1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __PageMovable because LRU folio's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 if (pte_swp_soft_dirty(old_pte)) 215 pte = pte_mksoft_dirty(pte); 216 217 entry = pte_to_swp_entry(old_pte); 218 if (!is_migration_entry_young(entry)) 219 pte = pte_mkold(pte); 220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 221 pte = pte_mkdirty(pte); 222 if (is_writable_migration_entry(entry)) 223 pte = pte_mkwrite(pte, vma); 224 else if (pte_swp_uffd_wp(old_pte)) 225 pte = pte_mkuffd_wp(pte); 226 227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 228 rmap_flags |= RMAP_EXCLUSIVE; 229 230 if (unlikely(is_device_private_page(new))) { 231 if (pte_write(pte)) 232 entry = make_writable_device_private_entry( 233 page_to_pfn(new)); 234 else 235 entry = make_readable_device_private_entry( 236 page_to_pfn(new)); 237 pte = swp_entry_to_pte(entry); 238 if (pte_swp_soft_dirty(old_pte)) 239 pte = pte_swp_mksoft_dirty(pte); 240 if (pte_swp_uffd_wp(old_pte)) 241 pte = pte_swp_mkuffd_wp(pte); 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 if (folio_test_hugetlb(folio)) { 246 struct hstate *h = hstate_vma(vma); 247 unsigned int shift = huge_page_shift(h); 248 unsigned long psize = huge_page_size(h); 249 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugepage_add_anon_rmap(new, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_dup_file_rmap(new, true); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 257 psize); 258 } else 259 #endif 260 { 261 if (folio_test_anon(folio)) 262 page_add_anon_rmap(new, vma, pvmw.address, 263 rmap_flags); 264 else 265 page_add_file_rmap(new, vma, false); 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 } 268 if (vma->vm_flags & VM_LOCKED) 269 mlock_drain_local(); 270 271 trace_remove_migration_pte(pvmw.address, pte_val(pte), 272 compound_order(new)); 273 274 /* No need to invalidate - it was non-present before */ 275 update_mmu_cache(vma, pvmw.address, pvmw.pte); 276 } 277 278 return true; 279 } 280 281 /* 282 * Get rid of all migration entries and replace them by 283 * references to the indicated page. 284 */ 285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 286 { 287 struct rmap_walk_control rwc = { 288 .rmap_one = remove_migration_pte, 289 .arg = src, 290 }; 291 292 if (locked) 293 rmap_walk_locked(dst, &rwc); 294 else 295 rmap_walk(dst, &rwc); 296 } 297 298 /* 299 * Something used the pte of a page under migration. We need to 300 * get to the page and wait until migration is finished. 301 * When we return from this function the fault will be retried. 302 */ 303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 304 unsigned long address) 305 { 306 spinlock_t *ptl; 307 pte_t *ptep; 308 pte_t pte; 309 swp_entry_t entry; 310 311 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 312 if (!ptep) 313 return; 314 315 pte = ptep_get(ptep); 316 pte_unmap(ptep); 317 318 if (!is_swap_pte(pte)) 319 goto out; 320 321 entry = pte_to_swp_entry(pte); 322 if (!is_migration_entry(entry)) 323 goto out; 324 325 migration_entry_wait_on_locked(entry, ptl); 326 return; 327 out: 328 spin_unlock(ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 /* 333 * The vma read lock must be held upon entry. Holding that lock prevents either 334 * the pte or the ptl from being freed. 335 * 336 * This function will release the vma lock before returning. 337 */ 338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 339 { 340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 341 pte_t pte; 342 343 hugetlb_vma_assert_locked(vma); 344 spin_lock(ptl); 345 pte = huge_ptep_get(ptep); 346 347 if (unlikely(!is_hugetlb_entry_migration(pte))) { 348 spin_unlock(ptl); 349 hugetlb_vma_unlock_read(vma); 350 } else { 351 /* 352 * If migration entry existed, safe to release vma lock 353 * here because the pgtable page won't be freed without the 354 * pgtable lock released. See comment right above pgtable 355 * lock release in migration_entry_wait_on_locked(). 356 */ 357 hugetlb_vma_unlock_read(vma); 358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 359 } 360 } 361 #endif 362 363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 365 { 366 spinlock_t *ptl; 367 368 ptl = pmd_lock(mm, pmd); 369 if (!is_pmd_migration_entry(*pmd)) 370 goto unlock; 371 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 static int folio_expected_refs(struct address_space *mapping, 379 struct folio *folio) 380 { 381 int refs = 1; 382 if (!mapping) 383 return refs; 384 385 refs += folio_nr_pages(folio); 386 if (folio_test_private(folio)) 387 refs++; 388 389 return refs; 390 } 391 392 /* 393 * Replace the page in the mapping. 394 * 395 * The number of remaining references must be: 396 * 1 for anonymous pages without a mapping 397 * 2 for pages with a mapping 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 399 */ 400 int folio_migrate_mapping(struct address_space *mapping, 401 struct folio *newfolio, struct folio *folio, int extra_count) 402 { 403 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 404 struct zone *oldzone, *newzone; 405 int dirty; 406 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 407 long nr = folio_nr_pages(folio); 408 long entries, i; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (folio_ref_count(folio) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 if (folio_test_swapbacked(folio)) 419 __folio_set_swapbacked(newfolio); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = folio_zone(folio); 425 newzone = folio_zone(newfolio); 426 427 xas_lock_irq(&xas); 428 if (!folio_ref_freeze(folio, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the folio: 435 * no turning back from here. 436 */ 437 newfolio->index = folio->index; 438 newfolio->mapping = folio->mapping; 439 folio_ref_add(newfolio, nr); /* add cache reference */ 440 if (folio_test_swapbacked(folio)) { 441 __folio_set_swapbacked(newfolio); 442 if (folio_test_swapcache(folio)) { 443 folio_set_swapcache(newfolio); 444 newfolio->private = folio_get_private(folio); 445 } 446 entries = nr; 447 } else { 448 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 449 entries = 1; 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = folio_test_dirty(folio); 454 if (dirty) { 455 folio_clear_dirty(folio); 456 folio_set_dirty(newfolio); 457 } 458 459 /* Swap cache still stores N entries instead of a high-order entry */ 460 for (i = 0; i < entries; i++) { 461 xas_store(&xas, newfolio); 462 xas_next(&xas); 463 } 464 465 /* 466 * Drop cache reference from old page by unfreezing 467 * to one less reference. 468 * We know this isn't the last reference. 469 */ 470 folio_ref_unfreeze(folio, expected_count - nr); 471 472 xas_unlock(&xas); 473 /* Leave irq disabled to prevent preemption while updating stats */ 474 475 /* 476 * If moved to a different zone then also account 477 * the page for that zone. Other VM counters will be 478 * taken care of when we establish references to the 479 * new page and drop references to the old page. 480 * 481 * Note that anonymous pages are accounted for 482 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 483 * are mapped to swap space. 484 */ 485 if (newzone != oldzone) { 486 struct lruvec *old_lruvec, *new_lruvec; 487 struct mem_cgroup *memcg; 488 489 memcg = folio_memcg(folio); 490 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 491 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 492 493 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 494 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 495 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 496 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 497 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 498 499 if (folio_test_pmd_mappable(folio)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 502 } 503 } 504 #ifdef CONFIG_SWAP 505 if (folio_test_swapcache(folio)) { 506 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 507 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 508 } 509 #endif 510 if (dirty && mapping_can_writeback(mapping)) { 511 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 512 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 513 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 514 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 515 } 516 } 517 local_irq_enable(); 518 519 return MIGRATEPAGE_SUCCESS; 520 } 521 EXPORT_SYMBOL(folio_migrate_mapping); 522 523 /* 524 * The expected number of remaining references is the same as that 525 * of folio_migrate_mapping(). 