xref: /openbmc/linux/mm/migrate.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 #include <linux/memory-tiers.h>
54 
55 #include <asm/tlbflush.h>
56 
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	if (unlikely(PageSlab(page)))
78 		goto out_putpage;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__PageMovable(page)))
87 		goto out_putpage;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(PageSlab(page)))
91 		goto out_putpage;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!trylock_page(page)))
105 		goto out_putpage;
106 
107 	if (!PageMovable(page) || PageIsolated(page))
108 		goto out_no_isolated;
109 
110 	mops = page_movable_ops(page);
111 	VM_BUG_ON_PAGE(!mops, page);
112 
113 	if (!mops->isolate_page(page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(PageIsolated(page));
118 	SetPageIsolated(page);
119 	unlock_page(page);
120 
121 	return 0;
122 
123 out_no_isolated:
124 	unlock_page(page);
125 out_putpage:
126 	put_page(page);
127 out:
128 	return -EBUSY;
129 }
130 
131 static void putback_movable_page(struct page *page)
132 {
133 	const struct movable_operations *mops = page_movable_ops(page);
134 
135 	mops->putback_page(page);
136 	ClearPageIsolated(page);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct page *page;
150 	struct page *page2;
151 
152 	list_for_each_entry_safe(page, page2, l, lru) {
153 		if (unlikely(PageHuge(page))) {
154 			putback_active_hugepage(page);
155 			continue;
156 		}
157 		list_del(&page->lru);
158 		/*
159 		 * We isolated non-lru movable page so here we can use
160 		 * __PageMovable because LRU page's mapping cannot have
161 		 * PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__PageMovable(page))) {
164 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
165 			lock_page(page);
166 			if (PageMovable(page))
167 				putback_movable_page(page);
168 			else
169 				ClearPageIsolated(page);
170 			unlock_page(page);
171 			put_page(page);
172 		} else {
173 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
174 					page_is_file_lru(page), -thp_nr_pages(page));
175 			putback_lru_page(page);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t pte;
191 		swp_entry_t entry;
192 		struct page *new;
193 		unsigned long idx = 0;
194 
195 		/* pgoff is invalid for ksm pages, but they are never large */
196 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
197 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
198 		new = folio_page(folio, idx);
199 
200 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
201 		/* PMD-mapped THP migration entry */
202 		if (!pvmw.pte) {
203 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
204 					!folio_test_pmd_mappable(folio), folio);
205 			remove_migration_pmd(&pvmw, new);
206 			continue;
207 		}
208 #endif
209 
210 		folio_get(folio);
211 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
212 		if (pte_swp_soft_dirty(*pvmw.pte))
213 			pte = pte_mksoft_dirty(pte);
214 
215 		/*
216 		 * Recheck VMA as permissions can change since migration started
217 		 */
218 		entry = pte_to_swp_entry(*pvmw.pte);
219 		if (!is_migration_entry_young(entry))
220 			pte = pte_mkold(pte);
221 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
222 			pte = pte_mkdirty(pte);
223 		if (is_writable_migration_entry(entry))
224 			pte = maybe_mkwrite(pte, vma);
225 		else if (pte_swp_uffd_wp(*pvmw.pte))
226 			pte = pte_mkuffd_wp(pte);
227 
228 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
229 			rmap_flags |= RMAP_EXCLUSIVE;
230 
231 		if (unlikely(is_device_private_page(new))) {
232 			if (pte_write(pte))
233 				entry = make_writable_device_private_entry(
234 							page_to_pfn(new));
235 			else
236 				entry = make_readable_device_private_entry(
237 							page_to_pfn(new));
238 			pte = swp_entry_to_pte(entry);
239 			if (pte_swp_soft_dirty(*pvmw.pte))
240 				pte = pte_swp_mksoft_dirty(pte);
241 			if (pte_swp_uffd_wp(*pvmw.pte))
242 				pte = pte_swp_mkuffd_wp(pte);
243 		}
244 
245 #ifdef CONFIG_HUGETLB_PAGE
246 		if (folio_test_hugetlb(folio)) {
247 			unsigned int shift = huge_page_shift(hstate_vma(vma));
248 
249 			pte = pte_mkhuge(pte);
250 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
251 			if (folio_test_anon(folio))
252 				hugepage_add_anon_rmap(new, vma, pvmw.address,
253 						       rmap_flags);
254 			else
255 				page_dup_file_rmap(new, true);
256 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257 		} else
258 #endif
259 		{
260 			if (folio_test_anon(folio))
261 				page_add_anon_rmap(new, vma, pvmw.address,
262 						   rmap_flags);
263 			else
264 				page_add_file_rmap(new, vma, false);
265 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266 		}
267 		if (vma->vm_flags & VM_LOCKED)
268 			mlock_page_drain_local();
269 
270 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
271 					   compound_order(new));
272 
273 		/* No need to invalidate - it was non-present before */
274 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
275 	}
276 
277 	return true;
278 }
279 
280 /*
281  * Get rid of all migration entries and replace them by
282  * references to the indicated page.
283  */
284 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
285 {
286 	struct rmap_walk_control rwc = {
287 		.rmap_one = remove_migration_pte,
288 		.arg = src,
289 	};
290 
291 	if (locked)
292 		rmap_walk_locked(dst, &rwc);
293 	else
294 		rmap_walk(dst, &rwc);
295 }
296 
297 /*
298  * Something used the pte of a page under migration. We need to
299  * get to the page and wait until migration is finished.
300  * When we return from this function the fault will be retried.
301  */
302 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
303 				spinlock_t *ptl)
304 {
305 	pte_t pte;
306 	swp_entry_t entry;
307 
308 	spin_lock(ptl);
309 	pte = *ptep;
310 	if (!is_swap_pte(pte))
311 		goto out;
312 
313 	entry = pte_to_swp_entry(pte);
314 	if (!is_migration_entry(entry))
315 		goto out;
316 
317 	migration_entry_wait_on_locked(entry, ptep, ptl);
318 	return;
319 out:
320 	pte_unmap_unlock(ptep, ptl);
321 }
322 
323 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
324 				unsigned long address)
325 {
326 	spinlock_t *ptl = pte_lockptr(mm, pmd);
327 	pte_t *ptep = pte_offset_map(pmd, address);
328 	__migration_entry_wait(mm, ptep, ptl);
329 }
330 
331 #ifdef CONFIG_HUGETLB_PAGE
332 /*
333  * The vma read lock must be held upon entry. Holding that lock prevents either
334  * the pte or the ptl from being freed.
335  *
336  * This function will release the vma lock before returning.
337  */
338 void __migration_entry_wait_huge(struct vm_area_struct *vma,
339 				 pte_t *ptep, spinlock_t *ptl)
340 {
341 	pte_t pte;
342 
343 	hugetlb_vma_assert_locked(vma);
344 	spin_lock(ptl);
345 	pte = huge_ptep_get(ptep);
346 
347 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
348 		spin_unlock(ptl);
349 		hugetlb_vma_unlock_read(vma);
350 	} else {
351 		/*
352 		 * If migration entry existed, safe to release vma lock
353 		 * here because the pgtable page won't be freed without the
354 		 * pgtable lock released.  See comment right above pgtable
355 		 * lock release in migration_entry_wait_on_locked().
356 		 */
357 		hugetlb_vma_unlock_read(vma);
358 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
359 	}
360 }
361 
362 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
363 {
364 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
365 
366 	__migration_entry_wait_huge(vma, pte, ptl);
367 }
368 #endif
369 
370 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
371 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
372 {
373 	spinlock_t *ptl;
374 
375 	ptl = pmd_lock(mm, pmd);
376 	if (!is_pmd_migration_entry(*pmd))
377 		goto unlock;
378 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
379 	return;
380 unlock:
381 	spin_unlock(ptl);
382 }
383 #endif
384 
385 static int folio_expected_refs(struct address_space *mapping,
386 		struct folio *folio)
387 {
388 	int refs = 1;
389 	if (!mapping)
390 		return refs;
391 
392 	refs += folio_nr_pages(folio);
393 	if (folio_test_private(folio))
394 		refs++;
395 
396 	return refs;
397 }
398 
399 /*
400  * Replace the page in the mapping.
