xref: /openbmc/linux/mm/migrate.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -hpage_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_zone_device_page(new))) {
250 			if (is_device_private_page(new)) {
251 				entry = make_device_private_entry(new, pte_write(pte));
252 				pte = swp_entry_to_pte(entry);
253 				if (pte_swp_uffd_wp(*pvmw.pte))
254 					pte = pte_mkuffd_wp(pte);
255 			}
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device public or private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += hpage_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		struct lruvec *old_lruvec, *new_lruvec;
494 		struct mem_cgroup *memcg;
495 
496 		memcg = page_memcg(page);
497 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499 
500 		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
503 			__dec_lruvec_state(old_lruvec, NR_SHMEM);
504 			__inc_lruvec_state(new_lruvec, NR_SHMEM);
505 		}
506 		if (dirty && mapping_cap_account_dirty(mapping)) {
507 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511 		}
512 	}
513 	local_irq_enable();
514 
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518 
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524 				   struct page *newpage, struct page *page)
525 {
526 	XA_STATE(xas, &mapping->i_pages, page_index(page));
527 	int expected_count;
528 
529 	xas_lock_irq(&xas);
530 	expected_count = 2 + page_has_private(page);
531 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 		xas_unlock_irq(&xas);
533 		return -EAGAIN;
534 	}
535 
536 	if (!page_ref_freeze(page, expected_count)) {
537 		xas_unlock_irq(&xas);
538 		return -EAGAIN;
539 	}
540 
541 	newpage->index = page->index;
542 	newpage->mapping = page->mapping;
543 
544 	get_page(newpage);
545 
546 	xas_store(&xas, newpage);
547 
548 	page_ref_unfreeze(page, expected_count - 1);
549 
550 	xas_unlock_irq(&xas);
551 
552 	return MIGRATEPAGE_SUCCESS;
553 }
554 
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 				int nr_pages)
562 {
563 	int i;
564 	struct page *dst_base = dst;
565 	struct page *src_base = src;
566 
567 	for (i = 0; i < nr_pages; ) {
568 		cond_resched();
569 		copy_highpage(dst, src);
570 
571 		i++;
572 		dst = mem_map_next(dst, dst_base, i);
573 		src = mem_map_next(src, src_base, i);
574 	}
575 }
576 
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 	int i;
580 	int nr_pages;
581 
582 	if (PageHuge(src)) {
583 		/* hugetlbfs page */
584 		struct hstate *h = page_hstate(src);
585 		nr_pages = pages_per_huge_page(h);
586 
587 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 			__copy_gigantic_page(dst, src, nr_pages);
589 			return;
590 		}
591 	} else {
592 		/* thp page */
593 		BUG_ON(!PageTransHuge(src));
594 		nr_pages = hpage_nr_pages(src);
595 	}
596 
597 	for (i = 0; i < nr_pages; i++) {
598 		cond_resched();
599 		copy_highpage(dst + i, src + i);
600 	}
601 }
602 
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608 	int cpupid;
609 
610 	if (PageError(page))
611 		SetPageError(newpage);
612 	if (PageReferenced(page))
613 		SetPageReferenced(newpage);
614 	if (PageUptodate(page))
615 		SetPageUptodate(newpage);
616 	if (TestClearPageActive(page)) {
617 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 		SetPageActive(newpage);
619 	} else if (TestClearPageUnevictable(page))
620 		SetPageUnevictable(newpage);
621 	if (PageWorkingset(page))
622 		SetPageWorkingset(newpage);
623 	if (PageChecked(page))
624 		SetPageChecked(newpage);
625 	if (PageMappedToDisk(page))
626 		SetPageMappedToDisk(newpage);
627 
628 	/* Move dirty on pages not done by migrate_page_move_mapping() */
629 	if (PageDirty(page))
630 		SetPageDirty(newpage);
631 
632 	if (page_is_young(page))
633 		set_page_young(newpage);
634 	if (page_is_idle(page))
635 		set_page_idle(newpage);
636 
637 	/*
638 	 * Copy NUMA information to the new page, to prevent over-eager
639 	 * future migrations of this same page.
640 	 */
641 	cpupid = page_cpupid_xchg_last(page, -1);
642 	page_cpupid_xchg_last(newpage, cpupid);
643 
644 	ksm_migrate_page(newpage, page);
645 	/*
646 	 * Please do not reorder this without considering how mm/ksm.c's
647 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 	 */
649 	if (PageSwapCache(page))
650 		ClearPageSwapCache(page);
651 	ClearPagePrivate(page);
652 	set_page_private(page, 0);
653 
654 	/*
655 	 * If any waiters have accumulated on the new page then
656 	 * wake them up.
657 	 */
658 	if (PageWriteback(newpage))
659 		end_page_writeback(newpage);
660 
661 	/*
662 	 * PG_readahead shares the same bit with PG_reclaim.  The above
663 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 	 * bit after that.
665 	 */
666 	if (PageReadahead(page))
667 		SetPageReadahead(newpage);
668 
669 	copy_page_owner(page, newpage);
670 
671 	mem_cgroup_migrate(page, newpage);
672 }
673 EXPORT_SYMBOL(migrate_page_states);
674 
675 void migrate_page_copy(struct page *newpage, struct page *page)
676 {
677 	if (PageHuge(page) || PageTransHuge(page))
678 		copy_huge_page(newpage, page);
679 	else
680 		copy_highpage(newpage, page);
681 
682 	migrate_page_states(newpage, page);
683 }
684 EXPORT_SYMBOL(migrate_page_copy);
685 
686 /************************************************************
687  *                    Migration functions
688  ***********************************************************/
689 
690 /*
691  * Common logic to directly migrate a single LRU page suitable for
692  * pages that do not use PagePrivate/PagePrivate2.
693  *
694  * Pages are locked upon entry and exit.
695  */
696 int migrate_page(struct address_space *mapping,
697 		struct page *newpage, struct page *page,
698 		enum migrate_mode mode)
699 {
700 	int rc;
701 
702 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
703 
704 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
705 
706 	if (rc != MIGRATEPAGE_SUCCESS)
707 		return rc;
708 
709 	if (mode != MIGRATE_SYNC_NO_COPY)
710 		migrate_page_copy(newpage, page);
711 	else
712 		migrate_page_states(newpage, page);
713 	return MIGRATEPAGE_SUCCESS;
714 }
715 EXPORT_SYMBOL(migrate_page);
716 
717 #ifdef CONFIG_BLOCK
718 /* Returns true if all buffers are successfully locked */
719 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720 							enum migrate_mode mode)
721 {
722 	struct buffer_head *bh = head;
723 
724 	/* Simple case, sync compaction */
725 	if (mode != MIGRATE_ASYNC) {
726 		do {
727 			lock_buffer(bh);
728 			bh = bh->b_this_page;
729 
730 		} while (bh != head);
731 
732 		return true;
733 	}
734 
735 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
736 	do {
737 		if (!trylock_buffer(bh)) {
738 			/*
739 			 * We failed to lock the buffer and cannot stall in
740 			 * async migration. Release the taken locks
741 			 */
742 			struct buffer_head *failed_bh = bh;
743 			bh = head;
744 			while (bh != failed_bh) {
745 				unlock_buffer(bh);
746 				bh = bh->b_this_page;
747 			}
748 			return false;
749 		}
750 
751 		bh = bh->b_this_page;
752 	} while (bh != head);
753 	return true;
754 }
755 
756 static int __buffer_migrate_page(struct address_space *mapping,
757 		struct page *newpage, struct page *page, enum migrate_mode mode,
758 		bool check_refs)
759 {
760 	struct buffer_head *bh, *head;
761 	int rc;
762 	int expected_count;
763 
764 	if (!page_has_buffers(page))
765 		return migrate_page(mapping, newpage, page, mode);
766 
767 	/* Check whether page does not have extra refs before we do more work */
768 	expected_count = expected_page_refs(mapping, page);
769 	if (page_count(page) != expected_count)
770 		return -EAGAIN;
771 
772 	head = page_buffers(page);
773 	if (!buffer_migrate_lock_buffers(head, mode))
774 		return -EAGAIN;
775 
776 	if (check_refs) {
777 		bool busy;
778 		bool invalidated = false;
779 
780 recheck_buffers:
781 		busy = false;
782 		spin_lock(&mapping->private_lock);
783 		bh = head;
784 		do {
785 			if (atomic_read(&bh->b_count)) {
786 				busy = true;
787 				break;
788 			}
789 			bh = bh->b_this_page;
790 		} while (bh != head);
791 		if (busy) {
792 			if (invalidated) {
793 				rc = -EAGAIN;
794 				goto unlock_buffers;
795 			}
796 			spin_unlock(&mapping->private_lock);
797 			invalidate_bh_lrus();
798 			invalidated = true;
799 			goto recheck_buffers;
800 		}
801 	}
802 
803 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
804 	if (rc != MIGRATEPAGE_SUCCESS)
805 		goto unlock_buffers;
806 
807 	attach_page_private(newpage, detach_page_private(page));
808 
809 	bh = head;
810 	do {
811 		set_bh_page(bh, newpage, bh_offset(bh));
812 		bh = bh->b_this_page;
813 
814 	} while (bh != head);
815 
816 	if (mode != MIGRATE_SYNC_NO_COPY)
817 		migrate_page_copy(newpage, page);
818 	else
819 		migrate_page_states(newpage, page);
820 
821 	rc = MIGRATEPAGE_SUCCESS;
822 unlock_buffers:
823 	if (check_refs)
824 		spin_unlock(&mapping->private_lock);
825 	bh = head;
826 	do {
827 		unlock_buffer(bh);
828 		bh = bh->b_this_page;
829 
830 	} while (bh != head);
831 
832 	return rc;
833 }
834 
835 /*
836  * Migration function for pages with buffers. This function can only be used
837  * if the underlying filesystem guarantees that no other references to "page"
838  * exist. For example attached buffer heads are accessed only under page lock.