526 */ 527 int migrate_huge_page_move_mapping(struct address_space *mapping, 528 struct folio *dst, struct folio *src) 529 { 530 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 531 int expected_count; 532 533 xas_lock_irq(&xas); 534 expected_count = 2 + folio_has_private(src); 535 if (!folio_ref_freeze(src, expected_count)) { 536 xas_unlock_irq(&xas); 537 return -EAGAIN; 538 } 539 540 dst->index = src->index; 541 dst->mapping = src->mapping; 542 543 folio_get(dst); 544 545 xas_store(&xas, dst); 546 547 folio_ref_unfreeze(src, expected_count - 1); 548 549 xas_unlock_irq(&xas); 550 551 return MIGRATEPAGE_SUCCESS; 552 } 553 554 /* 555 * Copy the flags and some other ancillary information 556 */ 557 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 558 { 559 int cpupid; 560 561 if (folio_test_error(folio)) 562 folio_set_error(newfolio); 563 if (folio_test_referenced(folio)) 564 folio_set_referenced(newfolio); 565 if (folio_test_uptodate(folio)) 566 folio_mark_uptodate(newfolio); 567 if (folio_test_clear_active(folio)) { 568 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 569 folio_set_active(newfolio); 570 } else if (folio_test_clear_unevictable(folio)) 571 folio_set_unevictable(newfolio); 572 if (folio_test_workingset(folio)) 573 folio_set_workingset(newfolio); 574 if (folio_test_checked(folio)) 575 folio_set_checked(newfolio); 576 /* 577 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 578 * migration entries. We can still have PG_anon_exclusive set on an 579 * effectively unmapped and unreferenced first sub-pages of an 580 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 581 */ 582 if (folio_test_mappedtodisk(folio)) 583 folio_set_mappedtodisk(newfolio); 584 585 /* Move dirty on pages not done by folio_migrate_mapping() */ 586 if (folio_test_dirty(folio)) 587 folio_set_dirty(newfolio); 588 589 if (folio_test_young(folio)) 590 folio_set_young(newfolio); 591 if (folio_test_idle(folio)) 592 folio_set_idle(newfolio); 593 594 /* 595 * Copy NUMA information to the new page, to prevent over-eager 596 * future migrations of this same page. 597 */ 598 cpupid = page_cpupid_xchg_last(&folio->page, -1); 599 /* 600 * For memory tiering mode, when migrate between slow and fast 601 * memory node, reset cpupid, because that is used to record 602 * page access time in slow memory node. 603 */ 604 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 605 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 606 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 607 608 if (f_toptier != t_toptier) 609 cpupid = -1; 610 } 611 page_cpupid_xchg_last(&newfolio->page, cpupid); 612 613 folio_migrate_ksm(newfolio, folio); 614 /* 615 * Please do not reorder this without considering how mm/ksm.c's 616 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 617 */ 618 if (folio_test_swapcache(folio)) 619 folio_clear_swapcache(folio); 620 folio_clear_private(folio); 621 622 /* page->private contains hugetlb specific flags */ 623 if (!folio_test_hugetlb(folio)) 624 folio->private = NULL; 625 626 /* 627 * If any waiters have accumulated on the new page then 628 * wake them up. 629 */ 630 if (folio_test_writeback(newfolio)) 631 folio_end_writeback(newfolio); 632 633 /* 634 * PG_readahead shares the same bit with PG_reclaim. The above 635 * end_page_writeback() may clear PG_readahead mistakenly, so set the 636 * bit after that. 637 */ 638 if (folio_test_readahead(folio)) 639 folio_set_readahead(newfolio); 640 641 folio_copy_owner(newfolio, folio); 642 643 if (!folio_test_hugetlb(folio)) 644 mem_cgroup_migrate(folio, newfolio); 645 } 646 EXPORT_SYMBOL(folio_migrate_flags); 647 648 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 649 { 650 folio_copy(newfolio, folio); 651 folio_migrate_flags(newfolio, folio); 652 } 653 EXPORT_SYMBOL(folio_migrate_copy); 654 655 /************************************************************ 656 * Migration functions 657 ***********************************************************/ 658 659 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 660 struct folio *src, enum migrate_mode mode, int extra_count) 661 { 662 int rc; 663 664 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 665 666 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 667 668 if (rc != MIGRATEPAGE_SUCCESS) 669 return rc; 670 671 if (mode != MIGRATE_SYNC_NO_COPY) 672 folio_migrate_copy(dst, src); 673 else 674 folio_migrate_flags(dst, src); 675 return MIGRATEPAGE_SUCCESS; 676 } 677 678 /** 679 * migrate_folio() - Simple folio migration. 680 * @mapping: The address_space containing the folio. 681 * @dst: The folio to migrate the data to. 682 * @src: The folio containing the current data. 683 * @mode: How to migrate the page. 684 * 685 * Common logic to directly migrate a single LRU folio suitable for 686 * folios that do not use PagePrivate/PagePrivate2. 687 * 688 * Folios are locked upon entry and exit. 689 */ 690 int migrate_folio(struct address_space *mapping, struct folio *dst, 691 struct folio *src, enum migrate_mode mode) 692 { 693 return migrate_folio_extra(mapping, dst, src, mode, 0); 694 } 695 EXPORT_SYMBOL(migrate_folio); 696 697 #ifdef CONFIG_BUFFER_HEAD 698 /* Returns true if all buffers are successfully locked */ 699 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 700 enum migrate_mode mode) 701 { 702 struct buffer_head *bh = head; 703 struct buffer_head *failed_bh; 704 705 do { 706 if (!trylock_buffer(bh)) { 707 if (mode == MIGRATE_ASYNC) 708 goto unlock; 709 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 710 goto unlock; 711 lock_buffer(bh); 712 } 713 714 bh = bh->b_this_page; 715 } while (bh != head); 716 717 return true; 718 719 unlock: 720 /* We failed to lock the buffer and cannot stall. */ 721 failed_bh = bh; 722 bh = head; 723 while (bh != failed_bh) { 724 unlock_buffer(bh); 725 bh = bh->b_this_page; 726 } 727 728 return false; 729 } 730 731 static int __buffer_migrate_folio(struct address_space *mapping, 732 struct folio *dst, struct folio *src, enum migrate_mode mode, 733 bool check_refs) 734 { 735 struct buffer_head *bh, *head; 736 int rc; 737 int expected_count; 738 739 head = folio_buffers(src); 740 if (!head) 741 return migrate_folio(mapping, dst, src, mode); 742 743 /* Check whether page does not have extra refs before we do more work */ 744 expected_count = folio_expected_refs(mapping, src); 745 if (folio_ref_count(src) != expected_count) 746 return -EAGAIN; 747 748 if (!buffer_migrate_lock_buffers(head, mode)) 749 return -EAGAIN; 750 751 if (check_refs) { 752 bool busy; 753 bool invalidated = false; 754 755 recheck_buffers: 756 busy = false; 757 spin_lock(&mapping->private_lock); 758 bh = head; 759 do { 760 if (atomic_read(&bh->b_count)) { 761 busy = true; 762 break; 763 } 764 bh = bh->b_this_page; 765 } while (bh != head); 766 if (busy) { 767 if (invalidated) { 768 rc = -EAGAIN; 769 goto unlock_buffers; 770 } 771 spin_unlock(&mapping->private_lock); 772 invalidate_bh_lrus(); 773 invalidated = true; 774 goto recheck_buffers; 775 } 776 } 777 778 rc = folio_migrate_mapping(mapping, dst, src, 0); 779 if (rc != MIGRATEPAGE_SUCCESS) 780 goto unlock_buffers; 781 782 folio_attach_private(dst, folio_detach_private(src)); 783 784 bh = head; 785 do { 786 folio_set_bh(bh, dst, bh_offset(bh)); 787 bh = bh->b_this_page; 788 } while (bh != head); 789 790 if (mode != MIGRATE_SYNC_NO_COPY) 791 folio_migrate_copy(dst, src); 792 else 793 folio_migrate_flags(dst, src); 794 795 rc = MIGRATEPAGE_SUCCESS; 796 unlock_buffers: 797 if (check_refs) 798 spin_unlock(&mapping->private_lock); 799 bh = head; 800 do { 801 unlock_buffer(bh); 802 bh = bh->b_this_page; 803 } while (bh != head); 804 805 return rc; 806 } 807 808 /** 809 * buffer_migrate_folio() - Migration function for folios with buffers. 810 * @mapping: The address space containing @src. 811 * @dst: The folio to migrate to. 812 * @src: The folio to migrate from. 813 * @mode: How to migrate the folio. 814 * 815 * This function can only be used if the underlying filesystem guarantees 816 * that no other references to @src exist. For example attached buffer 817 * heads are accessed only under the folio lock. If your filesystem cannot 818 * provide this guarantee, buffer_migrate_folio_norefs() may be more 819 * appropriate. 820 * 821 * Return: 0 on success or a negative errno on failure. 822 */ 823 int buffer_migrate_folio(struct address_space *mapping, 824 struct folio *dst, struct folio *src, enum migrate_mode mode) 825 { 826 return __buffer_migrate_folio(mapping, dst, src, mode, false); 827 } 828 EXPORT_SYMBOL(buffer_migrate_folio); 829 830 /** 831 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 832 * @mapping: The address space containing @src. 833 * @dst: The folio to migrate to. 834 * @src: The folio to migrate from. 835 * @mode: How to migrate the folio. 836 * 837 * Like buffer_migrate_folio() except that this variant is more careful 838 * and checks that there are also no buffer head references. This function 839 * is the right one for mappings where buffer heads are directly looked 840 * up and referenced (such as block device mappings). 