (!folio_test_hugetlb(folio)) 614 folio->private = NULL; 615 616 /* 617 * If any waiters have accumulated on the new page then 618 * wake them up. 619 */ 620 if (folio_test_writeback(newfolio)) 621 folio_end_writeback(newfolio); 622 623 /* 624 * PG_readahead shares the same bit with PG_reclaim. The above 625 * end_page_writeback() may clear PG_readahead mistakenly, so set the 626 * bit after that. 627 */ 628 if (folio_test_readahead(folio)) 629 folio_set_readahead(newfolio); 630 631 folio_copy_owner(newfolio, folio); 632 633 if (!folio_test_hugetlb(folio)) 634 mem_cgroup_migrate(folio, newfolio); 635 } 636 EXPORT_SYMBOL(folio_migrate_flags); 637 638 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 639 { 640 folio_copy(newfolio, folio); 641 folio_migrate_flags(newfolio, folio); 642 } 643 EXPORT_SYMBOL(folio_migrate_copy); 644 645 /************************************************************ 646 * Migration functions 647 ***********************************************************/ 648 649 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 650 struct folio *src, enum migrate_mode mode, int extra_count) 651 { 652 int rc; 653 654 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 655 656 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 657 658 if (rc != MIGRATEPAGE_SUCCESS) 659 return rc; 660 661 if (mode != MIGRATE_SYNC_NO_COPY) 662 folio_migrate_copy(dst, src); 663 else 664 folio_migrate_flags(dst, src); 665 return MIGRATEPAGE_SUCCESS; 666 } 667 668 /** 669 * migrate_folio() - Simple folio migration. 670 * @mapping: The address_space containing the folio. 671 * @dst: The folio to migrate the data to. 672 * @src: The folio containing the current data. 673 * @mode: How to migrate the page. 674 * 675 * Common logic to directly migrate a single LRU folio suitable for 676 * folios that do not use PagePrivate/PagePrivate2. 677 * 678 * Folios are locked upon entry and exit. 679 */ 680 int migrate_folio(struct address_space *mapping, struct folio *dst, 681 struct folio *src, enum migrate_mode mode) 682 { 683 return migrate_folio_extra(mapping, dst, src, mode, 0); 684 } 685 EXPORT_SYMBOL(migrate_folio); 686 687 #ifdef CONFIG_BLOCK 688 /* Returns true if all buffers are successfully locked */ 689 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 690 enum migrate_mode mode) 691 { 692 struct buffer_head *bh = head; 693 struct buffer_head *failed_bh; 694 695 do { 696 if (!trylock_buffer(bh)) { 697 if (mode == MIGRATE_ASYNC) 698 goto unlock; 699 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 700 goto unlock; 701 lock_buffer(bh); 702 } 703 704 bh = bh->b_this_page; 705 } while (bh != head); 706 707 return true; 708 709 unlock: 710 /* We failed to lock the buffer and cannot stall. */ 711 failed_bh = bh; 712 bh = head; 713 while (bh != failed_bh) { 714 unlock_buffer(bh); 715 bh = bh->b_this_page; 716 } 717 718 return false; 719 } 720 721 static int __buffer_migrate_folio(struct address_space *mapping, 722 struct folio *dst, struct folio *src, enum migrate_mode mode, 723 bool check_refs) 724 { 725 struct buffer_head *bh, *head; 726 int rc; 727 int expected_count; 728 729 head = folio_buffers(src); 730 if (!head) 731 return migrate_folio(mapping, dst, src, mode); 732 733 /* Check whether page does not have extra refs before we do more work */ 734 expected_count = folio_expected_refs(mapping, src); 735 if (folio_ref_count(src) != expected_count) 736 return -EAGAIN; 737 738 if (!buffer_migrate_lock_buffers(head, mode)) 739 return -EAGAIN; 740 741 if (check_refs) { 742 bool busy; 743 bool invalidated = false; 744 745 recheck_buffers: 746 busy = false; 747 spin_lock(&mapping->private_lock); 748 bh = head; 749 do { 750 if (atomic_read(&bh->b_count)) { 751 busy = true; 752 break; 753 } 754 bh = bh->b_this_page; 755 } while (bh != head); 756 if (busy) { 757 if (invalidated) { 758 rc = -EAGAIN; 759 goto unlock_buffers; 760 } 761 spin_unlock(&mapping->private_lock); 762 invalidate_bh_lrus(); 763 invalidated = true; 764 goto recheck_buffers; 765 } 766 } 767 768 rc = folio_migrate_mapping(mapping, dst, src, 0); 769 if (rc != MIGRATEPAGE_SUCCESS) 770 goto unlock_buffers; 771 772 folio_attach_private(dst, folio_detach_private(src)); 773 774 bh = head; 775 do { 776 set_bh_page(bh, &dst->page, bh_offset(bh)); 777 bh = bh->b_this_page; 778 } while (bh != head); 779 780 if (mode != MIGRATE_SYNC_NO_COPY) 781 folio_migrate_copy(dst, src); 782 else 783 folio_migrate_flags(dst, src); 784 785 rc = MIGRATEPAGE_SUCCESS; 786 unlock_buffers: 787 if (check_refs) 788 spin_unlock(&mapping->private_lock); 789 bh = head; 790 do { 791 unlock_buffer(bh); 792 bh = bh->b_this_page; 793 } while (bh != head); 794 795 return rc; 796 } 797 798 /** 799 * buffer_migrate_folio() - Migration function for folios with buffers. 800 * @mapping: The address space containing @src. 801 * @dst: The folio to migrate to. 802 * @src: The folio to migrate from. 803 * @mode: How to migrate the folio. 804 * 805 * This function can only be used if the underlying filesystem guarantees 806 * that no other references to @src exist. For example attached buffer 807 * heads are accessed only under the folio lock. If your filesystem cannot 808 * provide this guarantee, buffer_migrate_folio_norefs() may be more 809 * appropriate. 810 * 811 * Return: 0 on success or a negative errno on failure. 812 */ 813 int buffer_migrate_folio(struct address_space *mapping, 814 struct folio *dst, struct folio *src, enum migrate_mode mode) 815 { 816 return __buffer_migrate_folio(mapping, dst, src, mode, false); 817 } 818 EXPORT_SYMBOL(buffer_migrate_folio); 819 820 /** 821 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 822 * @mapping: The address space containing @src. 823 * @dst: The folio to migrate to. 824 * @src: The folio to migrate from. 825 * @mode: How to migrate the folio. 826 * 827 * Like buffer_migrate_folio() except that this variant is more careful 828 * and checks that there are also no buffer head references. This function 829 * is the right one for mappings where buffer heads are directly looked 830 * up and referenced (such as block device mappings). 831 * 832 * Return: 0 on success or a negative errno on failure. 833 */ 834 int buffer_migrate_folio_norefs(struct address_space *mapping, 835 struct folio *dst, struct folio *src, enum migrate_mode mode) 836 { 837 return __buffer_migrate_folio(mapping, dst, src, mode, true); 838 } 839 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 840 #endif 841 842 int filemap_migrate_folio(struct address_space *mapping, 843 struct folio *dst, struct folio *src, enum migrate_mode mode) 844 { 845 int ret; 846 847 ret = folio_migrate_mapping(mapping, dst, src, 0); 848 if (ret != MIGRATEPAGE_SUCCESS) 849 return ret; 850 851 if (folio_get_private(src)) 852 folio_attach_private(dst, folio_detach_private(src)); 853 854 if (mode != MIGRATE_SYNC_NO_COPY) 855 folio_migrate_copy(dst, src); 856 else 857 folio_migrate_flags(dst, src); 858 return MIGRATEPAGE_SUCCESS; 859 } 860 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 861 862 /* 863 * Writeback a folio to clean the dirty state 864 */ 865 static int writeout(struct address_space *mapping, struct folio *folio) 866 { 867 struct writeback_control wbc = { 868 .sync_mode = WB_SYNC_NONE, 869 .nr_to_write = 1, 870 .range_start = 0, 871 .range_end = LLONG_MAX, 872 .for_reclaim = 1 873 }; 874 int rc; 875 876 if (!mapping->a_ops->writepage) 877 /* No write method for the address space */ 878 return -EINVAL; 879 880 if (!folio_clear_dirty_for_io(folio)) 881 /* Someone else already triggered a write */ 882 return -EAGAIN; 883 884 /* 885 * A dirty folio may imply that the underlying filesystem has 886 * the folio on some queue. So the folio must be clean for 887 * migration. Writeout may mean we lose the lock and the 888 * folio state is no longer what we checked for earlier. 