401  *
402  * The number of remaining references must be:
403  * 1 for anonymous pages without a mapping
404  * 2 for pages with a mapping
405  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
406  */
407 int folio_migrate_mapping(struct address_space *mapping,
408 		struct folio *newfolio, struct folio *folio, int extra_count)
409 {
410 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
411 	struct zone *oldzone, *newzone;
412 	int dirty;
413 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
414 	long nr = folio_nr_pages(folio);
415 
416 	if (!mapping) {
417 		/* Anonymous page without mapping */
418 		if (folio_ref_count(folio) != expected_count)
419 			return -EAGAIN;
420 
421 		/* No turning back from here */
422 		newfolio->index = folio->index;
423 		newfolio->mapping = folio->mapping;
424 		if (folio_test_swapbacked(folio))
425 			__folio_set_swapbacked(newfolio);
426 
427 		return MIGRATEPAGE_SUCCESS;
428 	}
429 
430 	oldzone = folio_zone(folio);
431 	newzone = folio_zone(newfolio);
432 
433 	xas_lock_irq(&xas);
434 	if (!folio_ref_freeze(folio, expected_count)) {
435 		xas_unlock_irq(&xas);
436 		return -EAGAIN;
437 	}
438 
439 	/*
440 	 * Now we know that no one else is looking at the folio:
441 	 * no turning back from here.
442 	 */
443 	newfolio->index = folio->index;
444 	newfolio->mapping = folio->mapping;
445 	folio_ref_add(newfolio, nr); /* add cache reference */
446 	if (folio_test_swapbacked(folio)) {
447 		__folio_set_swapbacked(newfolio);
448 		if (folio_test_swapcache(folio)) {
449 			folio_set_swapcache(newfolio);
450 			newfolio->private = folio_get_private(folio);
451 		}
452 	} else {
453 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
454 	}
455 
456 	/* Move dirty while page refs frozen and newpage not yet exposed */
457 	dirty = folio_test_dirty(folio);
458 	if (dirty) {
459 		folio_clear_dirty(folio);
460 		folio_set_dirty(newfolio);
461 	}
462 
463 	xas_store(&xas, newfolio);
464 
465 	/*
466 	 * Drop cache reference from old page by unfreezing
467 	 * to one less reference.
468 	 * We know this isn't the last reference.
469 	 */
470 	folio_ref_unfreeze(folio, expected_count - nr);
471 
472 	xas_unlock(&xas);
473 	/* Leave irq disabled to prevent preemption while updating stats */
474 
475 	/*
476 	 * If moved to a different zone then also account
477 	 * the page for that zone. Other VM counters will be
478 	 * taken care of when we establish references to the
479 	 * new page and drop references to the old page.
480 	 *
481 	 * Note that anonymous pages are accounted for
482 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
483 	 * are mapped to swap space.
484 	 */
485 	if (newzone != oldzone) {
486 		struct lruvec *old_lruvec, *new_lruvec;
487 		struct mem_cgroup *memcg;
488 
489 		memcg = folio_memcg(folio);
490 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
491 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
492 
493 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
494 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
495 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
496 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
497 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
498 		}
499 #ifdef CONFIG_SWAP
500 		if (folio_test_swapcache(folio)) {
501 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
502 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
503 		}
504 #endif
505 		if (dirty && mapping_can_writeback(mapping)) {
506 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
507 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
508 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
509 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
510 		}
511 	}
512 	local_irq_enable();
513 
514 	return MIGRATEPAGE_SUCCESS;
515 }
516 EXPORT_SYMBOL(folio_migrate_mapping);
517 
518 /*
519  * The expected number of remaining references is the same as that
520  * of folio_migrate_mapping().
521  */
522 int migrate_huge_page_move_mapping(struct address_space *mapping,
523 				   struct folio *dst, struct folio *src)
524 {
525 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
526 	int expected_count;
527 
528 	xas_lock_irq(&xas);
529 	expected_count = 2 + folio_has_private(src);
530 	if (!folio_ref_freeze(src, expected_count)) {
531 		xas_unlock_irq(&xas);
532 		return -EAGAIN;
533 	}
534 
535 	dst->index = src->index;
536 	dst->mapping = src->mapping;
537 
538 	folio_get(dst);
539 
540 	xas_store(&xas, dst);
541 
542 	folio_ref_unfreeze(src, expected_count - 1);
543 
544 	xas_unlock_irq(&xas);
545 
546 	return MIGRATEPAGE_SUCCESS;
547 }
548 
549 /*
550  * Copy the flags and some other ancillary information
551  */
552 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
553 {
554 	int cpupid;
555 
556 	if (folio_test_error(folio))
557 		folio_set_error(newfolio);
558 	if (folio_test_referenced(folio))
559 		folio_set_referenced(newfolio);
560 	if (folio_test_uptodate(folio))
561 		folio_mark_uptodate(newfolio);
562 	if (folio_test_clear_active(folio)) {
563 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
564 		folio_set_active(newfolio);
565 	} else if (folio_test_clear_unevictable(folio))
566 		folio_set_unevictable(newfolio);
567 	if (folio_test_workingset(folio))
568 		folio_set_workingset(newfolio);
569 	if (folio_test_checked(folio))
570 		folio_set_checked(newfolio);
571 	/*
572 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
573 	 * migration entries. We can still have PG_anon_exclusive set on an
574 	 * effectively unmapped and unreferenced first sub-pages of an
575 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
576 	 */
577 	if (folio_test_mappedtodisk(folio))
578 		folio_set_mappedtodisk(newfolio);
579 
580 	/* Move dirty on pages not done by folio_migrate_mapping() */
581 	if (folio_test_dirty(folio))
582 		folio_set_dirty(newfolio);
583 
584 	if (folio_test_young(folio))
585 		folio_set_young(newfolio);
586 	if (folio_test_idle(folio))
587 		folio_set_idle(newfolio);
588 
589 	/*
590 	 * Copy NUMA information to the new page, to prevent over-eager
591 	 * future migrations of this same page.
592 	 */
593 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
594 	/*
595 	 * For memory tiering mode, when migrate between slow and fast
596 	 * memory node, reset cpupid, because that is used to record
597 	 * page access time in slow memory node.
598 	 */
599 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
600 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
601 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
602 
603 		if (f_toptier != t_toptier)
604 			cpupid = -1;
605 	}
606 	page_cpupid_xchg_last(&newfolio->page, cpupid);
607 
608 	folio_migrate_ksm(newfolio, folio);
609 	/*
610 	 * Please do not reorder this without considering how mm/ksm.c's
611 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
612 	 */
613 	if (folio_test_swapcache(folio))
614 		folio_clear_swapcache(folio);
615 	folio_clear_private(folio);
616 
617 	/* page->private contains hugetlb specific flags */
618 	if (!folio_test_hugetlb(folio))
619 		folio->private = NULL;
620 
621 	/*
622 	 * If any waiters have accumulated on the new page then
623 	 * wake them up.
624 	 */
625 	if (folio_test_writeback(newfolio))
626 		folio_end_writeback(newfolio);
627 
628 	/*
629 	 * PG_readahead shares the same bit with PG_reclaim.  The above
630 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
631 	 * bit after that.
632 	 */
633 	if (folio_test_readahead(folio))
634 		folio_set_readahead(newfolio);
635 
636 	folio_copy_owner(newfolio, folio);
637 
638 	if (!folio_test_hugetlb(folio))
639 		mem_cgroup_migrate(folio, newfolio);
640 }
641 EXPORT_SYMBOL(folio_migrate_flags);
642 
643 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
644 {
645 	folio_copy(newfolio, folio);
646 	folio_migrate_flags(newfolio, folio);
647 }
648 EXPORT_SYMBOL(folio_migrate_copy);
649 
650 /************************************************************
651  *                    Migration functions
652  ***********************************************************/
653 
654 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
655 		struct folio *src, enum migrate_mode mode, int extra_count)
656 {
657 	int rc;
658 
659 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
660 
661 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
662 
663 	if (rc != MIGRATEPAGE_SUCCESS)
664 		return rc;
665 
666 	if (mode != MIGRATE_SYNC_NO_COPY)
667 		folio_migrate_copy(dst, src);
668 	else
669 		folio_migrate_flags(dst, src);
670 	return MIGRATEPAGE_SUCCESS;
671 }
672 
673 /**
674  * migrate_folio() - Simple folio migration.
675  * @mapping: The address_space containing the folio.
676  * @dst: The folio to migrate the data to.
677  * @src: The folio containing the current data.
678  * @mode: How to migrate the page.
679  *
680  * Common logic to directly migrate a single LRU folio suitable for
681  * folios that do not use PagePrivate/PagePrivate2.
682  *
683  * Folios are locked upon entry and exit.
