1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/page_idle.h> 41 42 #include <asm/tlbflush.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/migrate.h> 46 47 #include "internal.h" 48 49 /* 50 * migrate_prep() needs to be called before we start compiling a list of pages 51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 52 * undesirable, use migrate_prep_local() 53 */ 54 int migrate_prep(void) 55 { 56 /* 57 * Clear the LRU lists so pages can be isolated. 58 * Note that pages may be moved off the LRU after we have 59 * drained them. Those pages will fail to migrate like other 60 * pages that may be busy. 61 */ 62 lru_add_drain_all(); 63 64 return 0; 65 } 66 67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 68 int migrate_prep_local(void) 69 { 70 lru_add_drain(); 71 72 return 0; 73 } 74 75 /* 76 * Put previously isolated pages back onto the appropriate lists 77 * from where they were once taken off for compaction/migration. 78 * 79 * This function shall be used whenever the isolated pageset has been 80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 81 * and isolate_huge_page(). 82 */ 83 void putback_movable_pages(struct list_head *l) 84 { 85 struct page *page; 86 struct page *page2; 87 88 list_for_each_entry_safe(page, page2, l, lru) { 89 if (unlikely(PageHuge(page))) { 90 putback_active_hugepage(page); 91 continue; 92 } 93 list_del(&page->lru); 94 dec_zone_page_state(page, NR_ISOLATED_ANON + 95 page_is_file_cache(page)); 96 if (unlikely(isolated_balloon_page(page))) 97 balloon_page_putback(page); 98 else 99 putback_lru_page(page); 100 } 101 } 102 103 /* 104 * Restore a potential migration pte to a working pte entry 105 */ 106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 107 unsigned long addr, void *old) 108 { 109 struct mm_struct *mm = vma->vm_mm; 110 swp_entry_t entry; 111 pmd_t *pmd; 112 pte_t *ptep, pte; 113 spinlock_t *ptl; 114 115 if (unlikely(PageHuge(new))) { 116 ptep = huge_pte_offset(mm, addr); 117 if (!ptep) 118 goto out; 119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 120 } else { 121 pmd = mm_find_pmd(mm, addr); 122 if (!pmd) 123 goto out; 124 125 ptep = pte_offset_map(pmd, addr); 126 127 /* 128 * Peek to check is_swap_pte() before taking ptlock? No, we 129 * can race mremap's move_ptes(), which skips anon_vma lock. 130 */ 131 132 ptl = pte_lockptr(mm, pmd); 133 } 134 135 spin_lock(ptl); 136 pte = *ptep; 137 if (!is_swap_pte(pte)) 138 goto unlock; 139 140 entry = pte_to_swp_entry(pte); 141 142 if (!is_migration_entry(entry) || 143 migration_entry_to_page(entry) != old) 144 goto unlock; 145 146 get_page(new); 147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 148 if (pte_swp_soft_dirty(*ptep)) 149 pte = pte_mksoft_dirty(pte); 150 151 /* Recheck VMA as permissions can change since migration started */ 152 if (is_write_migration_entry(entry)) 153 pte = maybe_mkwrite(pte, vma); 154 155 #ifdef CONFIG_HUGETLB_PAGE 156 if (PageHuge(new)) { 157 pte = pte_mkhuge(pte); 158 pte = arch_make_huge_pte(pte, vma, new, 0); 159 } 160 #endif 161 flush_dcache_page(new); 162 set_pte_at(mm, addr, ptep, pte); 163 164 if (PageHuge(new)) { 165 if (PageAnon(new)) 166 hugepage_add_anon_rmap(new, vma, addr); 167 else 168 page_dup_rmap(new); 169 } else if (PageAnon(new)) 170 page_add_anon_rmap(new, vma, addr); 171 else 172 page_add_file_rmap(new); 173 174 /* No need to invalidate - it was non-present before */ 175 update_mmu_cache(vma, addr, ptep); 176 unlock: 177 pte_unmap_unlock(ptep, ptl); 178 out: 179 return SWAP_AGAIN; 180 } 181 182 /* 183 * Get rid of all migration entries and replace them by 184 * references to the indicated page. 185 */ 186 static void remove_migration_ptes(struct page *old, struct page *new) 187 { 188 struct rmap_walk_control rwc = { 189 .rmap_one = remove_migration_pte, 190 .arg = old, 191 }; 192 193 rmap_walk(new, &rwc); 194 } 195 196 /* 197 * Something used the pte of a page under migration. We need to 198 * get to the page and wait until migration is finished. 199 * When we return from this function the fault will be retried. 200 */ 201 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 202 spinlock_t *ptl) 203 { 204 pte_t pte; 205 swp_entry_t entry; 206 struct page *page; 207 208 spin_lock(ptl); 209 pte = *ptep; 210 if (!is_swap_pte(pte)) 211 goto out; 212 213 entry = pte_to_swp_entry(pte); 214 if (!is_migration_entry(entry)) 215 goto out; 216 217 page = migration_entry_to_page(entry); 218 219 /* 220 * Once radix-tree replacement of page migration started, page_count 221 * *must* be zero. And, we don't want to call wait_on_page_locked() 222 * against a page without get_page(). 223 * So, we use get_page_unless_zero(), here. Even failed, page fault 224 * will occur again. 225 */ 226 if (!get_page_unless_zero(page)) 227 goto out; 228 pte_unmap_unlock(ptep, ptl); 229 wait_on_page_locked(page); 230 put_page(page); 231 return; 232 out: 233 pte_unmap_unlock(ptep, ptl); 234 } 235 236 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 237 unsigned long address) 238 { 239 spinlock_t *ptl = pte_lockptr(mm, pmd); 240 pte_t *ptep = pte_offset_map(pmd, address); 241 __migration_entry_wait(mm, ptep, ptl); 242 } 243 244 void migration_entry_wait_huge(struct vm_area_struct *vma, 245 struct mm_struct *mm, pte_t *pte) 246 { 247 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 248 __migration_entry_wait(mm, pte, ptl); 249 } 250 251 #ifdef CONFIG_BLOCK 252 /* Returns true if all buffers are successfully locked */ 253 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 254 enum migrate_mode mode) 255 { 256 struct buffer_head *bh = head; 257 258 /* Simple case, sync compaction */ 259 if (mode != MIGRATE_ASYNC) { 260 do { 261 get_bh(bh); 262 lock_buffer(bh); 263 bh = bh->b_this_page; 264 265 } while (bh != head); 266 267 return true; 268 } 269 270 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 271 do { 272 get_bh(bh); 273 if (!trylock_buffer(bh)) { 274 /* 275 * We failed to lock the buffer and cannot stall in 276 * async migration. Release the taken locks 277 */ 278 struct buffer_head *failed_bh = bh; 279 put_bh(failed_bh); 280 bh = head; 281 while (bh != failed_bh) { 282 unlock_buffer(bh); 283 put_bh(bh); 284 bh = bh->b_this_page; 285 } 286 return false; 287 } 288 289 bh = bh->b_this_page; 290 } while (bh != head); 291 return true; 292 } 293 #else 294 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 295 enum migrate_mode mode) 296 { 297 return true; 298 } 299 #endif /* CONFIG_BLOCK */ 300 301 /* 302 * Replace the page in the mapping. 