1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 #include <linux/memory-tiers.h> 54 55 #include <asm/tlbflush.h> 56 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 if (unlikely(PageSlab(page))) 78 goto out_putpage; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__PageMovable(page))) 87 goto out_putpage; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(PageSlab(page))) 91 goto out_putpage; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!trylock_page(page))) 105 goto out_putpage; 106 107 if (!PageMovable(page) || PageIsolated(page)) 108 goto out_no_isolated; 109 110 mops = page_movable_ops(page); 111 VM_BUG_ON_PAGE(!mops, page); 112 113 if (!mops->isolate_page(page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(PageIsolated(page)); 118 SetPageIsolated(page); 119 unlock_page(page); 120 121 return 0; 122 123 out_no_isolated: 124 unlock_page(page); 125 out_putpage: 126 put_page(page); 127 out: 128 return -EBUSY; 129 } 130 131 static void putback_movable_page(struct page *page) 132 { 133 const struct movable_operations *mops = page_movable_ops(page); 134 135 mops->putback_page(page); 136 ClearPageIsolated(page); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct page *page; 150 struct page *page2; 151 152 list_for_each_entry_safe(page, page2, l, lru) { 153 if (unlikely(PageHuge(page))) { 154 putback_active_hugepage(page); 155 continue; 156 } 157 list_del(&page->lru); 158 /* 159 * We isolated non-lru movable page so here we can use 160 * __PageMovable because LRU page's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__PageMovable(page))) { 164 VM_BUG_ON_PAGE(!PageIsolated(page), page); 165 lock_page(page); 166 if (PageMovable(page)) 167 putback_movable_page(page); 168 else 169 ClearPageIsolated(page); 170 unlock_page(page); 171 put_page(page); 172 } else { 173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 174 page_is_file_lru(page), -thp_nr_pages(page)); 175 putback_lru_page(page); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t pte; 191 swp_entry_t entry; 192 struct page *new; 193 unsigned long idx = 0; 194 195 /* pgoff is invalid for ksm pages, but they are never large */ 196 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 197 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 198 new = folio_page(folio, idx); 199 200 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 201 /* PMD-mapped THP migration entry */ 202 if (!pvmw.pte) { 203 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 204 !folio_test_pmd_mappable(folio), folio); 205 remove_migration_pmd(&pvmw, new); 206 continue; 207 } 208 #endif 209 210 folio_get(folio); 211 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 212 if (pte_swp_soft_dirty(*pvmw.pte)) 213 pte = pte_mksoft_dirty(pte); 214 215 /* 216 * Recheck VMA as permissions can change since migration started 217 */ 218 entry = pte_to_swp_entry(*pvmw.pte); 219 if (!is_migration_entry_young(entry)) 220 pte = pte_mkold(pte); 221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 222 pte = pte_mkdirty(pte); 223 if (is_writable_migration_entry(entry)) 224 pte = maybe_mkwrite(pte, vma); 225 else if (pte_swp_uffd_wp(*pvmw.pte)) 226 pte = pte_mkuffd_wp(pte); 227 228 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 229 rmap_flags |= RMAP_EXCLUSIVE; 230 231 if (unlikely(is_device_private_page(new))) { 232 if (pte_write(pte)) 233 entry = make_writable_device_private_entry( 234 page_to_pfn(new)); 235 else 236 entry = make_readable_device_private_entry( 237 page_to_pfn(new)); 238 pte = swp_entry_to_pte(entry); 239 if (pte_swp_soft_dirty(*pvmw.pte)) 240 pte = pte_swp_mksoft_dirty(pte); 241 if (pte_swp_uffd_wp(*pvmw.pte)) 242 pte = pte_swp_mkuffd_wp(pte); 243 } 244 245 #ifdef CONFIG_HUGETLB_PAGE 246 if (folio_test_hugetlb(folio)) { 247 unsigned int shift = huge_page_shift(hstate_vma(vma)); 248 249 pte = pte_mkhuge(pte); 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugepage_add_anon_rmap(new, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_dup_file_rmap(new, true); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 257 } else 258 #endif 259 { 260 if (folio_test_anon(folio)) 261 page_add_anon_rmap(new, vma, pvmw.address, 262 rmap_flags); 263 else 264 page_add_file_rmap(new, vma, false); 265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 266 } 267 if (vma->vm_flags & VM_LOCKED) 268 mlock_page_drain_local(); 269 270 trace_remove_migration_pte(pvmw.address, pte_val(pte), 271 compound_order(new)); 272 273 /* No need to invalidate - it was non-present before */ 274 update_mmu_cache(vma, pvmw.address, pvmw.pte); 275 } 276 277 return true; 278 } 279 280 /* 281 * Get rid of all migration entries and replace them by 282 * references to the indicated page. 283 */ 284 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 285 { 286 struct rmap_walk_control rwc = { 287 .rmap_one = remove_migration_pte, 288 .arg = src, 289 }; 290 291 if (locked) 292 rmap_walk_locked(dst, &rwc); 293 else 294 rmap_walk(dst, &rwc); 295 } 296 297 /* 298 * Something used the pte of a page under migration. We need to 299 * get to the page and wait until migration is finished. 300 * When we return from this function the fault will be retried. 301 */ 302 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 303 spinlock_t *ptl) 304 { 305 pte_t pte; 306 swp_entry_t entry; 307 308 spin_lock(ptl); 309 pte = *ptep; 310 if (!is_swap_pte(pte)) 311 goto out; 312 313 entry = pte_to_swp_entry(pte); 314 if (!is_migration_entry(entry)) 315 goto out; 316 317 migration_entry_wait_on_locked(entry, ptep, ptl); 318 return; 319 out: 320 pte_unmap_unlock(ptep, ptl); 321 } 322 323 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 324 unsigned long address) 325 { 326 spinlock_t *ptl = pte_lockptr(mm, pmd); 327 pte_t *ptep = pte_offset_map(pmd, address); 328 __migration_entry_wait(mm, ptep, ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 /* 333 * The vma read lock must be held upon entry. Holding that lock prevents either 334 * the pte or the ptl from being freed. 335 * 336 * This function will release the vma lock before returning. 337 */ 338 void __migration_entry_wait_huge(struct vm_area_struct *vma, 339 pte_t *ptep, spinlock_t *ptl) 340 { 341 pte_t pte; 342 343 hugetlb_vma_assert_locked(vma); 344 spin_lock(ptl); 345 pte = huge_ptep_get(ptep); 346 347 if (unlikely(!is_hugetlb_entry_migration(pte))) { 348 spin_unlock(ptl); 349 hugetlb_vma_unlock_read(vma); 350 } else { 351 /* 352 * If migration entry existed, safe to release vma lock 353 * here because the pgtable page won't be freed without the 354 * pgtable lock released. See comment right above pgtable 355 * lock release in migration_entry_wait_on_locked(). 356 */ 357 hugetlb_vma_unlock_read(vma); 358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 359 } 360 } 361 362 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 363 { 364 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 365 366 __migration_entry_wait_huge(vma, pte, ptl); 367 } 368 #endif 369 370 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 371 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 372 { 373 spinlock_t *ptl; 374 375 ptl = pmd_lock(mm, pmd); 376 if (!is_pmd_migration_entry(*pmd)) 377 goto unlock; 378 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 379 return; 380 unlock: 381 spin_unlock(ptl); 382 } 383 #endif 384 385 static int folio_expected_refs(struct address_space *mapping, 386 struct folio *folio) 387 { 388 int refs = 1; 389 if (!mapping) 390 return refs; 391 392 refs += folio_nr_pages(folio); 393 if (folio_test_private(folio)) 394 refs++; 395 396 return refs; 397 } 398 399 /* 400 * Replace the page in the mapping. 