841 * 842 * Return: 0 on success or a negative errno on failure. 843 */ 844 int buffer_migrate_folio_norefs(struct address_space *mapping, 845 struct folio *dst, struct folio *src, enum migrate_mode mode) 846 { 847 return __buffer_migrate_folio(mapping, dst, src, mode, true); 848 } 849 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 850 #endif /* CONFIG_BUFFER_HEAD */ 851 852 int filemap_migrate_folio(struct address_space *mapping, 853 struct folio *dst, struct folio *src, enum migrate_mode mode) 854 { 855 int ret; 856 857 ret = folio_migrate_mapping(mapping, dst, src, 0); 858 if (ret != MIGRATEPAGE_SUCCESS) 859 return ret; 860 861 if (folio_get_private(src)) 862 folio_attach_private(dst, folio_detach_private(src)); 863 864 if (mode != MIGRATE_SYNC_NO_COPY) 865 folio_migrate_copy(dst, src); 866 else 867 folio_migrate_flags(dst, src); 868 return MIGRATEPAGE_SUCCESS; 869 } 870 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 871 872 /* 873 * Writeback a folio to clean the dirty state 874 */ 875 static int writeout(struct address_space *mapping, struct folio *folio) 876 { 877 struct writeback_control wbc = { 878 .sync_mode = WB_SYNC_NONE, 879 .nr_to_write = 1, 880 .range_start = 0, 881 .range_end = LLONG_MAX, 882 .for_reclaim = 1 883 }; 884 int rc; 885 886 if (!mapping->a_ops->writepage) 887 /* No write method for the address space */ 888 return -EINVAL; 889 890 if (!folio_clear_dirty_for_io(folio)) 891 /* Someone else already triggered a write */ 892 return -EAGAIN; 893 894 /* 895 * A dirty folio may imply that the underlying filesystem has 896 * the folio on some queue. So the folio must be clean for 897 * migration. Writeout may mean we lose the lock and the 898 * folio state is no longer what we checked for earlier. 899 * At this point we know that the migration attempt cannot 900 * be successful. 901 */ 902 remove_migration_ptes(folio, folio, false); 903 904 rc = mapping->a_ops->writepage(&folio->page, &wbc); 905 906 if (rc != AOP_WRITEPAGE_ACTIVATE) 907 /* unlocked. Relock */ 908 folio_lock(folio); 909 910 return (rc < 0) ? -EIO : -EAGAIN; 911 } 912 913 /* 914 * Default handling if a filesystem does not provide a migration function. 915 */ 916 static int fallback_migrate_folio(struct address_space *mapping, 917 struct folio *dst, struct folio *src, enum migrate_mode mode) 918 { 919 if (folio_test_dirty(src)) { 920 /* Only writeback folios in full synchronous migration */ 921 switch (mode) { 922 case MIGRATE_SYNC: 923 case MIGRATE_SYNC_NO_COPY: 924 break; 925 default: 926 return -EBUSY; 927 } 928 return writeout(mapping, src); 929 } 930 931 /* 932 * Buffers may be managed in a filesystem specific way. 933 * We must have no buffers or drop them. 934 */ 935 if (!filemap_release_folio(src, GFP_KERNEL)) 936 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 937 938 return migrate_folio(mapping, dst, src, mode); 939 } 940 941 /* 942 * Move a page to a newly allocated page 943 * The page is locked and all ptes have been successfully removed. 944 * 945 * The new page will have replaced the old page if this function 946 * is successful. 947 * 948 * Return value: 949 * < 0 - error code 950 * MIGRATEPAGE_SUCCESS - success 951 */ 952 static int move_to_new_folio(struct folio *dst, struct folio *src, 953 enum migrate_mode mode) 954 { 955 int rc = -EAGAIN; 956 bool is_lru = !__PageMovable(&src->page); 957 958 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 959 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 960 961 if (likely(is_lru)) { 962 struct address_space *mapping = folio_mapping(src); 963 964 if (!mapping) 965 rc = migrate_folio(mapping, dst, src, mode); 966 else if (mapping->a_ops->migrate_folio) 967 /* 968 * Most folios have a mapping and most filesystems 969 * provide a migrate_folio callback. Anonymous folios 970 * are part of swap space which also has its own 971 * migrate_folio callback. This is the most common path 972 * for page migration. 973 */ 974 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 975 mode); 976 else 977 rc = fallback_migrate_folio(mapping, dst, src, mode); 978 } else { 979 const struct movable_operations *mops; 980 981 /* 982 * In case of non-lru page, it could be released after 983 * isolation step. In that case, we shouldn't try migration. 984 */ 985 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 986 if (!folio_test_movable(src)) { 987 rc = MIGRATEPAGE_SUCCESS; 988 folio_clear_isolated(src); 989 goto out; 990 } 991 992 mops = folio_movable_ops(src); 993 rc = mops->migrate_page(&dst->page, &src->page, mode); 994 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 995 !folio_test_isolated(src)); 996 } 997 998 /* 999 * When successful, old pagecache src->mapping must be cleared before 1000 * src is freed; but stats require that PageAnon be left as PageAnon. 1001 */ 1002 if (rc == MIGRATEPAGE_SUCCESS) { 1003 if (__PageMovable(&src->page)) { 1004 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1005 1006 /* 1007 * We clear PG_movable under page_lock so any compactor 1008 * cannot try to migrate this page. 1009 */ 1010 folio_clear_isolated(src); 1011 } 1012 1013 /* 1014 * Anonymous and movable src->mapping will be cleared by 1015 * free_pages_prepare so don't reset it here for keeping 1016 * the type to work PageAnon, for example. 1017 */ 1018 if (!folio_mapping_flags(src)) 1019 src->mapping = NULL; 1020 1021 if (likely(!folio_is_zone_device(dst))) 1022 flush_dcache_folio(dst); 1023 } 1024 out: 1025 return rc; 1026 } 1027 1028 /* 1029 * To record some information during migration, we use unused private 1030 * field of struct folio of the newly allocated destination folio. 1031 * This is safe because nobody is using it except us. 1032 */ 1033 enum { 1034 PAGE_WAS_MAPPED = BIT(0), 1035 PAGE_WAS_MLOCKED = BIT(1), 1036 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1037 }; 1038 1039 static void __migrate_folio_record(struct folio *dst, 1040 int old_page_state, 1041 struct anon_vma *anon_vma) 1042 { 1043 dst->private = (void *)anon_vma + old_page_state; 1044 } 1045 1046 static void __migrate_folio_extract(struct folio *dst, 1047 int *old_page_state, 1048 struct anon_vma **anon_vmap) 1049 { 1050 unsigned long private = (unsigned long)dst->private; 1051 1052 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1053 *old_page_state = private & PAGE_OLD_STATES; 1054 dst->private = NULL; 1055 } 1056 1057 /* Restore the source folio to the original state upon failure */ 1058 static void migrate_folio_undo_src(struct folio *src, 1059 int page_was_mapped, 1060 struct anon_vma *anon_vma, 1061 bool locked, 1062 struct list_head *ret) 1063 { 1064 if (page_was_mapped) 1065 remove_migration_ptes(src, src, false); 1066 /* Drop an anon_vma reference if we took one */ 1067 if (anon_vma) 1068 put_anon_vma(anon_vma); 1069 if (locked) 1070 folio_unlock(src); 1071 if (ret) 1072 list_move_tail(&src->lru, ret); 1073 } 1074 1075 /* Restore the destination folio to the original state upon failure */ 1076 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1077 free_folio_t put_new_folio, unsigned long private) 1078 { 1079 if (locked) 1080 folio_unlock(dst); 1081 if (put_new_folio) 1082 put_new_folio(dst, private); 1083 else 1084 folio_put(dst); 1085 } 1086 1087 /* Cleanup src folio upon migration success */ 1088 static void migrate_folio_done(struct folio *src, 1089 enum migrate_reason reason) 1090 { 1091 /* 1092 * Compaction can migrate also non-LRU pages which are 1093 * not accounted to NR_ISOLATED_*. They can be recognized 1094 * as __PageMovable 1095 */ 1096 if (likely(!__folio_test_movable(src))) 1097 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1098 folio_is_file_lru(src), -folio_nr_pages(src)); 1099 1100 if (reason != MR_MEMORY_FAILURE) 1101 /* We release the page in page_handle_poison. */ 1102 folio_put(src); 1103 } 1104 1105 /* Obtain the lock on page, remove all ptes. */ 1106 static int migrate_folio_unmap(new_folio_t get_new_folio, 1107 free_folio_t put_new_folio, unsigned long private, 1108 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1109 enum migrate_reason reason, struct list_head *ret) 1110 { 1111 struct folio *dst; 1112 int rc = -EAGAIN; 1113 int old_page_state = 0; 1114 struct anon_vma *anon_vma = NULL; 1115 bool is_lru = !