684  */
685 int migrate_folio(struct address_space *mapping, struct folio *dst,
686 		struct folio *src, enum migrate_mode mode)
687 {
688 	return migrate_folio_extra(mapping, dst, src, mode, 0);
689 }
690 EXPORT_SYMBOL(migrate_folio);
691 
692 #ifdef CONFIG_BLOCK
693 /* Returns true if all buffers are successfully locked */
694 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
695 							enum migrate_mode mode)
696 {
697 	struct buffer_head *bh = head;
698 
699 	/* Simple case, sync compaction */
700 	if (mode != MIGRATE_ASYNC) {
701 		do {
702 			lock_buffer(bh);
703 			bh = bh->b_this_page;
704 
705 		} while (bh != head);
706 
707 		return true;
708 	}
709 
710 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
711 	do {
712 		if (!trylock_buffer(bh)) {
713 			/*
714 			 * We failed to lock the buffer and cannot stall in
715 			 * async migration. Release the taken locks
716 			 */
717 			struct buffer_head *failed_bh = bh;
718 			bh = head;
719 			while (bh != failed_bh) {
720 				unlock_buffer(bh);
721 				bh = bh->b_this_page;
722 			}
723 			return false;
724 		}
725 
726 		bh = bh->b_this_page;
727 	} while (bh != head);
728 	return true;
729 }
730 
731 static int __buffer_migrate_folio(struct address_space *mapping,
732 		struct folio *dst, struct folio *src, enum migrate_mode mode,
733 		bool check_refs)
734 {
735 	struct buffer_head *bh, *head;
736 	int rc;
737 	int expected_count;
738 
739 	head = folio_buffers(src);
740 	if (!head)
741 		return migrate_folio(mapping, dst, src, mode);
742 
743 	/* Check whether page does not have extra refs before we do more work */
744 	expected_count = folio_expected_refs(mapping, src);
745 	if (folio_ref_count(src) != expected_count)
746 		return -EAGAIN;
747 
748 	if (!buffer_migrate_lock_buffers(head, mode))
749 		return -EAGAIN;
750 
751 	if (check_refs) {
752 		bool busy;
753 		bool invalidated = false;
754 
755 recheck_buffers:
756 		busy = false;
757 		spin_lock(&mapping->private_lock);
758 		bh = head;
759 		do {
760 			if (atomic_read(&bh->b_count)) {
761 				busy = true;
762 				break;
763 			}
764 			bh = bh->b_this_page;
765 		} while (bh != head);
766 		if (busy) {
767 			if (invalidated) {
768 				rc = -EAGAIN;
769 				goto unlock_buffers;
770 			}
771 			spin_unlock(&mapping->private_lock);
772 			invalidate_bh_lrus();
773 			invalidated = true;
774 			goto recheck_buffers;
775 		}
776 	}
777 
778 	rc = folio_migrate_mapping(mapping, dst, src, 0);
779 	if (rc != MIGRATEPAGE_SUCCESS)
780 		goto unlock_buffers;
781 
782 	folio_attach_private(dst, folio_detach_private(src));
783 
784 	bh = head;
785 	do {
786 		set_bh_page(bh, &dst->page, bh_offset(bh));
787 		bh = bh->b_this_page;
788 	} while (bh != head);
789 
790 	if (mode != MIGRATE_SYNC_NO_COPY)
791 		folio_migrate_copy(dst, src);
792 	else
793 		folio_migrate_flags(dst, src);
794 
795 	rc = MIGRATEPAGE_SUCCESS;
796 unlock_buffers:
797 	if (check_refs)
798 		spin_unlock(&mapping->private_lock);
799 	bh = head;
800 	do {
801 		unlock_buffer(bh);
802 		bh = bh->b_this_page;
803 	} while (bh != head);
804 
805 	return rc;
806 }
807 
808 /**
809  * buffer_migrate_folio() - Migration function for folios with buffers.
810  * @mapping: The address space containing @src.
811  * @dst: The folio to migrate to.
812  * @src: The folio to migrate from.
813  * @mode: How to migrate the folio.
814  *
815  * This function can only be used if the underlying filesystem guarantees
816  * that no other references to @src exist. For example attached buffer
817  * heads are accessed only under the folio lock.  If your filesystem cannot
818  * provide this guarantee, buffer_migrate_folio_norefs() may be more
819  * appropriate.
820  *
821  * Return: 0 on success or a negative errno on failure.
822  */
823 int buffer_migrate_folio(struct address_space *mapping,
824 		struct folio *dst, struct folio *src, enum migrate_mode mode)
825 {
826 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
827 }
828 EXPORT_SYMBOL(buffer_migrate_folio);
829 
830 /**
831  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
832  * @mapping: The address space containing @src.
833  * @dst: The folio to migrate to.
834  * @src: The folio to migrate from.
835  * @mode: How to migrate the folio.
836  *
837  * Like buffer_migrate_folio() except that this variant is more careful
838  * and checks that there are also no buffer head references. This function
839  * is the right one for mappings where buffer heads are directly looked
840  * up and referenced (such as block device mappings).
841  *
842  * Return: 0 on success or a negative errno on failure.
843  */
844 int buffer_migrate_folio_norefs(struct address_space *mapping,
845 		struct folio *dst, struct folio *src, enum migrate_mode mode)
846 {
847 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
848 }
849 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
850 #endif
851 
852 int filemap_migrate_folio(struct address_space *mapping,
853 		struct folio *dst, struct folio *src, enum migrate_mode mode)
854 {
855 	int ret;
856 
857 	ret = folio_migrate_mapping(mapping, dst, src, 0);
858 	if (ret != MIGRATEPAGE_SUCCESS)
859 		return ret;
860 
861 	if (folio_get_private(src))
862 		folio_attach_private(dst, folio_detach_private(src));
863 
864 	if (mode != MIGRATE_SYNC_NO_COPY)
865 		folio_migrate_copy(dst, src);
866 	else
867 		folio_migrate_flags(dst, src);
868 	return MIGRATEPAGE_SUCCESS;
869 }
870 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
871 
872 /*
873  * Writeback a folio to clean the dirty state
874  */
875 static int writeout(struct address_space *mapping, struct folio *folio)
876 {
877 	struct writeback_control wbc = {
878 		.sync_mode = WB_SYNC_NONE,
879 		.nr_to_write = 1,
880 		.range_start = 0,
881 		.range_end = LLONG_MAX,
882 		.for_reclaim = 1
883 	};
884 	int rc;
885 
886 	if (!mapping->a_ops->writepage)
887 		/* No write method for the address space */
888 		return -EINVAL;
889 
890 	if (!folio_clear_dirty_for_io(folio))
891 		/* Someone else already triggered a write */
892 		return -EAGAIN;
893 
894 	/*
895 	 * A dirty folio may imply that the underlying filesystem has
896 	 * the folio on some queue. So the folio must be clean for
897 	 * migration. Writeout may mean we lose the lock and the
898 	 * folio state is no longer what we checked for earlier.
899 	 * At this point we know that the migration attempt cannot
900 	 * be successful.
901 	 */
902 	remove_migration_ptes(folio, folio, false);
903 
904 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
905 
906 	if (rc != AOP_WRITEPAGE_ACTIVATE)
907 		/* unlocked. Relock */
908 		folio_lock(folio);
909 
910 	return (rc < 0) ? -EIO : -EAGAIN;
911 }
912 
913 /*
914  * Default handling if a filesystem does not provide a migration function.
915  */
916 static int fallback_migrate_folio(struct address_space *mapping,
917 		struct folio *dst, struct folio *src, enum migrate_mode mode)
918 {
919 	if (folio_test_dirty(src)) {
920 		/* Only writeback folios in full synchronous migration */
921 		switch (mode) {
922 		case MIGRATE_SYNC:
923 		case MIGRATE_SYNC_NO_COPY:
924 			break;
925 		default:
926 			return -EBUSY;
927 		}
928 		return writeout(mapping, src);
929 	}
930 
931 	/*
932 	 * Buffers may be managed in a filesystem specific way.
933 	 * We must have no buffers or drop them.
934 	 */
935 	if (folio_test_private(src) &&
936 	    !filemap_release_folio(src, GFP_KERNEL))
937 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
938 
939 	return migrate_folio(mapping, dst, src, mode);
940 }
941 
942 /*
943  * Move a page to a newly allocated page
944  * The page is locked and all ptes have been successfully removed.
945  *
946  * The new page will have replaced the old page if this function
947  * is successful.