303 * 304 * The number of remaining references must be: 305 * 1 for anonymous pages without a mapping 306 * 2 for pages with a mapping 307 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 308 */ 309 int migrate_page_move_mapping(struct address_space *mapping, 310 struct page *newpage, struct page *page, 311 struct buffer_head *head, enum migrate_mode mode, 312 int extra_count) 313 { 314 int expected_count = 1 + extra_count; 315 void **pslot; 316 317 if (!mapping) { 318 /* Anonymous page without mapping */ 319 if (page_count(page) != expected_count) 320 return -EAGAIN; 321 return MIGRATEPAGE_SUCCESS; 322 } 323 324 spin_lock_irq(&mapping->tree_lock); 325 326 pslot = radix_tree_lookup_slot(&mapping->page_tree, 327 page_index(page)); 328 329 expected_count += 1 + page_has_private(page); 330 if (page_count(page) != expected_count || 331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 332 spin_unlock_irq(&mapping->tree_lock); 333 return -EAGAIN; 334 } 335 336 if (!page_freeze_refs(page, expected_count)) { 337 spin_unlock_irq(&mapping->tree_lock); 338 return -EAGAIN; 339 } 340 341 /* 342 * In the async migration case of moving a page with buffers, lock the 343 * buffers using trylock before the mapping is moved. If the mapping 344 * was moved, we later failed to lock the buffers and could not move 345 * the mapping back due to an elevated page count, we would have to 346 * block waiting on other references to be dropped. 347 */ 348 if (mode == MIGRATE_ASYNC && head && 349 !buffer_migrate_lock_buffers(head, mode)) { 350 page_unfreeze_refs(page, expected_count); 351 spin_unlock_irq(&mapping->tree_lock); 352 return -EAGAIN; 353 } 354 355 /* 356 * Now we know that no one else is looking at the page. 357 */ 358 get_page(newpage); /* add cache reference */ 359 if (PageSwapCache(page)) { 360 SetPageSwapCache(newpage); 361 set_page_private(newpage, page_private(page)); 362 } 363 364 radix_tree_replace_slot(pslot, newpage); 365 366 /* 367 * Drop cache reference from old page by unfreezing 368 * to one less reference. 369 * We know this isn't the last reference. 370 */ 371 page_unfreeze_refs(page, expected_count - 1); 372 373 /* 374 * If moved to a different zone then also account 375 * the page for that zone. Other VM counters will be 376 * taken care of when we establish references to the 377 * new page and drop references to the old page. 378 * 379 * Note that anonymous pages are accounted for 380 * via NR_FILE_PAGES and NR_ANON_PAGES if they 381 * are mapped to swap space. 382 */ 383 __dec_zone_page_state(page, NR_FILE_PAGES); 384 __inc_zone_page_state(newpage, NR_FILE_PAGES); 385 if (!PageSwapCache(page) && PageSwapBacked(page)) { 386 __dec_zone_page_state(page, NR_SHMEM); 387 __inc_zone_page_state(newpage, NR_SHMEM); 388 } 389 spin_unlock_irq(&mapping->tree_lock); 390 391 return MIGRATEPAGE_SUCCESS; 392 } 393 394 /* 395 * The expected number of remaining references is the same as that 396 * of migrate_page_move_mapping(). 397 */ 398 int migrate_huge_page_move_mapping(struct address_space *mapping, 399 struct page *newpage, struct page *page) 400 { 401 int expected_count; 402 void **pslot; 403 404 if (!mapping) { 405 if (page_count(page) != 1) 406 return -EAGAIN; 407 return MIGRATEPAGE_SUCCESS; 408 } 409 410 spin_lock_irq(&mapping->tree_lock); 411 412 pslot = radix_tree_lookup_slot(&mapping->page_tree, 413 page_index(page)); 414 415 expected_count = 2 + page_has_private(page); 416 if (page_count(page) != expected_count || 417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 418 spin_unlock_irq(&mapping->tree_lock); 419 return -EAGAIN; 420 } 421 422 if (!page_freeze_refs(page, expected_count)) { 423 spin_unlock_irq(&mapping->tree_lock); 424 return -EAGAIN; 425 } 426 427 get_page(newpage); 428 429 radix_tree_replace_slot(pslot, newpage); 430 431 page_unfreeze_refs(page, expected_count - 1); 432 433 spin_unlock_irq(&mapping->tree_lock); 434 return MIGRATEPAGE_SUCCESS; 435 } 436 437 /* 438 * Gigantic pages are so large that we do not guarantee that page++ pointer 439 * arithmetic will work across the entire page. We need something more 440 * specialized. 441 */ 442 static void __copy_gigantic_page(struct page *dst, struct page *src, 443 int nr_pages) 444 { 445 int i; 446 struct page *dst_base = dst; 447 struct page *src_base = src; 448 449 for (i = 0; i < nr_pages; ) { 450 cond_resched(); 451 copy_highpage(dst, src); 452 453 i++; 454 dst = mem_map_next(dst, dst_base, i); 455 src = mem_map_next(src, src_base, i); 456 } 457 } 458 459 static void copy_huge_page(struct page *dst, struct page *src) 460 { 461 int i; 462 int nr_pages; 463 464 if (PageHuge(src)) { 465 /* hugetlbfs page */ 466 struct hstate *h = page_hstate(src); 467 nr_pages = pages_per_huge_page(h); 468 469 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 470 __copy_gigantic_page(dst, src, nr_pages); 471 return; 472 } 473 } else { 474 /* thp page */ 475 BUG_ON(!PageTransHuge(src)); 476 nr_pages = hpage_nr_pages(src); 477 } 478 479 for (i = 0; i < nr_pages; i++) { 480 cond_resched(); 481 copy_highpage(dst + i, src + i); 482 } 483 } 484 485 /* 486 * Copy the page to its new location 487 */ 488 void migrate_page_copy(struct page *newpage, struct page *page) 489 { 490 int cpupid; 491 492 if (PageHuge(page) || PageTransHuge(page)) 493 copy_huge_page(newpage, page); 494 else 495 copy_highpage(newpage, page); 496 497 if (PageError(page)) 498 SetPageError(newpage); 499 if (PageReferenced(page)) 500 SetPageReferenced(newpage); 501 if (PageUptodate(page)) 502 SetPageUptodate(newpage); 503 if (TestClearPageActive(page)) { 504 VM_BUG_ON_PAGE(PageUnevictable(page), page); 505 SetPageActive(newpage); 506 } else if (TestClearPageUnevictable(page)) 507 SetPageUnevictable(newpage); 508 if (PageChecked(page)) 509 SetPageChecked(newpage); 510 if (PageMappedToDisk(page)) 511 SetPageMappedToDisk(newpage); 512 513 if (PageDirty(page)) { 514 clear_page_dirty_for_io(page); 515 /* 516 * Want to mark the page and the radix tree as dirty, and 517 * redo the accounting that clear_page_dirty_for_io undid, 518 * but we can't use set_page_dirty because that function 519 * is actually a signal that all of the page has become dirty. 520 * Whereas only part of our page may be dirty. 