401 * 402 * The number of remaining references must be: 403 * 1 for anonymous pages without a mapping 404 * 2 for pages with a mapping 405 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 406 */ 407 int folio_migrate_mapping(struct address_space *mapping, 408 struct folio *newfolio, struct folio *folio, int extra_count) 409 { 410 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 411 struct zone *oldzone, *newzone; 412 int dirty; 413 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 414 long nr = folio_nr_pages(folio); 415 416 if (!mapping) { 417 /* Anonymous page without mapping */ 418 if (folio_ref_count(folio) != expected_count) 419 return -EAGAIN; 420 421 /* No turning back from here */ 422 newfolio->index = folio->index; 423 newfolio->mapping = folio->mapping; 424 if (folio_test_swapbacked(folio)) 425 __folio_set_swapbacked(newfolio); 426 427 return MIGRATEPAGE_SUCCESS; 428 } 429 430 oldzone = folio_zone(folio); 431 newzone = folio_zone(newfolio); 432 433 xas_lock_irq(&xas); 434 if (!folio_ref_freeze(folio, expected_count)) { 435 xas_unlock_irq(&xas); 436 return -EAGAIN; 437 } 438 439 /* 440 * Now we know that no one else is looking at the folio: 441 * no turning back from here. 442 */ 443 newfolio->index = folio->index; 444 newfolio->mapping = folio->mapping; 445 folio_ref_add(newfolio, nr); /* add cache reference */ 446 if (folio_test_swapbacked(folio)) { 447 __folio_set_swapbacked(newfolio); 448 if (folio_test_swapcache(folio)) { 449 folio_set_swapcache(newfolio); 450 newfolio->private = folio_get_private(folio); 451 } 452 } else { 453 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 454 } 455 456 /* Move dirty while page refs frozen and newpage not yet exposed */ 457 dirty = folio_test_dirty(folio); 458 if (dirty) { 459 folio_clear_dirty(folio); 460 folio_set_dirty(newfolio); 461 } 462 463 xas_store(&xas, newfolio); 464 465 /* 466 * Drop cache reference from old page by unfreezing 467 * to one less reference. 468 * We know this isn't the last reference. 469 */ 470 folio_ref_unfreeze(folio, expected_count - nr); 471 472 xas_unlock(&xas); 473 /* Leave irq disabled to prevent preemption while updating stats */ 474 475 /* 476 * If moved to a different zone then also account 477 * the page for that zone. Other VM counters will be 478 * taken care of when we establish references to the 479 * new page and drop references to the old page. 480 * 481 * Note that anonymous pages are accounted for 482 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 483 * are mapped to swap space. 484 */ 485 if (newzone != oldzone) { 486 struct lruvec *old_lruvec, *new_lruvec; 487 struct mem_cgroup *memcg; 488 489 memcg = folio_memcg(folio); 490 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 491 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 492 493 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 494 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 495 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 496 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 497 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 498 } 499 #ifdef CONFIG_SWAP 500 if (folio_test_swapcache(folio)) { 501 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 502 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 503 } 504 #endif 505 if (dirty && mapping_can_writeback(mapping)) { 506 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 507 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 508 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 509 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 510 } 511 } 512 local_irq_enable(); 513 514 return MIGRATEPAGE_SUCCESS; 515 } 516 EXPORT_SYMBOL(folio_migrate_mapping); 517 518 /* 519 * The expected number of remaining references is the same as that 520 * of folio_migrate_mapping(). 521 */ 522 int migrate_huge_page_move_mapping(struct address_space *mapping, 523 struct folio *dst, struct folio *src) 524 { 525 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 526 int expected_count; 527 528 xas_lock_irq(&xas); 529 expected_count = 2 + folio_has_private(src); 530 if (!folio_ref_freeze(src, expected_count)) { 531 xas_unlock_irq(&xas); 532 return -EAGAIN; 533 } 534 535 dst->index = src->index; 536 dst->mapping = src->mapping; 537 538 folio_get(dst); 539 540 xas_store(&xas, dst); 541 542 folio_ref_unfreeze(src, expected_count - 1); 543 544 xas_unlock_irq(&xas); 545 546 return MIGRATEPAGE_SUCCESS; 547 } 548 549 /* 550 * Copy the flags and some other ancillary information 551 */ 552 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 553 { 554 int cpupid; 555 556 if (folio_test_error(folio)) 557 folio_set_error(newfolio); 558 if (folio_test_referenced(folio)) 559 folio_set_referenced(newfolio); 560 if (folio_test_uptodate(folio)) 561 folio_mark_uptodate(newfolio); 562 if (folio_test_clear_active(folio)) { 563 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 564 folio_set_active(newfolio); 565 } else if (folio_test_clear_unevictable(folio)) 566 folio_set_unevictable(newfolio); 567 if (folio_test_workingset(folio)) 568 folio_set_workingset(newfolio); 569 if (folio_test_checked(folio)) 570 folio_set_checked(newfolio); 571 /* 572 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 573 * migration entries. We can still have PG_anon_exclusive set on an 574 * effectively unmapped and unreferenced first sub-pages of an 575 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 576 */ 577 if (folio_test_mappedtodisk(folio)) 578 folio_set_mappedtodisk(newfolio); 579 580 /* Move dirty on pages not done by folio_migrate_mapping() */ 581 if (folio_test_dirty(folio)) 582 folio_set_dirty(newfolio); 583 584 if (folio_test_young(folio)) 585 folio_set_young(newfolio); 586 if (folio_test_idle(folio)) 587 folio_set_idle(newfolio); 588 589 /* 590 * Copy NUMA information to the new page, to prevent over-eager 591 * future migrations of this same page. 592 */ 593 cpupid = page_cpupid_xchg_last(&folio->page, -1); 594 /* 595 * For memory tiering mode, when migrate between slow and fast 596 * memory node, reset cpupid, because that is used to record 597 * page access time in slow memory node. 598 */ 599 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 600 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 601 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 602 603 if (f_toptier != t_toptier) 604 cpupid = -1; 605 } 606 page_cpupid_xchg_last(&newfolio->page, cpupid); 607 608 folio_migrate_ksm(newfolio, folio); 609 /* 610 * Please do not reorder this without considering how mm/ksm.c's 611 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 612 */ 613 if (folio_test_swapcache(folio)) 614 folio_clear_swapcache(folio); 615 folio_clear_private(folio); 616 617 /* page->private contains hugetlb specific flags */ 618 if (!folio_test_hugetlb(folio)) 619 folio->private = NULL; 620 621 /* 622 * If any waiters have accumulated on the new page then 623 * wake them up. 624 */ 625 if (folio_test_writeback(newfolio)) 626 folio_end_writeback(newfolio); 627 628 /* 629 * PG_readahead shares the same bit with PG_reclaim. The above 630 * end_page_writeback() may clear PG_readahead mistakenly, so set the 631 * bit after that. 632 */ 633 if (folio_test_readahead(folio)) 634 folio_set_readahead(newfolio); 635 636 folio_copy_owner(newfolio, folio); 637 638 if (!folio_test_hugetlb(folio)) 639 mem_cgroup_migrate(folio, newfolio); 640 } 641 EXPORT_SYMBOL(folio_migrate_flags); 642 643 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 644 { 645 folio_copy(newfolio, folio); 646 folio_migrate_flags(newfolio, folio); 647 } 648 EXPORT_SYMBOL(folio_migrate_copy); 649 650 /************************************************************ 651 * Migration functions 652 ***********************************************************/ 653 654 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 655 struct folio *src, enum migrate_mode mode, int extra_count) 656 { 657 int rc; 658 659 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 660 661 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 662 663 if (rc != MIGRATEPAGE_SUCCESS) 664 return rc; 665 666 if (mode != MIGRATE_SYNC_NO_COPY) 667 folio_migrate_copy(dst, src); 668 else 669 folio_migrate_flags(dst, src); 670 return MIGRATEPAGE_SUCCESS; 671 } 672 673 /** 674 * migrate_folio() - Simple folio migration. 