__PageMovable(&src->page); 1116 bool locked = false; 1117 bool dst_locked = false; 1118 1119 if (folio_ref_count(src) == 1) { 1120 /* Folio was freed from under us. So we are done. */ 1121 folio_clear_active(src); 1122 folio_clear_unevictable(src); 1123 /* free_pages_prepare() will clear PG_isolated. */ 1124 list_del(&src->lru); 1125 migrate_folio_done(src, reason); 1126 return MIGRATEPAGE_SUCCESS; 1127 } 1128 1129 dst = get_new_folio(src, private); 1130 if (!dst) 1131 return -ENOMEM; 1132 *dstp = dst; 1133 1134 dst->private = NULL; 1135 1136 if (!folio_trylock(src)) { 1137 if (mode == MIGRATE_ASYNC) 1138 goto out; 1139 1140 /* 1141 * It's not safe for direct compaction to call lock_page. 1142 * For example, during page readahead pages are added locked 1143 * to the LRU. Later, when the IO completes the pages are 1144 * marked uptodate and unlocked. However, the queueing 1145 * could be merging multiple pages for one bio (e.g. 1146 * mpage_readahead). If an allocation happens for the 1147 * second or third page, the process can end up locking 1148 * the same page twice and deadlocking. Rather than 1149 * trying to be clever about what pages can be locked, 1150 * avoid the use of lock_page for direct compaction 1151 * altogether. 1152 */ 1153 if (current->flags & PF_MEMALLOC) 1154 goto out; 1155 1156 /* 1157 * In "light" mode, we can wait for transient locks (eg 1158 * inserting a page into the page table), but it's not 1159 * worth waiting for I/O. 1160 */ 1161 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1162 goto out; 1163 1164 folio_lock(src); 1165 } 1166 locked = true; 1167 if (folio_test_mlocked(src)) 1168 old_page_state |= PAGE_WAS_MLOCKED; 1169 1170 if (folio_test_writeback(src)) { 1171 /* 1172 * Only in the case of a full synchronous migration is it 1173 * necessary to wait for PageWriteback. In the async case, 1174 * the retry loop is too short and in the sync-light case, 1175 * the overhead of stalling is too much 1176 */ 1177 switch (mode) { 1178 case MIGRATE_SYNC: 1179 case MIGRATE_SYNC_NO_COPY: 1180 break; 1181 default: 1182 rc = -EBUSY; 1183 goto out; 1184 } 1185 folio_wait_writeback(src); 1186 } 1187 1188 /* 1189 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1190 * we cannot notice that anon_vma is freed while we migrate a page. 1191 * This get_anon_vma() delays freeing anon_vma pointer until the end 1192 * of migration. File cache pages are no problem because of page_lock() 1193 * File Caches may use write_page() or lock_page() in migration, then, 1194 * just care Anon page here. 1195 * 1196 * Only folio_get_anon_vma() understands the subtleties of 1197 * getting a hold on an anon_vma from outside one of its mms. 1198 * But if we cannot get anon_vma, then we won't need it anyway, 1199 * because that implies that the anon page is no longer mapped 1200 * (and cannot be remapped so long as we hold the page lock). 1201 */ 1202 if (folio_test_anon(src) && !folio_test_ksm(src)) 1203 anon_vma = folio_get_anon_vma(src); 1204 1205 /* 1206 * Block others from accessing the new page when we get around to 1207 * establishing additional references. We are usually the only one 1208 * holding a reference to dst at this point. We used to have a BUG 1209 * here if folio_trylock(dst) fails, but would like to allow for 1210 * cases where there might be a race with the previous use of dst. 1211 * This is much like races on refcount of oldpage: just don't BUG(). 1212 */ 1213 if (unlikely(!folio_trylock(dst))) 1214 goto out; 1215 dst_locked = true; 1216 1217 if (unlikely(!is_lru)) { 1218 __migrate_folio_record(dst, old_page_state, anon_vma); 1219 return MIGRATEPAGE_UNMAP; 1220 } 1221 1222 /* 1223 * Corner case handling: 1224 * 1. When a new swap-cache page is read into, it is added to the LRU 1225 * and treated as swapcache but it has no rmap yet. 1226 * Calling try_to_unmap() against a src->mapping==NULL page will 1227 * trigger a BUG. So handle it here. 1228 * 2. An orphaned page (see truncate_cleanup_page) might have 1229 * fs-private metadata. The page can be picked up due to memory 1230 * offlining. Everywhere else except page reclaim, the page is 1231 * invisible to the vm, so the page can not be migrated. So try to 1232 * free the metadata, so the page can be freed. 1233 */ 1234 if (!src->mapping) { 1235 if (folio_test_private(src)) { 1236 try_to_free_buffers(src); 1237 goto out; 1238 } 1239 } else if (folio_mapped(src)) { 1240 /* Establish migration ptes */ 1241 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1242 !folio_test_ksm(src) && !anon_vma, src); 1243 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1244 old_page_state |= PAGE_WAS_MAPPED; 1245 } 1246 1247 if (!folio_mapped(src)) { 1248 __migrate_folio_record(dst, old_page_state, anon_vma); 1249 return MIGRATEPAGE_UNMAP; 1250 } 1251 1252 out: 1253 /* 1254 * A folio that has not been unmapped will be restored to 1255 * right list unless we want to retry. 1256 */ 1257 if (rc == -EAGAIN) 1258 ret = NULL; 1259 1260 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1261 anon_vma, locked, ret); 1262 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1263 1264 return rc; 1265 } 1266 1267 /* Migrate the folio to the newly allocated folio in dst. */ 1268 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1269 struct folio *src, struct folio *dst, 1270 enum migrate_mode mode, enum migrate_reason reason, 1271 struct list_head *ret) 1272 { 1273 int rc; 1274 int old_page_state = 0; 1275 struct anon_vma *anon_vma = NULL; 1276 bool is_lru = !__PageMovable(&src->page); 1277 struct list_head *prev; 1278 1279 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1280 prev = dst->lru.prev; 1281 list_del(&dst->lru); 1282 1283 rc = move_to_new_folio(dst, src, mode); 1284 if (rc) 1285 goto out; 1286 1287 if (unlikely(!is_lru)) 1288 goto out_unlock_both; 1289 1290 /* 1291 * When successful, push dst to LRU immediately: so that if it 1292 * turns out to be an mlocked page, remove_migration_ptes() will 1293 * automatically build up the correct dst->mlock_count for it. 1294 * 1295 * We would like to do something similar for the old page, when 1296 * unsuccessful, and other cases when a page has been temporarily 1297 * isolated from the unevictable LRU: but this case is the easiest. 1298 */ 1299 folio_add_lru(dst); 1300 if (old_page_state & PAGE_WAS_MLOCKED) 1301 lru_add_drain(); 1302 1303 if (old_page_state & PAGE_WAS_MAPPED) 1304 remove_migration_ptes(src, dst, false); 1305 1306 out_unlock_both: 1307 folio_unlock(dst); 1308 set_page_owner_migrate_reason(&dst->page, reason); 1309 /* 1310 * If migration is successful, decrease refcount of dst, 1311 * which will not free the page because new page owner increased 1312 * refcounter. 1313 */ 1314 folio_put(dst); 1315 1316 /* 1317 * A folio that has been migrated has all references removed 1318 * and will be freed. 1319 */ 1320 list_del(&src->lru); 1321 /* Drop an anon_vma reference if we took one */ 1322 if (anon_vma) 1323 put_anon_vma(anon_vma); 1324 folio_unlock(src); 1325 migrate_folio_done(src, reason); 1326 1327 return rc; 1328 out: 1329 /* 1330 * A folio that has not been migrated will be restored to 1331 * right list unless we want to retry. 1332 */ 1333 if (rc == -EAGAIN) { 1334 list_add(&dst->lru, prev); 1335 __migrate_folio_record(dst, old_page_state, anon_vma); 1336 return rc; 1337 } 1338 1339 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1340 anon_vma, true, ret); 1341 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1342 1343 return rc; 1344 } 1345 1346 /* 1347 * Counterpart of unmap_and_move_page() for hugepage migration. 1348 * 1349 * This function doesn't wait the completion of hugepage I/O 1350 * because there is no race between I/O and migration for hugepage. 1351 * Note that currently hugepage I/O occurs only in direct I/O 1352 * where no lock is held and PG_writeback is irrelevant, 1353 * and writeback status of all subpages are counted in the reference 1354 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1355 * under direct I/O, the reference of the head page is 512 and a bit more.) 1356 * This means that when we try to migrate hugepage whose subpages are 1357 * doing direct I/O, some references remain after try_to_unmap() and 1358 * hugepage migration fails without data corruption. 1359 * 1360 * There is also no race when direct I/O is issued on the page under migration, 1361 * because then pte is replaced with migration swap entry and direct I/O code 1362 * will wait in the page fault for migration to complete. 1363 */ 1364 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1365 free_folio_t put_new_folio, unsigned long private, 1366 struct folio *src, int force, enum migrate_mode mode, 1367 int reason, struct list_head *ret) 1368 { 1369 struct folio *dst; 1370 int rc = -EAGAIN; 1371 int page_was_mapped = 0; 1372 struct anon_vma *anon_vma = NULL; 1373 struct address_space *mapping = NULL; 1374 1375 if (folio_ref_count(src) == 1) { 1376 /* page was freed from under us. So we are done. */ 1377 folio_putback_active_hugetlb(src); 1378 return MIGRATEPAGE_SUCCESS; 1379 } 1380 1381 dst = get_new_folio(src, private); 1382 if (!dst) 1383 return -ENOMEM; 1384 1385 if (!folio_trylock(src)) { 1386 if (!force) 1387 goto out; 1388 switch (mode) { 1389 case MIGRATE_SYNC: 1390 case MIGRATE_SYNC_NO_COPY: 1391 break; 1392 default: 1393 goto out; 1394 } 1395 folio_lock(src); 1396 } 1397 1398 /* 1399 * Check for pages which are in the process of being freed. Without 1400 * folio_mapping() set, hugetlbfs specific move page routine will not 1401 * be called and we could leak usage counts for subpools. 