889 * At this point we know that the migration attempt cannot 890 * be successful. 891 */ 892 remove_migration_ptes(folio, folio, false); 893 894 rc = mapping->a_ops->writepage(&folio->page, &wbc); 895 896 if (rc != AOP_WRITEPAGE_ACTIVATE) 897 /* unlocked. Relock */ 898 folio_lock(folio); 899 900 return (rc < 0) ? -EIO : -EAGAIN; 901 } 902 903 /* 904 * Default handling if a filesystem does not provide a migration function. 905 */ 906 static int fallback_migrate_folio(struct address_space *mapping, 907 struct folio *dst, struct folio *src, enum migrate_mode mode) 908 { 909 if (folio_test_dirty(src)) { 910 /* Only writeback folios in full synchronous migration */ 911 switch (mode) { 912 case MIGRATE_SYNC: 913 case MIGRATE_SYNC_NO_COPY: 914 break; 915 default: 916 return -EBUSY; 917 } 918 return writeout(mapping, src); 919 } 920 921 /* 922 * Buffers may be managed in a filesystem specific way. 923 * We must have no buffers or drop them. 924 */ 925 if (!filemap_release_folio(src, GFP_KERNEL)) 926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 927 928 return migrate_folio(mapping, dst, src, mode); 929 } 930 931 /* 932 * Move a page to a newly allocated page 933 * The page is locked and all ptes have been successfully removed. 934 * 935 * The new page will have replaced the old page if this function 936 * is successful. 937 * 938 * Return value: 939 * < 0 - error code 940 * MIGRATEPAGE_SUCCESS - success 941 */ 942 static int move_to_new_folio(struct folio *dst, struct folio *src, 943 enum migrate_mode mode) 944 { 945 int rc = -EAGAIN; 946 bool is_lru = !__PageMovable(&src->page); 947 948 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 949 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 950 951 if (likely(is_lru)) { 952 struct address_space *mapping = folio_mapping(src); 953 954 if (!mapping) 955 rc = migrate_folio(mapping, dst, src, mode); 956 else if (mapping->a_ops->migrate_folio) 957 /* 958 * Most folios have a mapping and most filesystems 959 * provide a migrate_folio callback. Anonymous folios 960 * are part of swap space which also has its own 961 * migrate_folio callback. This is the most common path 962 * for page migration. 963 */ 964 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 965 mode); 966 else 967 rc = fallback_migrate_folio(mapping, dst, src, mode); 968 } else { 969 const struct movable_operations *mops; 970 971 /* 972 * In case of non-lru page, it could be released after 973 * isolation step. In that case, we shouldn't try migration. 974 */ 975 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 976 if (!folio_test_movable(src)) { 977 rc = MIGRATEPAGE_SUCCESS; 978 folio_clear_isolated(src); 979 goto out; 980 } 981 982 mops = folio_movable_ops(src); 983 rc = mops->migrate_page(&dst->page, &src->page, mode); 984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 985 !folio_test_isolated(src)); 986 } 987 988 /* 989 * When successful, old pagecache src->mapping must be cleared before 990 * src is freed; but stats require that PageAnon be left as PageAnon. 991 */ 992 if (rc == MIGRATEPAGE_SUCCESS) { 993 if (__PageMovable(&src->page)) { 994 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 995 996 /* 997 * We clear PG_movable under page_lock so any compactor 998 * cannot try to migrate this page. 999 */ 1000 folio_clear_isolated(src); 1001 } 1002 1003 /* 1004 * Anonymous and movable src->mapping will be cleared by 1005 * free_pages_prepare so don't reset it here for keeping 1006 * the type to work PageAnon, for example. 1007 */ 1008 if (!folio_mapping_flags(src)) 1009 src->mapping = NULL; 1010 1011 if (likely(!folio_is_zone_device(dst))) 1012 flush_dcache_folio(dst); 1013 } 1014 out: 1015 return rc; 1016 } 1017 1018 /* 1019 * To record some information during migration, we use some unused 1020 * fields (mapping and private) of struct folio of the newly allocated 1021 * destination folio. This is safe because nobody is using them 1022 * except us. 1023 */ 1024 union migration_ptr { 1025 struct anon_vma *anon_vma; 1026 struct address_space *mapping; 1027 }; 1028 static void __migrate_folio_record(struct folio *dst, 1029 unsigned long page_was_mapped, 1030 struct anon_vma *anon_vma) 1031 { 1032 union migration_ptr ptr = { .anon_vma = anon_vma }; 1033 dst->mapping = ptr.mapping; 1034 dst->private = (void *)page_was_mapped; 1035 } 1036 1037 static void __migrate_folio_extract(struct folio *dst, 1038 int *page_was_mappedp, 1039 struct anon_vma **anon_vmap) 1040 { 1041 union migration_ptr ptr = { .mapping = dst->mapping }; 1042 *anon_vmap = ptr.anon_vma; 1043 *page_was_mappedp = (unsigned long)dst->private; 1044 dst->mapping = NULL; 1045 dst->private = NULL; 1046 } 1047 1048 /* Restore the source folio to the original state upon failure */ 1049 static void migrate_folio_undo_src(struct folio *src, 1050 int page_was_mapped, 1051 struct anon_vma *anon_vma, 1052 bool locked, 1053 struct list_head *ret) 1054 { 1055 if (page_was_mapped) 1056 remove_migration_ptes(src, src, false); 1057 /* Drop an anon_vma reference if we took one */ 1058 if (anon_vma) 1059 put_anon_vma(anon_vma); 1060 if (locked) 1061 folio_unlock(src); 1062 if (ret) 1063 list_move_tail(&src->lru, ret); 1064 } 1065 1066 /* Restore the destination folio to the original state upon failure */ 1067 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1068 free_folio_t put_new_folio, unsigned long private) 1069 { 1070 if (locked) 1071 folio_unlock(dst); 1072 if (put_new_folio) 1073 put_new_folio(dst, private); 1074 else 1075 folio_put(dst); 1076 } 1077 1078 /* Cleanup src folio upon migration success */ 1079 static void migrate_folio_done(struct folio *src, 1080 enum migrate_reason reason) 1081 { 1082 /* 1083 * Compaction can migrate also non-LRU pages which are 1084 * not accounted to NR_ISOLATED_*. They can be recognized 1085 * as __PageMovable 1086 */ 1087 if (likely(!__folio_test_movable(src))) 1088 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1089 folio_is_file_lru(src), -folio_nr_pages(src)); 1090 1091 if (reason != MR_MEMORY_FAILURE) 1092 /* We release the page in page_handle_poison. */ 1093 folio_put(src); 1094 } 1095 1096 /* Obtain the lock on page, remove all ptes. */ 1097 static int migrate_folio_unmap(new_folio_t get_new_folio, 1098 free_folio_t put_new_folio, unsigned long private, 1099 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1100 enum migrate_reason reason, struct list_head *ret) 1101 { 1102 struct folio *dst; 1103 int rc = -EAGAIN; 1104 int page_was_mapped = 0; 1105 struct anon_vma *anon_vma = NULL; 1106 bool is_lru = !