839  */
840 int buffer_migrate_page(struct address_space *mapping,
841 		struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
844 }
845 EXPORT_SYMBOL(buffer_migrate_page);
846 
847 /*
848  * Same as above except that this variant is more careful and checks that there
849  * are also no buffer head references. This function is the right one for
850  * mappings where buffer heads are directly looked up and referenced (such as
851  * block device mappings).
852  */
853 int buffer_migrate_page_norefs(struct address_space *mapping,
854 		struct page *newpage, struct page *page, enum migrate_mode mode)
855 {
856 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
857 }
858 #endif
859 
860 /*
861  * Writeback a page to clean the dirty state
862  */
863 static int writeout(struct address_space *mapping, struct page *page)
864 {
865 	struct writeback_control wbc = {
866 		.sync_mode = WB_SYNC_NONE,
867 		.nr_to_write = 1,
868 		.range_start = 0,
869 		.range_end = LLONG_MAX,
870 		.for_reclaim = 1
871 	};
872 	int rc;
873 
874 	if (!mapping->a_ops->writepage)
875 		/* No write method for the address space */
876 		return -EINVAL;
877 
878 	if (!clear_page_dirty_for_io(page))
879 		/* Someone else already triggered a write */
880 		return -EAGAIN;
881 
882 	/*
883 	 * A dirty page may imply that the underlying filesystem has
884 	 * the page on some queue. So the page must be clean for
885 	 * migration. Writeout may mean we loose the lock and the
886 	 * page state is no longer what we checked for earlier.
887 	 * At this point we know that the migration attempt cannot
888 	 * be successful.
889 	 */
890 	remove_migration_ptes(page, page, false);
891 
892 	rc = mapping->a_ops->writepage(page, &wbc);
893 
894 	if (rc != AOP_WRITEPAGE_ACTIVATE)
895 		/* unlocked. Relock */
896 		lock_page(page);
897 
898 	return (rc < 0) ? -EIO : -EAGAIN;
899 }
900 
901 /*
902  * Default handling if a filesystem does not provide a migration function.
903  */
904 static int fallback_migrate_page(struct address_space *mapping,
905 	struct page *newpage, struct page *page, enum migrate_mode mode)
906 {
907 	if (PageDirty(page)) {
908 		/* Only writeback pages in full synchronous migration */
909 		switch (mode) {
910 		case MIGRATE_SYNC:
911 		case MIGRATE_SYNC_NO_COPY:
912 			break;
913 		default:
914 			return -EBUSY;
915 		}
916 		return writeout(mapping, page);
917 	}
918 
919 	/*
920 	 * Buffers may be managed in a filesystem specific way.
921 	 * We must have no buffers or drop them.
922 	 */
923 	if (page_has_private(page) &&
924 	    !try_to_release_page(page, GFP_KERNEL))
925 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
926 
927 	return migrate_page(mapping, newpage, page, mode);
928 }
929 
930 /*
931  * Move a page to a newly allocated page
932  * The page is locked and all ptes have been successfully removed.
933  *
934  * The new page will have replaced the old page if this function
935  * is successful.
936  *
937  * Return value:
938  *   < 0 - error code
939  *  MIGRATEPAGE_SUCCESS - success
940  */
941 static int move_to_new_page(struct page *newpage, struct page *page,
942 				enum migrate_mode mode)
943 {
944 	struct address_space *mapping;
945 	int rc = -EAGAIN;
946 	bool is_lru = !__PageMovable(page);
947 
948 	VM_BUG_ON_PAGE(!PageLocked(page), page);
949 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
950 
951 	mapping = page_mapping(page);
952 
953 	if (likely(is_lru)) {
954 		if (!mapping)
955 			rc = migrate_page(mapping, newpage, page, mode);
956 		else if (mapping->a_ops->migratepage)
957 			/*
958 			 * Most pages have a mapping and most filesystems
959 			 * provide a migratepage callback. Anonymous pages
960 			 * are part of swap space which also has its own
961 			 * migratepage callback. This is the most common path
962 			 * for page migration.
963 			 */
964 			rc = mapping->a_ops->migratepage(mapping, newpage,
965 							page, mode);
966 		else
967 			rc = fallback_migrate_page(mapping, newpage,
968 							page, mode);
969 	} else {
970 		/*
971 		 * In case of non-lru page, it could be released after
972 		 * isolation step. In that case, we shouldn't try migration.
973 		 */
974 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
975 		if (!PageMovable(page)) {
976 			rc = MIGRATEPAGE_SUCCESS;
977 			__ClearPageIsolated(page);
978 			goto out;
979 		}
980 
981 		rc = mapping->a_ops->migratepage(mapping, newpage,
982 						page, mode);
983 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984 			!PageIsolated(page));
985 	}
986 
987 	/*
988 	 * When successful, old pagecache page->mapping must be cleared before
989 	 * page is freed; but stats require that PageAnon be left as PageAnon.
990 	 */
991 	if (rc == MIGRATEPAGE_SUCCESS) {
992 		if (__PageMovable(page)) {
993 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
994 
995 			/*
996 			 * We clear PG_movable under page_lock so any compactor
997 			 * cannot try to migrate this page.
998 			 */
999 			__ClearPageIsolated(page);
1000 		}
1001 
1002 		/*
1003 		 * Anonymous and movable page->mapping will be cleared by
1004 		 * free_pages_prepare so don't reset it here for keeping
1005 		 * the type to work PageAnon, for example.
1006 		 */
1007 		if (!PageMappingFlags(page))
1008 			page->mapping = NULL;
1009 
1010 		if (likely(!is_zone_device_page(newpage)))
1011 			flush_dcache_page(newpage);
1012 
1013 	}
1014 out:
1015 	return rc;
1016 }
1017 
1018 static int __unmap_and_move(struct page *page, struct page *newpage,
1019 				int force, enum migrate_mode mode)
1020 {
1021 	int rc = -EAGAIN;
1022 	int page_was_mapped = 0;
1023 	struct anon_vma *anon_vma = NULL;
1024 	bool is_lru = !__PageMovable(page);
1025 
1026 	if (!trylock_page(page)) {
1027 		if (!force || mode == MIGRATE_ASYNC)
1028 			goto out;
1029 
1030 		/*
1031 		 * It's not safe for direct compaction to call lock_page.
1032 		 * For example, during page readahead pages are added locked
1033 		 * to the LRU. Later, when the IO completes the pages are
1034 		 * marked uptodate and unlocked. However, the queueing
1035 		 * could be merging multiple pages for one bio (e.g.
1036 		 * mpage_readahead). If an allocation happens for the
1037 		 * second or third page, the process can end up locking
1038 		 * the same page twice and deadlocking. Rather than
1039 		 * trying to be clever about what pages can be locked,
1040 		 * avoid the use of lock_page for direct compaction
1041 		 * altogether.
1042 		 */
1043 		if (current->flags & PF_MEMALLOC)
1044 			goto out;
1045 
1046 		lock_page(page);
1047 	}
1048 
1049 	if (PageWriteback(page)) {
1050 		/*
1051 		 * Only in the case of a full synchronous migration is it
1052 		 * necessary to wait for PageWriteback. In the async case,
1053 		 * the retry loop is too short and in the sync-light case,
1054 		 * the overhead of stalling is too much
1055 		 */
1056 		switch (mode) {
1057 		case MIGRATE_SYNC:
1058 		case MIGRATE_SYNC_NO_COPY:
1059 			break;
1060 		default:
1061 			rc = -EBUSY;
1062 			goto out_unlock;
1063 		}
1064 		if (!force)
1065 			goto out_unlock;
1066 		wait_on_page_writeback(page);
1067 	}
1068 
1069 	/*
1070 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071 	 * we cannot notice that anon_vma is freed while we migrates a page.
1072 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1073 	 * of migration. File cache pages are no problem because of page_lock()
1074 	 * File Caches may use write_page() or lock_page() in migration, then,
1075 	 * just care Anon page here.
1076 	 *
1077 	 * Only page_get_anon_vma() understands the subtleties of
1078 	 * getting a hold on an anon_vma from outside one of its mms.
1079 	 * But if we cannot get anon_vma, then we won't need it anyway,
1080 	 * because that implies that the anon page is no longer mapped
1081 	 * (and cannot be remapped so long as we hold the page lock).
1082 	 */
1083 	if (PageAnon(page) && !PageKsm(page))
1084 		anon_vma = page_get_anon_vma(page);
1085 
1086 	/*
1087 	 * Block others from accessing the new page when we get around to
1088 	 * establishing additional references. We are usually the only one
1089 	 * holding a reference to newpage at this point. We used to have a BUG
1090 	 * here if trylock_page(newpage) fails, but would like to allow for
1091 	 * cases where there might be a race with the previous use of newpage.
1092 	 * This is much like races on refcount of oldpage: just don't BUG().
1093 	 */
1094 	if (unlikely(!trylock_page(newpage)))
1095 		goto out_unlock;
1096 
1097 	if (unlikely(!is_lru)) {
1098 		rc = move_to_new_page(newpage, page, mode);
1099 		goto out_unlock_both;
1100 	}
1101 
1102 	/*
1103 	 * Corner case handling:
1104 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1105 	 * and treated as swapcache but it has no rmap yet.
1106 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1107 	 * trigger a BUG.  So handle it here.
1108 	 * 2. An orphaned page (see truncate_complete_page) might have
1109 	 * fs-private metadata. The page can be picked up due to memory
1110 	 * offlining.  Everywhere else except page reclaim, the page is
1111 	 * invisible to the vm, so the page can not be migrated.  So try to
1112 	 * free the metadata, so the page can be freed.