675 * @mapping: The address_space containing the folio. 676 * @dst: The folio to migrate the data to. 677 * @src: The folio containing the current data. 678 * @mode: How to migrate the page. 679 * 680 * Common logic to directly migrate a single LRU folio suitable for 681 * folios that do not use PagePrivate/PagePrivate2. 682 * 683 * Folios are locked upon entry and exit. 684 */ 685 int migrate_folio(struct address_space *mapping, struct folio *dst, 686 struct folio *src, enum migrate_mode mode) 687 { 688 return migrate_folio_extra(mapping, dst, src, mode, 0); 689 } 690 EXPORT_SYMBOL(migrate_folio); 691 692 #ifdef CONFIG_BLOCK 693 /* Returns true if all buffers are successfully locked */ 694 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 695 enum migrate_mode mode) 696 { 697 struct buffer_head *bh = head; 698 699 /* Simple case, sync compaction */ 700 if (mode != MIGRATE_ASYNC) { 701 do { 702 lock_buffer(bh); 703 bh = bh->b_this_page; 704 705 } while (bh != head); 706 707 return true; 708 } 709 710 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 711 do { 712 if (!trylock_buffer(bh)) { 713 /* 714 * We failed to lock the buffer and cannot stall in 715 * async migration. Release the taken locks 716 */ 717 struct buffer_head *failed_bh = bh; 718 bh = head; 719 while (bh != failed_bh) { 720 unlock_buffer(bh); 721 bh = bh->b_this_page; 722 } 723 return false; 724 } 725 726 bh = bh->b_this_page; 727 } while (bh != head); 728 return true; 729 } 730 731 static int __buffer_migrate_folio(struct address_space *mapping, 732 struct folio *dst, struct folio *src, enum migrate_mode mode, 733 bool check_refs) 734 { 735 struct buffer_head *bh, *head; 736 int rc; 737 int expected_count; 738 739 head = folio_buffers(src); 740 if (!head) 741 return migrate_folio(mapping, dst, src, mode); 742 743 /* Check whether page does not have extra refs before we do more work */ 744 expected_count = folio_expected_refs(mapping, src); 745 if (folio_ref_count(src) != expected_count) 746 return -EAGAIN; 747 748 if (!buffer_migrate_lock_buffers(head, mode)) 749 return -EAGAIN; 750 751 if (check_refs) { 752 bool busy; 753 bool invalidated = false; 754 755 recheck_buffers: 756 busy = false; 757 spin_lock(&mapping->private_lock); 758 bh = head; 759 do { 760 if (atomic_read(&bh->b_count)) { 761 busy = true; 762 break; 763 } 764 bh = bh->b_this_page; 765 } while (bh != head); 766 if (busy) { 767 if (invalidated) { 768 rc = -EAGAIN; 769 goto unlock_buffers; 770 } 771 spin_unlock(&mapping->private_lock); 772 invalidate_bh_lrus(); 773 invalidated = true; 774 goto recheck_buffers; 775 } 776 } 777 778 rc = folio_migrate_mapping(mapping, dst, src, 0); 779 if (rc != MIGRATEPAGE_SUCCESS) 780 goto unlock_buffers; 781 782 folio_attach_private(dst, folio_detach_private(src)); 783 784 bh = head; 785 do { 786 set_bh_page(bh, &dst->page, bh_offset(bh)); 787 bh = bh->b_this_page; 788 } while (bh != head); 789 790 if (mode != MIGRATE_SYNC_NO_COPY) 791 folio_migrate_copy(dst, src); 792 else 793 folio_migrate_flags(dst, src); 794 795 rc = MIGRATEPAGE_SUCCESS; 796 unlock_buffers: 797 if (check_refs) 798 spin_unlock(&mapping->private_lock); 799 bh = head; 800 do { 801 unlock_buffer(bh); 802 bh = bh->b_this_page; 803 } while (bh != head); 804 805 return rc; 806 } 807 808 /** 809 * buffer_migrate_folio() - Migration function for folios with buffers. 810 * @mapping: The address space containing @src. 811 * @dst: The folio to migrate to. 812 * @src: The folio to migrate from. 813 * @mode: How to migrate the folio. 814 * 815 * This function can only be used if the underlying filesystem guarantees 816 * that no other references to @src exist. For example attached buffer 817 * heads are accessed only under the folio lock. If your filesystem cannot 818 * provide this guarantee, buffer_migrate_folio_norefs() may be more 819 * appropriate. 820 * 821 * Return: 0 on success or a negative errno on failure. 822 */ 823 int buffer_migrate_folio(struct address_space *mapping, 824 struct folio *dst, struct folio *src, enum migrate_mode mode) 825 { 826 return __buffer_migrate_folio(mapping, dst, src, mode, false); 827 } 828 EXPORT_SYMBOL(buffer_migrate_folio); 829 830 /** 831 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 832 * @mapping: The address space containing @src. 833 * @dst: The folio to migrate to. 834 * @src: The folio to migrate from. 835 * @mode: How to migrate the folio. 836 * 837 * Like buffer_migrate_folio() except that this variant is more careful 838 * and checks that there are also no buffer head references. This function 839 * is the right one for mappings where buffer heads are directly looked 840 * up and referenced (such as block device mappings). 841 * 842 * Return: 0 on success or a negative errno on failure. 843 */ 844 int buffer_migrate_folio_norefs(struct address_space *mapping, 845 struct folio *dst, struct folio *src, enum migrate_mode mode) 846 { 847 return __buffer_migrate_folio(mapping, dst, src, mode, true); 848 } 849 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 850 #endif 851 852 int filemap_migrate_folio(struct address_space *mapping, 853 struct folio *dst, struct folio *src, enum migrate_mode mode) 854 { 855 int ret; 856 857 ret = folio_migrate_mapping(mapping, dst, src, 0); 858 if (ret != MIGRATEPAGE_SUCCESS) 859 return ret; 860 861 if (folio_get_private(src)) 862 folio_attach_private(dst, folio_detach_private(src)); 863 864 if (mode != MIGRATE_SYNC_NO_COPY) 865 folio_migrate_copy(dst, src); 866 else 867 folio_migrate_flags(dst, src); 868 return MIGRATEPAGE_SUCCESS; 869 } 870 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 871 872 /* 873 * Writeback a folio to clean the dirty state 874 */ 875 static int writeout(struct address_space *mapping, struct folio *folio) 876 { 877 struct writeback_control wbc = { 878 .sync_mode = WB_SYNC_NONE, 879 .nr_to_write = 1, 880 .range_start = 0, 881 .range_end = LLONG_MAX, 882 .for_reclaim = 1 883 }; 884 int rc; 885 886 if (!mapping->a_ops->writepage) 887 /* No write method for the address space */ 888 return -EINVAL; 889 890 if (!folio_clear_dirty_for_io(folio)) 891 /* Someone else already triggered a write */ 892 return -EAGAIN; 893 894 /* 895 * A dirty folio may imply that the underlying filesystem has 896 * the folio on some queue. So the folio must be clean for 897 * migration. Writeout may mean we lose the lock and the 898 * folio state is no longer what we checked for earlier. 899 * At this point we know that the migration attempt cannot 900 * be successful. 901 */ 902 remove_migration_ptes(folio, folio, false); 903 904 rc = mapping->a_ops->writepage(&folio->page, &wbc); 905 906 if (rc != AOP_WRITEPAGE_ACTIVATE) 907 /* unlocked. Relock */ 908 folio_lock(folio); 909 910 return (rc < 0) ? -EIO : -EAGAIN; 911 } 912 913 /* 914 * Default handling if a filesystem does not provide a migration function. 915 */ 916 static int fallback_migrate_folio(struct address_space *mapping, 917 struct folio *dst, struct folio *src, enum migrate_mode mode) 918 { 919 if (folio_test_dirty(src)) { 920 /* Only writeback folios in full synchronous migration */ 921 switch (mode) { 922 case MIGRATE_SYNC: 923 case MIGRATE_SYNC_NO_COPY: 924 break; 925 default: 926 return -EBUSY; 927 } 928 return writeout(mapping, src); 929 } 930 931 /* 932 * Buffers may be managed in a filesystem specific way. 933 * We must have no buffers or drop them. 934 */ 935 if (folio_test_private(src) && 936 !filemap_release_folio(src, GFP_KERNEL)) 937 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 938 939 return migrate_folio(mapping, dst, src, mode); 940 } 941 942 /* 943 * Move a page to a newly allocated page 944 * The page is locked and all ptes have been successfully removed. 