1402 */ 1403 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1404 rc = -EBUSY; 1405 goto out_unlock; 1406 } 1407 1408 if (folio_test_anon(src)) 1409 anon_vma = folio_get_anon_vma(src); 1410 1411 if (unlikely(!folio_trylock(dst))) 1412 goto put_anon; 1413 1414 if (folio_mapped(src)) { 1415 enum ttu_flags ttu = 0; 1416 1417 if (!folio_test_anon(src)) { 1418 /* 1419 * In shared mappings, try_to_unmap could potentially 1420 * call huge_pmd_unshare. Because of this, take 1421 * semaphore in write mode here and set TTU_RMAP_LOCKED 1422 * to let lower levels know we have taken the lock. 1423 */ 1424 mapping = hugetlb_page_mapping_lock_write(&src->page); 1425 if (unlikely(!mapping)) 1426 goto unlock_put_anon; 1427 1428 ttu = TTU_RMAP_LOCKED; 1429 } 1430 1431 try_to_migrate(src, ttu); 1432 page_was_mapped = 1; 1433 1434 if (ttu & TTU_RMAP_LOCKED) 1435 i_mmap_unlock_write(mapping); 1436 } 1437 1438 if (!folio_mapped(src)) 1439 rc = move_to_new_folio(dst, src, mode); 1440 1441 if (page_was_mapped) 1442 remove_migration_ptes(src, 1443 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1444 1445 unlock_put_anon: 1446 folio_unlock(dst); 1447 1448 put_anon: 1449 if (anon_vma) 1450 put_anon_vma(anon_vma); 1451 1452 if (rc == MIGRATEPAGE_SUCCESS) { 1453 move_hugetlb_state(src, dst, reason); 1454 put_new_folio = NULL; 1455 } 1456 1457 out_unlock: 1458 folio_unlock(src); 1459 out: 1460 if (rc == MIGRATEPAGE_SUCCESS) 1461 folio_putback_active_hugetlb(src); 1462 else if (rc != -EAGAIN) 1463 list_move_tail(&src->lru, ret); 1464 1465 /* 1466 * If migration was not successful and there's a freeing callback, use 1467 * it. Otherwise, put_page() will drop the reference grabbed during 1468 * isolation. 1469 */ 1470 if (put_new_folio) 1471 put_new_folio(dst, private); 1472 else 1473 folio_putback_active_hugetlb(dst); 1474 1475 return rc; 1476 } 1477 1478 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1479 { 1480 int rc; 1481 1482 folio_lock(folio); 1483 rc = split_folio_to_list(folio, split_folios); 1484 folio_unlock(folio); 1485 if (!rc) 1486 list_move_tail(&folio->lru, split_folios); 1487 1488 return rc; 1489 } 1490 1491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1492 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1493 #else 1494 #define NR_MAX_BATCHED_MIGRATION 512 1495 #endif 1496 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1497 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1498 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1499 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1500 1501 struct migrate_pages_stats { 1502 int nr_succeeded; /* Normal and large folios migrated successfully, in 1503 units of base pages */ 1504 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1505 units of base pages. Untried folios aren't counted */ 1506 int nr_thp_succeeded; /* THP migrated successfully */ 1507 int nr_thp_failed; /* THP failed to be migrated */ 1508 int nr_thp_split; /* THP split before migrating */ 1509 }; 1510 1511 /* 1512 * Returns the number of hugetlb folios that were not migrated, or an error code 1513 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1514 * any more because the list has become empty or no retryable hugetlb folios 1515 * exist any more. It is caller's responsibility to call putback_movable_pages() 1516 * only if ret != 0. 1517 */ 1518 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1519 free_folio_t put_new_folio, unsigned long private, 1520 enum migrate_mode mode, int reason, 1521 struct migrate_pages_stats *stats, 1522 struct list_head *ret_folios) 1523 { 1524 int retry = 1; 1525 int nr_failed = 0; 1526 int nr_retry_pages = 0; 1527 int pass = 0; 1528 struct folio *folio, *folio2; 1529 int rc, nr_pages; 1530 1531 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1532 retry = 0; 1533 nr_retry_pages = 0; 1534 1535 list_for_each_entry_safe(folio, folio2, from, lru) { 1536 if (!folio_test_hugetlb(folio)) 1537 continue; 1538 1539 nr_pages = folio_nr_pages(folio); 1540 1541 cond_resched(); 1542 1543 /* 1544 * Migratability of hugepages depends on architectures and 1545 * their size. This check is necessary because some callers 1546 * of hugepage migration like soft offline and memory 1547 * hotremove don't walk through page tables or check whether 1548 * the hugepage is pmd-based or not before kicking migration. 1549 */ 1550 if (!hugepage_migration_supported(folio_hstate(folio))) { 1551 nr_failed++; 1552 stats->nr_failed_pages += nr_pages; 1553 list_move_tail(&folio->lru, ret_folios); 1554 continue; 1555 } 1556 1557 rc = unmap_and_move_huge_page(get_new_folio, 1558 put_new_folio, private, 1559 folio, pass > 2, mode, 1560 reason, ret_folios); 1561 /* 1562 * The rules are: 1563 * Success: hugetlb folio will be put back 1564 * -EAGAIN: stay on the from list 1565 * -ENOMEM: stay on the from list 1566 * Other errno: put on ret_folios list 1567 */ 1568 switch(rc) { 1569 case -ENOMEM: 1570 /* 1571 * When memory is low, don't bother to try to migrate 1572 * other folios, just exit. 1573 */ 1574 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1575 return -ENOMEM; 1576 case -EAGAIN: 1577 retry++; 1578 nr_retry_pages += nr_pages; 1579 break; 1580 case MIGRATEPAGE_SUCCESS: 1581 stats->nr_succeeded += nr_pages; 1582 break; 1583 default: 1584 /* 1585 * Permanent failure (-EBUSY, etc.): 1586 * unlike -EAGAIN case, the failed folio is 1587 * removed from migration folio list and not 1588 * retried in the next outer loop. 1589 */ 1590 nr_failed++; 1591 stats->nr_failed_pages += nr_pages; 1592 break; 1593 } 1594 } 1595 } 1596 /* 1597 * nr_failed is number of hugetlb folios failed to be migrated. After 1598 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1599 * folios as failed. 1600 */ 1601 nr_failed += retry; 1602 stats->nr_failed_pages += nr_retry_pages; 1603 1604 return nr_failed; 1605 } 1606 1607 /* 1608 * migrate_pages_batch() first unmaps folios in the from list as many as 1609 * possible, then move the unmapped folios. 1610 * 1611 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1612 * lock or bit when we have locked more than one folio. Which may cause 1613 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1614 * length of the from list must be <= 1. 1615 */ 1616 static int migrate_pages_batch(struct list_head *from, 1617 new_folio_t get_new_folio, free_folio_t put_new_folio, 1618 unsigned long private, enum migrate_mode mode, int reason, 1619 struct list_head *ret_folios, struct list_head *split_folios, 1620 struct migrate_pages_stats *stats, int nr_pass) 1621 { 1622 int retry = 1; 1623 int thp_retry = 1; 1624 int nr_failed = 0; 1625 int nr_retry_pages = 0; 1626 int pass = 0; 1627 bool is_thp = false; 1628 struct folio *folio, *folio2, *dst = NULL, *dst2; 1629 int rc, rc_saved = 0, nr_pages; 1630 LIST_HEAD(unmap_folios); 1631 LIST_HEAD(dst_folios); 1632 bool nosplit = (reason == MR_NUMA_MISPLACED); 1633 1634 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1635 !list_empty(from) && !list_is_singular(from)); 1636 1637 for (pass = 0; pass < nr_pass && retry; pass++) { 1638 retry = 0; 1639 thp_retry = 0; 1640 nr_retry_pages = 0; 1641 1642 list_for_each_entry_safe(folio, folio2, from, lru) { 1643 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1644 nr_pages = folio_nr_pages(folio); 1645 1646 cond_resched(); 1647 1648 /* 1649 * Large folio migration might be unsupported or 1650 * the allocation might be failed so we should retry 1651 * on the same folio with the large folio split 1652 * to normal folios. 1653 * 1654 * Split folios are put in split_folios, and 1655 * we will migrate them after the rest of the 1656 * list is processed. 