1113 	 */
1114 	if (!page->mapping) {
1115 		VM_BUG_ON_PAGE(PageAnon(page), page);
1116 		if (page_has_private(page)) {
1117 			try_to_free_buffers(page);
1118 			goto out_unlock_both;
1119 		}
1120 	} else if (page_mapped(page)) {
1121 		/* Establish migration ptes */
1122 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123 				page);
1124 		try_to_unmap(page,
1125 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126 		page_was_mapped = 1;
1127 	}
1128 
1129 	if (!page_mapped(page))
1130 		rc = move_to_new_page(newpage, page, mode);
1131 
1132 	if (page_was_mapped)
1133 		remove_migration_ptes(page,
1134 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135 
1136 out_unlock_both:
1137 	unlock_page(newpage);
1138 out_unlock:
1139 	/* Drop an anon_vma reference if we took one */
1140 	if (anon_vma)
1141 		put_anon_vma(anon_vma);
1142 	unlock_page(page);
1143 out:
1144 	/*
1145 	 * If migration is successful, decrease refcount of the newpage
1146 	 * which will not free the page because new page owner increased
1147 	 * refcounter. As well, if it is LRU page, add the page to LRU
1148 	 * list in here. Use the old state of the isolated source page to
1149 	 * determine if we migrated a LRU page. newpage was already unlocked
1150 	 * and possibly modified by its owner - don't rely on the page
1151 	 * state.
1152 	 */
1153 	if (rc == MIGRATEPAGE_SUCCESS) {
1154 		if (unlikely(!is_lru))
1155 			put_page(newpage);
1156 		else
1157 			putback_lru_page(newpage);
1158 	}
1159 
1160 	return rc;
1161 }
1162 
1163 /*
1164  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1165  * around it.
1166  */
1167 #if defined(CONFIG_ARM) && \
1168 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1169 #define ICE_noinline noinline
1170 #else
1171 #define ICE_noinline
1172 #endif
1173 
1174 /*
1175  * Obtain the lock on page, remove all ptes and migrate the page
1176  * to the newly allocated page in newpage.
1177  */
1178 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1179 				   free_page_t put_new_page,
1180 				   unsigned long private, struct page *page,
1181 				   int force, enum migrate_mode mode,
1182 				   enum migrate_reason reason)
1183 {
1184 	int rc = MIGRATEPAGE_SUCCESS;
1185 	struct page *newpage = NULL;
1186 
1187 	if (!thp_migration_supported() && PageTransHuge(page))
1188 		return -ENOMEM;
1189 
1190 	if (page_count(page) == 1) {
1191 		/* page was freed from under us. So we are done. */
1192 		ClearPageActive(page);
1193 		ClearPageUnevictable(page);
1194 		if (unlikely(__PageMovable(page))) {
1195 			lock_page(page);
1196 			if (!PageMovable(page))
1197 				__ClearPageIsolated(page);
1198 			unlock_page(page);
1199 		}
1200 		goto out;
1201 	}
1202 
1203 	newpage = get_new_page(page, private);
1204 	if (!newpage)
1205 		return -ENOMEM;
1206 
1207 	rc = __unmap_and_move(page, newpage, force, mode);
1208 	if (rc == MIGRATEPAGE_SUCCESS)
1209 		set_page_owner_migrate_reason(newpage, reason);
1210 
1211 out:
1212 	if (rc != -EAGAIN) {
1213 		/*
1214 		 * A page that has been migrated has all references
1215 		 * removed and will be freed. A page that has not been
1216 		 * migrated will have kept its references and be restored.
1217 		 */
1218 		list_del(&page->lru);
1219 
1220 		/*
1221 		 * Compaction can migrate also non-LRU pages which are
1222 		 * not accounted to NR_ISOLATED_*. They can be recognized
1223 		 * as __PageMovable
1224 		 */
1225 		if (likely(!__PageMovable(page)))
1226 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1227 					page_is_file_lru(page), -hpage_nr_pages(page));
1228 	}
1229 
1230 	/*
1231 	 * If migration is successful, releases reference grabbed during
1232 	 * isolation. Otherwise, restore the page to right list unless
1233 	 * we want to retry.
1234 	 */
1235 	if (rc == MIGRATEPAGE_SUCCESS) {
1236 		put_page(page);
1237 		if (reason == MR_MEMORY_FAILURE) {
1238 			/*
1239 			 * Set PG_HWPoison on just freed page
1240 			 * intentionally. Although it's rather weird,
1241 			 * it's how HWPoison flag works at the moment.
1242 			 */
1243 			if (set_hwpoison_free_buddy_page(page))
1244 				num_poisoned_pages_inc();
1245 		}
1246 	} else {
1247 		if (rc != -EAGAIN) {
1248 			if (likely(!__PageMovable(page))) {
1249 				putback_lru_page(page);
1250 				goto put_new;
1251 			}
1252 
1253 			lock_page(page);
1254 			if (PageMovable(page))
1255 				putback_movable_page(page);
1256 			else
1257 				__ClearPageIsolated(page);
1258 			unlock_page(page);
1259 			put_page(page);
1260 		}
1261 put_new:
1262 		if (put_new_page)
1263 			put_new_page(newpage, private);
1264 		else
1265 			put_page(newpage);
1266 	}
1267 
1268 	return rc;
1269 }
1270 
1271 /*
1272  * Counterpart of unmap_and_move_page() for hugepage migration.
1273  *
1274  * This function doesn't wait the completion of hugepage I/O
1275  * because there is no race between I/O and migration for hugepage.
1276  * Note that currently hugepage I/O occurs only in direct I/O
1277  * where no lock is held and PG_writeback is irrelevant,
1278  * and writeback status of all subpages are counted in the reference
1279  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1280  * under direct I/O, the reference of the head page is 512 and a bit more.)
1281  * This means that when we try to migrate hugepage whose subpages are
1282  * doing direct I/O, some references remain after try_to_unmap() and
1283  * hugepage migration fails without data corruption.
1284  *
1285  * There is also no race when direct I/O is issued on the page under migration,
1286  * because then pte is replaced with migration swap entry and direct I/O code
1287  * will wait in the page fault for migration to complete.
1288  */
1289 static int unmap_and_move_huge_page(new_page_t get_new_page,
1290 				free_page_t put_new_page, unsigned long private,
1291 				struct page *hpage, int force,
1292 				enum migrate_mode mode, int reason)
1293 {
1294 	int rc = -EAGAIN;
1295 	int page_was_mapped = 0;
1296 	struct page *new_hpage;
1297 	struct anon_vma *anon_vma = NULL;
1298 	struct address_space *mapping = NULL;
1299 
1300 	/*
1301 	 * Migratability of hugepages depends on architectures and their size.
1302 	 * This check is necessary because some callers of hugepage migration
1303 	 * like soft offline and memory hotremove don't walk through page
1304 	 * tables or check whether the hugepage is pmd-based or not before
1305 	 * kicking migration.
1306 	 */
1307 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1308 		putback_active_hugepage(hpage);
1309 		return -ENOSYS;
1310 	}
1311 
1312 	new_hpage = get_new_page(hpage, private);
1313 	if (!new_hpage)
1314 		return -ENOMEM;
1315 
1316 	if (!trylock_page(hpage)) {
1317 		if (!force)
1318 			goto out;
1319 		switch (mode) {
1320 		case MIGRATE_SYNC:
1321 		case MIGRATE_SYNC_NO_COPY:
1322 			break;
1323 		default:
1324 			goto out;
1325 		}
1326 		lock_page(hpage);
1327 	}
1328 
1329 	/*
1330 	 * Check for pages which are in the process of being freed.  Without
1331 	 * page_mapping() set, hugetlbfs specific move page routine will not
1332 	 * be called and we could leak usage counts for subpools.
1333 	 */
1334 	if (page_private(hpage) && !page_mapping(hpage)) {
1335 		rc = -EBUSY;
1336 		goto out_unlock;
1337 	}
1338 
1339 	if (PageAnon(hpage))
1340 		anon_vma = page_get_anon_vma(hpage);
1341 
1342 	if (unlikely(!trylock_page(new_hpage)))
1343 		goto put_anon;
1344 
1345 	if (page_mapped(hpage)) {
1346 		/*
1347 		 * try_to_unmap could potentially call huge_pmd_unshare.
1348 		 * Because of this, take semaphore in write mode here and
1349 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1350 		 * taken the lock.
1351 		 */
1352 		mapping = hugetlb_page_mapping_lock_write(hpage);
1353 		if (unlikely(!mapping))
1354 			goto unlock_put_anon;
1355 
1356 		try_to_unmap(hpage,
1357 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1358 			TTU_RMAP_LOCKED);
1359 		page_was_mapped = 1;
1360 		/*
1361 		 * Leave mapping locked until after subsequent call to
1362 		 * remove_migration_ptes()
1363 		 */
1364 	}
1365 
1366 	if (!page_mapped(hpage))
1367 		rc = move_to_new_page(new_hpage, hpage, mode);
1368 
1369 	if (page_was_mapped) {
1370 		remove_migration_ptes(hpage,
1371 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1372 		i_mmap_unlock_write(mapping);
1373 	}
1374 
1375 unlock_put_anon:
1376 	unlock_page(new_hpage);
1377 
1378 put_anon:
1379 	if (anon_vma)
1380 		put_anon_vma(anon_vma);
1381 
1382 	if (rc == MIGRATEPAGE_SUCCESS) {
1383 		move_hugetlb_state(hpage, new_hpage, reason);
1384 		put_new_page = NULL;
1385 	}
1386 
1387 out_unlock:
1388 	unlock_page(hpage);
1389 out:
1390 	if (rc != -EAGAIN)
1391 		putback_active_hugepage(hpage);
1392 
1393 	/*
1394 	 * If migration was not successful and there's a freeing callback, use
1395 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1396 	 * isolation.
1397 	 */
1398 	if (put_new_page)
1399 		put_new_page(new_hpage, private);
1400 	else
1401 		putback_active_hugepage(new_hpage);
1402 
1403 	return rc;
1404 }
1405 
1406 /*
1407  * migrate_pages - migrate the pages specified in a list, to the free pages
1408  *		   supplied as the target for the page migration
1409  *
1410  * @from:		The list of pages to be migrated.
1411  * @get_new_page:	The function used to allocate free pages to be used
1412  *			as the target of the page migration.
1413  * @put_new_page:	The function used to free target pages if migration
1414  *			fails, or NULL if no special handling is necessary.