521 */ 522 if (PageSwapBacked(page)) 523 SetPageDirty(newpage); 524 else 525 __set_page_dirty_nobuffers(newpage); 526 } 527 528 if (page_is_young(page)) 529 set_page_young(newpage); 530 if (page_is_idle(page)) 531 set_page_idle(newpage); 532 533 /* 534 * Copy NUMA information to the new page, to prevent over-eager 535 * future migrations of this same page. 536 */ 537 cpupid = page_cpupid_xchg_last(page, -1); 538 page_cpupid_xchg_last(newpage, cpupid); 539 540 mlock_migrate_page(newpage, page); 541 ksm_migrate_page(newpage, page); 542 /* 543 * Please do not reorder this without considering how mm/ksm.c's 544 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 545 */ 546 if (PageSwapCache(page)) 547 ClearPageSwapCache(page); 548 ClearPagePrivate(page); 549 set_page_private(page, 0); 550 551 /* 552 * If any waiters have accumulated on the new page then 553 * wake them up. 554 */ 555 if (PageWriteback(newpage)) 556 end_page_writeback(newpage); 557 } 558 559 /************************************************************ 560 * Migration functions 561 ***********************************************************/ 562 563 /* 564 * Common logic to directly migrate a single page suitable for 565 * pages that do not use PagePrivate/PagePrivate2. 566 * 567 * Pages are locked upon entry and exit. 568 */ 569 int migrate_page(struct address_space *mapping, 570 struct page *newpage, struct page *page, 571 enum migrate_mode mode) 572 { 573 int rc; 574 575 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 576 577 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 578 579 if (rc != MIGRATEPAGE_SUCCESS) 580 return rc; 581 582 migrate_page_copy(newpage, page); 583 return MIGRATEPAGE_SUCCESS; 584 } 585 EXPORT_SYMBOL(migrate_page); 586 587 #ifdef CONFIG_BLOCK 588 /* 589 * Migration function for pages with buffers. This function can only be used 590 * if the underlying filesystem guarantees that no other references to "page" 591 * exist. 592 */ 593 int buffer_migrate_page(struct address_space *mapping, 594 struct page *newpage, struct page *page, enum migrate_mode mode) 595 { 596 struct buffer_head *bh, *head; 597 int rc; 598 599 if (!page_has_buffers(page)) 600 return migrate_page(mapping, newpage, page, mode); 601 602 head = page_buffers(page); 603 604 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 605 606 if (rc != MIGRATEPAGE_SUCCESS) 607 return rc; 608 609 /* 610 * In the async case, migrate_page_move_mapping locked the buffers 611 * with an IRQ-safe spinlock held. In the sync case, the buffers 612 * need to be locked now 613 */ 614 if (mode != MIGRATE_ASYNC) 615 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 616 617 ClearPagePrivate(page); 618 set_page_private(newpage, page_private(page)); 619 set_page_private(page, 0); 620 put_page(page); 621 get_page(newpage); 622 623 bh = head; 624 do { 625 set_bh_page(bh, newpage, bh_offset(bh)); 626 bh = bh->b_this_page; 627 628 } while (bh != head); 629 630 SetPagePrivate(newpage); 631 632 migrate_page_copy(newpage, page); 633 634 bh = head; 635 do { 636 unlock_buffer(bh); 637 put_bh(bh); 638 bh = bh->b_this_page; 639 640 } while (bh != head); 641 642 return MIGRATEPAGE_SUCCESS; 643 } 644 EXPORT_SYMBOL(buffer_migrate_page); 645 #endif 646 647 /* 648 * Writeback a page to clean the dirty state 649 */ 650 static int writeout(struct address_space *mapping, struct page *page) 651 { 652 struct writeback_control wbc = { 653 .sync_mode = WB_SYNC_NONE, 654 .nr_to_write = 1, 655 .range_start = 0, 656 .range_end = LLONG_MAX, 657 .for_reclaim = 1 658 }; 659 int rc; 660 661 if (!mapping->a_ops->writepage) 662 /* No write method for the address space */ 663 return -EINVAL; 664 665 if (!clear_page_dirty_for_io(page)) 666 /* Someone else already triggered a write */ 667 return -EAGAIN; 668 669 /* 670 * A dirty page may imply that the underlying filesystem has 671 * the page on some queue. So the page must be clean for 672 * migration. Writeout may mean we loose the lock and the 673 * page state is no longer what we checked for earlier. 674 * At this point we know that the migration attempt cannot 675 * be successful. 676 */ 677 remove_migration_ptes(page, page); 678 679 rc = mapping->a_ops->writepage(page, &wbc); 680 681 if (rc != AOP_WRITEPAGE_ACTIVATE) 682 /* unlocked. Relock */ 683 lock_page(page); 684 685 return (rc < 0) ? -EIO : -EAGAIN; 686 } 687 688 /* 689 * Default handling if a filesystem does not provide a migration function. 690 */ 691 static int fallback_migrate_page(struct address_space *mapping, 692 struct page *newpage, struct page *page, enum migrate_mode mode) 693 { 694 if (PageDirty(page)) { 695 /* Only writeback pages in full synchronous migration */ 696 if (mode != MIGRATE_SYNC) 697 return -EBUSY; 698 return writeout(mapping, page); 699 } 700 701 /* 702 * Buffers may be managed in a filesystem specific way. 703 * We must have no buffers or drop them. 704 */ 705 if (page_has_private(page) && 706 !try_to_release_page(page, GFP_KERNEL)) 707 return -EAGAIN; 708 709 return migrate_page(mapping, newpage, page, mode); 710 } 711 712 /* 713 * Move a page to a newly allocated page 714 * The page is locked and all ptes have been successfully removed. 715 * 716 * The new page will have replaced the old page if this function 717 * is successful. 718 * 719 * Return value: 720 * < 0 - error code 721 * MIGRATEPAGE_SUCCESS - success 722 */ 723 static int move_to_new_page(struct page *newpage, struct page *page, 724 int page_was_mapped, enum migrate_mode mode) 725 { 726 struct address_space *mapping; 727 int rc; 728 729 /* 730 * Block others from accessing the page when we get around to 731 * establishing additional references. We are the only one 732 * holding a reference to the new page at this point. 733 */ 734 if (!trylock_page(newpage)) 735 BUG(); 736 737 /* Prepare mapping for the new page.*/ 738 newpage->index = page->index; 739 newpage->mapping = page->mapping; 740 if (PageSwapBacked(page)) 741 SetPageSwapBacked(newpage); 742 743 mapping = page_mapping(page); 744 if (!mapping) 745 rc = migrate_page(mapping, newpage, page, mode); 746 else if (mapping->a_ops->migratepage) 747 /* 748 * Most pages have a mapping and most filesystems provide a 749 * migratepage callback. Anonymous pages are part of swap 750 * space which also has its own migratepage callback. This 751 * is the most common path for page migration. 