1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 /* No need to invalidate - it was non-present before */ 279 update_mmu_cache(vma, pvmw.address, pvmw.pte); 280 } 281 282 return true; 283 } 284 285 /* 286 * Get rid of all migration entries and replace them by 287 * references to the indicated page. 288 */ 289 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 290 { 291 struct rmap_walk_control rwc = { 292 .rmap_one = remove_migration_pte, 293 .arg = old, 294 }; 295 296 if (locked) 297 rmap_walk_locked(new, &rwc); 298 else 299 rmap_walk(new, &rwc); 300 } 301 302 /* 303 * Something used the pte of a page under migration. We need to 304 * get to the page and wait until migration is finished. 305 * When we return from this function the fault will be retried. 306 */ 307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 308 spinlock_t *ptl) 309 { 310 pte_t pte; 311 swp_entry_t entry; 312 struct page *page; 313 314 spin_lock(ptl); 315 pte = *ptep; 316 if (!is_swap_pte(pte)) 317 goto out; 318 319 entry = pte_to_swp_entry(pte); 320 if (!is_migration_entry(entry)) 321 goto out; 322 323 page = migration_entry_to_page(entry); 324 325 /* 326 * Once radix-tree replacement of page migration started, page_count 327 * *must* be zero. And, we don't want to call wait_on_page_locked() 328 * against a page without get_page(). 329 * So, we use get_page_unless_zero(), here. Even failed, page fault 330 * will occur again. 331 */ 332 if (!get_page_unless_zero(page)) 333 goto out; 334 pte_unmap_unlock(ptep, ptl); 335 wait_on_page_locked(page); 336 put_page(page); 337 return; 338 out: 339 pte_unmap_unlock(ptep, ptl); 340 } 341 342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 343 unsigned long address) 344 { 345 spinlock_t *ptl = pte_lockptr(mm, pmd); 346 pte_t *ptep = pte_offset_map(pmd, address); 347 __migration_entry_wait(mm, ptep, ptl); 348 } 349 350 void migration_entry_wait_huge(struct vm_area_struct *vma, 351 struct mm_struct *mm, pte_t *pte) 352 { 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 354 __migration_entry_wait(mm, pte, ptl); 355 } 356 357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 359 { 360 spinlock_t *ptl; 361 struct page *page; 362 363 ptl = pmd_lock(mm, pmd); 364 if (!is_pmd_migration_entry(*pmd)) 365 goto unlock; 366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 367 if (!get_page_unless_zero(page)) 368 goto unlock; 369 spin_unlock(ptl); 370 wait_on_page_locked(page); 371 put_page(page); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 #ifdef CONFIG_BLOCK 379 /* Returns true if all buffers are successfully locked */ 380 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 381 enum migrate_mode mode) 382 { 383 struct buffer_head *bh = head; 384 385 /* Simple case, sync compaction */ 386 if (mode != MIGRATE_ASYNC) { 387 do { 388 get_bh(bh); 389 lock_buffer(bh); 390 bh = bh->b_this_page; 391 392 } while (bh != head); 393 394 return true; 395 } 396 397 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 398 do { 399 get_bh(bh); 400 if (!trylock_buffer(bh)) { 401 /* 402 * We failed to lock the buffer and cannot stall in 403 * async migration. Release the taken locks 404 */ 405 struct buffer_head *failed_bh = bh; 406 put_bh(failed_bh); 407 bh = head; 408 while (bh != failed_bh) { 409 unlock_buffer(bh); 410 put_bh(bh); 411 bh = bh->b_this_page; 412 } 413 return false; 414 } 415 416 bh = bh->b_this_page; 417 } while (bh != head); 418 return true; 419 } 420 #else 421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 422 enum migrate_mode mode) 423 { 424 return true; 425 } 426 #endif /* CONFIG_BLOCK */ 427 428 /* 429 * Replace the page in the mapping. 