1415  * @private:		Private data to be passed on to get_new_page()
1416  * @mode:		The migration mode that specifies the constraints for
1417  *			page migration, if any.
1418  * @reason:		The reason for page migration.
1419  *
1420  * The function returns after 10 attempts or if no pages are movable any more
1421  * because the list has become empty or no retryable pages exist any more.
1422  * The caller should call putback_movable_pages() to return pages to the LRU
1423  * or free list only if ret != 0.
1424  *
1425  * Returns the number of pages that were not migrated, or an error code.
1426  */
1427 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1428 		free_page_t put_new_page, unsigned long private,
1429 		enum migrate_mode mode, int reason)
1430 {
1431 	int retry = 1;
1432 	int nr_failed = 0;
1433 	int nr_succeeded = 0;
1434 	int pass = 0;
1435 	struct page *page;
1436 	struct page *page2;
1437 	int swapwrite = current->flags & PF_SWAPWRITE;
1438 	int rc;
1439 
1440 	if (!swapwrite)
1441 		current->flags |= PF_SWAPWRITE;
1442 
1443 	for(pass = 0; pass < 10 && retry; pass++) {
1444 		retry = 0;
1445 
1446 		list_for_each_entry_safe(page, page2, from, lru) {
1447 retry:
1448 			cond_resched();
1449 
1450 			if (PageHuge(page))
1451 				rc = unmap_and_move_huge_page(get_new_page,
1452 						put_new_page, private, page,
1453 						pass > 2, mode, reason);
1454 			else
1455 				rc = unmap_and_move(get_new_page, put_new_page,
1456 						private, page, pass > 2, mode,
1457 						reason);
1458 
1459 			switch(rc) {
1460 			case -ENOMEM:
1461 				/*
1462 				 * THP migration might be unsupported or the
1463 				 * allocation could've failed so we should
1464 				 * retry on the same page with the THP split
1465 				 * to base pages.
1466 				 *
1467 				 * Head page is retried immediately and tail
1468 				 * pages are added to the tail of the list so
1469 				 * we encounter them after the rest of the list
1470 				 * is processed.
1471 				 */
1472 				if (PageTransHuge(page) && !PageHuge(page)) {
1473 					lock_page(page);
1474 					rc = split_huge_page_to_list(page, from);
1475 					unlock_page(page);
1476 					if (!rc) {
1477 						list_safe_reset_next(page, page2, lru);
1478 						goto retry;
1479 					}
1480 				}
1481 				nr_failed++;
1482 				goto out;
1483 			case -EAGAIN:
1484 				retry++;
1485 				break;
1486 			case MIGRATEPAGE_SUCCESS:
1487 				nr_succeeded++;
1488 				break;
1489 			default:
1490 				/*
1491 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1492 				 * unlike -EAGAIN case, the failed page is
1493 				 * removed from migration page list and not
1494 				 * retried in the next outer loop.
1495 				 */
1496 				nr_failed++;
1497 				break;
1498 			}
1499 		}
1500 	}
1501 	nr_failed += retry;
1502 	rc = nr_failed;
1503 out:
1504 	if (nr_succeeded)
1505 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1506 	if (nr_failed)
1507 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1508 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1509 
1510 	if (!swapwrite)
1511 		current->flags &= ~PF_SWAPWRITE;
1512 
1513 	return rc;
1514 }
1515 
1516 #ifdef CONFIG_NUMA
1517 
1518 static int store_status(int __user *status, int start, int value, int nr)
1519 {
1520 	while (nr-- > 0) {
1521 		if (put_user(value, status + start))
1522 			return -EFAULT;
1523 		start++;
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 static int do_move_pages_to_node(struct mm_struct *mm,
1530 		struct list_head *pagelist, int node)
1531 {
1532 	int err;
1533 
1534 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1535 			MIGRATE_SYNC, MR_SYSCALL);
1536 	if (err)
1537 		putback_movable_pages(pagelist);
1538 	return err;
1539 }
1540 
1541 /*
1542  * Resolves the given address to a struct page, isolates it from the LRU and
1543  * puts it to the given pagelist.
1544  * Returns:
1545  *     errno - if the page cannot be found/isolated
1546  *     0 - when it doesn't have to be migrated because it is already on the
1547  *         target node
1548  *     1 - when it has been queued
1549  */
1550 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1551 		int node, struct list_head *pagelist, bool migrate_all)
1552 {
1553 	struct vm_area_struct *vma;
1554 	struct page *page;
1555 	unsigned int follflags;
1556 	int err;
1557 
1558 	mmap_read_lock(mm);
1559 	err = -EFAULT;
1560 	vma = find_vma(mm, addr);
1561 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1562 		goto out;
1563 
1564 	/* FOLL_DUMP to ignore special (like zero) pages */
1565 	follflags = FOLL_GET | FOLL_DUMP;
1566 	page = follow_page(vma, addr, follflags);
1567 
1568 	err = PTR_ERR(page);
1569 	if (IS_ERR(page))
1570 		goto out;
1571 
1572 	err = -ENOENT;
1573 	if (!page)
1574 		goto out;
1575 
1576 	err = 0;
1577 	if (page_to_nid(page) == node)
1578 		goto out_putpage;
1579 
1580 	err = -EACCES;
1581 	if (page_mapcount(page) > 1 && !migrate_all)
1582 		goto out_putpage;
1583 
1584 	if (PageHuge(page)) {
1585 		if (PageHead(page)) {
1586 			isolate_huge_page(page, pagelist);
1587 			err = 1;
1588 		}
1589 	} else {
1590 		struct page *head;
1591 
1592 		head = compound_head(page);
1593 		err = isolate_lru_page(head);
1594 		if (err)
1595 			goto out_putpage;
1596 
1597 		err = 1;
1598 		list_add_tail(&head->lru, pagelist);
1599 		mod_node_page_state(page_pgdat(head),
1600 			NR_ISOLATED_ANON + page_is_file_lru(head),
1601 			hpage_nr_pages(head));
1602 	}
1603 out_putpage:
1604 	/*
1605 	 * Either remove the duplicate refcount from
1606 	 * isolate_lru_page() or drop the page ref if it was
1607 	 * not isolated.
1608 	 */
1609 	put_page(page);
1610 out:
1611 	mmap_read_unlock(mm);
1612 	return err;
1613 }
1614 
1615 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1616 		struct list_head *pagelist, int __user *status,
1617 		int start, int i, unsigned long nr_pages)
1618 {
1619 	int err;
1620 
1621 	if (list_empty(pagelist))
1622 		return 0;
1623 
1624 	err = do_move_pages_to_node(mm, pagelist, node);
1625 	if (err) {
1626 		/*
1627 		 * Positive err means the number of failed
1628 		 * pages to migrate.  Since we are going to
1629 		 * abort and return the number of non-migrated
1630 		 * pages, so need to incude the rest of the
1631 		 * nr_pages that have not been attempted as
1632 		 * well.
1633 		 */
1634 		if (err > 0)
1635 			err += nr_pages - i - 1;
1636 		return err;
1637 	}
1638 	return store_status(status, start, node, i - start);
1639 }
1640 
1641 /*
1642  * Migrate an array of page address onto an array of nodes and fill
1643  * the corresponding array of status.
1644  */
1645 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1646 			 unsigned long nr_pages,
1647 			 const void __user * __user *pages,
1648 			 const int __user *nodes,
1649 			 int __user *status, int flags)
1650 {
1651 	int current_node = NUMA_NO_NODE;
1652 	LIST_HEAD(pagelist);
1653 	int start, i;
1654 	int err = 0, err1;
1655 
1656 	migrate_prep();
1657 
1658 	for (i = start = 0; i < nr_pages; i++) {
1659 		const void __user *p;
1660 		unsigned long addr;
1661 		int node;
1662 
1663 		err = -EFAULT;
1664 		if (get_user(p, pages + i))
1665 			goto out_flush;
1666 		if (get_user(node, nodes + i))
1667 			goto out_flush;
1668 		addr = (unsigned long)untagged_addr(p);
1669 
1670 		err = -ENODEV;
1671 		if (node < 0 || node >= MAX_NUMNODES)
1672 			goto out_flush;
1673 		if (!node_state(node, N_MEMORY))
1674 			goto out_flush;
1675 
1676 		err = -EACCES;
1677 		if (!node_isset(node, task_nodes))
1678 			goto out_flush;
1679 
1680 		if (current_node == NUMA_NO_NODE) {
1681 			current_node = node;
1682 			start = i;
1683 		} else if (node != current_node) {
1684 			err = move_pages_and_store_status(mm, current_node,
1685 					&pagelist, status, start, i, nr_pages);
1686 			if (err)
1687 				goto out;
1688 			start = i;
1689 			current_node = node;
1690 		}
1691 
1692 		/*
1693 		 * Errors in the page lookup or isolation are not fatal and we simply
1694 		 * report them via status
1695 		 */
1696 		err = add_page_for_migration(mm, addr, current_node,
1697 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1698 
1699 		if (err > 0) {
1700 			/* The page is successfully queued for migration */
1701 			continue;
1702 		}
1703 
1704 		/*
1705 		 * If the page is already on the target node (!err), store the
1706 		 * node, otherwise, store the err.
1707 		 */
1708 		err = store_status(status, i, err ? : current_node, 1);
1709 		if (err)
1710 			goto out_flush;
1711 
1712 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1713 				status, start, i, nr_pages);
1714 		if (err)
1715 			goto out;
1716 		current_node = NUMA_NO_NODE;
1717 	}
1718 out_flush:
1719 	/* Make sure we do not overwrite the existing error */
1720 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1721 				status, start, i, nr_pages);
1722 	if (err >= 0)
1723 		err = err1;
1724 out:
1725 	return err;
1726 }
1727 
1728 /*
1729  * Determine the nodes of an array of pages and store it in an array of status.