945 * 946 * The new page will have replaced the old page if this function 947 * is successful. 948 * 949 * Return value: 950 * < 0 - error code 951 * MIGRATEPAGE_SUCCESS - success 952 */ 953 static int move_to_new_folio(struct folio *dst, struct folio *src, 954 enum migrate_mode mode) 955 { 956 int rc = -EAGAIN; 957 bool is_lru = !__PageMovable(&src->page); 958 959 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 960 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 961 962 if (likely(is_lru)) { 963 struct address_space *mapping = folio_mapping(src); 964 965 if (!mapping) 966 rc = migrate_folio(mapping, dst, src, mode); 967 else if (mapping->a_ops->migrate_folio) 968 /* 969 * Most folios have a mapping and most filesystems 970 * provide a migrate_folio callback. Anonymous folios 971 * are part of swap space which also has its own 972 * migrate_folio callback. This is the most common path 973 * for page migration. 974 */ 975 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 976 mode); 977 else 978 rc = fallback_migrate_folio(mapping, dst, src, mode); 979 } else { 980 const struct movable_operations *mops; 981 982 /* 983 * In case of non-lru page, it could be released after 984 * isolation step. In that case, we shouldn't try migration. 985 */ 986 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 987 if (!folio_test_movable(src)) { 988 rc = MIGRATEPAGE_SUCCESS; 989 folio_clear_isolated(src); 990 goto out; 991 } 992 993 mops = page_movable_ops(&src->page); 994 rc = mops->migrate_page(&dst->page, &src->page, mode); 995 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 996 !folio_test_isolated(src)); 997 } 998 999 /* 1000 * When successful, old pagecache src->mapping must be cleared before 1001 * src is freed; but stats require that PageAnon be left as PageAnon. 1002 */ 1003 if (rc == MIGRATEPAGE_SUCCESS) { 1004 if (__PageMovable(&src->page)) { 1005 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1006 1007 /* 1008 * We clear PG_movable under page_lock so any compactor 1009 * cannot try to migrate this page. 1010 */ 1011 folio_clear_isolated(src); 1012 } 1013 1014 /* 1015 * Anonymous and movable src->mapping will be cleared by 1016 * free_pages_prepare so don't reset it here for keeping 1017 * the type to work PageAnon, for example. 1018 */ 1019 if (!folio_mapping_flags(src)) 1020 src->mapping = NULL; 1021 1022 if (likely(!folio_is_zone_device(dst))) 1023 flush_dcache_folio(dst); 1024 } 1025 out: 1026 return rc; 1027 } 1028 1029 static int __unmap_and_move(struct folio *src, struct folio *dst, 1030 int force, enum migrate_mode mode) 1031 { 1032 int rc = -EAGAIN; 1033 bool page_was_mapped = false; 1034 struct anon_vma *anon_vma = NULL; 1035 bool is_lru = !__PageMovable(&src->page); 1036 1037 if (!folio_trylock(src)) { 1038 if (!force || mode == MIGRATE_ASYNC) 1039 goto out; 1040 1041 /* 1042 * It's not safe for direct compaction to call lock_page. 1043 * For example, during page readahead pages are added locked 1044 * to the LRU. Later, when the IO completes the pages are 1045 * marked uptodate and unlocked. However, the queueing 1046 * could be merging multiple pages for one bio (e.g. 1047 * mpage_readahead). If an allocation happens for the 1048 * second or third page, the process can end up locking 1049 * the same page twice and deadlocking. Rather than 1050 * trying to be clever about what pages can be locked, 1051 * avoid the use of lock_page for direct compaction 1052 * altogether. 1053 */ 1054 if (current->flags & PF_MEMALLOC) 1055 goto out; 1056 1057 folio_lock(src); 1058 } 1059 1060 if (folio_test_writeback(src)) { 1061 /* 1062 * Only in the case of a full synchronous migration is it 1063 * necessary to wait for PageWriteback. In the async case, 1064 * the retry loop is too short and in the sync-light case, 1065 * the overhead of stalling is too much 1066 */ 1067 switch (mode) { 1068 case MIGRATE_SYNC: 1069 case MIGRATE_SYNC_NO_COPY: 1070 break; 1071 default: 1072 rc = -EBUSY; 1073 goto out_unlock; 1074 } 1075 if (!force) 1076 goto out_unlock; 1077 folio_wait_writeback(src); 1078 } 1079 1080 /* 1081 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1082 * we cannot notice that anon_vma is freed while we migrate a page. 1083 * This get_anon_vma() delays freeing anon_vma pointer until the end 1084 * of migration. File cache pages are no problem because of page_lock() 1085 * File Caches may use write_page() or lock_page() in migration, then, 1086 * just care Anon page here. 1087 * 1088 * Only folio_get_anon_vma() understands the subtleties of 1089 * getting a hold on an anon_vma from outside one of its mms. 1090 * But if we cannot get anon_vma, then we won't need it anyway, 1091 * because that implies that the anon page is no longer mapped 1092 * (and cannot be remapped so long as we hold the page lock). 1093 */ 1094 if (folio_test_anon(src) && !folio_test_ksm(src)) 1095 anon_vma = folio_get_anon_vma(src); 1096 1097 /* 1098 * Block others from accessing the new page when we get around to 1099 * establishing additional references. We are usually the only one 1100 * holding a reference to dst at this point. We used to have a BUG 1101 * here if folio_trylock(dst) fails, but would like to allow for 1102 * cases where there might be a race with the previous use of dst. 1103 * This is much like races on refcount of oldpage: just don't BUG(). 1104 */ 1105 if (unlikely(!folio_trylock(dst))) 1106 goto out_unlock; 1107 1108 if (unlikely(!is_lru)) { 1109 rc = move_to_new_folio(dst, src, mode); 1110 goto out_unlock_both; 1111 } 1112 1113 /* 1114 * Corner case handling: 1115 * 1. When a new swap-cache page is read into, it is added to the LRU 1116 * and treated as swapcache but it has no rmap yet. 1117 * Calling try_to_unmap() against a src->mapping==NULL page will 1118 * trigger a BUG. So handle it here. 1119 * 2. An orphaned page (see truncate_cleanup_page) might have 1120 * fs-private metadata. The page can be picked up due to memory 1121 * offlining. Everywhere else except page reclaim, the page is 1122 * invisible to the vm, so the page can not be migrated. So try to 1123 * free the metadata, so the page can be freed. 1124 */ 1125 if (!src->mapping) { 1126 if (folio_test_private(src)) { 1127 try_to_free_buffers(src); 1128 goto out_unlock_both; 1129 } 1130 } else if (folio_mapped(src)) { 1131 /* Establish migration ptes */ 1132 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1133 !folio_test_ksm(src) && !anon_vma, src); 1134 try_to_migrate(src, 0); 1135 page_was_mapped = true; 1136 } 1137 1138 if (!folio_mapped(src)) 1139 rc = move_to_new_folio(dst, src, mode); 1140 1141 /* 1142 * When successful, push dst to LRU immediately: so that if it 1143 * turns out to be an mlocked page, remove_migration_ptes() will 1144 * automatically build up the correct dst->mlock_count for it. 1145 * 1146 * We would like to do something similar for the old page, when 1147 * unsuccessful, and other cases when a page has been temporarily 1148 * isolated from the unevictable LRU: but this case is the easiest. 1149 */ 1150 if (rc == MIGRATEPAGE_SUCCESS) { 1151 folio_add_lru(dst); 1152 if (page_was_mapped) 1153 lru_add_drain(); 1154 } 1155 1156 if (page_was_mapped) 1157 remove_migration_ptes(src, 1158 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1159 1160 out_unlock_both: 1161 folio_unlock(dst); 1162 out_unlock: 1163 /* Drop an anon_vma reference if we took one */ 1164 if (anon_vma) 1165 put_anon_vma(anon_vma); 1166 folio_unlock(src); 1167 out: 1168 /* 1169 * If migration is successful, decrease refcount of dst, 1170 * which will not free the page because new page owner increased 1171 * refcounter. 