752 */ 753 rc = mapping->a_ops->migratepage(mapping, 754 newpage, page, mode); 755 else 756 rc = fallback_migrate_page(mapping, newpage, page, mode); 757 758 if (rc != MIGRATEPAGE_SUCCESS) { 759 newpage->mapping = NULL; 760 } else { 761 mem_cgroup_migrate(page, newpage, false); 762 if (page_was_mapped) 763 remove_migration_ptes(page, newpage); 764 page->mapping = NULL; 765 } 766 767 unlock_page(newpage); 768 769 return rc; 770 } 771 772 static int __unmap_and_move(struct page *page, struct page *newpage, 773 int force, enum migrate_mode mode) 774 { 775 int rc = -EAGAIN; 776 int page_was_mapped = 0; 777 struct anon_vma *anon_vma = NULL; 778 779 if (!trylock_page(page)) { 780 if (!force || mode == MIGRATE_ASYNC) 781 goto out; 782 783 /* 784 * It's not safe for direct compaction to call lock_page. 785 * For example, during page readahead pages are added locked 786 * to the LRU. Later, when the IO completes the pages are 787 * marked uptodate and unlocked. However, the queueing 788 * could be merging multiple pages for one bio (e.g. 789 * mpage_readpages). If an allocation happens for the 790 * second or third page, the process can end up locking 791 * the same page twice and deadlocking. Rather than 792 * trying to be clever about what pages can be locked, 793 * avoid the use of lock_page for direct compaction 794 * altogether. 795 */ 796 if (current->flags & PF_MEMALLOC) 797 goto out; 798 799 lock_page(page); 800 } 801 802 if (PageWriteback(page)) { 803 /* 804 * Only in the case of a full synchronous migration is it 805 * necessary to wait for PageWriteback. In the async case, 806 * the retry loop is too short and in the sync-light case, 807 * the overhead of stalling is too much 808 */ 809 if (mode != MIGRATE_SYNC) { 810 rc = -EBUSY; 811 goto out_unlock; 812 } 813 if (!force) 814 goto out_unlock; 815 wait_on_page_writeback(page); 816 } 817 /* 818 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 819 * we cannot notice that anon_vma is freed while we migrates a page. 820 * This get_anon_vma() delays freeing anon_vma pointer until the end 821 * of migration. File cache pages are no problem because of page_lock() 822 * File Caches may use write_page() or lock_page() in migration, then, 823 * just care Anon page here. 824 */ 825 if (PageAnon(page) && !PageKsm(page)) { 826 /* 827 * Only page_lock_anon_vma_read() understands the subtleties of 828 * getting a hold on an anon_vma from outside one of its mms. 829 */ 830 anon_vma = page_get_anon_vma(page); 831 if (anon_vma) { 832 /* 833 * Anon page 834 */ 835 } else if (PageSwapCache(page)) { 836 /* 837 * We cannot be sure that the anon_vma of an unmapped 838 * swapcache page is safe to use because we don't 839 * know in advance if the VMA that this page belonged 840 * to still exists. If the VMA and others sharing the 841 * data have been freed, then the anon_vma could 842 * already be invalid. 843 * 844 * To avoid this possibility, swapcache pages get 845 * migrated but are not remapped when migration 846 * completes 847 */ 848 } else { 849 goto out_unlock; 850 } 851 } 852 853 if (unlikely(isolated_balloon_page(page))) { 854 /* 855 * A ballooned page does not need any special attention from 856 * physical to virtual reverse mapping procedures. 857 * Skip any attempt to unmap PTEs or to remap swap cache, 858 * in order to avoid burning cycles at rmap level, and perform 859 * the page migration right away (proteced by page lock). 860 */ 861 rc = balloon_page_migrate(newpage, page, mode); 862 goto out_unlock; 863 } 864 865 /* 866 * Corner case handling: 867 * 1. When a new swap-cache page is read into, it is added to the LRU 868 * and treated as swapcache but it has no rmap yet. 869 * Calling try_to_unmap() against a page->mapping==NULL page will 870 * trigger a BUG. So handle it here. 871 * 2. An orphaned page (see truncate_complete_page) might have 872 * fs-private metadata. The page can be picked up due to memory 873 * offlining. Everywhere else except page reclaim, the page is 874 * invisible to the vm, so the page can not be migrated. So try to 875 * free the metadata, so the page can be freed. 876 */ 877 if (!page->mapping) { 878 VM_BUG_ON_PAGE(PageAnon(page), page); 879 if (page_has_private(page)) { 880 try_to_free_buffers(page); 881 goto out_unlock; 882 } 883 goto skip_unmap; 884 } 885 886 /* Establish migration ptes or remove ptes */ 887 if (page_mapped(page)) { 888 try_to_unmap(page, 889 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 890 page_was_mapped = 1; 891 } 892 893 skip_unmap: 894 if (!page_mapped(page)) 895 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 896 897 if (rc && page_was_mapped) 898 remove_migration_ptes(page, page); 899 900 /* Drop an anon_vma reference if we took one */ 901 if (anon_vma) 902 put_anon_vma(anon_vma); 903 904 out_unlock: 905 unlock_page(page); 906 out: 907 return rc; 908 } 909 910 /* 911 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 912 * around it. 913 */ 914 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 915 #define ICE_noinline noinline 916 #else 917 #define ICE_noinline 918 #endif 919 920 /* 921 * Obtain the lock on page, remove all ptes and migrate the page 922 * to the newly allocated page in newpage. 923 */ 924 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 925 free_page_t put_new_page, 926 unsigned long private, struct page *page, 927 int force, enum migrate_mode mode, 928 enum migrate_reason reason) 929 { 930 int rc = 0; 931 int *result = NULL; 932 struct page *newpage = get_new_page(page, private, &result); 933 934 if (!newpage) 935 return -ENOMEM; 936 937 if (page_count(page) == 1) { 938 /* page was freed from under us. So we are done. */ 939 goto out; 940 } 941 942 if (unlikely(PageTransHuge(page))) 943 if (unlikely(split_huge_page(page))) 944 goto out; 945 946 rc = __unmap_and_move(page, newpage, force, mode); 947 948 out: 949 if (rc != -EAGAIN) { 950 /* 951 * A page that has been migrated has all references 952 * removed and will be freed. A page that has not been 953 * migrated will have kepts its references and be 954 * restored. 955 */ 956 list_del(&page->lru); 957 dec_zone_page_state(page, NR_ISOLATED_ANON + 958 page_is_file_cache(page)); 959 /* Soft-offlined page shouldn't go through lru cache list */ 960 if (reason == MR_MEMORY_FAILURE) { 961 put_page(page); 962 if (!test_set_page_hwpoison(page)) 963 num_poisoned_pages_inc(); 964 } else 965 putback_lru_page(page); 966 } 967 968 /* 969 * If migration was not successful and there's a freeing callback, use 970 * it. Otherwise, putback_lru_page() will drop the reference grabbed 971 * during isolation. 