1730  */
1731 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1732 				const void __user **pages, int *status)
1733 {
1734 	unsigned long i;
1735 
1736 	mmap_read_lock(mm);
1737 
1738 	for (i = 0; i < nr_pages; i++) {
1739 		unsigned long addr = (unsigned long)(*pages);
1740 		struct vm_area_struct *vma;
1741 		struct page *page;
1742 		int err = -EFAULT;
1743 
1744 		vma = find_vma(mm, addr);
1745 		if (!vma || addr < vma->vm_start)
1746 			goto set_status;
1747 
1748 		/* FOLL_DUMP to ignore special (like zero) pages */
1749 		page = follow_page(vma, addr, FOLL_DUMP);
1750 
1751 		err = PTR_ERR(page);
1752 		if (IS_ERR(page))
1753 			goto set_status;
1754 
1755 		err = page ? page_to_nid(page) : -ENOENT;
1756 set_status:
1757 		*status = err;
1758 
1759 		pages++;
1760 		status++;
1761 	}
1762 
1763 	mmap_read_unlock(mm);
1764 }
1765 
1766 /*
1767  * Determine the nodes of a user array of pages and store it in
1768  * a user array of status.
1769  */
1770 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1771 			 const void __user * __user *pages,
1772 			 int __user *status)
1773 {
1774 #define DO_PAGES_STAT_CHUNK_NR 16
1775 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1776 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1777 
1778 	while (nr_pages) {
1779 		unsigned long chunk_nr;
1780 
1781 		chunk_nr = nr_pages;
1782 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1783 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1784 
1785 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1786 			break;
1787 
1788 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1789 
1790 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1791 			break;
1792 
1793 		pages += chunk_nr;
1794 		status += chunk_nr;
1795 		nr_pages -= chunk_nr;
1796 	}
1797 	return nr_pages ? -EFAULT : 0;
1798 }
1799 
1800 /*
1801  * Move a list of pages in the address space of the currently executing
1802  * process.
1803  */
1804 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1805 			     const void __user * __user *pages,
1806 			     const int __user *nodes,
1807 			     int __user *status, int flags)
1808 {
1809 	struct task_struct *task;
1810 	struct mm_struct *mm;
1811 	int err;
1812 	nodemask_t task_nodes;
1813 
1814 	/* Check flags */
1815 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1816 		return -EINVAL;
1817 
1818 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1819 		return -EPERM;
1820 
1821 	/* Find the mm_struct */
1822 	rcu_read_lock();
1823 	task = pid ? find_task_by_vpid(pid) : current;
1824 	if (!task) {
1825 		rcu_read_unlock();
1826 		return -ESRCH;
1827 	}
1828 	get_task_struct(task);
1829 
1830 	/*
1831 	 * Check if this process has the right to modify the specified
1832 	 * process. Use the regular "ptrace_may_access()" checks.
1833 	 */
1834 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1835 		rcu_read_unlock();
1836 		err = -EPERM;
1837 		goto out;
1838 	}
1839 	rcu_read_unlock();
1840 
1841  	err = security_task_movememory(task);
1842  	if (err)
1843 		goto out;
1844 
1845 	task_nodes = cpuset_mems_allowed(task);
1846 	mm = get_task_mm(task);
1847 	put_task_struct(task);
1848 
1849 	if (!mm)
1850 		return -EINVAL;
1851 
1852 	if (nodes)
1853 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1854 				    nodes, status, flags);
1855 	else
1856 		err = do_pages_stat(mm, nr_pages, pages, status);
1857 
1858 	mmput(mm);
1859 	return err;
1860 
1861 out:
1862 	put_task_struct(task);
1863 	return err;
1864 }
1865 
1866 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1867 		const void __user * __user *, pages,
1868 		const int __user *, nodes,
1869 		int __user *, status, int, flags)
1870 {
1871 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1872 }
1873 
1874 #ifdef CONFIG_COMPAT
1875 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1876 		       compat_uptr_t __user *, pages32,
1877 		       const int __user *, nodes,
1878 		       int __user *, status,
1879 		       int, flags)
1880 {
1881 	const void __user * __user *pages;
1882 	int i;
1883 
1884 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1885 	for (i = 0; i < nr_pages; i++) {
1886 		compat_uptr_t p;
1887 
1888 		if (get_user(p, pages32 + i) ||
1889 			put_user(compat_ptr(p), pages + i))
1890 			return -EFAULT;
1891 	}
1892 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1893 }
1894 #endif /* CONFIG_COMPAT */
1895 
1896 #ifdef CONFIG_NUMA_BALANCING
1897 /*
1898  * Returns true if this is a safe migration target node for misplaced NUMA
1899  * pages. Currently it only checks the watermarks which crude
1900  */
1901 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1902 				   unsigned long nr_migrate_pages)
1903 {
1904 	int z;
1905 
1906 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1907 		struct zone *zone = pgdat->node_zones + z;
1908 
1909 		if (!populated_zone(zone))
1910 			continue;
1911 
1912 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1913 		if (!zone_watermark_ok(zone, 0,
1914 				       high_wmark_pages(zone) +
1915 				       nr_migrate_pages,
1916 				       ZONE_MOVABLE, 0))
1917 			continue;
1918 		return true;
1919 	}
1920 	return false;
1921 }
1922 
1923 static struct page *alloc_misplaced_dst_page(struct page *page,
1924 					   unsigned long data)
1925 {
1926 	int nid = (int) data;
1927 	struct page *newpage;
1928 
1929 	newpage = __alloc_pages_node(nid,
1930 					 (GFP_HIGHUSER_MOVABLE |
1931 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1932 					  __GFP_NORETRY | __GFP_NOWARN) &
1933 					 ~__GFP_RECLAIM, 0);
1934 
1935 	return newpage;
1936 }
1937 
1938 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1939 {
1940 	int page_lru;
1941 
1942 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1943 
1944 	/* Avoid migrating to a node that is nearly full */
1945 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1946 		return 0;
1947 
1948 	if (isolate_lru_page(page))
1949 		return 0;
1950 
1951 	/*
1952 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1953 	 * check on page_count(), so we must do it here, now that the page
1954 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1955 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1956 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1957 	 */
1958 	if (PageTransHuge(page) && page_count(page) != 3) {
1959 		putback_lru_page(page);
1960 		return 0;
1961 	}
1962 
1963 	page_lru = page_is_file_lru(page);
1964 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1965 				hpage_nr_pages(page));
1966 
1967 	/*
1968 	 * Isolating the page has taken another reference, so the
1969 	 * caller's reference can be safely dropped without the page
1970 	 * disappearing underneath us during migration.
1971 	 */
1972 	put_page(page);
1973 	return 1;
1974 }
1975 
1976 bool pmd_trans_migrating(pmd_t pmd)
1977 {
1978 	struct page *page = pmd_page(pmd);
1979 	return PageLocked(page);
1980 }
1981 
1982 /*
1983  * Attempt to migrate a misplaced page to the specified destination
1984  * node. Caller is expected to have an elevated reference count on
1985  * the page that will be dropped by this function before returning.
1986  */
1987 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1988 			   int node)
1989 {
1990 	pg_data_t *pgdat = NODE_DATA(node);
1991 	int isolated;
1992 	int nr_remaining;
1993 	LIST_HEAD(migratepages);
1994 
1995 	/*
1996 	 * Don't migrate file pages that are mapped in multiple processes
1997 	 * with execute permissions as they are probably shared libraries.
1998 	 */
1999 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2000 	    (vma->vm_flags & VM_EXEC))
2001 		goto out;
2002 
2003 	/*
2004 	 * Also do not migrate dirty pages as not all filesystems can move
2005 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2006 	 */
2007 	if (page_is_file_lru(page) && PageDirty(page))
2008 		goto out;
2009 
2010 	isolated = numamigrate_isolate_page(pgdat, page);
2011 	if (!isolated)
2012 		goto out;
2013 
2014 	list_add(&page->lru, &migratepages);
2015 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2016 				     NULL, node, MIGRATE_ASYNC,
2017 				     MR_NUMA_MISPLACED);
2018 	if (nr_remaining) {
2019 		if (!list_empty(&migratepages)) {
2020 			list_del(&page->lru);
2021 			dec_node_page_state(page, NR_ISOLATED_ANON +
2022 					page_is_file_lru(page));
2023 			putback_lru_page(page);
2024 		}
2025 		isolated = 0;
2026 	} else
2027 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2028 	BUG_ON(!list_empty(&migratepages));
2029 	return isolated;
2030 
2031 out:
2032 	put_page(page);
2033 	return 0;
2034 }
2035 #endif /* CONFIG_NUMA_BALANCING */
2036 
2037 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2038 /*
2039  * Migrates a THP to a given target node. page must be locked and is unlocked
2040  * before returning.
2041  */
2042 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2043 				struct vm_area_struct *vma,
2044 				pmd_t *pmd, pmd_t entry,
2045 				unsigned long address,
2046 				struct page *page, int node)
2047 {
2048 	spinlock_t *ptl;
2049 	pg_data_t *pgdat = NODE_DATA(node);
2050 	int isolated = 0;
2051 	struct page *new_page = NULL;
2052 	int page_lru = page_is_file_lru(page);
2053 	unsigned long start = address & HPAGE_PMD_MASK;
2054 
2055 	new_page = alloc_pages_node(node,
2056 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2057 		HPAGE_PMD_ORDER);
2058 	if (!new_page)
2059 		goto out_fail;
2060 	prep_transhuge_page(new_page);
2061 
2062 	isolated = numamigrate_isolate_page(pgdat, page);
2063 	if (!isolated) {
2064 		put_page(new_page);
2065 		goto out_fail;
2066 	}
2067 
2068 	/* Prepare a page as a migration target */
2069 	__SetPageLocked(new_page);
2070 	if (PageSwapBacked(page))
2071 		__SetPageSwapBacked(new_page);
2072 
2073 	/* anon mapping, we can simply copy page->mapping to the new page: */
2074 	new_page->mapping = page->mapping;
2075 	new_page->index = page->index;
2076 	/* flush the cache before copying using the kernel virtual address */
2077 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2078 	migrate_page_copy(new_page, page);
2079 	WARN_ON(PageLRU(new_page));
2080 
2081 	/* Recheck the target PMD */
2082 	ptl = pmd_lock(mm, pmd);
2083 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2084 		spin_unlock(ptl);
2085 
2086 		/* Reverse changes made by migrate_page_copy() */
2087 		if (TestClearPageActive(new_page))
2088 			SetPageActive(page);
2089 		if (TestClearPageUnevictable(new_page))
2090 			SetPageUnevictable(page);
2091 
2092 		unlock_page(new_page);
2093 		put_page(new_page);		/* Free it */
2094 
2095 		/* Retake the callers reference and putback on LRU */
2096 		get_page(page);
2097 		putback_lru_page(page);
2098 		mod_node_page_state(page_pgdat(page),
2099 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2100 
2101 		goto out_unlock;
2102 	}
2103 
2104 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2105 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2106 
2107 	/*
2108 	 * Overwrite the old entry under pagetable lock and establish
2109 	 * the new PTE. Any parallel GUP will either observe the old
2110 	 * page blocking on the page lock, block on the page table
2111 	 * lock or observe the new page. The SetPageUptodate on the
2112 	 * new page and page_add_new_anon_rmap guarantee the copy is
2113 	 * visible before the pagetable update.