948  *
949  * Return value:
950  *   < 0 - error code
951  *  MIGRATEPAGE_SUCCESS - success
952  */
953 static int move_to_new_folio(struct folio *dst, struct folio *src,
954 				enum migrate_mode mode)
955 {
956 	int rc = -EAGAIN;
957 	bool is_lru = !__PageMovable(&src->page);
958 
959 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
960 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
961 
962 	if (likely(is_lru)) {
963 		struct address_space *mapping = folio_mapping(src);
964 
965 		if (!mapping)
966 			rc = migrate_folio(mapping, dst, src, mode);
967 		else if (mapping->a_ops->migrate_folio)
968 			/*
969 			 * Most folios have a mapping and most filesystems
970 			 * provide a migrate_folio callback. Anonymous folios
971 			 * are part of swap space which also has its own
972 			 * migrate_folio callback. This is the most common path
973 			 * for page migration.
974 			 */
975 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
976 								mode);
977 		else
978 			rc = fallback_migrate_folio(mapping, dst, src, mode);
979 	} else {
980 		const struct movable_operations *mops;
981 
982 		/*
983 		 * In case of non-lru page, it could be released after
984 		 * isolation step. In that case, we shouldn't try migration.
985 		 */
986 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
987 		if (!folio_test_movable(src)) {
988 			rc = MIGRATEPAGE_SUCCESS;
989 			folio_clear_isolated(src);
990 			goto out;
991 		}
992 
993 		mops = page_movable_ops(&src->page);
994 		rc = mops->migrate_page(&dst->page, &src->page, mode);
995 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
996 				!folio_test_isolated(src));
997 	}
998 
999 	/*
1000 	 * When successful, old pagecache src->mapping must be cleared before
1001 	 * src is freed; but stats require that PageAnon be left as PageAnon.
1002 	 */
1003 	if (rc == MIGRATEPAGE_SUCCESS) {
1004 		if (__PageMovable(&src->page)) {
1005 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1006 
1007 			/*
1008 			 * We clear PG_movable under page_lock so any compactor
1009 			 * cannot try to migrate this page.
1010 			 */
1011 			folio_clear_isolated(src);
1012 		}
1013 
1014 		/*
1015 		 * Anonymous and movable src->mapping will be cleared by
1016 		 * free_pages_prepare so don't reset it here for keeping
1017 		 * the type to work PageAnon, for example.
1018 		 */
1019 		if (!folio_mapping_flags(src))
1020 			src->mapping = NULL;
1021 
1022 		if (likely(!folio_is_zone_device(dst)))
1023 			flush_dcache_folio(dst);
1024 	}
1025 out:
1026 	return rc;
1027 }
1028 
1029 static int __unmap_and_move(struct folio *src, struct folio *dst,
1030 				int force, enum migrate_mode mode)
1031 {
1032 	int rc = -EAGAIN;
1033 	bool page_was_mapped = false;
1034 	struct anon_vma *anon_vma = NULL;
1035 	bool is_lru = !__PageMovable(&src->page);
1036 
1037 	if (!folio_trylock(src)) {
1038 		if (!force || mode == MIGRATE_ASYNC)
1039 			goto out;
1040 
1041 		/*
1042 		 * It's not safe for direct compaction to call lock_page.
1043 		 * For example, during page readahead pages are added locked
1044 		 * to the LRU. Later, when the IO completes the pages are
1045 		 * marked uptodate and unlocked. However, the queueing
1046 		 * could be merging multiple pages for one bio (e.g.
1047 		 * mpage_readahead). If an allocation happens for the
1048 		 * second or third page, the process can end up locking
1049 		 * the same page twice and deadlocking. Rather than
1050 		 * trying to be clever about what pages can be locked,
1051 		 * avoid the use of lock_page for direct compaction
1052 		 * altogether.
1053 		 */
1054 		if (current->flags & PF_MEMALLOC)
1055 			goto out;
1056 
1057 		folio_lock(src);
1058 	}
1059 
1060 	if (folio_test_writeback(src)) {
1061 		/*
1062 		 * Only in the case of a full synchronous migration is it
1063 		 * necessary to wait for PageWriteback. In the async case,
1064 		 * the retry loop is too short and in the sync-light case,
1065 		 * the overhead of stalling is too much
1066 		 */
1067 		switch (mode) {
1068 		case MIGRATE_SYNC:
1069 		case MIGRATE_SYNC_NO_COPY:
1070 			break;
1071 		default:
1072 			rc = -EBUSY;
1073 			goto out_unlock;
1074 		}
1075 		if (!force)
1076 			goto out_unlock;
1077 		folio_wait_writeback(src);
1078 	}
1079 
1080 	/*
1081 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1082 	 * we cannot notice that anon_vma is freed while we migrate a page.
1083 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1084 	 * of migration. File cache pages are no problem because of page_lock()
1085 	 * File Caches may use write_page() or lock_page() in migration, then,
1086 	 * just care Anon page here.
1087 	 *
1088 	 * Only folio_get_anon_vma() understands the subtleties of
1089 	 * getting a hold on an anon_vma from outside one of its mms.
1090 	 * But if we cannot get anon_vma, then we won't need it anyway,
1091 	 * because that implies that the anon page is no longer mapped
1092 	 * (and cannot be remapped so long as we hold the page lock).
1093 	 */
1094 	if (folio_test_anon(src) && !folio_test_ksm(src))
1095 		anon_vma = folio_get_anon_vma(src);
1096 
1097 	/*
1098 	 * Block others from accessing the new page when we get around to
1099 	 * establishing additional references. We are usually the only one
1100 	 * holding a reference to dst at this point. We used to have a BUG
1101 	 * here if folio_trylock(dst) fails, but would like to allow for
1102 	 * cases where there might be a race with the previous use of dst.
1103 	 * This is much like races on refcount of oldpage: just don't BUG().
1104 	 */
1105 	if (unlikely(!folio_trylock(dst)))
1106 		goto out_unlock;
1107 
1108 	if (unlikely(!is_lru)) {
1109 		rc = move_to_new_folio(dst, src, mode);
1110 		goto out_unlock_both;
1111 	}
1112 
1113 	/*
1114 	 * Corner case handling:
1115 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1116 	 * and treated as swapcache but it has no rmap yet.
1117 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1118 	 * trigger a BUG.  So handle it here.
1119 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1120 	 * fs-private metadata. The page can be picked up due to memory
1121 	 * offlining.  Everywhere else except page reclaim, the page is
1122 	 * invisible to the vm, so the page can not be migrated.  So try to
1123 	 * free the metadata, so the page can be freed.
1124 	 */
1125 	if (!src->mapping) {
1126 		if (folio_test_private(src)) {
1127 			try_to_free_buffers(src);
1128 			goto out_unlock_both;
1129 		}
1130 	} else if (folio_mapped(src)) {
1131 		/* Establish migration ptes */
1132 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1133 			       !folio_test_ksm(src) && !anon_vma, src);
1134 		try_to_migrate(src, 0);
1135 		page_was_mapped = true;
1136 	}
1137 
1138 	if (!folio_mapped(src))
1139 		rc = move_to_new_folio(dst, src, mode);
1140 
1141 	/*
1142 	 * When successful, push dst to LRU immediately: so that if it
1143 	 * turns out to be an mlocked page, remove_migration_ptes() will
1144 	 * automatically build up the correct dst->mlock_count for it.
1145 	 *
1146 	 * We would like to do something similar for the old page, when
1147 	 * unsuccessful, and other cases when a page has been temporarily
1148 	 * isolated from the unevictable LRU: but this case is the easiest.
1149 	 */
1150 	if (rc == MIGRATEPAGE_SUCCESS) {
1151 		folio_add_lru(dst);
1152 		if (page_was_mapped)
1153 			lru_add_drain();
1154 	}
1155 
1156 	if (page_was_mapped)
1157 		remove_migration_ptes(src,
1158 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1159 
1160 out_unlock_both:
1161 	folio_unlock(dst);
1162 out_unlock:
1163 	/* Drop an anon_vma reference if we took one */
1164 	if (anon_vma)
1165 		put_anon_vma(anon_vma);
1166 	folio_unlock(src);
1167 out:
1168 	/*
1169 	 * If migration is successful, decrease refcount of dst,
1170 	 * which will not free the page because new page owner increased
1171 	 * refcounter.
1172 	 */
1173 	if (rc == MIGRATEPAGE_SUCCESS)
1174 		folio_put(dst);
1175 
1176 	return rc;
1177 }
1178 
1179 /*
1180  * Obtain the lock on folio, remove all ptes and migrate the folio
1181  * to the newly allocated folio in dst.