972 */ 973 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 974 ClearPageSwapBacked(newpage); 975 put_new_page(newpage, private); 976 } else if (unlikely(__is_movable_balloon_page(newpage))) { 977 /* drop our reference, page already in the balloon */ 978 put_page(newpage); 979 } else 980 putback_lru_page(newpage); 981 982 if (result) { 983 if (rc) 984 *result = rc; 985 else 986 *result = page_to_nid(newpage); 987 } 988 return rc; 989 } 990 991 /* 992 * Counterpart of unmap_and_move_page() for hugepage migration. 993 * 994 * This function doesn't wait the completion of hugepage I/O 995 * because there is no race between I/O and migration for hugepage. 996 * Note that currently hugepage I/O occurs only in direct I/O 997 * where no lock is held and PG_writeback is irrelevant, 998 * and writeback status of all subpages are counted in the reference 999 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1000 * under direct I/O, the reference of the head page is 512 and a bit more.) 1001 * This means that when we try to migrate hugepage whose subpages are 1002 * doing direct I/O, some references remain after try_to_unmap() and 1003 * hugepage migration fails without data corruption. 1004 * 1005 * There is also no race when direct I/O is issued on the page under migration, 1006 * because then pte is replaced with migration swap entry and direct I/O code 1007 * will wait in the page fault for migration to complete. 1008 */ 1009 static int unmap_and_move_huge_page(new_page_t get_new_page, 1010 free_page_t put_new_page, unsigned long private, 1011 struct page *hpage, int force, 1012 enum migrate_mode mode) 1013 { 1014 int rc = 0; 1015 int *result = NULL; 1016 int page_was_mapped = 0; 1017 struct page *new_hpage; 1018 struct anon_vma *anon_vma = NULL; 1019 1020 /* 1021 * Movability of hugepages depends on architectures and hugepage size. 1022 * This check is necessary because some callers of hugepage migration 1023 * like soft offline and memory hotremove don't walk through page 1024 * tables or check whether the hugepage is pmd-based or not before 1025 * kicking migration. 1026 */ 1027 if (!hugepage_migration_supported(page_hstate(hpage))) { 1028 putback_active_hugepage(hpage); 1029 return -ENOSYS; 1030 } 1031 1032 new_hpage = get_new_page(hpage, private, &result); 1033 if (!new_hpage) 1034 return -ENOMEM; 1035 1036 rc = -EAGAIN; 1037 1038 if (!trylock_page(hpage)) { 1039 if (!force || mode != MIGRATE_SYNC) 1040 goto out; 1041 lock_page(hpage); 1042 } 1043 1044 if (PageAnon(hpage)) 1045 anon_vma = page_get_anon_vma(hpage); 1046 1047 if (page_mapped(hpage)) { 1048 try_to_unmap(hpage, 1049 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1050 page_was_mapped = 1; 1051 } 1052 1053 if (!page_mapped(hpage)) 1054 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1055 1056 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1057 remove_migration_ptes(hpage, hpage); 1058 1059 if (anon_vma) 1060 put_anon_vma(anon_vma); 1061 1062 if (rc == MIGRATEPAGE_SUCCESS) 1063 hugetlb_cgroup_migrate(hpage, new_hpage); 1064 1065 unlock_page(hpage); 1066 out: 1067 if (rc != -EAGAIN) 1068 putback_active_hugepage(hpage); 1069 1070 /* 1071 * If migration was not successful and there's a freeing callback, use 1072 * it. Otherwise, put_page() will drop the reference grabbed during 1073 * isolation. 1074 */ 1075 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1076 put_new_page(new_hpage, private); 1077 else 1078 putback_active_hugepage(new_hpage); 1079 1080 if (result) { 1081 if (rc) 1082 *result = rc; 1083 else 1084 *result = page_to_nid(new_hpage); 1085 } 1086 return rc; 1087 } 1088 1089 /* 1090 * migrate_pages - migrate the pages specified in a list, to the free pages 1091 * supplied as the target for the page migration 1092 * 1093 * @from: The list of pages to be migrated. 1094 * @get_new_page: The function used to allocate free pages to be used 1095 * as the target of the page migration. 1096 * @put_new_page: The function used to free target pages if migration 1097 * fails, or NULL if no special handling is necessary. 1098 * @private: Private data to be passed on to get_new_page() 1099 * @mode: The migration mode that specifies the constraints for 1100 * page migration, if any. 1101 * @reason: The reason for page migration. 1102 * 1103 * The function returns after 10 attempts or if no pages are movable any more 1104 * because the list has become empty or no retryable pages exist any more. 1105 * The caller should call putback_lru_pages() to return pages to the LRU 1106 * or free list only if ret != 0. 1107 * 1108 * Returns the number of pages that were not migrated, or an error code. 1109 */ 1110 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1111 free_page_t put_new_page, unsigned long private, 1112 enum migrate_mode mode, int reason) 1113 { 1114 int retry = 1; 1115 int nr_failed = 0; 1116 int nr_succeeded = 0; 1117 int pass = 0; 1118 struct page *page; 1119 struct page *page2; 1120 int swapwrite = current->flags & PF_SWAPWRITE; 1121 int rc; 1122 1123 if (!swapwrite) 1124 current->flags |= PF_SWAPWRITE; 1125 1126 for(pass = 0; pass < 10 && retry; pass++) { 1127 retry = 0; 1128 1129 list_for_each_entry_safe(page, page2, from, lru) { 1130 cond_resched(); 1131 1132 if (PageHuge(page)) 1133 rc = unmap_and_move_huge_page(get_new_page, 1134 put_new_page, private, page, 1135 pass > 2, mode); 1136 else 1137 rc = unmap_and_move(get_new_page, put_new_page, 1138 private, page, pass > 2, mode, 1139 reason); 1140 1141 switch(rc) { 1142 case -ENOMEM: 1143 goto out; 1144 case -EAGAIN: 1145 retry++; 1146 break; 1147 case MIGRATEPAGE_SUCCESS: 1148 nr_succeeded++; 1149 break; 1150 default: 1151 /* 1152 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1153 * unlike -EAGAIN case, the failed page is 1154 * removed from migration page list and not 1155 * retried in the next outer loop. 1156 */ 1157 nr_failed++; 1158 break; 1159 } 1160 } 1161 } 1162 rc = nr_failed + retry; 1163 out: 1164 if (nr_succeeded) 1165 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1166 if (nr_failed) 1167 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1168 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1169 1170 if (!swapwrite) 1171 current->flags &= ~PF_SWAPWRITE; 1172 1173 return rc; 1174 } 1175 1176 #ifdef CONFIG_NUMA 1177 /* 1178 * Move a list of individual pages 1179 */ 1180 struct page_to_node { 1181 unsigned long addr; 1182 struct page *page; 1183 int node; 1184 int status; 1185 }; 1186 1187 static struct page *new_page_node(struct page *p, unsigned long private, 1188 int **result) 1189 { 1190 struct page_to_node *pm = (struct page_to_node *)private; 1191 1192 while (pm->node != MAX_NUMNODES && pm->page != p) 1193 pm++; 1194 1195 if (pm->node == MAX_NUMNODES) 1196 return NULL; 1197 1198 *result = &pm->status; 1199 1200 if (PageHuge(p)) 1201 return alloc_huge_page_node(page_hstate(compound_head(p)), 1202 pm->node); 1203 else 1204 return __alloc_pages_node(pm->node, 1205 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1206 } 1207 1208 /* 1209 * Move a set of pages as indicated in the pm array. The addr 1210 * field must be set to the virtual address of the page to be moved 1211 * and the node number must contain a valid target node. 1212 * The pm array ends with node = MAX_NUMNODES. 