1172 */ 1173 if (rc == MIGRATEPAGE_SUCCESS) 1174 folio_put(dst); 1175 1176 return rc; 1177 } 1178 1179 /* 1180 * Obtain the lock on folio, remove all ptes and migrate the folio 1181 * to the newly allocated folio in dst. 1182 */ 1183 static int unmap_and_move(new_page_t get_new_page, 1184 free_page_t put_new_page, 1185 unsigned long private, struct folio *src, 1186 int force, enum migrate_mode mode, 1187 enum migrate_reason reason, 1188 struct list_head *ret) 1189 { 1190 struct folio *dst; 1191 int rc = MIGRATEPAGE_SUCCESS; 1192 struct page *newpage = NULL; 1193 1194 if (!thp_migration_supported() && folio_test_transhuge(src)) 1195 return -ENOSYS; 1196 1197 if (folio_ref_count(src) == 1) { 1198 /* Folio was freed from under us. So we are done. */ 1199 folio_clear_active(src); 1200 folio_clear_unevictable(src); 1201 /* free_pages_prepare() will clear PG_isolated. */ 1202 goto out; 1203 } 1204 1205 newpage = get_new_page(&src->page, private); 1206 if (!newpage) 1207 return -ENOMEM; 1208 dst = page_folio(newpage); 1209 1210 dst->private = NULL; 1211 rc = __unmap_and_move(src, dst, force, mode); 1212 if (rc == MIGRATEPAGE_SUCCESS) 1213 set_page_owner_migrate_reason(&dst->page, reason); 1214 1215 out: 1216 if (rc != -EAGAIN) { 1217 /* 1218 * A folio that has been migrated has all references 1219 * removed and will be freed. A folio that has not been 1220 * migrated will have kept its references and be restored. 1221 */ 1222 list_del(&src->lru); 1223 } 1224 1225 /* 1226 * If migration is successful, releases reference grabbed during 1227 * isolation. Otherwise, restore the folio to right list unless 1228 * we want to retry. 1229 */ 1230 if (rc == MIGRATEPAGE_SUCCESS) { 1231 /* 1232 * Compaction can migrate also non-LRU folios which are 1233 * not accounted to NR_ISOLATED_*. They can be recognized 1234 * as __folio_test_movable 1235 */ 1236 if (likely(!__folio_test_movable(src))) 1237 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1238 folio_is_file_lru(src), -folio_nr_pages(src)); 1239 1240 if (reason != MR_MEMORY_FAILURE) 1241 /* 1242 * We release the folio in page_handle_poison. 1243 */ 1244 folio_put(src); 1245 } else { 1246 if (rc != -EAGAIN) 1247 list_add_tail(&src->lru, ret); 1248 1249 if (put_new_page) 1250 put_new_page(&dst->page, private); 1251 else 1252 folio_put(dst); 1253 } 1254 1255 return rc; 1256 } 1257 1258 /* 1259 * Counterpart of unmap_and_move_page() for hugepage migration. 1260 * 1261 * This function doesn't wait the completion of hugepage I/O 1262 * because there is no race between I/O and migration for hugepage. 1263 * Note that currently hugepage I/O occurs only in direct I/O 1264 * where no lock is held and PG_writeback is irrelevant, 1265 * and writeback status of all subpages are counted in the reference 1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1267 * under direct I/O, the reference of the head page is 512 and a bit more.) 1268 * This means that when we try to migrate hugepage whose subpages are 1269 * doing direct I/O, some references remain after try_to_unmap() and 1270 * hugepage migration fails without data corruption. 1271 * 1272 * There is also no race when direct I/O is issued on the page under migration, 1273 * because then pte is replaced with migration swap entry and direct I/O code 1274 * will wait in the page fault for migration to complete. 1275 */ 1276 static int unmap_and_move_huge_page(new_page_t get_new_page, 1277 free_page_t put_new_page, unsigned long private, 1278 struct page *hpage, int force, 1279 enum migrate_mode mode, int reason, 1280 struct list_head *ret) 1281 { 1282 struct folio *dst, *src = page_folio(hpage); 1283 int rc = -EAGAIN; 1284 int page_was_mapped = 0; 1285 struct page *new_hpage; 1286 struct anon_vma *anon_vma = NULL; 1287 struct address_space *mapping = NULL; 1288 1289 /* 1290 * Migratability of hugepages depends on architectures and their size. 1291 * This check is necessary because some callers of hugepage migration 1292 * like soft offline and memory hotremove don't walk through page 1293 * tables or check whether the hugepage is pmd-based or not before 1294 * kicking migration. 1295 */ 1296 if (!hugepage_migration_supported(page_hstate(hpage))) 1297 return -ENOSYS; 1298 1299 if (folio_ref_count(src) == 1) { 1300 /* page was freed from under us. So we are done. */ 1301 putback_active_hugepage(hpage); 1302 return MIGRATEPAGE_SUCCESS; 1303 } 1304 1305 new_hpage = get_new_page(hpage, private); 1306 if (!new_hpage) 1307 return -ENOMEM; 1308 dst = page_folio(new_hpage); 1309 1310 if (!folio_trylock(src)) { 1311 if (!force) 1312 goto out; 1313 switch (mode) { 1314 case MIGRATE_SYNC: 1315 case MIGRATE_SYNC_NO_COPY: 1316 break; 1317 default: 1318 goto out; 1319 } 1320 folio_lock(src); 1321 } 1322 1323 /* 1324 * Check for pages which are in the process of being freed. Without 1325 * folio_mapping() set, hugetlbfs specific move page routine will not 1326 * be called and we could leak usage counts for subpools. 1327 */ 1328 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1329 rc = -EBUSY; 1330 goto out_unlock; 1331 } 1332 1333 if (folio_test_anon(src)) 1334 anon_vma = folio_get_anon_vma(src); 1335 1336 if (unlikely(!folio_trylock(dst))) 1337 goto put_anon; 1338 1339 if (folio_mapped(src)) { 1340 enum ttu_flags ttu = 0; 1341 1342 if (!folio_test_anon(src)) { 1343 /* 1344 * In shared mappings, try_to_unmap could potentially 1345 * call huge_pmd_unshare. Because of this, take 1346 * semaphore in write mode here and set TTU_RMAP_LOCKED 1347 * to let lower levels know we have taken the lock. 1348 */ 1349 mapping = hugetlb_page_mapping_lock_write(hpage); 1350 if (unlikely(!mapping)) 1351 goto unlock_put_anon; 1352 1353 ttu = TTU_RMAP_LOCKED; 1354 } 1355 1356 try_to_migrate(src, ttu); 1357 page_was_mapped = 1; 1358 1359 if (ttu & TTU_RMAP_LOCKED) 1360 i_mmap_unlock_write(mapping); 1361 } 1362 1363 if (!folio_mapped(src)) 1364 rc = move_to_new_folio(dst, src, mode); 1365 1366 if (page_was_mapped) 1367 remove_migration_ptes(src, 1368 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1369 1370 unlock_put_anon: 1371 folio_unlock(dst); 1372 1373 put_anon: 1374 if (anon_vma) 1375 put_anon_vma(anon_vma); 1376 1377 if (rc == MIGRATEPAGE_SUCCESS) { 1378 move_hugetlb_state(src, dst, reason); 1379 put_new_page = NULL; 1380 } 1381 1382 out_unlock: 1383 folio_unlock(src); 1384 out: 1385 if (rc == MIGRATEPAGE_SUCCESS) 1386 putback_active_hugepage(hpage); 1387 else if (rc != -EAGAIN) 1388 list_move_tail(&src->lru, ret); 1389 1390 /* 1391 * If migration was not successful and there's a freeing callback, use 1392 * it. Otherwise, put_page() will drop the reference grabbed during 1393 * isolation. 1394 */ 1395 if (put_new_page) 1396 put_new_page(new_hpage, private); 1397 else 1398 putback_active_hugepage(new_hpage); 1399 1400 return rc; 1401 } 1402 1403 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1404 { 1405 int rc; 1406 1407 folio_lock(folio); 1408 rc = split_folio_to_list(folio, split_folios); 1409 folio_unlock(folio); 1410 if (!rc) 1411 list_move_tail(&folio->lru, split_folios); 1412 1413 return rc; 1414 } 1415 1416 /* 1417 * migrate_pages - migrate the folios specified in a list, to the free folios 1418 * supplied as the target for the page migration 1419 * 1420 * @from: The list of folios to be migrated. 1421 * @get_new_page: The function used to allocate free folios to be used 1422 * as the target of the folio migration. 1423 * @put_new_page: The function used to free target folios if migration 1424 * fails, or NULL if no special handling is necessary. 