1657 */ 1658 if (!thp_migration_supported() && is_thp) { 1659 nr_failed++; 1660 stats->nr_thp_failed++; 1661 if (!try_split_folio(folio, split_folios)) { 1662 stats->nr_thp_split++; 1663 continue; 1664 } 1665 stats->nr_failed_pages += nr_pages; 1666 list_move_tail(&folio->lru, ret_folios); 1667 continue; 1668 } 1669 1670 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1671 private, folio, &dst, mode, reason, 1672 ret_folios); 1673 /* 1674 * The rules are: 1675 * Success: folio will be freed 1676 * Unmap: folio will be put on unmap_folios list, 1677 * dst folio put on dst_folios list 1678 * -EAGAIN: stay on the from list 1679 * -ENOMEM: stay on the from list 1680 * Other errno: put on ret_folios list 1681 */ 1682 switch(rc) { 1683 case -ENOMEM: 1684 /* 1685 * When memory is low, don't bother to try to migrate 1686 * other folios, move unmapped folios, then exit. 1687 */ 1688 nr_failed++; 1689 stats->nr_thp_failed += is_thp; 1690 /* Large folio NUMA faulting doesn't split to retry. */ 1691 if (folio_test_large(folio) && !nosplit) { 1692 int ret = try_split_folio(folio, split_folios); 1693 1694 if (!ret) { 1695 stats->nr_thp_split += is_thp; 1696 break; 1697 } else if (reason == MR_LONGTERM_PIN && 1698 ret == -EAGAIN) { 1699 /* 1700 * Try again to split large folio to 1701 * mitigate the failure of longterm pinning. 1702 */ 1703 retry++; 1704 thp_retry += is_thp; 1705 nr_retry_pages += nr_pages; 1706 /* Undo duplicated failure counting. */ 1707 nr_failed--; 1708 stats->nr_thp_failed -= is_thp; 1709 break; 1710 } 1711 } 1712 1713 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1714 /* nr_failed isn't updated for not used */ 1715 stats->nr_thp_failed += thp_retry; 1716 rc_saved = rc; 1717 if (list_empty(&unmap_folios)) 1718 goto out; 1719 else 1720 goto move; 1721 case -EAGAIN: 1722 retry++; 1723 thp_retry += is_thp; 1724 nr_retry_pages += nr_pages; 1725 break; 1726 case MIGRATEPAGE_SUCCESS: 1727 stats->nr_succeeded += nr_pages; 1728 stats->nr_thp_succeeded += is_thp; 1729 break; 1730 case MIGRATEPAGE_UNMAP: 1731 list_move_tail(&folio->lru, &unmap_folios); 1732 list_add_tail(&dst->lru, &dst_folios); 1733 break; 1734 default: 1735 /* 1736 * Permanent failure (-EBUSY, etc.): 1737 * unlike -EAGAIN case, the failed folio is 1738 * removed from migration folio list and not 1739 * retried in the next outer loop. 1740 */ 1741 nr_failed++; 1742 stats->nr_thp_failed += is_thp; 1743 stats->nr_failed_pages += nr_pages; 1744 break; 1745 } 1746 } 1747 } 1748 nr_failed += retry; 1749 stats->nr_thp_failed += thp_retry; 1750 stats->nr_failed_pages += nr_retry_pages; 1751 move: 1752 /* Flush TLBs for all unmapped folios */ 1753 try_to_unmap_flush(); 1754 1755 retry = 1; 1756 for (pass = 0; pass < nr_pass && retry; pass++) { 1757 retry = 0; 1758 thp_retry = 0; 1759 nr_retry_pages = 0; 1760 1761 dst = list_first_entry(&dst_folios, struct folio, lru); 1762 dst2 = list_next_entry(dst, lru); 1763 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1764 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1765 nr_pages = folio_nr_pages(folio); 1766 1767 cond_resched(); 1768 1769 rc = migrate_folio_move(put_new_folio, private, 1770 folio, dst, mode, 1771 reason, ret_folios); 1772 /* 1773 * The rules are: 1774 * Success: folio will be freed 1775 * -EAGAIN: stay on the unmap_folios list 1776 * Other errno: put on ret_folios list 1777 */ 1778 switch(rc) { 1779 case -EAGAIN: 1780 retry++; 1781 thp_retry += is_thp; 1782 nr_retry_pages += nr_pages; 1783 break; 1784 case MIGRATEPAGE_SUCCESS: 1785 stats->nr_succeeded += nr_pages; 1786 stats->nr_thp_succeeded += is_thp; 1787 break; 1788 default: 1789 nr_failed++; 1790 stats->nr_thp_failed += is_thp; 1791 stats->nr_failed_pages += nr_pages; 1792 break; 1793 } 1794 dst = dst2; 1795 dst2 = list_next_entry(dst, lru); 1796 } 1797 } 1798 nr_failed += retry; 1799 stats->nr_thp_failed += thp_retry; 1800 stats->nr_failed_pages += nr_retry_pages; 1801 1802 rc = rc_saved ? : nr_failed; 1803 out: 1804 /* Cleanup remaining folios */ 1805 dst = list_first_entry(&dst_folios, struct folio, lru); 1806 dst2 = list_next_entry(dst, lru); 1807 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1808 int old_page_state = 0; 1809 struct anon_vma *anon_vma = NULL; 1810 1811 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1812 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1813 anon_vma, true, ret_folios); 1814 list_del(&dst->lru); 1815 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1816 dst = dst2; 1817 dst2 = list_next_entry(dst, lru); 1818 } 1819 1820 return rc; 1821 } 1822 1823 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1824 free_folio_t put_new_folio, unsigned long private, 1825 enum migrate_mode mode, int reason, 1826 struct list_head *ret_folios, struct list_head *split_folios, 1827 struct migrate_pages_stats *stats) 1828 { 1829 int rc, nr_failed = 0; 1830 LIST_HEAD(folios); 1831 struct migrate_pages_stats astats; 1832 1833 memset(&astats, 0, sizeof(astats)); 1834 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1835 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1836 reason, &folios, split_folios, &astats, 1837 NR_MAX_MIGRATE_ASYNC_RETRY); 1838 stats->nr_succeeded += astats.nr_succeeded; 1839 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1840 stats->nr_thp_split += astats.nr_thp_split; 1841 if (rc < 0) { 1842 stats->nr_failed_pages += astats.nr_failed_pages; 1843 stats->nr_thp_failed += astats.nr_thp_failed; 1844 list_splice_tail(&folios, ret_folios); 1845 return rc; 1846 } 1847 stats->nr_thp_failed += astats.nr_thp_split; 1848 nr_failed += astats.nr_thp_split; 1849 /* 1850 * Fall back to migrate all failed folios one by one synchronously. All 1851 * failed folios except split THPs will be retried, so their failure 1852 * isn't counted 1853 */ 1854 list_splice_tail_init(&folios, from); 1855 while (!list_empty(from)) { 1856 list_move(from->next, &folios); 1857 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1858 private, mode, reason, ret_folios, 1859 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1860 list_splice_tail_init(&folios, ret_folios); 1861 if (rc < 0) 1862 return rc; 1863 nr_failed += rc; 1864 } 1865 1866 return nr_failed; 1867 } 1868 1869 /* 1870 * migrate_pages - migrate the folios specified in a list, to the free folios 1871 * supplied as the target for the page migration 1872 * 1873 * @from: The list of folios to be migrated. 1874 * @get_new_folio: The function used to allocate free folios to be used 1875 * as the target of the folio migration. 1876 * @put_new_folio: The function used to free target folios if migration 1877 * fails, or NULL if no special handling is necessary. 1878 * @private: Private data to be passed on to get_new_folio() 1879 * @mode: The migration mode that specifies the constraints for 1880 * folio migration, if any. 1881 * @reason: The reason for folio migration. 1882 * @ret_succeeded: Set to the number of folios migrated successfully if 1883 * the caller passes a non-NULL pointer. 1884 * 1885 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1886 * are movable any more because the list has become empty or no retryable folios 1887 * exist any more. It is caller's responsibility to call putback_movable_pages() 1888 * only if ret != 0. 1889 * 1890 * Returns the number of {normal folio, large folio, hugetlb} that were not 1891 * migrated, or an error code. The number of large folio splits will be 1892 * considered as the number of non-migrated large folio, no matter how many 1893 * split folios of the large folio are migrated successfully. 1894 */ 1895 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1896 free_folio_t put_new_folio, unsigned long private, 1897 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1898 { 1899 int rc, rc_gather; 1900 int nr_pages; 1901 struct folio *folio, *folio2; 1902 LIST_HEAD(folios); 1903 LIST_HEAD(ret_folios); 1904 LIST_HEAD(split_folios); 1905 struct migrate_pages_stats stats; 1906 1907 trace_mm_migrate_pages_start(mode, reason); 1908 1909 memset(&stats, 0, sizeof(stats)); 1910 1911 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1912 mode, reason, &stats, &ret_folios); 1913 if (rc_gather < 0) 1914 goto out; 1915 1916 again: 1917 nr_pages = 0; 1918 list_for_each_entry_safe(folio, folio2, from, lru) { 1919 /* Retried hugetlb folios will be kept in list */ 1920 if (folio_test_hugetlb(folio)) { 1921 list_move_tail(&folio->lru, &ret_folios); 1922 continue; 1923 } 1924 1925 nr_pages += folio_nr_pages(folio); 1926 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1927 break; 1928 } 1929 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1930 list_cut_before(&folios, from, &folio2->lru); 1931 else 1932 list_splice_init(from, &folios); 1933 if (mode == MIGRATE_ASYNC) 1934 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1935 private, mode, reason, &ret_folios, 1936 &split_folios, &stats, 1937 NR_MAX_MIGRATE_PAGES_RETRY); 1938 else 1939 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1940 private, mode, reason, &ret_folios, 1941 &split_folios, &stats); 1942 list_splice_tail_init(&folios, &ret_folios); 1943 if (rc < 0) { 1944 rc_gather = rc; 1945 list_splice_tail(&split_folios, &ret_folios); 1946 goto out; 1947 } 1948 if (!list_empty(&split_folios)) { 1949 /* 1950 * Failure isn't counted since all split folios of a large folio 1951 * is counted as 1 failure already. And, we only try to migrate 1952 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1953 */ 1954 migrate_pages_batch(&split_folios, get_new_folio, 1955 put_new_folio, private, MIGRATE_ASYNC, reason, 1956 &ret_folios, NULL, &stats, 1); 1957 list_splice_tail_init(&split_folios, &ret_folios); 1958 } 1959 rc_gather += rc; 1960 if (!list_empty(from)) 1961 goto again; 1962 out: 1963 /* 1964 * Put the permanent failure folio back to migration list, they 1965 * will be put back to the right list by the caller. 