1182  */
1183 static int unmap_and_move(new_page_t get_new_page,
1184 				   free_page_t put_new_page,
1185 				   unsigned long private, struct folio *src,
1186 				   int force, enum migrate_mode mode,
1187 				   enum migrate_reason reason,
1188 				   struct list_head *ret)
1189 {
1190 	struct folio *dst;
1191 	int rc = MIGRATEPAGE_SUCCESS;
1192 	struct page *newpage = NULL;
1193 
1194 	if (!thp_migration_supported() && folio_test_transhuge(src))
1195 		return -ENOSYS;
1196 
1197 	if (folio_ref_count(src) == 1) {
1198 		/* Folio was freed from under us. So we are done. */
1199 		folio_clear_active(src);
1200 		folio_clear_unevictable(src);
1201 		/* free_pages_prepare() will clear PG_isolated. */
1202 		goto out;
1203 	}
1204 
1205 	newpage = get_new_page(&src->page, private);
1206 	if (!newpage)
1207 		return -ENOMEM;
1208 	dst = page_folio(newpage);
1209 
1210 	dst->private = NULL;
1211 	rc = __unmap_and_move(src, dst, force, mode);
1212 	if (rc == MIGRATEPAGE_SUCCESS)
1213 		set_page_owner_migrate_reason(&dst->page, reason);
1214 
1215 out:
1216 	if (rc != -EAGAIN) {
1217 		/*
1218 		 * A folio that has been migrated has all references
1219 		 * removed and will be freed. A folio that has not been
1220 		 * migrated will have kept its references and be restored.
1221 		 */
1222 		list_del(&src->lru);
1223 	}
1224 
1225 	/*
1226 	 * If migration is successful, releases reference grabbed during
1227 	 * isolation. Otherwise, restore the folio to right list unless
1228 	 * we want to retry.
1229 	 */
1230 	if (rc == MIGRATEPAGE_SUCCESS) {
1231 		/*
1232 		 * Compaction can migrate also non-LRU folios which are
1233 		 * not accounted to NR_ISOLATED_*. They can be recognized
1234 		 * as __folio_test_movable
1235 		 */
1236 		if (likely(!__folio_test_movable(src)))
1237 			mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1238 					folio_is_file_lru(src), -folio_nr_pages(src));
1239 
1240 		if (reason != MR_MEMORY_FAILURE)
1241 			/*
1242 			 * We release the folio in page_handle_poison.
1243 			 */
1244 			folio_put(src);
1245 	} else {
1246 		if (rc != -EAGAIN)
1247 			list_add_tail(&src->lru, ret);
1248 
1249 		if (put_new_page)
1250 			put_new_page(&dst->page, private);
1251 		else
1252 			folio_put(dst);
1253 	}
1254 
1255 	return rc;
1256 }
1257 
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 				free_page_t put_new_page, unsigned long private,
1278 				struct page *hpage, int force,
1279 				enum migrate_mode mode, int reason,
1280 				struct list_head *ret)
1281 {
1282 	struct folio *dst, *src = page_folio(hpage);
1283 	int rc = -EAGAIN;
1284 	int page_was_mapped = 0;
1285 	struct page *new_hpage;
1286 	struct anon_vma *anon_vma = NULL;
1287 	struct address_space *mapping = NULL;
1288 
1289 	/*
1290 	 * Migratability of hugepages depends on architectures and their size.
1291 	 * This check is necessary because some callers of hugepage migration
1292 	 * like soft offline and memory hotremove don't walk through page
1293 	 * tables or check whether the hugepage is pmd-based or not before
1294 	 * kicking migration.
1295 	 */
1296 	if (!hugepage_migration_supported(page_hstate(hpage)))
1297 		return -ENOSYS;
1298 
1299 	if (folio_ref_count(src) == 1) {
1300 		/* page was freed from under us. So we are done. */
1301 		putback_active_hugepage(hpage);
1302 		return MIGRATEPAGE_SUCCESS;
1303 	}
1304 
1305 	new_hpage = get_new_page(hpage, private);
1306 	if (!new_hpage)
1307 		return -ENOMEM;
1308 	dst = page_folio(new_hpage);
1309 
1310 	if (!folio_trylock(src)) {
1311 		if (!force)
1312 			goto out;
1313 		switch (mode) {
1314 		case MIGRATE_SYNC:
1315 		case MIGRATE_SYNC_NO_COPY:
1316 			break;
1317 		default:
1318 			goto out;
1319 		}
1320 		folio_lock(src);
1321 	}
1322 
1323 	/*
1324 	 * Check for pages which are in the process of being freed.  Without
1325 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1326 	 * be called and we could leak usage counts for subpools.
1327 	 */
1328 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1329 		rc = -EBUSY;
1330 		goto out_unlock;
1331 	}
1332 
1333 	if (folio_test_anon(src))
1334 		anon_vma = folio_get_anon_vma(src);
1335 
1336 	if (unlikely(!folio_trylock(dst)))
1337 		goto put_anon;
1338 
1339 	if (folio_mapped(src)) {
1340 		enum ttu_flags ttu = 0;
1341 
1342 		if (!folio_test_anon(src)) {
1343 			/*
1344 			 * In shared mappings, try_to_unmap could potentially
1345 			 * call huge_pmd_unshare.  Because of this, take
1346 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1347 			 * to let lower levels know we have taken the lock.
1348 			 */
1349 			mapping = hugetlb_page_mapping_lock_write(hpage);
1350 			if (unlikely(!mapping))
1351 				goto unlock_put_anon;
1352 
1353 			ttu = TTU_RMAP_LOCKED;
1354 		}
1355 
1356 		try_to_migrate(src, ttu);
1357 		page_was_mapped = 1;
1358 
1359 		if (ttu & TTU_RMAP_LOCKED)
1360 			i_mmap_unlock_write(mapping);
1361 	}
1362 
1363 	if (!folio_mapped(src))
1364 		rc = move_to_new_folio(dst, src, mode);
1365 
1366 	if (page_was_mapped)
1367 		remove_migration_ptes(src,
1368 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1369 
1370 unlock_put_anon:
1371 	folio_unlock(dst);
1372 
1373 put_anon:
1374 	if (anon_vma)
1375 		put_anon_vma(anon_vma);
1376 
1377 	if (rc == MIGRATEPAGE_SUCCESS) {
1378 		move_hugetlb_state(src, dst, reason);
1379 		put_new_page = NULL;
1380 	}
1381 
1382 out_unlock:
1383 	folio_unlock(src);
1384 out:
1385 	if (rc == MIGRATEPAGE_SUCCESS)
1386 		putback_active_hugepage(hpage);
1387 	else if (rc != -EAGAIN)
1388 		list_move_tail(&src->lru, ret);
1389 
1390 	/*
1391 	 * If migration was not successful and there's a freeing callback, use
1392 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1393 	 * isolation.
1394 	 */
1395 	if (put_new_page)
1396 		put_new_page(new_hpage, private);
1397 	else
1398 		putback_active_hugepage(new_hpage);
1399 
1400 	return rc;
1401 }
1402 
1403 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1404 {
1405 	int rc;
1406 
1407 	folio_lock(folio);
1408 	rc = split_folio_to_list(folio, split_folios);
1409 	folio_unlock(folio);
1410 	if (!rc)
1411 		list_move_tail(&folio->lru, split_folios);
1412 
1413 	return rc;
1414 }
1415 
1416 /*
1417  * migrate_pages - migrate the folios specified in a list, to the free folios
1418  *		   supplied as the target for the page migration
1419  *
1420  * @from:		The list of folios to be migrated.
1421  * @get_new_page:	The function used to allocate free folios to be used
1422  *			as the target of the folio migration.
1423  * @put_new_page:	The function used to free target folios if migration
1424  *			fails, or NULL if no special handling is necessary.
1425  * @private:		Private data to be passed on to get_new_page()
1426  * @mode:		The migration mode that specifies the constraints for
1427  *			folio migration, if any.
1428  * @reason:		The reason for folio migration.
1429  * @ret_succeeded:	Set to the number of folios migrated successfully if
1430  *			the caller passes a non-NULL pointer.
1431  *
1432  * The function returns after 10 attempts or if no folios are movable any more
1433  * because the list has become empty or no retryable folios exist any more.
1434  * It is caller's responsibility to call putback_movable_pages() to return folios
1435  * to the LRU or free list only if ret != 0.
1436  *
1437  * Returns the number of {normal folio, large folio, hugetlb} that were not
1438  * migrated, or an error code. The number of large folio splits will be
1439  * considered as the number of non-migrated large folio, no matter how many
1440  * split folios of the large folio are migrated successfully.