2114 	 */
2115 	page_add_anon_rmap(new_page, vma, start, true);
2116 	/*
2117 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2118 	 * has already been flushed globally.  So no TLB can be currently
2119 	 * caching this non present pmd mapping.  There's no need to clear the
2120 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2121 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2122 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2123 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2124 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2125 	 * pmd.
2126 	 */
2127 	set_pmd_at(mm, start, pmd, entry);
2128 	update_mmu_cache_pmd(vma, address, &entry);
2129 
2130 	page_ref_unfreeze(page, 2);
2131 	mlock_migrate_page(new_page, page);
2132 	page_remove_rmap(page, true);
2133 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2134 
2135 	spin_unlock(ptl);
2136 
2137 	/* Take an "isolate" reference and put new page on the LRU. */
2138 	get_page(new_page);
2139 	putback_lru_page(new_page);
2140 
2141 	unlock_page(new_page);
2142 	unlock_page(page);
2143 	put_page(page);			/* Drop the rmap reference */
2144 	put_page(page);			/* Drop the LRU isolation reference */
2145 
2146 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2147 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2148 
2149 	mod_node_page_state(page_pgdat(page),
2150 			NR_ISOLATED_ANON + page_lru,
2151 			-HPAGE_PMD_NR);
2152 	return isolated;
2153 
2154 out_fail:
2155 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2156 	ptl = pmd_lock(mm, pmd);
2157 	if (pmd_same(*pmd, entry)) {
2158 		entry = pmd_modify(entry, vma->vm_page_prot);
2159 		set_pmd_at(mm, start, pmd, entry);
2160 		update_mmu_cache_pmd(vma, address, &entry);
2161 	}
2162 	spin_unlock(ptl);
2163 
2164 out_unlock:
2165 	unlock_page(page);
2166 	put_page(page);
2167 	return 0;
2168 }
2169 #endif /* CONFIG_NUMA_BALANCING */
2170 
2171 #endif /* CONFIG_NUMA */
2172 
2173 #ifdef CONFIG_DEVICE_PRIVATE
2174 static int migrate_vma_collect_hole(unsigned long start,
2175 				    unsigned long end,
2176 				    __always_unused int depth,
2177 				    struct mm_walk *walk)
2178 {
2179 	struct migrate_vma *migrate = walk->private;
2180 	unsigned long addr;
2181 
2182 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2183 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2184 		migrate->dst[migrate->npages] = 0;
2185 		migrate->npages++;
2186 		migrate->cpages++;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 static int migrate_vma_collect_skip(unsigned long start,
2193 				    unsigned long end,
2194 				    struct mm_walk *walk)
2195 {
2196 	struct migrate_vma *migrate = walk->private;
2197 	unsigned long addr;
2198 
2199 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2200 		migrate->dst[migrate->npages] = 0;
2201 		migrate->src[migrate->npages++] = 0;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2208 				   unsigned long start,
2209 				   unsigned long end,
2210 				   struct mm_walk *walk)
2211 {
2212 	struct migrate_vma *migrate = walk->private;
2213 	struct vm_area_struct *vma = walk->vma;
2214 	struct mm_struct *mm = vma->vm_mm;
2215 	unsigned long addr = start, unmapped = 0;
2216 	spinlock_t *ptl;
2217 	pte_t *ptep;
2218 
2219 again:
2220 	if (pmd_none(*pmdp))
2221 		return migrate_vma_collect_hole(start, end, -1, walk);
2222 
2223 	if (pmd_trans_huge(*pmdp)) {
2224 		struct page *page;
2225 
2226 		ptl = pmd_lock(mm, pmdp);
2227 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2228 			spin_unlock(ptl);
2229 			goto again;
2230 		}
2231 
2232 		page = pmd_page(*pmdp);
2233 		if (is_huge_zero_page(page)) {
2234 			spin_unlock(ptl);
2235 			split_huge_pmd(vma, pmdp, addr);
2236 			if (pmd_trans_unstable(pmdp))
2237 				return migrate_vma_collect_skip(start, end,
2238 								walk);
2239 		} else {
2240 			int ret;
2241 
2242 			get_page(page);
2243 			spin_unlock(ptl);
2244 			if (unlikely(!trylock_page(page)))
2245 				return migrate_vma_collect_skip(start, end,
2246 								walk);
2247 			ret = split_huge_page(page);
2248 			unlock_page(page);
2249 			put_page(page);
2250 			if (ret)
2251 				return migrate_vma_collect_skip(start, end,
2252 								walk);
2253 			if (pmd_none(*pmdp))
2254 				return migrate_vma_collect_hole(start, end, -1,
2255 								walk);
2256 		}
2257 	}
2258 
2259 	if (unlikely(pmd_bad(*pmdp)))
2260 		return migrate_vma_collect_skip(start, end, walk);
2261 
2262 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2263 	arch_enter_lazy_mmu_mode();
2264 
2265 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2266 		unsigned long mpfn = 0, pfn;
2267 		struct page *page;
2268 		swp_entry_t entry;
2269 		pte_t pte;
2270 
2271 		pte = *ptep;
2272 
2273 		if (pte_none(pte)) {
2274 			mpfn = MIGRATE_PFN_MIGRATE;
2275 			migrate->cpages++;
2276 			goto next;
2277 		}
2278 
2279 		if (!pte_present(pte)) {
2280 			/*
2281 			 * Only care about unaddressable device page special
2282 			 * page table entry. Other special swap entries are not
2283 			 * migratable, and we ignore regular swapped page.
2284 			 */
2285 			entry = pte_to_swp_entry(pte);
2286 			if (!is_device_private_entry(entry))
2287 				goto next;
2288 
2289 			page = device_private_entry_to_page(entry);
2290 			if (page->pgmap->owner != migrate->src_owner)
2291 				goto next;
2292 
2293 			mpfn = migrate_pfn(page_to_pfn(page)) |
2294 					MIGRATE_PFN_MIGRATE;
2295 			if (is_write_device_private_entry(entry))
2296 				mpfn |= MIGRATE_PFN_WRITE;
2297 		} else {
2298 			if (migrate->src_owner)
2299 				goto next;
2300 			pfn = pte_pfn(pte);
2301 			if (is_zero_pfn(pfn)) {
2302 				mpfn = MIGRATE_PFN_MIGRATE;
2303 				migrate->cpages++;
2304 				goto next;
2305 			}
2306 			page = vm_normal_page(migrate->vma, addr, pte);
2307 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2308 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2309 		}
2310 
2311 		/* FIXME support THP */
2312 		if (!page || !page->mapping || PageTransCompound(page)) {
2313 			mpfn = 0;
2314 			goto next;
2315 		}
2316 
2317 		/*
2318 		 * By getting a reference on the page we pin it and that blocks
2319 		 * any kind of migration. Side effect is that it "freezes" the
2320 		 * pte.
2321 		 *
2322 		 * We drop this reference after isolating the page from the lru
2323 		 * for non device page (device page are not on the lru and thus
2324 		 * can't be dropped from it).
2325 		 */
2326 		get_page(page);
2327 		migrate->cpages++;
2328 
2329 		/*
2330 		 * Optimize for the common case where page is only mapped once
2331 		 * in one process. If we can lock the page, then we can safely
2332 		 * set up a special migration page table entry now.
2333 		 */
2334 		if (trylock_page(page)) {
2335 			pte_t swp_pte;
2336 
2337 			mpfn |= MIGRATE_PFN_LOCKED;
2338 			ptep_get_and_clear(mm, addr, ptep);
2339 
2340 			/* Setup special migration page table entry */
2341 			entry = make_migration_entry(page, mpfn &
2342 						     MIGRATE_PFN_WRITE);
2343 			swp_pte = swp_entry_to_pte(entry);
2344 			if (pte_soft_dirty(pte))
2345 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2346 			if (pte_uffd_wp(pte))
2347 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2348 			set_pte_at(mm, addr, ptep, swp_pte);
2349 
2350 			/*
2351 			 * This is like regular unmap: we remove the rmap and
2352 			 * drop page refcount. Page won't be freed, as we took
2353 			 * a reference just above.
2354 			 */
2355 			page_remove_rmap(page, false);
2356 			put_page(page);
2357 
2358 			if (pte_present(pte))
2359 				unmapped++;
2360 		}
2361 
2362 next:
2363 		migrate->dst[migrate->npages] = 0;
2364 		migrate->src[migrate->npages++] = mpfn;
2365 	}
2366 	arch_leave_lazy_mmu_mode();
2367 	pte_unmap_unlock(ptep - 1, ptl);
2368 
2369 	/* Only flush the TLB if we actually modified any entries */
2370 	if (unmapped)
2371 		flush_tlb_range(walk->vma, start, end);
2372 
2373 	return 0;
2374 }
2375 
2376 static const struct mm_walk_ops migrate_vma_walk_ops = {
2377 	.pmd_entry		= migrate_vma_collect_pmd,
2378 	.pte_hole		= migrate_vma_collect_hole,
2379 };
2380 
2381 /*
2382  * migrate_vma_collect() - collect pages over a range of virtual addresses
2383  * @migrate: migrate struct containing all migration information
2384  *
2385  * This will walk the CPU page table. For each virtual address backed by a
2386  * valid page, it updates the src array and takes a reference on the page, in
2387  * order to pin the page until we lock it and unmap it.