1425 * @private: Private data to be passed on to get_new_page() 1426 * @mode: The migration mode that specifies the constraints for 1427 * folio migration, if any. 1428 * @reason: The reason for folio migration. 1429 * @ret_succeeded: Set to the number of folios migrated successfully if 1430 * the caller passes a non-NULL pointer. 1431 * 1432 * The function returns after 10 attempts or if no folios are movable any more 1433 * because the list has become empty or no retryable folios exist any more. 1434 * It is caller's responsibility to call putback_movable_pages() to return folios 1435 * to the LRU or free list only if ret != 0. 1436 * 1437 * Returns the number of {normal folio, large folio, hugetlb} that were not 1438 * migrated, or an error code. The number of large folio splits will be 1439 * considered as the number of non-migrated large folio, no matter how many 1440 * split folios of the large folio are migrated successfully. 1441 */ 1442 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1443 free_page_t put_new_page, unsigned long private, 1444 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1445 { 1446 int retry = 1; 1447 int large_retry = 1; 1448 int thp_retry = 1; 1449 int nr_failed = 0; 1450 int nr_failed_pages = 0; 1451 int nr_retry_pages = 0; 1452 int nr_succeeded = 0; 1453 int nr_thp_succeeded = 0; 1454 int nr_large_failed = 0; 1455 int nr_thp_failed = 0; 1456 int nr_thp_split = 0; 1457 int pass = 0; 1458 bool is_large = false; 1459 bool is_thp = false; 1460 struct folio *folio, *folio2; 1461 int rc, nr_pages; 1462 LIST_HEAD(ret_folios); 1463 LIST_HEAD(split_folios); 1464 bool nosplit = (reason == MR_NUMA_MISPLACED); 1465 bool no_split_folio_counting = false; 1466 1467 trace_mm_migrate_pages_start(mode, reason); 1468 1469 split_folio_migration: 1470 for (pass = 0; pass < 10 && (retry || large_retry); pass++) { 1471 retry = 0; 1472 large_retry = 0; 1473 thp_retry = 0; 1474 nr_retry_pages = 0; 1475 1476 list_for_each_entry_safe(folio, folio2, from, lru) { 1477 /* 1478 * Large folio statistics is based on the source large 1479 * folio. Capture required information that might get 1480 * lost during migration. 1481 */ 1482 is_large = folio_test_large(folio) && !folio_test_hugetlb(folio); 1483 is_thp = is_large && folio_test_pmd_mappable(folio); 1484 nr_pages = folio_nr_pages(folio); 1485 cond_resched(); 1486 1487 if (folio_test_hugetlb(folio)) 1488 rc = unmap_and_move_huge_page(get_new_page, 1489 put_new_page, private, 1490 &folio->page, pass > 2, mode, 1491 reason, 1492 &ret_folios); 1493 else 1494 rc = unmap_and_move(get_new_page, put_new_page, 1495 private, folio, pass > 2, mode, 1496 reason, &ret_folios); 1497 /* 1498 * The rules are: 1499 * Success: non hugetlb folio will be freed, hugetlb 1500 * folio will be put back 1501 * -EAGAIN: stay on the from list 1502 * -ENOMEM: stay on the from list 1503 * -ENOSYS: stay on the from list 1504 * Other errno: put on ret_folios list then splice to 1505 * from list 1506 */ 1507 switch(rc) { 1508 /* 1509 * Large folio migration might be unsupported or 1510 * the allocation could've failed so we should retry 1511 * on the same folio with the large folio split 1512 * to normal folios. 1513 * 1514 * Split folios are put in split_folios, and 1515 * we will migrate them after the rest of the 1516 * list is processed. 1517 */ 1518 case -ENOSYS: 1519 /* Large folio migration is unsupported */ 1520 if (is_large) { 1521 nr_large_failed++; 1522 nr_thp_failed += is_thp; 1523 if (!try_split_folio(folio, &split_folios)) { 1524 nr_thp_split += is_thp; 1525 break; 1526 } 1527 /* Hugetlb migration is unsupported */ 1528 } else if (!no_split_folio_counting) { 1529 nr_failed++; 1530 } 1531 1532 nr_failed_pages += nr_pages; 1533 list_move_tail(&folio->lru, &ret_folios); 1534 break; 1535 case -ENOMEM: 1536 /* 1537 * When memory is low, don't bother to try to migrate 1538 * other folios, just exit. 1539 */ 1540 if (is_large) { 1541 nr_large_failed++; 1542 nr_thp_failed += is_thp; 1543 /* Large folio NUMA faulting doesn't split to retry. */ 1544 if (!nosplit) { 1545 int ret = try_split_folio(folio, &split_folios); 1546 1547 if (!ret) { 1548 nr_thp_split += is_thp; 1549 break; 1550 } else if (reason == MR_LONGTERM_PIN && 1551 ret == -EAGAIN) { 1552 /* 1553 * Try again to split large folio to 1554 * mitigate the failure of longterm pinning. 1555 */ 1556 large_retry++; 1557 thp_retry += is_thp; 1558 nr_retry_pages += nr_pages; 1559 break; 1560 } 1561 } 1562 } else if (!no_split_folio_counting) { 1563 nr_failed++; 1564 } 1565 1566 nr_failed_pages += nr_pages + nr_retry_pages; 1567 /* 1568 * There might be some split folios of fail-to-migrate large 1569 * folios left in split_folios list. Move them back to migration 1570 * list so that they could be put back to the right list by 1571 * the caller otherwise the folio refcnt will be leaked. 1572 */ 1573 list_splice_init(&split_folios, from); 1574 /* nr_failed isn't updated for not used */ 1575 nr_large_failed += large_retry; 1576 nr_thp_failed += thp_retry; 1577 goto out; 1578 case -EAGAIN: 1579 if (is_large) { 1580 large_retry++; 1581 thp_retry += is_thp; 1582 } else if (!no_split_folio_counting) { 1583 retry++; 1584 } 1585 nr_retry_pages += nr_pages; 1586 break; 1587 case MIGRATEPAGE_SUCCESS: 1588 nr_succeeded += nr_pages; 1589 nr_thp_succeeded += is_thp; 1590 break; 1591 default: 1592 /* 1593 * Permanent failure (-EBUSY, etc.): 1594 * unlike -EAGAIN case, the failed folio is 1595 * removed from migration folio list and not 1596 * retried in the next outer loop. 1597 */ 1598 if (is_large) { 1599 nr_large_failed++; 1600 nr_thp_failed += is_thp; 1601 } else if (!no_split_folio_counting) { 1602 nr_failed++; 1603 } 1604 1605 nr_failed_pages += nr_pages; 1606 break; 1607 } 1608 } 1609 } 1610 nr_failed += retry; 1611 nr_large_failed += large_retry; 1612 nr_thp_failed += thp_retry; 1613 nr_failed_pages += nr_retry_pages; 1614 /* 1615 * Try to migrate split folios of fail-to-migrate large folios, no 1616 * nr_failed counting in this round, since all split folios of a 1617 * large folio is counted as 1 failure in the first round. 1618 */ 1619 if (!list_empty(&split_folios)) { 1620 /* 1621 * Move non-migrated folios (after 10 retries) to ret_folios 1622 * to avoid migrating them again. 1623 */ 1624 list_splice_init(from, &ret_folios); 1625 list_splice_init(&split_folios, from); 1626 no_split_folio_counting = true; 1627 retry = 1; 1628 goto split_folio_migration; 1629 } 1630 1631 rc = nr_failed + nr_large_failed; 1632 out: 1633 /* 1634 * Put the permanent failure folio back to migration list, they 1635 * will be put back to the right list by the caller. 1636 */ 1637 list_splice(&ret_folios, from); 1638 1639 /* 1640 * Return 0 in case all split folios of fail-to-migrate large folios 1641 * are migrated successfully. 1642 */ 1643 if (list_empty(from)) 1644 rc = 0; 1645 1646 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1647 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1648 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1649 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1650 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1651 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1652 nr_thp_failed, nr_thp_split, mode, reason); 1653 1654 if (ret_succeeded) 1655 *ret_succeeded = nr_succeeded; 1656 1657 return rc; 1658 } 1659 1660 struct page *alloc_migration_target(struct page *page, unsigned long private) 1661 { 1662 struct folio *folio = page_folio(page); 1663 struct migration_target_control *mtc; 1664 gfp_t gfp_mask; 1665 unsigned int order = 0; 1666 struct folio *new_folio = NULL; 1667 int nid; 1668 int zidx; 1669 1670 mtc = (struct migration_target_control *)private; 1671 gfp_mask = mtc->gfp_mask; 1672 nid = mtc->nid; 1673 if (nid == NUMA_NO_NODE) 1674 nid = folio_nid(folio); 1675 1676 if (folio_test_hugetlb(folio)) { 1677 struct hstate *h = folio_hstate(folio); 1678 1679 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1680 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1681 } 1682 1683 if (folio_test_large(folio)) { 1684 /* 1685 * clear __GFP_RECLAIM to make the migration callback 1686 * consistent with regular THP allocations. 