__PageMovable(&src->page); 1107 bool locked = false; 1108 bool dst_locked = false; 1109 1110 if (folio_ref_count(src) == 1) { 1111 /* Folio was freed from under us. So we are done. */ 1112 folio_clear_active(src); 1113 folio_clear_unevictable(src); 1114 /* free_pages_prepare() will clear PG_isolated. */ 1115 list_del(&src->lru); 1116 migrate_folio_done(src, reason); 1117 return MIGRATEPAGE_SUCCESS; 1118 } 1119 1120 dst = get_new_folio(src, private); 1121 if (!dst) 1122 return -ENOMEM; 1123 *dstp = dst; 1124 1125 dst->private = NULL; 1126 1127 if (!folio_trylock(src)) { 1128 if (mode == MIGRATE_ASYNC) 1129 goto out; 1130 1131 /* 1132 * It's not safe for direct compaction to call lock_page. 1133 * For example, during page readahead pages are added locked 1134 * to the LRU. Later, when the IO completes the pages are 1135 * marked uptodate and unlocked. However, the queueing 1136 * could be merging multiple pages for one bio (e.g. 1137 * mpage_readahead). If an allocation happens for the 1138 * second or third page, the process can end up locking 1139 * the same page twice and deadlocking. Rather than 1140 * trying to be clever about what pages can be locked, 1141 * avoid the use of lock_page for direct compaction 1142 * altogether. 1143 */ 1144 if (current->flags & PF_MEMALLOC) 1145 goto out; 1146 1147 /* 1148 * In "light" mode, we can wait for transient locks (eg 1149 * inserting a page into the page table), but it's not 1150 * worth waiting for I/O. 1151 */ 1152 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1153 goto out; 1154 1155 folio_lock(src); 1156 } 1157 locked = true; 1158 1159 if (folio_test_writeback(src)) { 1160 /* 1161 * Only in the case of a full synchronous migration is it 1162 * necessary to wait for PageWriteback. In the async case, 1163 * the retry loop is too short and in the sync-light case, 1164 * the overhead of stalling is too much 1165 */ 1166 switch (mode) { 1167 case MIGRATE_SYNC: 1168 case MIGRATE_SYNC_NO_COPY: 1169 break; 1170 default: 1171 rc = -EBUSY; 1172 goto out; 1173 } 1174 folio_wait_writeback(src); 1175 } 1176 1177 /* 1178 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1179 * we cannot notice that anon_vma is freed while we migrate a page. 1180 * This get_anon_vma() delays freeing anon_vma pointer until the end 1181 * of migration. File cache pages are no problem because of page_lock() 1182 * File Caches may use write_page() or lock_page() in migration, then, 1183 * just care Anon page here. 1184 * 1185 * Only folio_get_anon_vma() understands the subtleties of 1186 * getting a hold on an anon_vma from outside one of its mms. 1187 * But if we cannot get anon_vma, then we won't need it anyway, 1188 * because that implies that the anon page is no longer mapped 1189 * (and cannot be remapped so long as we hold the page lock). 1190 */ 1191 if (folio_test_anon(src) && !folio_test_ksm(src)) 1192 anon_vma = folio_get_anon_vma(src); 1193 1194 /* 1195 * Block others from accessing the new page when we get around to 1196 * establishing additional references. We are usually the only one 1197 * holding a reference to dst at this point. We used to have a BUG 1198 * here if folio_trylock(dst) fails, but would like to allow for 1199 * cases where there might be a race with the previous use of dst. 1200 * This is much like races on refcount of oldpage: just don't BUG(). 1201 */ 1202 if (unlikely(!folio_trylock(dst))) 1203 goto out; 1204 dst_locked = true; 1205 1206 if (unlikely(!is_lru)) { 1207 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1208 return MIGRATEPAGE_UNMAP; 1209 } 1210 1211 /* 1212 * Corner case handling: 1213 * 1. When a new swap-cache page is read into, it is added to the LRU 1214 * and treated as swapcache but it has no rmap yet. 1215 * Calling try_to_unmap() against a src->mapping==NULL page will 1216 * trigger a BUG. So handle it here. 1217 * 2. An orphaned page (see truncate_cleanup_page) might have 1218 * fs-private metadata. The page can be picked up due to memory 1219 * offlining. Everywhere else except page reclaim, the page is 1220 * invisible to the vm, so the page can not be migrated. So try to 1221 * free the metadata, so the page can be freed. 1222 */ 1223 if (!src->mapping) { 1224 if (folio_test_private(src)) { 1225 try_to_free_buffers(src); 1226 goto out; 1227 } 1228 } else if (folio_mapped(src)) { 1229 /* Establish migration ptes */ 1230 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1231 !folio_test_ksm(src) && !anon_vma, src); 1232 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1233 page_was_mapped = 1; 1234 } 1235 1236 if (!folio_mapped(src)) { 1237 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1238 return MIGRATEPAGE_UNMAP; 1239 } 1240 1241 out: 1242 /* 1243 * A folio that has not been unmapped will be restored to 1244 * right list unless we want to retry. 1245 */ 1246 if (rc == -EAGAIN) 1247 ret = NULL; 1248 1249 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret); 1250 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1251 1252 return rc; 1253 } 1254 1255 /* Migrate the folio to the newly allocated folio in dst. */ 1256 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1257 struct folio *src, struct folio *dst, 1258 enum migrate_mode mode, enum migrate_reason reason, 1259 struct list_head *ret) 1260 { 1261 int rc; 1262 int page_was_mapped = 0; 1263 struct anon_vma *anon_vma = NULL; 1264 bool is_lru = !__PageMovable(&src->page); 1265 struct list_head *prev; 1266 1267 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1268 prev = dst->lru.prev; 1269 list_del(&dst->lru); 1270 1271 rc = move_to_new_folio(dst, src, mode); 1272 if (rc) 1273 goto out; 1274 1275 if (unlikely(!is_lru)) 1276 goto out_unlock_both; 1277 1278 /* 1279 * When successful, push dst to LRU immediately: so that if it 1280 * turns out to be an mlocked page, remove_migration_ptes() will 1281 * automatically build up the correct dst->mlock_count for it. 1282 * 1283 * We would like to do something similar for the old page, when 1284 * unsuccessful, and other cases when a page has been temporarily 1285 * isolated from the unevictable LRU: but this case is the easiest. 1286 */ 1287 folio_add_lru(dst); 1288 if (page_was_mapped) 1289 lru_add_drain(); 1290 1291 if (page_was_mapped) 1292 remove_migration_ptes(src, dst, false); 1293 1294 out_unlock_both: 1295 folio_unlock(dst); 1296 set_page_owner_migrate_reason(&dst->page, reason); 1297 /* 1298 * If migration is successful, decrease refcount of dst, 1299 * which will not free the page because new page owner increased 1300 * refcounter. 1301 */ 1302 folio_put(dst); 1303 1304 /* 1305 * A folio that has been migrated has all references removed 1306 * and will be freed. 1307 */ 1308 list_del(&src->lru); 1309 /* Drop an anon_vma reference if we took one */ 1310 if (anon_vma) 1311 put_anon_vma(anon_vma); 1312 folio_unlock(src); 1313 migrate_folio_done(src, reason); 1314 1315 return rc; 1316 out: 1317 /* 1318 * A folio that has not been migrated will be restored to 1319 * right list unless we want to retry. 1320 */ 1321 if (rc == -EAGAIN) { 1322 list_add(&dst->lru, prev); 1323 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1324 return rc; 1325 } 1326 1327 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret); 1328 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1329 1330 return rc; 1331 } 1332 1333 /* 1334 * Counterpart of unmap_and_move_page() for hugepage migration. 