1213 */ 1214 static int do_move_page_to_node_array(struct mm_struct *mm, 1215 struct page_to_node *pm, 1216 int migrate_all) 1217 { 1218 int err; 1219 struct page_to_node *pp; 1220 LIST_HEAD(pagelist); 1221 1222 down_read(&mm->mmap_sem); 1223 1224 /* 1225 * Build a list of pages to migrate 1226 */ 1227 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1228 struct vm_area_struct *vma; 1229 struct page *page; 1230 1231 err = -EFAULT; 1232 vma = find_vma(mm, pp->addr); 1233 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1234 goto set_status; 1235 1236 /* FOLL_DUMP to ignore special (like zero) pages */ 1237 page = follow_page(vma, pp->addr, 1238 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1239 1240 err = PTR_ERR(page); 1241 if (IS_ERR(page)) 1242 goto set_status; 1243 1244 err = -ENOENT; 1245 if (!page) 1246 goto set_status; 1247 1248 pp->page = page; 1249 err = page_to_nid(page); 1250 1251 if (err == pp->node) 1252 /* 1253 * Node already in the right place 1254 */ 1255 goto put_and_set; 1256 1257 err = -EACCES; 1258 if (page_mapcount(page) > 1 && 1259 !migrate_all) 1260 goto put_and_set; 1261 1262 if (PageHuge(page)) { 1263 if (PageHead(page)) 1264 isolate_huge_page(page, &pagelist); 1265 goto put_and_set; 1266 } 1267 1268 err = isolate_lru_page(page); 1269 if (!err) { 1270 list_add_tail(&page->lru, &pagelist); 1271 inc_zone_page_state(page, NR_ISOLATED_ANON + 1272 page_is_file_cache(page)); 1273 } 1274 put_and_set: 1275 /* 1276 * Either remove the duplicate refcount from 1277 * isolate_lru_page() or drop the page ref if it was 1278 * not isolated. 1279 */ 1280 put_page(page); 1281 set_status: 1282 pp->status = err; 1283 } 1284 1285 err = 0; 1286 if (!list_empty(&pagelist)) { 1287 err = migrate_pages(&pagelist, new_page_node, NULL, 1288 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1289 if (err) 1290 putback_movable_pages(&pagelist); 1291 } 1292 1293 up_read(&mm->mmap_sem); 1294 return err; 1295 } 1296 1297 /* 1298 * Migrate an array of page address onto an array of nodes and fill 1299 * the corresponding array of status. 1300 */ 1301 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1302 unsigned long nr_pages, 1303 const void __user * __user *pages, 1304 const int __user *nodes, 1305 int __user *status, int flags) 1306 { 1307 struct page_to_node *pm; 1308 unsigned long chunk_nr_pages; 1309 unsigned long chunk_start; 1310 int err; 1311 1312 err = -ENOMEM; 1313 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1314 if (!pm) 1315 goto out; 1316 1317 migrate_prep(); 1318 1319 /* 1320 * Store a chunk of page_to_node array in a page, 1321 * but keep the last one as a marker 1322 */ 1323 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1324 1325 for (chunk_start = 0; 1326 chunk_start < nr_pages; 1327 chunk_start += chunk_nr_pages) { 1328 int j; 1329 1330 if (chunk_start + chunk_nr_pages > nr_pages) 1331 chunk_nr_pages = nr_pages - chunk_start; 1332 1333 /* fill the chunk pm with addrs and nodes from user-space */ 1334 for (j = 0; j < chunk_nr_pages; j++) { 1335 const void __user *p; 1336 int node; 1337 1338 err = -EFAULT; 1339 if (get_user(p, pages + j + chunk_start)) 1340 goto out_pm; 1341 pm[j].addr = (unsigned long) p; 1342 1343 if (get_user(node, nodes + j + chunk_start)) 1344 goto out_pm; 1345 1346 err = -ENODEV; 1347 if (node < 0 || node >= MAX_NUMNODES) 1348 goto out_pm; 1349 1350 if (!node_state(node, N_MEMORY)) 1351 goto out_pm; 1352 1353 err = -EACCES; 1354 if (!node_isset(node, task_nodes)) 1355 goto out_pm; 1356 1357 pm[j].node = node; 1358 } 1359 1360 /* End marker for this chunk */ 1361 pm[chunk_nr_pages].node = MAX_NUMNODES; 1362 1363 /* Migrate this chunk */ 1364 err = do_move_page_to_node_array(mm, pm, 1365 flags & MPOL_MF_MOVE_ALL); 1366 if (err < 0) 1367 goto out_pm; 1368 1369 /* Return status information */ 1370 for (j = 0; j < chunk_nr_pages; j++) 1371 if (put_user(pm[j].status, status + j + chunk_start)) { 1372 err = -EFAULT; 1373 goto out_pm; 1374 } 1375 } 1376 err = 0; 1377 1378 out_pm: 1379 free_page((unsigned long)pm); 1380 out: 1381 return err; 1382 } 1383 1384 /* 1385 * Determine the nodes of an array of pages and store it in an array of status. 1386 */ 1387 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1388 const void __user **pages, int *status) 1389 { 1390 unsigned long i; 1391 1392 down_read(&mm->mmap_sem); 1393 1394 for (i = 0; i < nr_pages; i++) { 1395 unsigned long addr = (unsigned long)(*pages); 1396 struct vm_area_struct *vma; 1397 struct page *page; 1398 int err = -EFAULT; 1399 1400 vma = find_vma(mm, addr); 1401 if (!vma || addr < vma->vm_start) 1402 goto set_status; 1403 1404 /* FOLL_DUMP to ignore special (like zero) pages */ 1405 page = follow_page(vma, addr, FOLL_DUMP); 1406 1407 err = PTR_ERR(page); 1408 if (IS_ERR(page)) 1409 goto set_status; 1410 1411 err = page ? page_to_nid(page) : -ENOENT; 1412 set_status: 1413 *status = err; 1414 1415 pages++; 1416 status++; 1417 } 1418 1419 up_read(&mm->mmap_sem); 1420 } 1421 1422 /* 1423 * Determine the nodes of a user array of pages and store it in 1424 * a user array of status. 1425 */ 1426 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1427 const void __user * __user *pages, 1428 int __user *status) 1429 { 1430 #define DO_PAGES_STAT_CHUNK_NR 16 1431 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1432 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1433 1434 while (nr_pages) { 1435 unsigned long chunk_nr; 1436 1437 chunk_nr = nr_pages; 1438 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1439 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1440 1441 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1442 break; 1443 1444 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1445 1446 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1447 break; 1448 1449 pages += chunk_nr; 1450 status += chunk_nr; 1451 nr_pages -= chunk_nr; 1452 } 1453 return nr_pages ? -EFAULT : 0; 1454 } 1455 1456 /* 1457 * Move a list of pages in the address space of the currently executing 1458 * process. 