1966 */ 1967 list_splice(&ret_folios, from); 1968 1969 /* 1970 * Return 0 in case all split folios of fail-to-migrate large folios 1971 * are migrated successfully. 1972 */ 1973 if (list_empty(from)) 1974 rc_gather = 0; 1975 1976 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1977 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1978 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1979 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1980 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1981 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1982 stats.nr_thp_succeeded, stats.nr_thp_failed, 1983 stats.nr_thp_split, mode, reason); 1984 1985 if (ret_succeeded) 1986 *ret_succeeded = stats.nr_succeeded; 1987 1988 return rc_gather; 1989 } 1990 1991 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 1992 { 1993 struct migration_target_control *mtc; 1994 gfp_t gfp_mask; 1995 unsigned int order = 0; 1996 int nid; 1997 int zidx; 1998 1999 mtc = (struct migration_target_control *)private; 2000 gfp_mask = mtc->gfp_mask; 2001 nid = mtc->nid; 2002 if (nid == NUMA_NO_NODE) 2003 nid = folio_nid(src); 2004 2005 if (folio_test_hugetlb(src)) { 2006 struct hstate *h = folio_hstate(src); 2007 2008 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2009 return alloc_hugetlb_folio_nodemask(h, nid, 2010 mtc->nmask, gfp_mask); 2011 } 2012 2013 if (folio_test_large(src)) { 2014 /* 2015 * clear __GFP_RECLAIM to make the migration callback 2016 * consistent with regular THP allocations. 2017 */ 2018 gfp_mask &= ~__GFP_RECLAIM; 2019 gfp_mask |= GFP_TRANSHUGE; 2020 order = folio_order(src); 2021 } 2022 zidx = zone_idx(folio_zone(src)); 2023 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2024 gfp_mask |= __GFP_HIGHMEM; 2025 2026 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2027 } 2028 2029 #ifdef CONFIG_NUMA 2030 2031 static int store_status(int __user *status, int start, int value, int nr) 2032 { 2033 while (nr-- > 0) { 2034 if (put_user(value, status + start)) 2035 return -EFAULT; 2036 start++; 2037 } 2038 2039 return 0; 2040 } 2041 2042 static int do_move_pages_to_node(struct mm_struct *mm, 2043 struct list_head *pagelist, int node) 2044 { 2045 int err; 2046 struct migration_target_control mtc = { 2047 .nid = node, 2048 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2049 }; 2050 2051 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2052 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2053 if (err) 2054 putback_movable_pages(pagelist); 2055 return err; 2056 } 2057 2058 /* 2059 * Resolves the given address to a struct page, isolates it from the LRU and 2060 * puts it to the given pagelist. 2061 * Returns: 2062 * errno - if the page cannot be found/isolated 2063 * 0 - when it doesn't have to be migrated because it is already on the 2064 * target node 2065 * 1 - when it has been queued 2066 */ 2067 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2068 int node, struct list_head *pagelist, bool migrate_all) 2069 { 2070 struct vm_area_struct *vma; 2071 unsigned long addr; 2072 struct page *page; 2073 int err; 2074 bool isolated; 2075 2076 mmap_read_lock(mm); 2077 addr = (unsigned long)untagged_addr_remote(mm, p); 2078 2079 err = -EFAULT; 2080 vma = vma_lookup(mm, addr); 2081 if (!vma || !vma_migratable(vma)) 2082 goto out; 2083 2084 /* FOLL_DUMP to ignore special (like zero) pages */ 2085 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2086 2087 err = PTR_ERR(page); 2088 if (IS_ERR(page)) 2089 goto out; 2090 2091 err = -ENOENT; 2092 if (!page) 2093 goto out; 2094 2095 if (is_zone_device_page(page)) 2096 goto out_putpage; 2097 2098 err = 0; 2099 if (page_to_nid(page) == node) 2100 goto out_putpage; 2101 2102 err = -EACCES; 2103 if (page_mapcount(page) > 1 && !migrate_all) 2104 goto out_putpage; 2105 2106 if (PageHuge(page)) { 2107 if (PageHead(page)) { 2108 isolated = isolate_hugetlb(page_folio(page), pagelist); 2109 err = isolated ? 1 : -EBUSY; 2110 } 2111 } else { 2112 struct page *head; 2113 2114 head = compound_head(page); 2115 isolated = isolate_lru_page(head); 2116 if (!isolated) { 2117 err = -EBUSY; 2118 goto out_putpage; 2119 } 2120 2121 err = 1; 2122 list_add_tail(&head->lru, pagelist); 2123 mod_node_page_state(page_pgdat(head), 2124 NR_ISOLATED_ANON + page_is_file_lru(head), 2125 thp_nr_pages(head)); 2126 } 2127 out_putpage: 2128 /* 2129 * Either remove the duplicate refcount from 2130 * isolate_lru_page() or drop the page ref if it was 2131 * not isolated. 2132 */ 2133 put_page(page); 2134 out: 2135 mmap_read_unlock(mm); 2136 return err; 2137 } 2138 2139 static int move_pages_and_store_status(struct mm_struct *mm, int node, 2140 struct list_head *pagelist, int __user *status, 2141 int start, int i, unsigned long nr_pages) 2142 { 2143 int err; 2144 2145 if (list_empty(pagelist)) 2146 return 0; 2147 2148 err = do_move_pages_to_node(mm, pagelist, node); 2149 if (err) { 2150 /* 2151 * Positive err means the number of failed 2152 * pages to migrate. Since we are going to 2153 * abort and return the number of non-migrated 2154 * pages, so need to include the rest of the 2155 * nr_pages that have not been attempted as 2156 * well. 2157 */ 2158 if (err > 0) 2159 err += nr_pages - i; 2160 return err; 2161 } 2162 return store_status(status, start, node, i - start); 2163 } 2164 2165 /* 2166 * Migrate an array of page address onto an array of nodes and fill 2167 * the corresponding array of status. 2168 */ 2169 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2170 unsigned long nr_pages, 2171 const void __user * __user *pages, 2172 const int __user *nodes, 2173 int __user *status, int flags) 2174 { 2175 compat_uptr_t __user *compat_pages = (void __user *)pages; 2176 int current_node = NUMA_NO_NODE; 2177 LIST_HEAD(pagelist); 2178 int start, i; 2179 int err = 0, err1; 2180 2181 lru_cache_disable(); 2182 2183 for (i = start = 0; i < nr_pages; i++) { 2184 const void __user *p; 2185 int node; 2186 2187 err = -EFAULT; 2188 if (in_compat_syscall()) { 2189 compat_uptr_t cp; 2190 2191 if (get_user(cp, compat_pages + i)) 2192 goto out_flush; 2193 2194 p = compat_ptr(cp); 2195 } else { 2196 if (get_user(p, pages + i)) 2197 goto out_flush; 2198 } 2199 if (get_user(node, nodes + i)) 2200 goto out_flush; 2201 2202 err = -ENODEV; 2203 if (node < 0 || node >= MAX_NUMNODES) 2204 goto out_flush; 2205 if (!node_state(node, N_MEMORY)) 2206 goto out_flush; 2207 2208 err = -EACCES; 2209 if (!node_isset(node, task_nodes)) 2210 goto out_flush; 2211 2212 if (current_node == NUMA_NO_NODE) { 2213 current_node = node; 2214 start = i; 2215 } else if (node != current_node) { 2216 err = move_pages_and_store_status(mm, current_node, 2217 &pagelist, status, start, i, nr_pages); 2218 if (err) 2219 goto out; 2220 start = i; 2221 current_node = node; 2222 } 2223 2224 /* 2225 * Errors in the page lookup or isolation are not fatal and we simply 2226 * report them via status 2227 */ 2228 err = add_page_for_migration(mm, p, current_node, &pagelist, 2229 flags & MPOL_MF_MOVE_ALL); 2230 2231 if (err > 0) { 2232 /* The page is successfully queued for migration */ 2233 continue; 2234 } 2235 2236 /* 2237 * The move_pages() man page does not have an -EEXIST choice, so 2238 * use -EFAULT instead. 2239 */ 2240 if (err == -EEXIST) 2241 err = -EFAULT; 2242 2243 /* 2244 * If the page is already on the target node (!err), store the 2245 * node, otherwise, store the err. 2246 */ 2247 err = store_status(status, i, err ? : current_node, 1); 2248 if (err) 2249 goto out_flush; 2250 2251 err = move_pages_and_store_status(mm, current_node, &pagelist, 2252 status, start, i, nr_pages); 2253 if (err) { 2254 /* We have accounted for page i */ 2255 if (err > 0) 2256 err--; 2257 goto out; 2258 } 2259 current_node = NUMA_NO_NODE; 2260 } 2261 out_flush: 2262 /* Make sure we do not overwrite the existing error */ 2263 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 2264 status, start, i, nr_pages); 2265 if (err >= 0) 2266 err = err1; 2267 out: 2268 lru_cache_enable(); 2269 return err; 2270 } 2271 2272 /* 2273 * Determine the nodes of an array of pages and store it in an array of status. 