1687 */ 1688 gfp_mask &= ~__GFP_RECLAIM; 1689 gfp_mask |= GFP_TRANSHUGE; 1690 order = folio_order(folio); 1691 } 1692 zidx = zone_idx(folio_zone(folio)); 1693 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1694 gfp_mask |= __GFP_HIGHMEM; 1695 1696 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1697 1698 return &new_folio->page; 1699 } 1700 1701 #ifdef CONFIG_NUMA 1702 1703 static int store_status(int __user *status, int start, int value, int nr) 1704 { 1705 while (nr-- > 0) { 1706 if (put_user(value, status + start)) 1707 return -EFAULT; 1708 start++; 1709 } 1710 1711 return 0; 1712 } 1713 1714 static int do_move_pages_to_node(struct mm_struct *mm, 1715 struct list_head *pagelist, int node) 1716 { 1717 int err; 1718 struct migration_target_control mtc = { 1719 .nid = node, 1720 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1721 }; 1722 1723 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1724 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1725 if (err) 1726 putback_movable_pages(pagelist); 1727 return err; 1728 } 1729 1730 /* 1731 * Resolves the given address to a struct page, isolates it from the LRU and 1732 * puts it to the given pagelist. 1733 * Returns: 1734 * errno - if the page cannot be found/isolated 1735 * 0 - when it doesn't have to be migrated because it is already on the 1736 * target node 1737 * 1 - when it has been queued 1738 */ 1739 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1740 int node, struct list_head *pagelist, bool migrate_all) 1741 { 1742 struct vm_area_struct *vma; 1743 struct page *page; 1744 int err; 1745 1746 mmap_read_lock(mm); 1747 err = -EFAULT; 1748 vma = vma_lookup(mm, addr); 1749 if (!vma || !vma_migratable(vma)) 1750 goto out; 1751 1752 /* FOLL_DUMP to ignore special (like zero) pages */ 1753 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1754 1755 err = PTR_ERR(page); 1756 if (IS_ERR(page)) 1757 goto out; 1758 1759 err = -ENOENT; 1760 if (!page) 1761 goto out; 1762 1763 if (is_zone_device_page(page)) 1764 goto out_putpage; 1765 1766 err = 0; 1767 if (page_to_nid(page) == node) 1768 goto out_putpage; 1769 1770 err = -EACCES; 1771 if (page_mapcount(page) > 1 && !migrate_all) 1772 goto out_putpage; 1773 1774 if (PageHuge(page)) { 1775 if (PageHead(page)) { 1776 err = isolate_hugetlb(page, pagelist); 1777 if (!err) 1778 err = 1; 1779 } 1780 } else { 1781 struct page *head; 1782 1783 head = compound_head(page); 1784 err = isolate_lru_page(head); 1785 if (err) 1786 goto out_putpage; 1787 1788 err = 1; 1789 list_add_tail(&head->lru, pagelist); 1790 mod_node_page_state(page_pgdat(head), 1791 NR_ISOLATED_ANON + page_is_file_lru(head), 1792 thp_nr_pages(head)); 1793 } 1794 out_putpage: 1795 /* 1796 * Either remove the duplicate refcount from 1797 * isolate_lru_page() or drop the page ref if it was 1798 * not isolated. 1799 */ 1800 put_page(page); 1801 out: 1802 mmap_read_unlock(mm); 1803 return err; 1804 } 1805 1806 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1807 struct list_head *pagelist, int __user *status, 1808 int start, int i, unsigned long nr_pages) 1809 { 1810 int err; 1811 1812 if (list_empty(pagelist)) 1813 return 0; 1814 1815 err = do_move_pages_to_node(mm, pagelist, node); 1816 if (err) { 1817 /* 1818 * Positive err means the number of failed 1819 * pages to migrate. Since we are going to 1820 * abort and return the number of non-migrated 1821 * pages, so need to include the rest of the 1822 * nr_pages that have not been attempted as 1823 * well. 1824 */ 1825 if (err > 0) 1826 err += nr_pages - i; 1827 return err; 1828 } 1829 return store_status(status, start, node, i - start); 1830 } 1831 1832 /* 1833 * Migrate an array of page address onto an array of nodes and fill 1834 * the corresponding array of status. 1835 */ 1836 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1837 unsigned long nr_pages, 1838 const void __user * __user *pages, 1839 const int __user *nodes, 1840 int __user *status, int flags) 1841 { 1842 int current_node = NUMA_NO_NODE; 1843 LIST_HEAD(pagelist); 1844 int start, i; 1845 int err = 0, err1; 1846 1847 lru_cache_disable(); 1848 1849 for (i = start = 0; i < nr_pages; i++) { 1850 const void __user *p; 1851 unsigned long addr; 1852 int node; 1853 1854 err = -EFAULT; 1855 if (get_user(p, pages + i)) 1856 goto out_flush; 1857 if (get_user(node, nodes + i)) 1858 goto out_flush; 1859 addr = (unsigned long)untagged_addr(p); 1860 1861 err = -ENODEV; 1862 if (node < 0 || node >= MAX_NUMNODES) 1863 goto out_flush; 1864 if (!node_state(node, N_MEMORY)) 1865 goto out_flush; 1866 1867 err = -EACCES; 1868 if (!node_isset(node, task_nodes)) 1869 goto out_flush; 1870 1871 if (current_node == NUMA_NO_NODE) { 1872 current_node = node; 1873 start = i; 1874 } else if (node != current_node) { 1875 err = move_pages_and_store_status(mm, current_node, 1876 &pagelist, status, start, i, nr_pages); 1877 if (err) 1878 goto out; 1879 start = i; 1880 current_node = node; 1881 } 1882 1883 /* 1884 * Errors in the page lookup or isolation are not fatal and we simply 1885 * report them via status 1886 */ 1887 err = add_page_for_migration(mm, addr, current_node, 1888 &pagelist, flags & MPOL_MF_MOVE_ALL); 1889 1890 if (err > 0) { 1891 /* The page is successfully queued for migration */ 1892 continue; 1893 } 1894 1895 /* 1896 * The move_pages() man page does not have an -EEXIST choice, so 1897 * use -EFAULT instead. 1898 */ 1899 if (err == -EEXIST) 1900 err = -EFAULT; 1901 1902 /* 1903 * If the page is already on the target node (!err), store the 1904 * node, otherwise, store the err. 1905 */ 1906 err = store_status(status, i, err ? : current_node, 1); 1907 if (err) 1908 goto out_flush; 1909 1910 err = move_pages_and_store_status(mm, current_node, &pagelist, 1911 status, start, i, nr_pages); 1912 if (err) { 1913 /* We have accounted for page i */ 1914 if (err > 0) 1915 err--; 1916 goto out; 1917 } 1918 current_node = NUMA_NO_NODE; 1919 } 1920 out_flush: 1921 /* Make sure we do not overwrite the existing error */ 1922 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1923 status, start, i, nr_pages); 1924 if (err >= 0) 1925 err = err1; 1926 out: 1927 lru_cache_enable(); 1928 return err; 1929 } 1930 1931 /* 1932 * Determine the nodes of an array of pages and store it in an array of status. 1933 */ 1934 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1935 const void __user **pages, int *status) 1936 { 1937 unsigned long i; 1938 1939 mmap_read_lock(mm); 1940 1941 for (i = 0; i < nr_pages; i++) { 1942 unsigned long addr = (unsigned long)(*pages); 1943 struct vm_area_struct *vma; 1944 struct page *page; 1945 int err = -EFAULT; 1946 1947 vma = vma_lookup(mm, addr); 1948 if (!vma) 1949 goto set_status; 1950 1951 /* FOLL_DUMP to ignore special (like zero) pages */ 1952 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1953 1954 err = PTR_ERR(page); 1955 if (IS_ERR(page)) 1956 goto set_status; 1957 1958 err = -ENOENT; 1959 if (!page) 1960 goto set_status; 1961 1962 if (!is_zone_device_page(page)) 1963 err = page_to_nid(page); 1964 1965 put_page(page); 1966 set_status: 1967 *status = err; 1968 1969 pages++; 1970 status++; 1971 } 1972 1973 mmap_read_unlock(mm); 1974 } 1975 1976 static int get_compat_pages_array(const void __user *chunk_pages[], 1977 const void __user * __user *pages, 1978 unsigned long chunk_nr) 1979 { 1980 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1981 compat_uptr_t p; 1982 int i; 1983 1984 for (i = 0; i < chunk_nr; i++) { 1985 if (get_user(p, pages32 + i)) 1986 return -EFAULT; 1987 chunk_pages[i] = compat_ptr(p); 1988 } 1989 1990 return 0; 1991 } 1992 1993 /* 1994 * Determine the nodes of a user array of pages and store it in 1995 * a user array of status. 