1335 * 1336 * This function doesn't wait the completion of hugepage I/O 1337 * because there is no race between I/O and migration for hugepage. 1338 * Note that currently hugepage I/O occurs only in direct I/O 1339 * where no lock is held and PG_writeback is irrelevant, 1340 * and writeback status of all subpages are counted in the reference 1341 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1342 * under direct I/O, the reference of the head page is 512 and a bit more.) 1343 * This means that when we try to migrate hugepage whose subpages are 1344 * doing direct I/O, some references remain after try_to_unmap() and 1345 * hugepage migration fails without data corruption. 1346 * 1347 * There is also no race when direct I/O is issued on the page under migration, 1348 * because then pte is replaced with migration swap entry and direct I/O code 1349 * will wait in the page fault for migration to complete. 1350 */ 1351 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1352 free_folio_t put_new_folio, unsigned long private, 1353 struct folio *src, int force, enum migrate_mode mode, 1354 int reason, struct list_head *ret) 1355 { 1356 struct folio *dst; 1357 int rc = -EAGAIN; 1358 int page_was_mapped = 0; 1359 struct anon_vma *anon_vma = NULL; 1360 struct address_space *mapping = NULL; 1361 1362 if (folio_ref_count(src) == 1) { 1363 /* page was freed from under us. So we are done. */ 1364 folio_putback_active_hugetlb(src); 1365 return MIGRATEPAGE_SUCCESS; 1366 } 1367 1368 dst = get_new_folio(src, private); 1369 if (!dst) 1370 return -ENOMEM; 1371 1372 if (!folio_trylock(src)) { 1373 if (!force) 1374 goto out; 1375 switch (mode) { 1376 case MIGRATE_SYNC: 1377 case MIGRATE_SYNC_NO_COPY: 1378 break; 1379 default: 1380 goto out; 1381 } 1382 folio_lock(src); 1383 } 1384 1385 /* 1386 * Check for pages which are in the process of being freed. Without 1387 * folio_mapping() set, hugetlbfs specific move page routine will not 1388 * be called and we could leak usage counts for subpools. 1389 */ 1390 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1391 rc = -EBUSY; 1392 goto out_unlock; 1393 } 1394 1395 if (folio_test_anon(src)) 1396 anon_vma = folio_get_anon_vma(src); 1397 1398 if (unlikely(!folio_trylock(dst))) 1399 goto put_anon; 1400 1401 if (folio_mapped(src)) { 1402 enum ttu_flags ttu = 0; 1403 1404 if (!folio_test_anon(src)) { 1405 /* 1406 * In shared mappings, try_to_unmap could potentially 1407 * call huge_pmd_unshare. Because of this, take 1408 * semaphore in write mode here and set TTU_RMAP_LOCKED 1409 * to let lower levels know we have taken the lock. 1410 */ 1411 mapping = hugetlb_page_mapping_lock_write(&src->page); 1412 if (unlikely(!mapping)) 1413 goto unlock_put_anon; 1414 1415 ttu = TTU_RMAP_LOCKED; 1416 } 1417 1418 try_to_migrate(src, ttu); 1419 page_was_mapped = 1; 1420 1421 if (ttu & TTU_RMAP_LOCKED) 1422 i_mmap_unlock_write(mapping); 1423 } 1424 1425 if (!folio_mapped(src)) 1426 rc = move_to_new_folio(dst, src, mode); 1427 1428 if (page_was_mapped) 1429 remove_migration_ptes(src, 1430 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1431 1432 unlock_put_anon: 1433 folio_unlock(dst); 1434 1435 put_anon: 1436 if (anon_vma) 1437 put_anon_vma(anon_vma); 1438 1439 if (rc == MIGRATEPAGE_SUCCESS) { 1440 move_hugetlb_state(src, dst, reason); 1441 put_new_folio = NULL; 1442 } 1443 1444 out_unlock: 1445 folio_unlock(src); 1446 out: 1447 if (rc == MIGRATEPAGE_SUCCESS) 1448 folio_putback_active_hugetlb(src); 1449 else if (rc != -EAGAIN) 1450 list_move_tail(&src->lru, ret); 1451 1452 /* 1453 * If migration was not successful and there's a freeing callback, use 1454 * it. Otherwise, put_page() will drop the reference grabbed during 1455 * isolation. 1456 */ 1457 if (put_new_folio) 1458 put_new_folio(dst, private); 1459 else 1460 folio_putback_active_hugetlb(dst); 1461 1462 return rc; 1463 } 1464 1465 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1466 { 1467 int rc; 1468 1469 folio_lock(folio); 1470 rc = split_folio_to_list(folio, split_folios); 1471 folio_unlock(folio); 1472 if (!rc) 1473 list_move_tail(&folio->lru, split_folios); 1474 1475 return rc; 1476 } 1477 1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1479 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1480 #else 1481 #define NR_MAX_BATCHED_MIGRATION 512 1482 #endif 1483 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1484 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1485 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1486 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1487 1488 struct migrate_pages_stats { 1489 int nr_succeeded; /* Normal and large folios migrated successfully, in 1490 units of base pages */ 1491 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1492 units of base pages. Untried folios aren't counted */ 1493 int nr_thp_succeeded; /* THP migrated successfully */ 1494 int nr_thp_failed; /* THP failed to be migrated */ 1495 int nr_thp_split; /* THP split before migrating */ 1496 }; 1497 1498 /* 1499 * Returns the number of hugetlb folios that were not migrated, or an error code 1500 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1501 * any more because the list has become empty or no retryable hugetlb folios 1502 * exist any more. It is caller's responsibility to call putback_movable_pages() 1503 * only if ret != 0. 1504 */ 1505 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1506 free_folio_t put_new_folio, unsigned long private, 1507 enum migrate_mode mode, int reason, 1508 struct migrate_pages_stats *stats, 1509 struct list_head *ret_folios) 1510 { 1511 int retry = 1; 1512 int nr_failed = 0; 1513 int nr_retry_pages = 0; 1514 int pass = 0; 1515 struct folio *folio, *folio2; 1516 int rc, nr_pages; 1517 1518 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1519 retry = 0; 1520 nr_retry_pages = 0; 1521 1522 list_for_each_entry_safe(folio, folio2, from, lru) { 1523 if (!folio_test_hugetlb(folio)) 1524 continue; 1525 1526 nr_pages = folio_nr_pages(folio); 1527 1528 cond_resched(); 1529 1530 /* 1531 * Migratability of hugepages depends on architectures and 1532 * their size. This check is necessary because some callers 1533 * of hugepage migration like soft offline and memory 1534 * hotremove don't walk through page tables or check whether 1535 * the hugepage is pmd-based or not before kicking migration. 1536 */ 1537 if (!hugepage_migration_supported(folio_hstate(folio))) { 1538 nr_failed++; 1539 stats->nr_failed_pages += nr_pages; 1540 list_move_tail(&folio->lru, ret_folios); 1541 continue; 1542 } 1543 1544 rc = unmap_and_move_huge_page(get_new_folio, 1545 put_new_folio, private, 1546 folio, pass > 2, mode, 1547 reason, ret_folios); 1548 /* 1549 * The rules are: 1550 * Success: hugetlb folio will be put back 1551 * -EAGAIN: stay on the from list 1552 * -ENOMEM: stay on the from list 1553 * Other errno: put on ret_folios list 1554 */ 1555 switch(rc) { 1556 case -ENOMEM: 1557 /* 1558 * When memory is low, don't bother to try to migrate 1559 * other folios, just exit. 1560 */ 1561 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1562 return -ENOMEM; 1563 case -EAGAIN: 1564 retry++; 1565 nr_retry_pages += nr_pages; 1566 break; 1567 case MIGRATEPAGE_SUCCESS: 1568 stats->nr_succeeded += nr_pages; 1569 break; 1570 default: 1571 /* 1572 * Permanent failure (-EBUSY, etc.): 1573 * unlike -EAGAIN case, the failed folio is 1574 * removed from migration folio list and not 1575 * retried in the next outer loop. 1576 */ 1577 nr_failed++; 1578 stats->nr_failed_pages += nr_pages; 1579 break; 1580 } 1581 } 1582 } 1583 /* 1584 * nr_failed is number of hugetlb folios failed to be migrated. After 1585 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1586 * folios as failed. 