1459 */ 1460 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1461 const void __user * __user *, pages, 1462 const int __user *, nodes, 1463 int __user *, status, int, flags) 1464 { 1465 const struct cred *cred = current_cred(), *tcred; 1466 struct task_struct *task; 1467 struct mm_struct *mm; 1468 int err; 1469 nodemask_t task_nodes; 1470 1471 /* Check flags */ 1472 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1473 return -EINVAL; 1474 1475 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1476 return -EPERM; 1477 1478 /* Find the mm_struct */ 1479 rcu_read_lock(); 1480 task = pid ? find_task_by_vpid(pid) : current; 1481 if (!task) { 1482 rcu_read_unlock(); 1483 return -ESRCH; 1484 } 1485 get_task_struct(task); 1486 1487 /* 1488 * Check if this process has the right to modify the specified 1489 * process. The right exists if the process has administrative 1490 * capabilities, superuser privileges or the same 1491 * userid as the target process. 1492 */ 1493 tcred = __task_cred(task); 1494 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1495 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1496 !capable(CAP_SYS_NICE)) { 1497 rcu_read_unlock(); 1498 err = -EPERM; 1499 goto out; 1500 } 1501 rcu_read_unlock(); 1502 1503 err = security_task_movememory(task); 1504 if (err) 1505 goto out; 1506 1507 task_nodes = cpuset_mems_allowed(task); 1508 mm = get_task_mm(task); 1509 put_task_struct(task); 1510 1511 if (!mm) 1512 return -EINVAL; 1513 1514 if (nodes) 1515 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1516 nodes, status, flags); 1517 else 1518 err = do_pages_stat(mm, nr_pages, pages, status); 1519 1520 mmput(mm); 1521 return err; 1522 1523 out: 1524 put_task_struct(task); 1525 return err; 1526 } 1527 1528 #ifdef CONFIG_NUMA_BALANCING 1529 /* 1530 * Returns true if this is a safe migration target node for misplaced NUMA 1531 * pages. Currently it only checks the watermarks which crude 1532 */ 1533 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1534 unsigned long nr_migrate_pages) 1535 { 1536 int z; 1537 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1538 struct zone *zone = pgdat->node_zones + z; 1539 1540 if (!populated_zone(zone)) 1541 continue; 1542 1543 if (!zone_reclaimable(zone)) 1544 continue; 1545 1546 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1547 if (!zone_watermark_ok(zone, 0, 1548 high_wmark_pages(zone) + 1549 nr_migrate_pages, 1550 0, 0)) 1551 continue; 1552 return true; 1553 } 1554 return false; 1555 } 1556 1557 static struct page *alloc_misplaced_dst_page(struct page *page, 1558 unsigned long data, 1559 int **result) 1560 { 1561 int nid = (int) data; 1562 struct page *newpage; 1563 1564 newpage = __alloc_pages_node(nid, 1565 (GFP_HIGHUSER_MOVABLE | 1566 __GFP_THISNODE | __GFP_NOMEMALLOC | 1567 __GFP_NORETRY | __GFP_NOWARN) & 1568 ~GFP_IOFS, 0); 1569 1570 return newpage; 1571 } 1572 1573 /* 1574 * page migration rate limiting control. 1575 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1576 * window of time. Default here says do not migrate more than 1280M per second. 1577 */ 1578 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1579 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1580 1581 /* Returns true if the node is migrate rate-limited after the update */ 1582 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1583 unsigned long nr_pages) 1584 { 1585 /* 1586 * Rate-limit the amount of data that is being migrated to a node. 1587 * Optimal placement is no good if the memory bus is saturated and 1588 * all the time is being spent migrating! 1589 */ 1590 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1591 spin_lock(&pgdat->numabalancing_migrate_lock); 1592 pgdat->numabalancing_migrate_nr_pages = 0; 1593 pgdat->numabalancing_migrate_next_window = jiffies + 1594 msecs_to_jiffies(migrate_interval_millisecs); 1595 spin_unlock(&pgdat->numabalancing_migrate_lock); 1596 } 1597 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1598 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1599 nr_pages); 1600 return true; 1601 } 1602 1603 /* 1604 * This is an unlocked non-atomic update so errors are possible. 1605 * The consequences are failing to migrate when we potentiall should 1606 * have which is not severe enough to warrant locking. If it is ever 1607 * a problem, it can be converted to a per-cpu counter. 1608 */ 1609 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1610 return false; 1611 } 1612 1613 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1614 { 1615 int page_lru; 1616 1617 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1618 1619 /* Avoid migrating to a node that is nearly full */ 1620 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1621 return 0; 1622 1623 if (isolate_lru_page(page)) 1624 return 0; 1625 1626 /* 1627 * migrate_misplaced_transhuge_page() skips page migration's usual 1628 * check on page_count(), so we must do it here, now that the page 1629 * has been isolated: a GUP pin, or any other pin, prevents migration. 1630 * The expected page count is 3: 1 for page's mapcount and 1 for the 1631 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1632 */ 1633 if (PageTransHuge(page) && page_count(page) != 3) { 1634 putback_lru_page(page); 1635 return 0; 1636 } 1637 1638 page_lru = page_is_file_cache(page); 1639 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1640 hpage_nr_pages(page)); 1641 1642 /* 1643 * Isolating the page has taken another reference, so the 1644 * caller's reference can be safely dropped without the page 1645 * disappearing underneath us during migration. 1646 */ 1647 put_page(page); 1648 return 1; 1649 } 1650 1651 bool pmd_trans_migrating(pmd_t pmd) 1652 { 1653 struct page *page = pmd_page(pmd); 1654 return PageLocked(page); 1655 } 1656 1657 /* 1658 * Attempt to migrate a misplaced page to the specified destination 1659 * node. Caller is expected to have an elevated reference count on 1660 * the page that will be dropped by this function before returning. 