1996 */ 1997 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1998 const void __user * __user *pages, 1999 int __user *status) 2000 { 2001 #define DO_PAGES_STAT_CHUNK_NR 16UL 2002 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2003 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2004 2005 while (nr_pages) { 2006 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2007 2008 if (in_compat_syscall()) { 2009 if (get_compat_pages_array(chunk_pages, pages, 2010 chunk_nr)) 2011 break; 2012 } else { 2013 if (copy_from_user(chunk_pages, pages, 2014 chunk_nr * sizeof(*chunk_pages))) 2015 break; 2016 } 2017 2018 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2019 2020 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2021 break; 2022 2023 pages += chunk_nr; 2024 status += chunk_nr; 2025 nr_pages -= chunk_nr; 2026 } 2027 return nr_pages ? -EFAULT : 0; 2028 } 2029 2030 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2031 { 2032 struct task_struct *task; 2033 struct mm_struct *mm; 2034 2035 /* 2036 * There is no need to check if current process has the right to modify 2037 * the specified process when they are same. 2038 */ 2039 if (!pid) { 2040 mmget(current->mm); 2041 *mem_nodes = cpuset_mems_allowed(current); 2042 return current->mm; 2043 } 2044 2045 /* Find the mm_struct */ 2046 rcu_read_lock(); 2047 task = find_task_by_vpid(pid); 2048 if (!task) { 2049 rcu_read_unlock(); 2050 return ERR_PTR(-ESRCH); 2051 } 2052 get_task_struct(task); 2053 2054 /* 2055 * Check if this process has the right to modify the specified 2056 * process. Use the regular "ptrace_may_access()" checks. 2057 */ 2058 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2059 rcu_read_unlock(); 2060 mm = ERR_PTR(-EPERM); 2061 goto out; 2062 } 2063 rcu_read_unlock(); 2064 2065 mm = ERR_PTR(security_task_movememory(task)); 2066 if (IS_ERR(mm)) 2067 goto out; 2068 *mem_nodes = cpuset_mems_allowed(task); 2069 mm = get_task_mm(task); 2070 out: 2071 put_task_struct(task); 2072 if (!mm) 2073 mm = ERR_PTR(-EINVAL); 2074 return mm; 2075 } 2076 2077 /* 2078 * Move a list of pages in the address space of the currently executing 2079 * process. 2080 */ 2081 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2082 const void __user * __user *pages, 2083 const int __user *nodes, 2084 int __user *status, int flags) 2085 { 2086 struct mm_struct *mm; 2087 int err; 2088 nodemask_t task_nodes; 2089 2090 /* Check flags */ 2091 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2092 return -EINVAL; 2093 2094 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2095 return -EPERM; 2096 2097 mm = find_mm_struct(pid, &task_nodes); 2098 if (IS_ERR(mm)) 2099 return PTR_ERR(mm); 2100 2101 if (nodes) 2102 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2103 nodes, status, flags); 2104 else 2105 err = do_pages_stat(mm, nr_pages, pages, status); 2106 2107 mmput(mm); 2108 return err; 2109 } 2110 2111 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2112 const void __user * __user *, pages, 2113 const int __user *, nodes, 2114 int __user *, status, int, flags) 2115 { 2116 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2117 } 2118 2119 #ifdef CONFIG_NUMA_BALANCING 2120 /* 2121 * Returns true if this is a safe migration target node for misplaced NUMA 2122 * pages. Currently it only checks the watermarks which is crude. 2123 */ 2124 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2125 unsigned long nr_migrate_pages) 2126 { 2127 int z; 2128 2129 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2130 struct zone *zone = pgdat->node_zones + z; 2131 2132 if (!managed_zone(zone)) 2133 continue; 2134 2135 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2136 if (!zone_watermark_ok(zone, 0, 2137 high_wmark_pages(zone) + 2138 nr_migrate_pages, 2139 ZONE_MOVABLE, 0)) 2140 continue; 2141 return true; 2142 } 2143 return false; 2144 } 2145 2146 static struct page *alloc_misplaced_dst_page(struct page *page, 2147 unsigned long data) 2148 { 2149 int nid = (int) data; 2150 int order = compound_order(page); 2151 gfp_t gfp = __GFP_THISNODE; 2152 struct folio *new; 2153 2154 if (order > 0) 2155 gfp |= GFP_TRANSHUGE_LIGHT; 2156 else { 2157 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2158 __GFP_NOWARN; 2159 gfp &= ~__GFP_RECLAIM; 2160 } 2161 new = __folio_alloc_node(gfp, order, nid); 2162 2163 return &new->page; 2164 } 2165 2166 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2167 { 2168 int nr_pages = thp_nr_pages(page); 2169 int order = compound_order(page); 2170 2171 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2172 2173 /* Do not migrate THP mapped by multiple processes */ 2174 if (PageTransHuge(page) && total_mapcount(page) > 1) 2175 return 0; 2176 2177 /* Avoid migrating to a node that is nearly full */ 2178 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2179 int z; 2180 2181 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2182 return 0; 2183 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2184 if (managed_zone(pgdat->node_zones + z)) 2185 break; 2186 } 2187 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2188 return 0; 2189 } 2190 2191 if (isolate_lru_page(page)) 2192 return 0; 2193 2194 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2195 nr_pages); 2196 2197 /* 2198 * Isolating the page has taken another reference, so the 2199 * caller's reference can be safely dropped without the page 2200 * disappearing underneath us during migration. 2201 */ 2202 put_page(page); 2203 return 1; 2204 } 2205 2206 /* 2207 * Attempt to migrate a misplaced page to the specified destination 2208 * node. Caller is expected to have an elevated reference count on 2209 * the page that will be dropped by this function before returning. 2210 */ 2211 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2212 int node) 2213 { 2214 pg_data_t *pgdat = NODE_DATA(node); 2215 int isolated; 2216 int nr_remaining; 2217 unsigned int nr_succeeded; 2218 LIST_HEAD(migratepages); 2219 int nr_pages = thp_nr_pages(page); 2220 2221 /* 2222 * Don't migrate file pages that are mapped in multiple processes 2223 * with execute permissions as they are probably shared libraries. 2224 */ 2225 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2226 (vma->vm_flags & VM_EXEC)) 2227 goto out; 2228 2229 /* 2230 * Also do not migrate dirty pages as not all filesystems can move 2231 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2232 */ 2233 if (page_is_file_lru(page) && PageDirty(page)) 2234 goto out; 2235 2236 isolated = numamigrate_isolate_page(pgdat, page); 2237 if (!isolated) 2238 goto out; 2239 2240 list_add(&page->lru, &migratepages); 2241 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2242 NULL, node, MIGRATE_ASYNC, 2243 MR_NUMA_MISPLACED, &nr_succeeded); 2244 if (nr_remaining) { 2245 if (!list_empty(&migratepages)) { 2246 list_del(&page->lru); 2247 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2248 page_is_file_lru(page), -nr_pages); 2249 putback_lru_page(page); 2250 } 2251 isolated = 0; 2252 } 2253 if (nr_succeeded) { 2254 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2255 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2256 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2257 nr_succeeded); 2258 } 2259 BUG_ON(!list_empty(&migratepages)); 2260 return isolated; 2261 2262 out: 2263 put_page(page); 2264 return 0; 2265 } 2266 #endif /* CONFIG_NUMA_BALANCING */ 2267 #endif /* CONFIG_NUMA */ 2268