1587 */ 1588 nr_failed += retry; 1589 stats->nr_failed_pages += nr_retry_pages; 1590 1591 return nr_failed; 1592 } 1593 1594 /* 1595 * migrate_pages_batch() first unmaps folios in the from list as many as 1596 * possible, then move the unmapped folios. 1597 * 1598 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1599 * lock or bit when we have locked more than one folio. Which may cause 1600 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1601 * length of the from list must be <= 1. 1602 */ 1603 static int migrate_pages_batch(struct list_head *from, 1604 new_folio_t get_new_folio, free_folio_t put_new_folio, 1605 unsigned long private, enum migrate_mode mode, int reason, 1606 struct list_head *ret_folios, struct list_head *split_folios, 1607 struct migrate_pages_stats *stats, int nr_pass) 1608 { 1609 int retry = 1; 1610 int thp_retry = 1; 1611 int nr_failed = 0; 1612 int nr_retry_pages = 0; 1613 int pass = 0; 1614 bool is_thp = false; 1615 struct folio *folio, *folio2, *dst = NULL, *dst2; 1616 int rc, rc_saved = 0, nr_pages; 1617 LIST_HEAD(unmap_folios); 1618 LIST_HEAD(dst_folios); 1619 bool nosplit = (reason == MR_NUMA_MISPLACED); 1620 1621 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1622 !list_empty(from) && !list_is_singular(from)); 1623 1624 for (pass = 0; pass < nr_pass && retry; pass++) { 1625 retry = 0; 1626 thp_retry = 0; 1627 nr_retry_pages = 0; 1628 1629 list_for_each_entry_safe(folio, folio2, from, lru) { 1630 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1631 nr_pages = folio_nr_pages(folio); 1632 1633 cond_resched(); 1634 1635 /* 1636 * Large folio migration might be unsupported or 1637 * the allocation might be failed so we should retry 1638 * on the same folio with the large folio split 1639 * to normal folios. 1640 * 1641 * Split folios are put in split_folios, and 1642 * we will migrate them after the rest of the 1643 * list is processed. 1644 */ 1645 if (!thp_migration_supported() && is_thp) { 1646 nr_failed++; 1647 stats->nr_thp_failed++; 1648 if (!try_split_folio(folio, split_folios)) { 1649 stats->nr_thp_split++; 1650 continue; 1651 } 1652 stats->nr_failed_pages += nr_pages; 1653 list_move_tail(&folio->lru, ret_folios); 1654 continue; 1655 } 1656 1657 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1658 private, folio, &dst, mode, reason, 1659 ret_folios); 1660 /* 1661 * The rules are: 1662 * Success: folio will be freed 1663 * Unmap: folio will be put on unmap_folios list, 1664 * dst folio put on dst_folios list 1665 * -EAGAIN: stay on the from list 1666 * -ENOMEM: stay on the from list 1667 * Other errno: put on ret_folios list 1668 */ 1669 switch(rc) { 1670 case -ENOMEM: 1671 /* 1672 * When memory is low, don't bother to try to migrate 1673 * other folios, move unmapped folios, then exit. 1674 */ 1675 nr_failed++; 1676 stats->nr_thp_failed += is_thp; 1677 /* Large folio NUMA faulting doesn't split to retry. */ 1678 if (folio_test_large(folio) && !nosplit) { 1679 int ret = try_split_folio(folio, split_folios); 1680 1681 if (!ret) { 1682 stats->nr_thp_split += is_thp; 1683 break; 1684 } else if (reason == MR_LONGTERM_PIN && 1685 ret == -EAGAIN) { 1686 /* 1687 * Try again to split large folio to 1688 * mitigate the failure of longterm pinning. 1689 */ 1690 retry++; 1691 thp_retry += is_thp; 1692 nr_retry_pages += nr_pages; 1693 /* Undo duplicated failure counting. */ 1694 nr_failed--; 1695 stats->nr_thp_failed -= is_thp; 1696 break; 1697 } 1698 } 1699 1700 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1701 /* nr_failed isn't updated for not used */ 1702 stats->nr_thp_failed += thp_retry; 1703 rc_saved = rc; 1704 if (list_empty(&unmap_folios)) 1705 goto out; 1706 else 1707 goto move; 1708 case -EAGAIN: 1709 retry++; 1710 thp_retry += is_thp; 1711 nr_retry_pages += nr_pages; 1712 break; 1713 case MIGRATEPAGE_SUCCESS: 1714 stats->nr_succeeded += nr_pages; 1715 stats->nr_thp_succeeded += is_thp; 1716 break; 1717 case MIGRATEPAGE_UNMAP: 1718 list_move_tail(&folio->lru, &unmap_folios); 1719 list_add_tail(&dst->lru, &dst_folios); 1720 break; 1721 default: 1722 /* 1723 * Permanent failure (-EBUSY, etc.): 1724 * unlike -EAGAIN case, the failed folio is 1725 * removed from migration folio list and not 1726 * retried in the next outer loop. 1727 */ 1728 nr_failed++; 1729 stats->nr_thp_failed += is_thp; 1730 stats->nr_failed_pages += nr_pages; 1731 break; 1732 } 1733 } 1734 } 1735 nr_failed += retry; 1736 stats->nr_thp_failed += thp_retry; 1737 stats->nr_failed_pages += nr_retry_pages; 1738 move: 1739 /* Flush TLBs for all unmapped folios */ 1740 try_to_unmap_flush(); 1741 1742 retry = 1; 1743 for (pass = 0; pass < nr_pass && retry; pass++) { 1744 retry = 0; 1745 thp_retry = 0; 1746 nr_retry_pages = 0; 1747 1748 dst = list_first_entry(&dst_folios, struct folio, lru); 1749 dst2 = list_next_entry(dst, lru); 1750 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1751 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1752 nr_pages = folio_nr_pages(folio); 1753 1754 cond_resched(); 1755 1756 rc = migrate_folio_move(put_new_folio, private, 1757 folio, dst, mode, 1758 reason, ret_folios); 1759 /* 1760 * The rules are: 1761 * Success: folio will be freed 1762 * -EAGAIN: stay on the unmap_folios list 1763 * Other errno: put on ret_folios list 1764 */ 1765 switch(rc) { 1766 case -EAGAIN: 1767 retry++; 1768 thp_retry += is_thp; 1769 nr_retry_pages += nr_pages; 1770 break; 1771 case MIGRATEPAGE_SUCCESS: 1772 stats->nr_succeeded += nr_pages; 1773 stats->nr_thp_succeeded += is_thp; 1774 break; 1775 default: 1776 nr_failed++; 1777 stats->nr_thp_failed += is_thp; 1778 stats->nr_failed_pages += nr_pages; 1779 break; 1780 } 1781 dst = dst2; 1782 dst2 = list_next_entry(dst, lru); 1783 } 1784 } 1785 nr_failed += retry; 1786 stats->nr_thp_failed += thp_retry; 1787 stats->nr_failed_pages += nr_retry_pages; 1788 1789 rc = rc_saved ? : nr_failed; 1790 out: 1791 /* Cleanup remaining folios */ 1792 dst = list_first_entry(&dst_folios, struct folio, lru); 1793 dst2 = list_next_entry(dst, lru); 1794 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1795 int page_was_mapped = 0; 1796 struct anon_vma *anon_vma = NULL; 1797 1798 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1799 migrate_folio_undo_src(folio, page_was_mapped, anon_vma, 1800 true, ret_folios); 1801 list_del(&dst->lru); 1802 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1803 dst = dst2; 1804 dst2 = list_next_entry(dst, lru); 1805 } 1806 1807 return rc; 1808 } 1809 1810 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1811 free_folio_t put_new_folio, unsigned long private, 1812 enum migrate_mode mode, int reason, 1813 struct list_head *ret_folios, struct list_head *split_folios, 