2388  */
2389 static void migrate_vma_collect(struct migrate_vma *migrate)
2390 {
2391 	struct mmu_notifier_range range;
2392 
2393 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2394 			migrate->vma->vm_mm, migrate->start, migrate->end);
2395 	mmu_notifier_invalidate_range_start(&range);
2396 
2397 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2398 			&migrate_vma_walk_ops, migrate);
2399 
2400 	mmu_notifier_invalidate_range_end(&range);
2401 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2402 }
2403 
2404 /*
2405  * migrate_vma_check_page() - check if page is pinned or not
2406  * @page: struct page to check
2407  *
2408  * Pinned pages cannot be migrated. This is the same test as in
2409  * migrate_page_move_mapping(), except that here we allow migration of a
2410  * ZONE_DEVICE page.
2411  */
2412 static bool migrate_vma_check_page(struct page *page)
2413 {
2414 	/*
2415 	 * One extra ref because caller holds an extra reference, either from
2416 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2417 	 * a device page.
2418 	 */
2419 	int extra = 1;
2420 
2421 	/*
2422 	 * FIXME support THP (transparent huge page), it is bit more complex to
2423 	 * check them than regular pages, because they can be mapped with a pmd
2424 	 * or with a pte (split pte mapping).
2425 	 */
2426 	if (PageCompound(page))
2427 		return false;
2428 
2429 	/* Page from ZONE_DEVICE have one extra reference */
2430 	if (is_zone_device_page(page)) {
2431 		/*
2432 		 * Private page can never be pin as they have no valid pte and
2433 		 * GUP will fail for those. Yet if there is a pending migration
2434 		 * a thread might try to wait on the pte migration entry and
2435 		 * will bump the page reference count. Sadly there is no way to
2436 		 * differentiate a regular pin from migration wait. Hence to
2437 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2438 		 * infinite loop (one stoping migration because the other is
2439 		 * waiting on pte migration entry). We always return true here.
2440 		 *
2441 		 * FIXME proper solution is to rework migration_entry_wait() so
2442 		 * it does not need to take a reference on page.
2443 		 */
2444 		return is_device_private_page(page);
2445 	}
2446 
2447 	/* For file back page */
2448 	if (page_mapping(page))
2449 		extra += 1 + page_has_private(page);
2450 
2451 	if ((page_count(page) - extra) > page_mapcount(page))
2452 		return false;
2453 
2454 	return true;
2455 }
2456 
2457 /*
2458  * migrate_vma_prepare() - lock pages and isolate them from the lru
2459  * @migrate: migrate struct containing all migration information
2460  *
2461  * This locks pages that have been collected by migrate_vma_collect(). Once each
2462  * page is locked it is isolated from the lru (for non-device pages). Finally,
2463  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2464  * migrated by concurrent kernel threads.
2465  */
2466 static void migrate_vma_prepare(struct migrate_vma *migrate)
2467 {
2468 	const unsigned long npages = migrate->npages;
2469 	const unsigned long start = migrate->start;
2470 	unsigned long addr, i, restore = 0;
2471 	bool allow_drain = true;
2472 
2473 	lru_add_drain();
2474 
2475 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2476 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2477 		bool remap = true;
2478 
2479 		if (!page)
2480 			continue;
2481 
2482 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2483 			/*
2484 			 * Because we are migrating several pages there can be
2485 			 * a deadlock between 2 concurrent migration where each
2486 			 * are waiting on each other page lock.
2487 			 *
2488 			 * Make migrate_vma() a best effort thing and backoff
2489 			 * for any page we can not lock right away.
2490 			 */
2491 			if (!trylock_page(page)) {
2492 				migrate->src[i] = 0;
2493 				migrate->cpages--;
2494 				put_page(page);
2495 				continue;
2496 			}
2497 			remap = false;
2498 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2499 		}
2500 
2501 		/* ZONE_DEVICE pages are not on LRU */
2502 		if (!is_zone_device_page(page)) {
2503 			if (!PageLRU(page) && allow_drain) {
2504 				/* Drain CPU's pagevec */
2505 				lru_add_drain_all();
2506 				allow_drain = false;
2507 			}
2508 
2509 			if (isolate_lru_page(page)) {
2510 				if (remap) {
2511 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2512 					migrate->cpages--;
2513 					restore++;
2514 				} else {
2515 					migrate->src[i] = 0;
2516 					unlock_page(page);
2517 					migrate->cpages--;
2518 					put_page(page);
2519 				}
2520 				continue;
2521 			}
2522 
2523 			/* Drop the reference we took in collect */
2524 			put_page(page);
2525 		}
2526 
2527 		if (!migrate_vma_check_page(page)) {
2528 			if (remap) {
2529 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2530 				migrate->cpages--;
2531 				restore++;
2532 
2533 				if (!is_zone_device_page(page)) {
2534 					get_page(page);
2535 					putback_lru_page(page);
2536 				}
2537 			} else {
2538 				migrate->src[i] = 0;
2539 				unlock_page(page);
2540 				migrate->cpages--;
2541 
2542 				if (!is_zone_device_page(page))
2543 					putback_lru_page(page);
2544 				else
2545 					put_page(page);
2546 			}
2547 		}
2548 	}
2549 
2550 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2551 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2552 
2553 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2554 			continue;
2555 
2556 		remove_migration_pte(page, migrate->vma, addr, page);
2557 
2558 		migrate->src[i] = 0;
2559 		unlock_page(page);
2560 		put_page(page);
2561 		restore--;
2562 	}
2563 }
2564 
2565 /*
2566  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2567  * @migrate: migrate struct containing all migration information
2568  *
2569  * Replace page mapping (CPU page table pte) with a special migration pte entry
2570  * and check again if it has been pinned. Pinned pages are restored because we
2571  * cannot migrate them.
2572  *
2573  * This is the last step before we call the device driver callback to allocate
2574  * destination memory and copy contents of original page over to new page.
2575  */
2576 static void migrate_vma_unmap(struct migrate_vma *migrate)
2577 {
2578 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2579 	const unsigned long npages = migrate->npages;
2580 	const unsigned long start = migrate->start;
2581 	unsigned long addr, i, restore = 0;
2582 
2583 	for (i = 0; i < npages; i++) {
2584 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2585 
2586 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2587 			continue;
2588 
2589 		if (page_mapped(page)) {
2590 			try_to_unmap(page, flags);
2591 			if (page_mapped(page))
2592 				goto restore;
2593 		}
2594 
2595 		if (migrate_vma_check_page(page))
2596 			continue;
2597 
2598 restore:
2599 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2600 		migrate->cpages--;
2601 		restore++;
2602 	}
2603 
2604 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2605 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2606 
2607 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2608 			continue;
2609 
2610 		remove_migration_ptes(page, page, false);
2611 
2612 		migrate->src[i] = 0;
2613 		unlock_page(page);
2614 		restore--;
2615 
2616 		if (is_zone_device_page(page))
2617 			put_page(page);
2618 		else
2619 			putback_lru_page(page);
2620 	}
2621 }
2622 
2623 /**
2624  * migrate_vma_setup() - prepare to migrate a range of memory
2625  * @args: contains the vma, start, and and pfns arrays for the migration
2626  *
2627  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2628  * without an error.
2629  *
2630  * Prepare to migrate a range of memory virtual address range by collecting all
2631  * the pages backing each virtual address in the range, saving them inside the
2632  * src array.  Then lock those pages and unmap them. Once the pages are locked
2633  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2634  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2635  * corresponding src array entry.  Then restores any pages that are pinned, by
2636  * remapping and unlocking those pages.
2637  *
2638  * The caller should then allocate destination memory and copy source memory to
2639  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2640  * flag set).  Once these are allocated and copied, the caller must update each
2641  * corresponding entry in the dst array with the pfn value of the destination
2642  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2643  * (destination pages must have their struct pages locked, via lock_page()).
2644  *
2645  * Note that the caller does not have to migrate all the pages that are marked
2646  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2647  * device memory to system memory.  If the caller cannot migrate a device page
2648  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2649  * consequences for the userspace process, so it must be avoided if at all
2650  * possible.
2651  *
2652  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2653  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2654  * allowing the caller to allocate device memory for those unback virtual
2655  * address.  For this the caller simply has to allocate device memory and
2656  * properly set the destination entry like for regular migration.  Note that
2657  * this can still fails and thus inside the device driver must check if the
2658  * migration was successful for those entries after calling migrate_vma_pages()
2659  * just like for regular migration.
2660  *
2661  * After that, the callers must call migrate_vma_pages() to go over each entry
2662  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2663  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2664  * then migrate_vma_pages() to migrate struct page information from the source
2665  * struct page to the destination struct page.  If it fails to migrate the
2666  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2667  * src array.
2668  *
2669  * At this point all successfully migrated pages have an entry in the src
2670  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2671  * array entry with MIGRATE_PFN_VALID flag set.
2672  *
2673  * Once migrate_vma_pages() returns the caller may inspect which pages were
2674  * successfully migrated, and which were not.  Successfully migrated pages will
2675  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2676  *
2677  * It is safe to update device page table after migrate_vma_pages() because
2678  * both destination and source page are still locked, and the mmap_lock is held
2679  * in read mode (hence no one can unmap the range being migrated).
2680  *
2681  * Once the caller is done cleaning up things and updating its page table (if it
2682  * chose to do so, this is not an obligation) it finally calls
2683  * migrate_vma_finalize() to update the CPU page table to point to new pages
2684  * for successfully migrated pages or otherwise restore the CPU page table to
2685  * point to the original source pages.