1441  */
1442 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1443 		free_page_t put_new_page, unsigned long private,
1444 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1445 {
1446 	int retry = 1;
1447 	int large_retry = 1;
1448 	int thp_retry = 1;
1449 	int nr_failed = 0;
1450 	int nr_failed_pages = 0;
1451 	int nr_retry_pages = 0;
1452 	int nr_succeeded = 0;
1453 	int nr_thp_succeeded = 0;
1454 	int nr_large_failed = 0;
1455 	int nr_thp_failed = 0;
1456 	int nr_thp_split = 0;
1457 	int pass = 0;
1458 	bool is_large = false;
1459 	bool is_thp = false;
1460 	struct folio *folio, *folio2;
1461 	int rc, nr_pages;
1462 	LIST_HEAD(ret_folios);
1463 	LIST_HEAD(split_folios);
1464 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1465 	bool no_split_folio_counting = false;
1466 
1467 	trace_mm_migrate_pages_start(mode, reason);
1468 
1469 split_folio_migration:
1470 	for (pass = 0; pass < 10 && (retry || large_retry); pass++) {
1471 		retry = 0;
1472 		large_retry = 0;
1473 		thp_retry = 0;
1474 		nr_retry_pages = 0;
1475 
1476 		list_for_each_entry_safe(folio, folio2, from, lru) {
1477 			/*
1478 			 * Large folio statistics is based on the source large
1479 			 * folio. Capture required information that might get
1480 			 * lost during migration.
1481 			 */
1482 			is_large = folio_test_large(folio) && !folio_test_hugetlb(folio);
1483 			is_thp = is_large && folio_test_pmd_mappable(folio);
1484 			nr_pages = folio_nr_pages(folio);
1485 			cond_resched();
1486 
1487 			if (folio_test_hugetlb(folio))
1488 				rc = unmap_and_move_huge_page(get_new_page,
1489 						put_new_page, private,
1490 						&folio->page, pass > 2, mode,
1491 						reason,
1492 						&ret_folios);
1493 			else
1494 				rc = unmap_and_move(get_new_page, put_new_page,
1495 						private, folio, pass > 2, mode,
1496 						reason, &ret_folios);
1497 			/*
1498 			 * The rules are:
1499 			 *	Success: non hugetlb folio will be freed, hugetlb
1500 			 *		 folio will be put back
1501 			 *	-EAGAIN: stay on the from list
1502 			 *	-ENOMEM: stay on the from list
1503 			 *	-ENOSYS: stay on the from list
1504 			 *	Other errno: put on ret_folios list then splice to
1505 			 *		     from list
1506 			 */
1507 			switch(rc) {
1508 			/*
1509 			 * Large folio migration might be unsupported or
1510 			 * the allocation could've failed so we should retry
1511 			 * on the same folio with the large folio split
1512 			 * to normal folios.
1513 			 *
1514 			 * Split folios are put in split_folios, and
1515 			 * we will migrate them after the rest of the
1516 			 * list is processed.
1517 			 */
1518 			case -ENOSYS:
1519 				/* Large folio migration is unsupported */
1520 				if (is_large) {
1521 					nr_large_failed++;
1522 					nr_thp_failed += is_thp;
1523 					if (!try_split_folio(folio, &split_folios)) {
1524 						nr_thp_split += is_thp;
1525 						break;
1526 					}
1527 				/* Hugetlb migration is unsupported */
1528 				} else if (!no_split_folio_counting) {
1529 					nr_failed++;
1530 				}
1531 
1532 				nr_failed_pages += nr_pages;
1533 				list_move_tail(&folio->lru, &ret_folios);
1534 				break;
1535 			case -ENOMEM:
1536 				/*
1537 				 * When memory is low, don't bother to try to migrate
1538 				 * other folios, just exit.
1539 				 */
1540 				if (is_large) {
1541 					nr_large_failed++;
1542 					nr_thp_failed += is_thp;
1543 					/* Large folio NUMA faulting doesn't split to retry. */
1544 					if (!nosplit) {
1545 						int ret = try_split_folio(folio, &split_folios);
1546 
1547 						if (!ret) {
1548 							nr_thp_split += is_thp;
1549 							break;
1550 						} else if (reason == MR_LONGTERM_PIN &&
1551 							   ret == -EAGAIN) {
1552 							/*
1553 							 * Try again to split large folio to
1554 							 * mitigate the failure of longterm pinning.
1555 							 */
1556 							large_retry++;
1557 							thp_retry += is_thp;
1558 							nr_retry_pages += nr_pages;
1559 							break;
1560 						}
1561 					}
1562 				} else if (!no_split_folio_counting) {
1563 					nr_failed++;
1564 				}
1565 
1566 				nr_failed_pages += nr_pages + nr_retry_pages;
1567 				/*
1568 				 * There might be some split folios of fail-to-migrate large
1569 				 * folios left in split_folios list. Move them back to migration
1570 				 * list so that they could be put back to the right list by
1571 				 * the caller otherwise the folio refcnt will be leaked.
1572 				 */
1573 				list_splice_init(&split_folios, from);
1574 				/* nr_failed isn't updated for not used */
1575 				nr_large_failed += large_retry;
1576 				nr_thp_failed += thp_retry;
1577 				goto out;
1578 			case -EAGAIN:
1579 				if (is_large) {
1580 					large_retry++;
1581 					thp_retry += is_thp;
1582 				} else if (!no_split_folio_counting) {
1583 					retry++;
1584 				}
1585 				nr_retry_pages += nr_pages;
1586 				break;
1587 			case MIGRATEPAGE_SUCCESS:
1588 				nr_succeeded += nr_pages;
1589 				nr_thp_succeeded += is_thp;
1590 				break;
1591 			default:
1592 				/*
1593 				 * Permanent failure (-EBUSY, etc.):
1594 				 * unlike -EAGAIN case, the failed folio is
1595 				 * removed from migration folio list and not
1596 				 * retried in the next outer loop.
1597 				 */
1598 				if (is_large) {
1599 					nr_large_failed++;
1600 					nr_thp_failed += is_thp;
1601 				} else if (!no_split_folio_counting) {
1602 					nr_failed++;
1603 				}
1604 
1605 				nr_failed_pages += nr_pages;
1606 				break;
1607 			}
1608 		}
1609 	}
1610 	nr_failed += retry;
1611 	nr_large_failed += large_retry;
1612 	nr_thp_failed += thp_retry;
1613 	nr_failed_pages += nr_retry_pages;
1614 	/*
1615 	 * Try to migrate split folios of fail-to-migrate large folios, no
1616 	 * nr_failed counting in this round, since all split folios of a
1617 	 * large folio is counted as 1 failure in the first round.
1618 	 */
1619 	if (!list_empty(&split_folios)) {
1620 		/*
1621 		 * Move non-migrated folios (after 10 retries) to ret_folios
1622 		 * to avoid migrating them again.
1623 		 */
1624 		list_splice_init(from, &ret_folios);
1625 		list_splice_init(&split_folios, from);
1626 		no_split_folio_counting = true;
1627 		retry = 1;
1628 		goto split_folio_migration;
1629 	}
1630 
1631 	rc = nr_failed + nr_large_failed;
1632 out:
1633 	/*
1634 	 * Put the permanent failure folio back to migration list, they
1635 	 * will be put back to the right list by the caller.
1636 	 */
1637 	list_splice(&ret_folios, from);
1638 
1639 	/*
1640 	 * Return 0 in case all split folios of fail-to-migrate large folios
1641 	 * are migrated successfully.
1642 	 */
1643 	if (list_empty(from))
1644 		rc = 0;
1645 
1646 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1647 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1648 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1649 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1650 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1651 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1652 			       nr_thp_failed, nr_thp_split, mode, reason);
1653 
1654 	if (ret_succeeded)
1655 		*ret_succeeded = nr_succeeded;
1656 
1657 	return rc;
1658 }
1659 
1660 struct page *alloc_migration_target(struct page *page, unsigned long private)
1661 {
1662 	struct folio *folio = page_folio(page);
1663 	struct migration_target_control *mtc;
1664 	gfp_t gfp_mask;
1665 	unsigned int order = 0;
1666 	struct folio *new_folio = NULL;
1667 	int nid;
1668 	int zidx;
1669 
1670 	mtc = (struct migration_target_control *)private;
1671 	gfp_mask = mtc->gfp_mask;
1672 	nid = mtc->nid;
1673 	if (nid == NUMA_NO_NODE)
1674 		nid = folio_nid(folio);
1675 
1676 	if (folio_test_hugetlb(folio)) {
1677 		struct hstate *h = folio_hstate(folio);
1678 
1679 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1680 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1681 	}
1682 
1683 	if (folio_test_large(folio)) {
1684 		/*
1685 		 * clear __GFP_RECLAIM to make the migration callback
1686 		 * consistent with regular THP allocations.