1814 struct migrate_pages_stats *stats) 1815 { 1816 int rc, nr_failed = 0; 1817 LIST_HEAD(folios); 1818 struct migrate_pages_stats astats; 1819 1820 memset(&astats, 0, sizeof(astats)); 1821 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1822 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1823 reason, &folios, split_folios, &astats, 1824 NR_MAX_MIGRATE_ASYNC_RETRY); 1825 stats->nr_succeeded += astats.nr_succeeded; 1826 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1827 stats->nr_thp_split += astats.nr_thp_split; 1828 if (rc < 0) { 1829 stats->nr_failed_pages += astats.nr_failed_pages; 1830 stats->nr_thp_failed += astats.nr_thp_failed; 1831 list_splice_tail(&folios, ret_folios); 1832 return rc; 1833 } 1834 stats->nr_thp_failed += astats.nr_thp_split; 1835 nr_failed += astats.nr_thp_split; 1836 /* 1837 * Fall back to migrate all failed folios one by one synchronously. All 1838 * failed folios except split THPs will be retried, so their failure 1839 * isn't counted 1840 */ 1841 list_splice_tail_init(&folios, from); 1842 while (!list_empty(from)) { 1843 list_move(from->next, &folios); 1844 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1845 private, mode, reason, ret_folios, 1846 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1847 list_splice_tail_init(&folios, ret_folios); 1848 if (rc < 0) 1849 return rc; 1850 nr_failed += rc; 1851 } 1852 1853 return nr_failed; 1854 } 1855 1856 /* 1857 * migrate_pages - migrate the folios specified in a list, to the free folios 1858 * supplied as the target for the page migration 1859 * 1860 * @from: The list of folios to be migrated. 1861 * @get_new_folio: The function used to allocate free folios to be used 1862 * as the target of the folio migration. 1863 * @put_new_folio: The function used to free target folios if migration 1864 * fails, or NULL if no special handling is necessary. 1865 * @private: Private data to be passed on to get_new_folio() 1866 * @mode: The migration mode that specifies the constraints for 1867 * folio migration, if any. 1868 * @reason: The reason for folio migration. 1869 * @ret_succeeded: Set to the number of folios migrated successfully if 1870 * the caller passes a non-NULL pointer. 1871 * 1872 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1873 * are movable any more because the list has become empty or no retryable folios 1874 * exist any more. It is caller's responsibility to call putback_movable_pages() 1875 * only if ret != 0. 1876 * 1877 * Returns the number of {normal folio, large folio, hugetlb} that were not 1878 * migrated, or an error code. The number of large folio splits will be 1879 * considered as the number of non-migrated large folio, no matter how many 1880 * split folios of the large folio are migrated successfully. 1881 */ 1882 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1883 free_folio_t put_new_folio, unsigned long private, 1884 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1885 { 1886 int rc, rc_gather; 1887 int nr_pages; 1888 struct folio *folio, *folio2; 1889 LIST_HEAD(folios); 1890 LIST_HEAD(ret_folios); 1891 LIST_HEAD(split_folios); 1892 struct migrate_pages_stats stats; 1893 1894 trace_mm_migrate_pages_start(mode, reason); 1895 1896 memset(&stats, 0, sizeof(stats)); 1897 1898 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1899 mode, reason, &stats, &ret_folios); 1900 if (rc_gather < 0) 1901 goto out; 1902 1903 again: 1904 nr_pages = 0; 1905 list_for_each_entry_safe(folio, folio2, from, lru) { 1906 /* Retried hugetlb folios will be kept in list */ 1907 if (folio_test_hugetlb(folio)) { 1908 list_move_tail(&folio->lru, &ret_folios); 1909 continue; 1910 } 1911 1912 nr_pages += folio_nr_pages(folio); 1913 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1914 break; 1915 } 1916 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1917 list_cut_before(&folios, from, &folio2->lru); 1918 else 1919 list_splice_init(from, &folios); 1920 if (mode == MIGRATE_ASYNC) 1921 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1922 private, mode, reason, &ret_folios, 1923 &split_folios, &stats, 1924 NR_MAX_MIGRATE_PAGES_RETRY); 1925 else 1926 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1927 private, mode, reason, &ret_folios, 1928 &split_folios, &stats); 1929 list_splice_tail_init(&folios, &ret_folios); 1930 if (rc < 0) { 1931 rc_gather = rc; 1932 list_splice_tail(&split_folios, &ret_folios); 1933 goto out; 1934 } 1935 if (!list_empty(&split_folios)) { 1936 /* 1937 * Failure isn't counted since all split folios of a large folio 1938 * is counted as 1 failure already. And, we only try to migrate 1939 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1940 */ 1941 migrate_pages_batch(&split_folios, get_new_folio, 1942 put_new_folio, private, MIGRATE_ASYNC, reason, 1943 &ret_folios, NULL, &stats, 1); 1944 list_splice_tail_init(&split_folios, &ret_folios); 1945 } 1946 rc_gather += rc; 1947 if (!list_empty(from)) 1948 goto again; 1949 out: 1950 /* 1951 * Put the permanent failure folio back to migration list, they 1952 * will be put back to the right list by the caller. 1953 */ 1954 list_splice(&ret_folios, from); 1955 1956 /* 1957 * Return 0 in case all split folios of fail-to-migrate large folios 1958 * are migrated successfully. 1959 */ 1960 if (list_empty(from)) 1961 rc_gather = 0; 1962 1963 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1964 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1965 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1966 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1967 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1968 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1969 stats.nr_thp_succeeded, stats.nr_thp_failed, 1970 stats.nr_thp_split, mode, reason); 1971 1972 if (ret_succeeded) 1973 *ret_succeeded = stats.nr_succeeded; 1974 1975 return rc_gather; 1976 } 1977 1978 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 1979 { 1980 struct migration_target_control *mtc; 1981 gfp_t gfp_mask; 1982 unsigned int order = 0; 1983 int nid; 1984 int zidx; 1985 1986 mtc = (struct migration_target_control *)private; 1987 gfp_mask = mtc->gfp_mask; 1988 nid = mtc->nid; 1989 if (nid == NUMA_NO_NODE) 1990 nid = folio_nid(src); 1991 1992 if (folio_test_hugetlb(src)) { 1993 struct hstate *h = folio_hstate(src); 1994 1995 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1996 return alloc_hugetlb_folio_nodemask(h, nid, 1997 mtc->nmask, gfp_mask); 1998 } 1999 2000 if (folio_test_large(src)) { 2001 /* 2002 * clear __GFP_RECLAIM to make the migration callback 2003 * consistent with regular THP allocations. 2004 */ 2005 gfp_mask &= ~__GFP_RECLAIM; 2006 gfp_mask |= GFP_TRANSHUGE; 2007 order = folio_order(src); 2008 } 2009 zidx = zone_idx(folio_zone(src)); 2010 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2011 gfp_mask |= __GFP_HIGHMEM; 2012 2013 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2014 } 2015 2016 #ifdef CONFIG_NUMA 2017 2018 static int store_status(int __user *status, int start, int value, int nr) 2019 { 2020 while (nr-- > 0) { 2021 if (put_user(value, status + start)) 2022 return -EFAULT; 2023 start++; 2024 } 2025 2026 return 0; 2027 } 2028 2029 static int do_move_pages_to_node(struct mm_struct *mm, 2030 struct list_head *pagelist, int node) 2031 { 2032 int err; 2033 struct migration_target_control mtc = { 2034 .nid = node, 2035 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2036 }; 2037 2038 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2039 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2040 if (err) 2041 putback_movable_pages(pagelist); 2042 return err; 2043 } 2044 2045 /* 2046 * Resolves the given address to a struct page, isolates it from the LRU and 2047 * puts it to the given pagelist. 