1661 */ 1662 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1663 int node) 1664 { 1665 pg_data_t *pgdat = NODE_DATA(node); 1666 int isolated; 1667 int nr_remaining; 1668 LIST_HEAD(migratepages); 1669 1670 /* 1671 * Don't migrate file pages that are mapped in multiple processes 1672 * with execute permissions as they are probably shared libraries. 1673 */ 1674 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1675 (vma->vm_flags & VM_EXEC)) 1676 goto out; 1677 1678 /* 1679 * Rate-limit the amount of data that is being migrated to a node. 1680 * Optimal placement is no good if the memory bus is saturated and 1681 * all the time is being spent migrating! 1682 */ 1683 if (numamigrate_update_ratelimit(pgdat, 1)) 1684 goto out; 1685 1686 isolated = numamigrate_isolate_page(pgdat, page); 1687 if (!isolated) 1688 goto out; 1689 1690 list_add(&page->lru, &migratepages); 1691 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1692 NULL, node, MIGRATE_ASYNC, 1693 MR_NUMA_MISPLACED); 1694 if (nr_remaining) { 1695 if (!list_empty(&migratepages)) { 1696 list_del(&page->lru); 1697 dec_zone_page_state(page, NR_ISOLATED_ANON + 1698 page_is_file_cache(page)); 1699 putback_lru_page(page); 1700 } 1701 isolated = 0; 1702 } else 1703 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1704 BUG_ON(!list_empty(&migratepages)); 1705 return isolated; 1706 1707 out: 1708 put_page(page); 1709 return 0; 1710 } 1711 #endif /* CONFIG_NUMA_BALANCING */ 1712 1713 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1714 /* 1715 * Migrates a THP to a given target node. page must be locked and is unlocked 1716 * before returning. 1717 */ 1718 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1719 struct vm_area_struct *vma, 1720 pmd_t *pmd, pmd_t entry, 1721 unsigned long address, 1722 struct page *page, int node) 1723 { 1724 spinlock_t *ptl; 1725 pg_data_t *pgdat = NODE_DATA(node); 1726 int isolated = 0; 1727 struct page *new_page = NULL; 1728 int page_lru = page_is_file_cache(page); 1729 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1730 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1731 pmd_t orig_entry; 1732 1733 /* 1734 * Rate-limit the amount of data that is being migrated to a node. 1735 * Optimal placement is no good if the memory bus is saturated and 1736 * all the time is being spent migrating! 1737 */ 1738 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1739 goto out_dropref; 1740 1741 new_page = alloc_pages_node(node, 1742 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1743 HPAGE_PMD_ORDER); 1744 if (!new_page) 1745 goto out_fail; 1746 1747 isolated = numamigrate_isolate_page(pgdat, page); 1748 if (!isolated) { 1749 put_page(new_page); 1750 goto out_fail; 1751 } 1752 1753 if (mm_tlb_flush_pending(mm)) 1754 flush_tlb_range(vma, mmun_start, mmun_end); 1755 1756 /* Prepare a page as a migration target */ 1757 __set_page_locked(new_page); 1758 SetPageSwapBacked(new_page); 1759 1760 /* anon mapping, we can simply copy page->mapping to the new page: */ 1761 new_page->mapping = page->mapping; 1762 new_page->index = page->index; 1763 migrate_page_copy(new_page, page); 1764 WARN_ON(PageLRU(new_page)); 1765 1766 /* Recheck the target PMD */ 1767 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1768 ptl = pmd_lock(mm, pmd); 1769 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1770 fail_putback: 1771 spin_unlock(ptl); 1772 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1773 1774 /* Reverse changes made by migrate_page_copy() */ 1775 if (TestClearPageActive(new_page)) 1776 SetPageActive(page); 1777 if (TestClearPageUnevictable(new_page)) 1778 SetPageUnevictable(page); 1779 mlock_migrate_page(page, new_page); 1780 1781 unlock_page(new_page); 1782 put_page(new_page); /* Free it */ 1783 1784 /* Retake the callers reference and putback on LRU */ 1785 get_page(page); 1786 putback_lru_page(page); 1787 mod_zone_page_state(page_zone(page), 1788 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1789 1790 goto out_unlock; 1791 } 1792 1793 orig_entry = *pmd; 1794 entry = mk_pmd(new_page, vma->vm_page_prot); 1795 entry = pmd_mkhuge(entry); 1796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1797 1798 /* 1799 * Clear the old entry under pagetable lock and establish the new PTE. 1800 * Any parallel GUP will either observe the old page blocking on the 1801 * page lock, block on the page table lock or observe the new page. 1802 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1803 * guarantee the copy is visible before the pagetable update. 1804 */ 1805 flush_cache_range(vma, mmun_start, mmun_end); 1806 page_add_anon_rmap(new_page, vma, mmun_start); 1807 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1808 set_pmd_at(mm, mmun_start, pmd, entry); 1809 flush_tlb_range(vma, mmun_start, mmun_end); 1810 update_mmu_cache_pmd(vma, address, &entry); 1811 1812 if (page_count(page) != 2) { 1813 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1814 flush_tlb_range(vma, mmun_start, mmun_end); 1815 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1816 update_mmu_cache_pmd(vma, address, &entry); 1817 page_remove_rmap(new_page); 1818 goto fail_putback; 1819 } 1820 1821 mem_cgroup_migrate(page, new_page, false); 1822 1823 page_remove_rmap(page); 1824 1825 spin_unlock(ptl); 1826 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1827 1828 /* Take an "isolate" reference and put new page on the LRU. */ 1829 get_page(new_page); 1830 putback_lru_page(new_page); 1831 1832 unlock_page(new_page); 1833 unlock_page(page); 1834 put_page(page); /* Drop the rmap reference */ 1835 put_page(page); /* Drop the LRU isolation reference */ 1836 1837 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1838 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1839 1840 mod_zone_page_state(page_zone(page), 1841 NR_ISOLATED_ANON + page_lru, 1842 -HPAGE_PMD_NR); 1843 return isolated; 1844 1845 out_fail: 1846 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1847 out_dropref: 1848 ptl = pmd_lock(mm, pmd); 1849 if (pmd_same(*pmd, entry)) { 1850 entry = pmd_modify(entry, vma->vm_page_prot); 1851 set_pmd_at(mm, mmun_start, pmd, entry); 1852 update_mmu_cache_pmd(vma, address, &entry); 1853 } 1854 spin_unlock(ptl); 1855 1856 out_unlock: 1857 unlock_page(page); 1858 put_page(page); 1859 return 0; 1860 } 1861 #endif /* CONFIG_NUMA_BALANCING */ 1862 1863 #endif /* CONFIG_NUMA */ 1864