1687 		 */
1688 		gfp_mask &= ~__GFP_RECLAIM;
1689 		gfp_mask |= GFP_TRANSHUGE;
1690 		order = folio_order(folio);
1691 	}
1692 	zidx = zone_idx(folio_zone(folio));
1693 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1694 		gfp_mask |= __GFP_HIGHMEM;
1695 
1696 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1697 
1698 	return &new_folio->page;
1699 }
1700 
1701 #ifdef CONFIG_NUMA
1702 
1703 static int store_status(int __user *status, int start, int value, int nr)
1704 {
1705 	while (nr-- > 0) {
1706 		if (put_user(value, status + start))
1707 			return -EFAULT;
1708 		start++;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static int do_move_pages_to_node(struct mm_struct *mm,
1715 		struct list_head *pagelist, int node)
1716 {
1717 	int err;
1718 	struct migration_target_control mtc = {
1719 		.nid = node,
1720 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1721 	};
1722 
1723 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1724 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1725 	if (err)
1726 		putback_movable_pages(pagelist);
1727 	return err;
1728 }
1729 
1730 /*
1731  * Resolves the given address to a struct page, isolates it from the LRU and
1732  * puts it to the given pagelist.
1733  * Returns:
1734  *     errno - if the page cannot be found/isolated
1735  *     0 - when it doesn't have to be migrated because it is already on the
1736  *         target node
1737  *     1 - when it has been queued
1738  */
1739 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1740 		int node, struct list_head *pagelist, bool migrate_all)
1741 {
1742 	struct vm_area_struct *vma;
1743 	struct page *page;
1744 	int err;
1745 
1746 	mmap_read_lock(mm);
1747 	err = -EFAULT;
1748 	vma = vma_lookup(mm, addr);
1749 	if (!vma || !vma_migratable(vma))
1750 		goto out;
1751 
1752 	/* FOLL_DUMP to ignore special (like zero) pages */
1753 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1754 
1755 	err = PTR_ERR(page);
1756 	if (IS_ERR(page))
1757 		goto out;
1758 
1759 	err = -ENOENT;
1760 	if (!page)
1761 		goto out;
1762 
1763 	if (is_zone_device_page(page))
1764 		goto out_putpage;
1765 
1766 	err = 0;
1767 	if (page_to_nid(page) == node)
1768 		goto out_putpage;
1769 
1770 	err = -EACCES;
1771 	if (page_mapcount(page) > 1 && !migrate_all)
1772 		goto out_putpage;
1773 
1774 	if (PageHuge(page)) {
1775 		if (PageHead(page)) {
1776 			err = isolate_hugetlb(page, pagelist);
1777 			if (!err)
1778 				err = 1;
1779 		}
1780 	} else {
1781 		struct page *head;
1782 
1783 		head = compound_head(page);
1784 		err = isolate_lru_page(head);
1785 		if (err)
1786 			goto out_putpage;
1787 
1788 		err = 1;
1789 		list_add_tail(&head->lru, pagelist);
1790 		mod_node_page_state(page_pgdat(head),
1791 			NR_ISOLATED_ANON + page_is_file_lru(head),
1792 			thp_nr_pages(head));
1793 	}
1794 out_putpage:
1795 	/*
1796 	 * Either remove the duplicate refcount from
1797 	 * isolate_lru_page() or drop the page ref if it was
1798 	 * not isolated.
1799 	 */
1800 	put_page(page);
1801 out:
1802 	mmap_read_unlock(mm);
1803 	return err;
1804 }
1805 
1806 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1807 		struct list_head *pagelist, int __user *status,
1808 		int start, int i, unsigned long nr_pages)
1809 {
1810 	int err;
1811 
1812 	if (list_empty(pagelist))
1813 		return 0;
1814 
1815 	err = do_move_pages_to_node(mm, pagelist, node);
1816 	if (err) {
1817 		/*
1818 		 * Positive err means the number of failed
1819 		 * pages to migrate.  Since we are going to
1820 		 * abort and return the number of non-migrated
1821 		 * pages, so need to include the rest of the
1822 		 * nr_pages that have not been attempted as
1823 		 * well.
1824 		 */
1825 		if (err > 0)
1826 			err += nr_pages - i;
1827 		return err;
1828 	}
1829 	return store_status(status, start, node, i - start);
1830 }
1831 
1832 /*
1833  * Migrate an array of page address onto an array of nodes and fill
1834  * the corresponding array of status.
1835  */
1836 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1837 			 unsigned long nr_pages,
1838 			 const void __user * __user *pages,
1839 			 const int __user *nodes,
1840 			 int __user *status, int flags)
1841 {
1842 	int current_node = NUMA_NO_NODE;
1843 	LIST_HEAD(pagelist);
1844 	int start, i;
1845 	int err = 0, err1;
1846 
1847 	lru_cache_disable();
1848 
1849 	for (i = start = 0; i < nr_pages; i++) {
1850 		const void __user *p;
1851 		unsigned long addr;
1852 		int node;
1853 
1854 		err = -EFAULT;
1855 		if (get_user(p, pages + i))
1856 			goto out_flush;
1857 		if (get_user(node, nodes + i))
1858 			goto out_flush;
1859 		addr = (unsigned long)untagged_addr(p);
1860 
1861 		err = -ENODEV;
1862 		if (node < 0 || node >= MAX_NUMNODES)
1863 			goto out_flush;
1864 		if (!node_state(node, N_MEMORY))
1865 			goto out_flush;
1866 
1867 		err = -EACCES;
1868 		if (!node_isset(node, task_nodes))
1869 			goto out_flush;
1870 
1871 		if (current_node == NUMA_NO_NODE) {
1872 			current_node = node;
1873 			start = i;
1874 		} else if (node != current_node) {
1875 			err = move_pages_and_store_status(mm, current_node,
1876 					&pagelist, status, start, i, nr_pages);
1877 			if (err)
1878 				goto out;
1879 			start = i;
1880 			current_node = node;
1881 		}
1882 
1883 		/*
1884 		 * Errors in the page lookup or isolation are not fatal and we simply
1885 		 * report them via status
1886 		 */
1887 		err = add_page_for_migration(mm, addr, current_node,
1888 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1889 
1890 		if (err > 0) {
1891 			/* The page is successfully queued for migration */
1892 			continue;
1893 		}
1894 
1895 		/*
1896 		 * The move_pages() man page does not have an -EEXIST choice, so
1897 		 * use -EFAULT instead.
1898 		 */
1899 		if (err == -EEXIST)
1900 			err = -EFAULT;
1901 
1902 		/*
1903 		 * If the page is already on the target node (!err), store the
1904 		 * node, otherwise, store the err.
1905 		 */
1906 		err = store_status(status, i, err ? : current_node, 1);
1907 		if (err)
1908 			goto out_flush;
1909 
1910 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1911 				status, start, i, nr_pages);
1912 		if (err) {
1913 			/* We have accounted for page i */
1914 			if (err > 0)
1915 				err--;
1916 			goto out;
1917 		}
1918 		current_node = NUMA_NO_NODE;
1919 	}
1920 out_flush:
1921 	/* Make sure we do not overwrite the existing error */
1922 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1923 				status, start, i, nr_pages);
1924 	if (err >= 0)
1925 		err = err1;
1926 out:
1927 	lru_cache_enable();
1928 	return err;
1929 }
1930 
1931 /*
1932  * Determine the nodes of an array of pages and store it in an array of status.
1933  */
1934 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1935 				const void __user **pages, int *status)
1936 {
1937 	unsigned long i;
1938 
1939 	mmap_read_lock(mm);
1940 
1941 	for (i = 0; i < nr_pages; i++) {
1942 		unsigned long addr = (unsigned long)(*pages);
1943 		struct vm_area_struct *vma;
1944 		struct page *page;
1945 		int err = -EFAULT;
1946 
1947 		vma = vma_lookup(mm, addr);
1948 		if (!vma)
1949 			goto set_status;
1950 
1951 		/* FOLL_DUMP to ignore special (like zero) pages */
1952 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1953 
1954 		err = PTR_ERR(page);
1955 		if (IS_ERR(page))
1956 			goto set_status;
1957 
1958 		err = -ENOENT;
1959 		if (!page)
1960 			goto set_status;
1961 
1962 		if (!is_zone_device_page(page))
1963 			err = page_to_nid(page);
1964 
1965 		put_page(page);
1966 set_status:
1967 		*status = err;
1968 
1969 		pages++;
1970 		status++;
1971 	}
1972 
1973 	mmap_read_unlock(mm);
1974 }
1975 
1976 static int get_compat_pages_array(const void __user *chunk_pages[],
1977 				  const void __user * __user *pages,
1978 				  unsigned long chunk_nr)
1979 {
1980 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1981 	compat_uptr_t p;
1982 	int i;
1983 
1984 	for (i = 0; i < chunk_nr; i++) {
1985 		if (get_user(p, pages32 + i))
1986 			return -EFAULT;
1987 		chunk_pages[i] = compat_ptr(p);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Determine the nodes of a user array of pages and store it in
1995  * a user array of status.