2048 * Returns: 2049 * errno - if the page cannot be found/isolated 2050 * 0 - when it doesn't have to be migrated because it is already on the 2051 * target node 2052 * 1 - when it has been queued 2053 */ 2054 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2055 int node, struct list_head *pagelist, bool migrate_all) 2056 { 2057 struct vm_area_struct *vma; 2058 unsigned long addr; 2059 struct page *page; 2060 int err; 2061 bool isolated; 2062 2063 mmap_read_lock(mm); 2064 addr = (unsigned long)untagged_addr_remote(mm, p); 2065 2066 err = -EFAULT; 2067 vma = vma_lookup(mm, addr); 2068 if (!vma || !vma_migratable(vma)) 2069 goto out; 2070 2071 /* FOLL_DUMP to ignore special (like zero) pages */ 2072 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2073 2074 err = PTR_ERR(page); 2075 if (IS_ERR(page)) 2076 goto out; 2077 2078 err = -ENOENT; 2079 if (!page) 2080 goto out; 2081 2082 if (is_zone_device_page(page)) 2083 goto out_putpage; 2084 2085 err = 0; 2086 if (page_to_nid(page) == node) 2087 goto out_putpage; 2088 2089 err = -EACCES; 2090 if (page_mapcount(page) > 1 && !migrate_all) 2091 goto out_putpage; 2092 2093 if (PageHuge(page)) { 2094 if (PageHead(page)) { 2095 isolated = isolate_hugetlb(page_folio(page), pagelist); 2096 err = isolated ? 1 : -EBUSY; 2097 } 2098 } else { 2099 struct page *head; 2100 2101 head = compound_head(page); 2102 isolated = isolate_lru_page(head); 2103 if (!isolated) { 2104 err = -EBUSY; 2105 goto out_putpage; 2106 } 2107 2108 err = 1; 2109 list_add_tail(&head->lru, pagelist); 2110 mod_node_page_state(page_pgdat(head), 2111 NR_ISOLATED_ANON + page_is_file_lru(head), 2112 thp_nr_pages(head)); 2113 } 2114 out_putpage: 2115 /* 2116 * Either remove the duplicate refcount from 2117 * isolate_lru_page() or drop the page ref if it was 2118 * not isolated. 2119 */ 2120 put_page(page); 2121 out: 2122 mmap_read_unlock(mm); 2123 return err; 2124 } 2125 2126 static int move_pages_and_store_status(struct mm_struct *mm, int node, 2127 struct list_head *pagelist, int __user *status, 2128 int start, int i, unsigned long nr_pages) 2129 { 2130 int err; 2131 2132 if (list_empty(pagelist)) 2133 return 0; 2134 2135 err = do_move_pages_to_node(mm, pagelist, node); 2136 if (err) { 2137 /* 2138 * Positive err means the number of failed 2139 * pages to migrate. Since we are going to 2140 * abort and return the number of non-migrated 2141 * pages, so need to include the rest of the 2142 * nr_pages that have not been attempted as 2143 * well. 2144 */ 2145 if (err > 0) 2146 err += nr_pages - i; 2147 return err; 2148 } 2149 return store_status(status, start, node, i - start); 2150 } 2151 2152 /* 2153 * Migrate an array of page address onto an array of nodes and fill 2154 * the corresponding array of status. 2155 */ 2156 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2157 unsigned long nr_pages, 2158 const void __user * __user *pages, 2159 const int __user *nodes, 2160 int __user *status, int flags) 2161 { 2162 int current_node = NUMA_NO_NODE; 2163 LIST_HEAD(pagelist); 2164 int start, i; 2165 int err = 0, err1; 2166 2167 lru_cache_disable(); 2168 2169 for (i = start = 0; i < nr_pages; i++) { 2170 const void __user *p; 2171 int node; 2172 2173 err = -EFAULT; 2174 if (get_user(p, pages + i)) 2175 goto out_flush; 2176 if (get_user(node, nodes + i)) 2177 goto out_flush; 2178 2179 err = -ENODEV; 2180 if (node < 0 || node >= MAX_NUMNODES) 2181 goto out_flush; 2182 if (!node_state(node, N_MEMORY)) 2183 goto out_flush; 2184 2185 err = -EACCES; 2186 if (!node_isset(node, task_nodes)) 2187 goto out_flush; 2188 2189 if (current_node == NUMA_NO_NODE) { 2190 current_node = node; 2191 start = i; 2192 } else if (node != current_node) { 2193 err = move_pages_and_store_status(mm, current_node, 2194 &pagelist, status, start, i, nr_pages); 2195 if (err) 2196 goto out; 2197 start = i; 2198 current_node = node; 2199 } 2200 2201 /* 2202 * Errors in the page lookup or isolation are not fatal and we simply 2203 * report them via status 2204 */ 2205 err = add_page_for_migration(mm, p, current_node, &pagelist, 2206 flags & MPOL_MF_MOVE_ALL); 2207 2208 if (err > 0) { 2209 /* The page is successfully queued for migration */ 2210 continue; 2211 } 2212 2213 /* 2214 * The move_pages() man page does not have an -EEXIST choice, so 2215 * use -EFAULT instead. 2216 */ 2217 if (err == -EEXIST) 2218 err = -EFAULT; 2219 2220 /* 2221 * If the page is already on the target node (!err), store the 2222 * node, otherwise, store the err. 2223 */ 2224 err = store_status(status, i, err ? : current_node, 1); 2225 if (err) 2226 goto out_flush; 2227 2228 err = move_pages_and_store_status(mm, current_node, &pagelist, 2229 status, start, i, nr_pages); 2230 if (err) { 2231 /* We have accounted for page i */ 2232 if (err > 0) 2233 err--; 2234 goto out; 2235 } 2236 current_node = NUMA_NO_NODE; 2237 } 2238 out_flush: 2239 /* Make sure we do not overwrite the existing error */ 2240 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 2241 status, start, i, nr_pages); 2242 if (err >= 0) 2243 err = err1; 2244 out: 2245 lru_cache_enable(); 2246 return err; 2247 } 2248 2249 /* 2250 * Determine the nodes of an array of pages and store it in an array of status. 2251 */ 2252 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2253 const void __user **pages, int *status) 2254 { 2255 unsigned long i; 2256 2257 mmap_read_lock(mm); 2258 2259 for (i = 0; i < nr_pages; i++) { 2260 unsigned long addr = (unsigned long)(*pages); 2261 struct vm_area_struct *vma; 2262 struct page *page; 2263 int err = -EFAULT; 2264 2265 vma = vma_lookup(mm, addr); 2266 if (!vma) 2267 goto set_status; 2268 2269 /* FOLL_DUMP to ignore special (like zero) pages */ 2270 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2271 2272 err = PTR_ERR(page); 2273 if (IS_ERR(page)) 2274 goto set_status; 2275 2276 err = -ENOENT; 2277 if (!page) 2278 goto set_status; 2279 2280 if (!is_zone_device_page(page)) 2281 err = page_to_nid(page); 2282 2283 put_page(page); 2284 set_status: 2285 *status = err; 2286 2287 pages++; 2288 status++; 2289 } 2290 2291 mmap_read_unlock(mm); 2292 } 2293 2294 static int get_compat_pages_array(const void __user *chunk_pages[], 2295 const void __user * __user *pages, 2296 unsigned long chunk_nr) 2297 { 2298 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2299 compat_uptr_t p; 2300 int i; 2301 2302 for (i = 0; i < chunk_nr; i++) { 2303 if (get_user(p, pages32 + i)) 2304 return -EFAULT; 2305 chunk_pages[i] = compat_ptr(p); 2306 } 2307 2308 return 0; 2309 } 2310 2311 /* 2312 * Determine the nodes of a user array of pages and store it in 2313 * a user array of status. 