2274 */ 2275 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2276 const void __user **pages, int *status) 2277 { 2278 unsigned long i; 2279 2280 mmap_read_lock(mm); 2281 2282 for (i = 0; i < nr_pages; i++) { 2283 unsigned long addr = (unsigned long)(*pages); 2284 struct vm_area_struct *vma; 2285 struct page *page; 2286 int err = -EFAULT; 2287 2288 vma = vma_lookup(mm, addr); 2289 if (!vma) 2290 goto set_status; 2291 2292 /* FOLL_DUMP to ignore special (like zero) pages */ 2293 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2294 2295 err = PTR_ERR(page); 2296 if (IS_ERR(page)) 2297 goto set_status; 2298 2299 err = -ENOENT; 2300 if (!page) 2301 goto set_status; 2302 2303 if (!is_zone_device_page(page)) 2304 err = page_to_nid(page); 2305 2306 put_page(page); 2307 set_status: 2308 *status = err; 2309 2310 pages++; 2311 status++; 2312 } 2313 2314 mmap_read_unlock(mm); 2315 } 2316 2317 static int get_compat_pages_array(const void __user *chunk_pages[], 2318 const void __user * __user *pages, 2319 unsigned long chunk_nr) 2320 { 2321 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2322 compat_uptr_t p; 2323 int i; 2324 2325 for (i = 0; i < chunk_nr; i++) { 2326 if (get_user(p, pages32 + i)) 2327 return -EFAULT; 2328 chunk_pages[i] = compat_ptr(p); 2329 } 2330 2331 return 0; 2332 } 2333 2334 /* 2335 * Determine the nodes of a user array of pages and store it in 2336 * a user array of status. 2337 */ 2338 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2339 const void __user * __user *pages, 2340 int __user *status) 2341 { 2342 #define DO_PAGES_STAT_CHUNK_NR 16UL 2343 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2344 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2345 2346 while (nr_pages) { 2347 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2348 2349 if (in_compat_syscall()) { 2350 if (get_compat_pages_array(chunk_pages, pages, 2351 chunk_nr)) 2352 break; 2353 } else { 2354 if (copy_from_user(chunk_pages, pages, 2355 chunk_nr * sizeof(*chunk_pages))) 2356 break; 2357 } 2358 2359 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2360 2361 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2362 break; 2363 2364 pages += chunk_nr; 2365 status += chunk_nr; 2366 nr_pages -= chunk_nr; 2367 } 2368 return nr_pages ? -EFAULT : 0; 2369 } 2370 2371 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2372 { 2373 struct task_struct *task; 2374 struct mm_struct *mm; 2375 2376 /* 2377 * There is no need to check if current process has the right to modify 2378 * the specified process when they are same. 2379 */ 2380 if (!pid) { 2381 mmget(current->mm); 2382 *mem_nodes = cpuset_mems_allowed(current); 2383 return current->mm; 2384 } 2385 2386 /* Find the mm_struct */ 2387 rcu_read_lock(); 2388 task = find_task_by_vpid(pid); 2389 if (!task) { 2390 rcu_read_unlock(); 2391 return ERR_PTR(-ESRCH); 2392 } 2393 get_task_struct(task); 2394 2395 /* 2396 * Check if this process has the right to modify the specified 2397 * process. Use the regular "ptrace_may_access()" checks. 2398 */ 2399 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2400 rcu_read_unlock(); 2401 mm = ERR_PTR(-EPERM); 2402 goto out; 2403 } 2404 rcu_read_unlock(); 2405 2406 mm = ERR_PTR(security_task_movememory(task)); 2407 if (IS_ERR(mm)) 2408 goto out; 2409 *mem_nodes = cpuset_mems_allowed(task); 2410 mm = get_task_mm(task); 2411 out: 2412 put_task_struct(task); 2413 if (!mm) 2414 mm = ERR_PTR(-EINVAL); 2415 return mm; 2416 } 2417 2418 /* 2419 * Move a list of pages in the address space of the currently executing 2420 * process. 2421 */ 2422 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2423 const void __user * __user *pages, 2424 const int __user *nodes, 2425 int __user *status, int flags) 2426 { 2427 struct mm_struct *mm; 2428 int err; 2429 nodemask_t task_nodes; 2430 2431 /* Check flags */ 2432 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2433 return -EINVAL; 2434 2435 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2436 return -EPERM; 2437 2438 mm = find_mm_struct(pid, &task_nodes); 2439 if (IS_ERR(mm)) 2440 return PTR_ERR(mm); 2441 2442 if (nodes) 2443 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2444 nodes, status, flags); 2445 else 2446 err = do_pages_stat(mm, nr_pages, pages, status); 2447 2448 mmput(mm); 2449 return err; 2450 } 2451 2452 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2453 const void __user * __user *, pages, 2454 const int __user *, nodes, 2455 int __user *, status, int, flags) 2456 { 2457 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2458 } 2459 2460 #ifdef CONFIG_NUMA_BALANCING 2461 /* 2462 * Returns true if this is a safe migration target node for misplaced NUMA 2463 * pages. Currently it only checks the watermarks which is crude. 2464 */ 2465 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2466 unsigned long nr_migrate_pages) 2467 { 2468 int z; 2469 2470 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2471 struct zone *zone = pgdat->node_zones + z; 2472 2473 if (!managed_zone(zone)) 2474 continue; 2475 2476 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2477 if (!zone_watermark_ok(zone, 0, 2478 high_wmark_pages(zone) + 2479 nr_migrate_pages, 2480 ZONE_MOVABLE, 0)) 2481 continue; 2482 return true; 2483 } 2484 return false; 2485 } 2486 2487 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2488 unsigned long data) 2489 { 2490 int nid = (int) data; 2491 int order = folio_order(src); 2492 gfp_t gfp = __GFP_THISNODE; 2493 2494 if (order > 0) 2495 gfp |= GFP_TRANSHUGE_LIGHT; 2496 else { 2497 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2498 __GFP_NOWARN; 2499 gfp &= ~__GFP_RECLAIM; 2500 } 2501 return __folio_alloc_node(gfp, order, nid); 2502 } 2503 2504 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2505 { 2506 int nr_pages = thp_nr_pages(page); 2507 int order = compound_order(page); 2508 2509 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2510 2511 /* Do not migrate THP mapped by multiple processes */ 2512 if (PageTransHuge(page) && total_mapcount(page) > 1) 2513 return 0; 2514 2515 /* Avoid migrating to a node that is nearly full */ 2516 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2517 int z; 2518 2519 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2520 return 0; 2521 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2522 if (managed_zone(pgdat->node_zones + z)) 2523 break; 2524 } 2525 2526 /* 2527 * If there are no managed zones, it should not proceed 2528 * further. 2529 */ 2530 if (z < 0) 2531 return 0; 2532 2533 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2534 return 0; 2535 } 2536 2537 if (!isolate_lru_page(page)) 2538 return 0; 2539 2540 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2541 nr_pages); 2542 2543 /* 2544 * Isolating the page has taken another reference, so the 2545 * caller's reference can be safely dropped without the page 2546 * disappearing underneath us during migration. 2547 */ 2548 put_page(page); 2549 return 1; 2550 } 2551 2552 /* 2553 * Attempt to migrate a misplaced page to the specified destination 2554 * node. Caller is expected to have an elevated reference count on 2555 * the page that will be dropped by this function before returning. 2556 */ 2557 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2558 int node) 2559 { 2560 pg_data_t *pgdat = NODE_DATA(node); 2561 int isolated; 2562 int nr_remaining; 2563 unsigned int nr_succeeded; 2564 LIST_HEAD(migratepages); 2565 int nr_pages = thp_nr_pages(page); 2566 2567 /* 2568 * Don't migrate file pages that are mapped in multiple processes 2569 * with execute permissions as they are probably shared libraries. 2570 */ 2571 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2572 (vma->vm_flags & VM_EXEC)) 2573 goto out; 2574 2575 /* 2576 * Also do not migrate dirty pages as not all filesystems can move 2577 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2578 */ 2579 if (page_is_file_lru(page) && PageDirty(page)) 2580 goto out; 2581 2582 isolated = numamigrate_isolate_page(pgdat, page); 2583 if (!isolated) 2584 goto out; 2585 2586 list_add(&page->lru, &migratepages); 2587 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2588 NULL, node, MIGRATE_ASYNC, 2589 MR_NUMA_MISPLACED, &nr_succeeded); 2590 if (nr_remaining) { 2591 if (!list_empty(&migratepages)) { 2592 list_del(&page->lru); 2593 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2594 page_is_file_lru(page), -nr_pages); 2595 putback_lru_page(page); 2596 } 2597 isolated = 0; 2598 } 2599 if (nr_succeeded) { 2600 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2601 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2602 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2603 nr_succeeded); 2604 } 2605 BUG_ON(!list_empty(&migratepages)); 2606 return isolated; 2607 2608 out: 2609 put_page(page); 2610 return 0; 2611 } 2612 #endif /* CONFIG_NUMA_BALANCING */ 2613 #endif /* CONFIG_NUMA */ 2614