1996  */
1997 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1998 			 const void __user * __user *pages,
1999 			 int __user *status)
2000 {
2001 #define DO_PAGES_STAT_CHUNK_NR 16UL
2002 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2003 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2004 
2005 	while (nr_pages) {
2006 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2007 
2008 		if (in_compat_syscall()) {
2009 			if (get_compat_pages_array(chunk_pages, pages,
2010 						   chunk_nr))
2011 				break;
2012 		} else {
2013 			if (copy_from_user(chunk_pages, pages,
2014 				      chunk_nr * sizeof(*chunk_pages)))
2015 				break;
2016 		}
2017 
2018 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2019 
2020 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2021 			break;
2022 
2023 		pages += chunk_nr;
2024 		status += chunk_nr;
2025 		nr_pages -= chunk_nr;
2026 	}
2027 	return nr_pages ? -EFAULT : 0;
2028 }
2029 
2030 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2031 {
2032 	struct task_struct *task;
2033 	struct mm_struct *mm;
2034 
2035 	/*
2036 	 * There is no need to check if current process has the right to modify
2037 	 * the specified process when they are same.
2038 	 */
2039 	if (!pid) {
2040 		mmget(current->mm);
2041 		*mem_nodes = cpuset_mems_allowed(current);
2042 		return current->mm;
2043 	}
2044 
2045 	/* Find the mm_struct */
2046 	rcu_read_lock();
2047 	task = find_task_by_vpid(pid);
2048 	if (!task) {
2049 		rcu_read_unlock();
2050 		return ERR_PTR(-ESRCH);
2051 	}
2052 	get_task_struct(task);
2053 
2054 	/*
2055 	 * Check if this process has the right to modify the specified
2056 	 * process. Use the regular "ptrace_may_access()" checks.
2057 	 */
2058 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2059 		rcu_read_unlock();
2060 		mm = ERR_PTR(-EPERM);
2061 		goto out;
2062 	}
2063 	rcu_read_unlock();
2064 
2065 	mm = ERR_PTR(security_task_movememory(task));
2066 	if (IS_ERR(mm))
2067 		goto out;
2068 	*mem_nodes = cpuset_mems_allowed(task);
2069 	mm = get_task_mm(task);
2070 out:
2071 	put_task_struct(task);
2072 	if (!mm)
2073 		mm = ERR_PTR(-EINVAL);
2074 	return mm;
2075 }
2076 
2077 /*
2078  * Move a list of pages in the address space of the currently executing
2079  * process.
2080  */
2081 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2082 			     const void __user * __user *pages,
2083 			     const int __user *nodes,
2084 			     int __user *status, int flags)
2085 {
2086 	struct mm_struct *mm;
2087 	int err;
2088 	nodemask_t task_nodes;
2089 
2090 	/* Check flags */
2091 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2092 		return -EINVAL;
2093 
2094 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2095 		return -EPERM;
2096 
2097 	mm = find_mm_struct(pid, &task_nodes);
2098 	if (IS_ERR(mm))
2099 		return PTR_ERR(mm);
2100 
2101 	if (nodes)
2102 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2103 				    nodes, status, flags);
2104 	else
2105 		err = do_pages_stat(mm, nr_pages, pages, status);
2106 
2107 	mmput(mm);
2108 	return err;
2109 }
2110 
2111 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2112 		const void __user * __user *, pages,
2113 		const int __user *, nodes,
2114 		int __user *, status, int, flags)
2115 {
2116 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2117 }
2118 
2119 #ifdef CONFIG_NUMA_BALANCING
2120 /*
2121  * Returns true if this is a safe migration target node for misplaced NUMA
2122  * pages. Currently it only checks the watermarks which is crude.
2123  */
2124 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2125 				   unsigned long nr_migrate_pages)
2126 {
2127 	int z;
2128 
2129 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2130 		struct zone *zone = pgdat->node_zones + z;
2131 
2132 		if (!managed_zone(zone))
2133 			continue;
2134 
2135 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2136 		if (!zone_watermark_ok(zone, 0,
2137 				       high_wmark_pages(zone) +
2138 				       nr_migrate_pages,
2139 				       ZONE_MOVABLE, 0))
2140 			continue;
2141 		return true;
2142 	}
2143 	return false;
2144 }
2145 
2146 static struct page *alloc_misplaced_dst_page(struct page *page,
2147 					   unsigned long data)
2148 {
2149 	int nid = (int) data;
2150 	int order = compound_order(page);
2151 	gfp_t gfp = __GFP_THISNODE;
2152 	struct folio *new;
2153 
2154 	if (order > 0)
2155 		gfp |= GFP_TRANSHUGE_LIGHT;
2156 	else {
2157 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2158 			__GFP_NOWARN;
2159 		gfp &= ~__GFP_RECLAIM;
2160 	}
2161 	new = __folio_alloc_node(gfp, order, nid);
2162 
2163 	return &new->page;
2164 }
2165 
2166 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2167 {
2168 	int nr_pages = thp_nr_pages(page);
2169 	int order = compound_order(page);
2170 
2171 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2172 
2173 	/* Do not migrate THP mapped by multiple processes */
2174 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2175 		return 0;
2176 
2177 	/* Avoid migrating to a node that is nearly full */
2178 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2179 		int z;
2180 
2181 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2182 			return 0;
2183 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2184 			if (managed_zone(pgdat->node_zones + z))
2185 				break;
2186 		}
2187 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2188 		return 0;
2189 	}
2190 
2191 	if (isolate_lru_page(page))
2192 		return 0;
2193 
2194 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2195 			    nr_pages);
2196 
2197 	/*
2198 	 * Isolating the page has taken another reference, so the
2199 	 * caller's reference can be safely dropped without the page
2200 	 * disappearing underneath us during migration.
2201 	 */
2202 	put_page(page);
2203 	return 1;
2204 }
2205 
2206 /*
2207  * Attempt to migrate a misplaced page to the specified destination
2208  * node. Caller is expected to have an elevated reference count on
2209  * the page that will be dropped by this function before returning.
2210  */
2211 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2212 			   int node)
2213 {
2214 	pg_data_t *pgdat = NODE_DATA(node);
2215 	int isolated;
2216 	int nr_remaining;
2217 	unsigned int nr_succeeded;
2218 	LIST_HEAD(migratepages);
2219 	int nr_pages = thp_nr_pages(page);
2220 
2221 	/*
2222 	 * Don't migrate file pages that are mapped in multiple processes
2223 	 * with execute permissions as they are probably shared libraries.
2224 	 */
2225 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2226 	    (vma->vm_flags & VM_EXEC))
2227 		goto out;
2228 
2229 	/*
2230 	 * Also do not migrate dirty pages as not all filesystems can move
2231 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2232 	 */
2233 	if (page_is_file_lru(page) && PageDirty(page))
2234 		goto out;
2235 
2236 	isolated = numamigrate_isolate_page(pgdat, page);
2237 	if (!isolated)
2238 		goto out;
2239 
2240 	list_add(&page->lru, &migratepages);
2241 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2242 				     NULL, node, MIGRATE_ASYNC,
2243 				     MR_NUMA_MISPLACED, &nr_succeeded);
2244 	if (nr_remaining) {
2245 		if (!list_empty(&migratepages)) {
2246 			list_del(&page->lru);
2247 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2248 					page_is_file_lru(page), -nr_pages);
2249 			putback_lru_page(page);
2250 		}
2251 		isolated = 0;
2252 	}
2253 	if (nr_succeeded) {
2254 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2255 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2256 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2257 					    nr_succeeded);
2258 	}
2259 	BUG_ON(!list_empty(&migratepages));
2260 	return isolated;
2261 
2262 out:
2263 	put_page(page);
2264 	return 0;
2265 }
2266 #endif /* CONFIG_NUMA_BALANCING */
2267 #endif /* CONFIG_NUMA */
2268