2314 */ 2315 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2316 const void __user * __user *pages, 2317 int __user *status) 2318 { 2319 #define DO_PAGES_STAT_CHUNK_NR 16UL 2320 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2321 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2322 2323 while (nr_pages) { 2324 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2325 2326 if (in_compat_syscall()) { 2327 if (get_compat_pages_array(chunk_pages, pages, 2328 chunk_nr)) 2329 break; 2330 } else { 2331 if (copy_from_user(chunk_pages, pages, 2332 chunk_nr * sizeof(*chunk_pages))) 2333 break; 2334 } 2335 2336 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2337 2338 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2339 break; 2340 2341 pages += chunk_nr; 2342 status += chunk_nr; 2343 nr_pages -= chunk_nr; 2344 } 2345 return nr_pages ? -EFAULT : 0; 2346 } 2347 2348 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2349 { 2350 struct task_struct *task; 2351 struct mm_struct *mm; 2352 2353 /* 2354 * There is no need to check if current process has the right to modify 2355 * the specified process when they are same. 2356 */ 2357 if (!pid) { 2358 mmget(current->mm); 2359 *mem_nodes = cpuset_mems_allowed(current); 2360 return current->mm; 2361 } 2362 2363 /* Find the mm_struct */ 2364 rcu_read_lock(); 2365 task = find_task_by_vpid(pid); 2366 if (!task) { 2367 rcu_read_unlock(); 2368 return ERR_PTR(-ESRCH); 2369 } 2370 get_task_struct(task); 2371 2372 /* 2373 * Check if this process has the right to modify the specified 2374 * process. Use the regular "ptrace_may_access()" checks. 2375 */ 2376 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2377 rcu_read_unlock(); 2378 mm = ERR_PTR(-EPERM); 2379 goto out; 2380 } 2381 rcu_read_unlock(); 2382 2383 mm = ERR_PTR(security_task_movememory(task)); 2384 if (IS_ERR(mm)) 2385 goto out; 2386 *mem_nodes = cpuset_mems_allowed(task); 2387 mm = get_task_mm(task); 2388 out: 2389 put_task_struct(task); 2390 if (!mm) 2391 mm = ERR_PTR(-EINVAL); 2392 return mm; 2393 } 2394 2395 /* 2396 * Move a list of pages in the address space of the currently executing 2397 * process. 2398 */ 2399 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2400 const void __user * __user *pages, 2401 const int __user *nodes, 2402 int __user *status, int flags) 2403 { 2404 struct mm_struct *mm; 2405 int err; 2406 nodemask_t task_nodes; 2407 2408 /* Check flags */ 2409 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2410 return -EINVAL; 2411 2412 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2413 return -EPERM; 2414 2415 mm = find_mm_struct(pid, &task_nodes); 2416 if (IS_ERR(mm)) 2417 return PTR_ERR(mm); 2418 2419 if (nodes) 2420 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2421 nodes, status, flags); 2422 else 2423 err = do_pages_stat(mm, nr_pages, pages, status); 2424 2425 mmput(mm); 2426 return err; 2427 } 2428 2429 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2430 const void __user * __user *, pages, 2431 const int __user *, nodes, 2432 int __user *, status, int, flags) 2433 { 2434 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2435 } 2436 2437 #ifdef CONFIG_NUMA_BALANCING 2438 /* 2439 * Returns true if this is a safe migration target node for misplaced NUMA 2440 * pages. Currently it only checks the watermarks which is crude. 2441 */ 2442 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2443 unsigned long nr_migrate_pages) 2444 { 2445 int z; 2446 2447 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2448 struct zone *zone = pgdat->node_zones + z; 2449 2450 if (!managed_zone(zone)) 2451 continue; 2452 2453 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2454 if (!zone_watermark_ok(zone, 0, 2455 high_wmark_pages(zone) + 2456 nr_migrate_pages, 2457 ZONE_MOVABLE, 0)) 2458 continue; 2459 return true; 2460 } 2461 return false; 2462 } 2463 2464 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2465 unsigned long data) 2466 { 2467 int nid = (int) data; 2468 int order = folio_order(src); 2469 gfp_t gfp = __GFP_THISNODE; 2470 2471 if (order > 0) 2472 gfp |= GFP_TRANSHUGE_LIGHT; 2473 else { 2474 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2475 __GFP_NOWARN; 2476 gfp &= ~__GFP_RECLAIM; 2477 } 2478 return __folio_alloc_node(gfp, order, nid); 2479 } 2480 2481 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2482 { 2483 int nr_pages = thp_nr_pages(page); 2484 int order = compound_order(page); 2485 2486 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2487 2488 /* Do not migrate THP mapped by multiple processes */ 2489 if (PageTransHuge(page) && total_mapcount(page) > 1) 2490 return 0; 2491 2492 /* Avoid migrating to a node that is nearly full */ 2493 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2494 int z; 2495 2496 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2497 return 0; 2498 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2499 if (managed_zone(pgdat->node_zones + z)) 2500 break; 2501 } 2502 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2503 return 0; 2504 } 2505 2506 if (!isolate_lru_page(page)) 2507 return 0; 2508 2509 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2510 nr_pages); 2511 2512 /* 2513 * Isolating the page has taken another reference, so the 2514 * caller's reference can be safely dropped without the page 2515 * disappearing underneath us during migration. 2516 */ 2517 put_page(page); 2518 return 1; 2519 } 2520 2521 /* 2522 * Attempt to migrate a misplaced page to the specified destination 2523 * node. Caller is expected to have an elevated reference count on 2524 * the page that will be dropped by this function before returning. 2525 */ 2526 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2527 int node) 2528 { 2529 pg_data_t *pgdat = NODE_DATA(node); 2530 int isolated; 2531 int nr_remaining; 2532 unsigned int nr_succeeded; 2533 LIST_HEAD(migratepages); 2534 int nr_pages = thp_nr_pages(page); 2535 2536 /* 2537 * Don't migrate file pages that are mapped in multiple processes 2538 * with execute permissions as they are probably shared libraries. 2539 */ 2540 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2541 (vma->vm_flags & VM_EXEC)) 2542 goto out; 2543 2544 /* 2545 * Also do not migrate dirty pages as not all filesystems can move 2546 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2547 */ 2548 if (page_is_file_lru(page) && PageDirty(page)) 2549 goto out; 2550 2551 isolated = numamigrate_isolate_page(pgdat, page); 2552 if (!isolated) 2553 goto out; 2554 2555 list_add(&page->lru, &migratepages); 2556 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2557 NULL, node, MIGRATE_ASYNC, 2558 MR_NUMA_MISPLACED, &nr_succeeded); 2559 if (nr_remaining) { 2560 if (!list_empty(&migratepages)) { 2561 list_del(&page->lru); 2562 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2563 page_is_file_lru(page), -nr_pages); 2564 putback_lru_page(page); 2565 } 2566 isolated = 0; 2567 } 2568 if (nr_succeeded) { 2569 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2570 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2571 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2572 nr_succeeded); 2573 } 2574 BUG_ON(!list_empty(&migratepages)); 2575 return isolated; 2576 2577 out: 2578 put_page(page); 2579 return 0; 2580 } 2581 #endif /* CONFIG_NUMA_BALANCING */ 2582 #endif /* CONFIG_NUMA */ 2583