2686  */
2687 int migrate_vma_setup(struct migrate_vma *args)
2688 {
2689 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2690 
2691 	args->start &= PAGE_MASK;
2692 	args->end &= PAGE_MASK;
2693 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2694 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2695 		return -EINVAL;
2696 	if (nr_pages <= 0)
2697 		return -EINVAL;
2698 	if (args->start < args->vma->vm_start ||
2699 	    args->start >= args->vma->vm_end)
2700 		return -EINVAL;
2701 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2702 		return -EINVAL;
2703 	if (!args->src || !args->dst)
2704 		return -EINVAL;
2705 
2706 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2707 	args->cpages = 0;
2708 	args->npages = 0;
2709 
2710 	migrate_vma_collect(args);
2711 
2712 	if (args->cpages)
2713 		migrate_vma_prepare(args);
2714 	if (args->cpages)
2715 		migrate_vma_unmap(args);
2716 
2717 	/*
2718 	 * At this point pages are locked and unmapped, and thus they have
2719 	 * stable content and can safely be copied to destination memory that
2720 	 * is allocated by the drivers.
2721 	 */
2722 	return 0;
2723 
2724 }
2725 EXPORT_SYMBOL(migrate_vma_setup);
2726 
2727 /*
2728  * This code closely matches the code in:
2729  *   __handle_mm_fault()
2730  *     handle_pte_fault()
2731  *       do_anonymous_page()
2732  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2733  * private page.
2734  */
2735 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2736 				    unsigned long addr,
2737 				    struct page *page,
2738 				    unsigned long *src,
2739 				    unsigned long *dst)
2740 {
2741 	struct vm_area_struct *vma = migrate->vma;
2742 	struct mm_struct *mm = vma->vm_mm;
2743 	bool flush = false;
2744 	spinlock_t *ptl;
2745 	pte_t entry;
2746 	pgd_t *pgdp;
2747 	p4d_t *p4dp;
2748 	pud_t *pudp;
2749 	pmd_t *pmdp;
2750 	pte_t *ptep;
2751 
2752 	/* Only allow populating anonymous memory */
2753 	if (!vma_is_anonymous(vma))
2754 		goto abort;
2755 
2756 	pgdp = pgd_offset(mm, addr);
2757 	p4dp = p4d_alloc(mm, pgdp, addr);
2758 	if (!p4dp)
2759 		goto abort;
2760 	pudp = pud_alloc(mm, p4dp, addr);
2761 	if (!pudp)
2762 		goto abort;
2763 	pmdp = pmd_alloc(mm, pudp, addr);
2764 	if (!pmdp)
2765 		goto abort;
2766 
2767 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2768 		goto abort;
2769 
2770 	/*
2771 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2772 	 * pte_offset_map() on pmds where a huge pmd might be created
2773 	 * from a different thread.
2774 	 *
2775 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2776 	 * parallel threads are excluded by other means.
2777 	 *
2778 	 * Here we only have mmap_read_lock(mm).
2779 	 */
2780 	if (pte_alloc(mm, pmdp))
2781 		goto abort;
2782 
2783 	/* See the comment in pte_alloc_one_map() */
2784 	if (unlikely(pmd_trans_unstable(pmdp)))
2785 		goto abort;
2786 
2787 	if (unlikely(anon_vma_prepare(vma)))
2788 		goto abort;
2789 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2790 		goto abort;
2791 
2792 	/*
2793 	 * The memory barrier inside __SetPageUptodate makes sure that
2794 	 * preceding stores to the page contents become visible before
2795 	 * the set_pte_at() write.
2796 	 */
2797 	__SetPageUptodate(page);
2798 
2799 	if (is_zone_device_page(page)) {
2800 		if (is_device_private_page(page)) {
2801 			swp_entry_t swp_entry;
2802 
2803 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2804 			entry = swp_entry_to_pte(swp_entry);
2805 		}
2806 	} else {
2807 		entry = mk_pte(page, vma->vm_page_prot);
2808 		if (vma->vm_flags & VM_WRITE)
2809 			entry = pte_mkwrite(pte_mkdirty(entry));
2810 	}
2811 
2812 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2813 
2814 	if (check_stable_address_space(mm))
2815 		goto unlock_abort;
2816 
2817 	if (pte_present(*ptep)) {
2818 		unsigned long pfn = pte_pfn(*ptep);
2819 
2820 		if (!is_zero_pfn(pfn))
2821 			goto unlock_abort;
2822 		flush = true;
2823 	} else if (!pte_none(*ptep))
2824 		goto unlock_abort;
2825 
2826 	/*
2827 	 * Check for userfaultfd but do not deliver the fault. Instead,
2828 	 * just back off.
2829 	 */
2830 	if (userfaultfd_missing(vma))
2831 		goto unlock_abort;
2832 
2833 	inc_mm_counter(mm, MM_ANONPAGES);
2834 	page_add_new_anon_rmap(page, vma, addr, false);
2835 	if (!is_zone_device_page(page))
2836 		lru_cache_add_active_or_unevictable(page, vma);
2837 	get_page(page);
2838 
2839 	if (flush) {
2840 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2841 		ptep_clear_flush_notify(vma, addr, ptep);
2842 		set_pte_at_notify(mm, addr, ptep, entry);
2843 		update_mmu_cache(vma, addr, ptep);
2844 	} else {
2845 		/* No need to invalidate - it was non-present before */
2846 		set_pte_at(mm, addr, ptep, entry);
2847 		update_mmu_cache(vma, addr, ptep);
2848 	}
2849 
2850 	pte_unmap_unlock(ptep, ptl);
2851 	*src = MIGRATE_PFN_MIGRATE;
2852 	return;
2853 
2854 unlock_abort:
2855 	pte_unmap_unlock(ptep, ptl);
2856 abort:
2857 	*src &= ~MIGRATE_PFN_MIGRATE;
2858 }
2859 
2860 /**
2861  * migrate_vma_pages() - migrate meta-data from src page to dst page
2862  * @migrate: migrate struct containing all migration information
2863  *
2864  * This migrates struct page meta-data from source struct page to destination
2865  * struct page. This effectively finishes the migration from source page to the
2866  * destination page.
2867  */
2868 void migrate_vma_pages(struct migrate_vma *migrate)
2869 {
2870 	const unsigned long npages = migrate->npages;
2871 	const unsigned long start = migrate->start;
2872 	struct mmu_notifier_range range;
2873 	unsigned long addr, i;
2874 	bool notified = false;
2875 
2876 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2877 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2878 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2879 		struct address_space *mapping;
2880 		int r;
2881 
2882 		if (!newpage) {
2883 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2884 			continue;
2885 		}
2886 
2887 		if (!page) {
2888 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2889 				continue;
2890 			if (!notified) {
2891 				notified = true;
2892 
2893 				mmu_notifier_range_init(&range,
2894 							MMU_NOTIFY_CLEAR, 0,
2895 							NULL,
2896 							migrate->vma->vm_mm,
2897 							addr, migrate->end);
2898 				mmu_notifier_invalidate_range_start(&range);
2899 			}
2900 			migrate_vma_insert_page(migrate, addr, newpage,
2901 						&migrate->src[i],
2902 						&migrate->dst[i]);
2903 			continue;
2904 		}
2905 
2906 		mapping = page_mapping(page);
2907 
2908 		if (is_zone_device_page(newpage)) {
2909 			if (is_device_private_page(newpage)) {
2910 				/*
2911 				 * For now only support private anonymous when
2912 				 * migrating to un-addressable device memory.
2913 				 */
2914 				if (mapping) {
2915 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2916 					continue;
2917 				}
2918 			} else {
2919 				/*
2920 				 * Other types of ZONE_DEVICE page are not
2921 				 * supported.
2922 				 */
2923 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2924 				continue;
2925 			}
2926 		}
2927 
2928 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2929 		if (r != MIGRATEPAGE_SUCCESS)
2930 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2931 	}
2932 
2933 	/*
2934 	 * No need to double call mmu_notifier->invalidate_range() callback as
2935 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2936 	 * did already call it.
2937 	 */
2938 	if (notified)
2939 		mmu_notifier_invalidate_range_only_end(&range);
2940 }
2941 EXPORT_SYMBOL(migrate_vma_pages);
2942 
2943 /**
2944  * migrate_vma_finalize() - restore CPU page table entry
2945  * @migrate: migrate struct containing all migration information
2946  *
2947  * This replaces the special migration pte entry with either a mapping to the
2948  * new page if migration was successful for that page, or to the original page
2949  * otherwise.
2950  *
2951  * This also unlocks the pages and puts them back on the lru, or drops the extra
2952  * refcount, for device pages.
2953  */
2954 void migrate_vma_finalize(struct migrate_vma *migrate)
2955 {
2956 	const unsigned long npages = migrate->npages;
2957 	unsigned long i;
2958 
2959 	for (i = 0; i < npages; i++) {
2960 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2961 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2962 
2963 		if (!page) {
2964 			if (newpage) {
2965 				unlock_page(newpage);
2966 				put_page(newpage);
2967 			}
2968 			continue;
2969 		}
2970 
2971 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2972 			if (newpage) {
2973 				unlock_page(newpage);
2974 				put_page(newpage);
2975 			}
2976 			newpage = page;
2977 		}
2978 
2979 		remove_migration_ptes(page, newpage, false);
2980 		unlock_page(page);
2981 		migrate->cpages--;
2982 
2983 		if (is_zone_device_page(page))
2984 			put_page(page);
2985 		else
2986 			putback_lru_page(page);
2987 
2988 		if (newpage != page) {
2989 			unlock_page(newpage);
2990 			if (is_zone_device_page(newpage))
2991 				put_page(newpage);
2992 			else
2993 				putback_lru_page(newpage);
2994 		}
2995 	}
2996 }
2997 EXPORT_SYMBOL(migrate_vma_finalize);
2998 #endif /* CONFIG_DEVICE_PRIVATE */
2999