430 * 431 * The number of remaining references must be: 432 * 1 for anonymous pages without a mapping 433 * 2 for pages with a mapping 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 435 */ 436 int migrate_page_move_mapping(struct address_space *mapping, 437 struct page *newpage, struct page *page, 438 struct buffer_head *head, enum migrate_mode mode, 439 int extra_count) 440 { 441 struct zone *oldzone, *newzone; 442 int dirty; 443 int expected_count = 1 + extra_count; 444 void **pslot; 445 446 /* 447 * Device public or private pages have an extra refcount as they are 448 * ZONE_DEVICE pages. 449 */ 450 expected_count += is_device_private_page(page); 451 expected_count += is_device_public_page(page); 452 453 if (!mapping) { 454 /* Anonymous page without mapping */ 455 if (page_count(page) != expected_count) 456 return -EAGAIN; 457 458 /* No turning back from here */ 459 newpage->index = page->index; 460 newpage->mapping = page->mapping; 461 if (PageSwapBacked(page)) 462 __SetPageSwapBacked(newpage); 463 464 return MIGRATEPAGE_SUCCESS; 465 } 466 467 oldzone = page_zone(page); 468 newzone = page_zone(newpage); 469 470 xa_lock_irq(&mapping->i_pages); 471 472 pslot = radix_tree_lookup_slot(&mapping->i_pages, 473 page_index(page)); 474 475 expected_count += hpage_nr_pages(page) + page_has_private(page); 476 if (page_count(page) != expected_count || 477 radix_tree_deref_slot_protected(pslot, 478 &mapping->i_pages.xa_lock) != page) { 479 xa_unlock_irq(&mapping->i_pages); 480 return -EAGAIN; 481 } 482 483 if (!page_ref_freeze(page, expected_count)) { 484 xa_unlock_irq(&mapping->i_pages); 485 return -EAGAIN; 486 } 487 488 /* 489 * In the async migration case of moving a page with buffers, lock the 490 * buffers using trylock before the mapping is moved. If the mapping 491 * was moved, we later failed to lock the buffers and could not move 492 * the mapping back due to an elevated page count, we would have to 493 * block waiting on other references to be dropped. 494 */ 495 if (mode == MIGRATE_ASYNC && head && 496 !buffer_migrate_lock_buffers(head, mode)) { 497 page_ref_unfreeze(page, expected_count); 498 xa_unlock_irq(&mapping->i_pages); 499 return -EAGAIN; 500 } 501 502 /* 503 * Now we know that no one else is looking at the page: 504 * no turning back from here. 505 */ 506 newpage->index = page->index; 507 newpage->mapping = page->mapping; 508 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 509 if (PageSwapBacked(page)) { 510 __SetPageSwapBacked(newpage); 511 if (PageSwapCache(page)) { 512 SetPageSwapCache(newpage); 513 set_page_private(newpage, page_private(page)); 514 } 515 } else { 516 VM_BUG_ON_PAGE(PageSwapCache(page), page); 517 } 518 519 /* Move dirty while page refs frozen and newpage not yet exposed */ 520 dirty = PageDirty(page); 521 if (dirty) { 522 ClearPageDirty(page); 523 SetPageDirty(newpage); 524 } 525 526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 527 if (PageTransHuge(page)) { 528 int i; 529 int index = page_index(page); 530 531 for (i = 0; i < HPAGE_PMD_NR; i++) { 532 pslot = radix_tree_lookup_slot(&mapping->i_pages, 533 index + i); 534 radix_tree_replace_slot(&mapping->i_pages, pslot, 535 newpage + i); 536 } 537 } else { 538 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 539 } 540 541 /* 542 * Drop cache reference from old page by unfreezing 543 * to one less reference. 544 * We know this isn't the last reference. 545 */ 546 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 547 548 xa_unlock(&mapping->i_pages); 549 /* Leave irq disabled to prevent preemption while updating stats */ 550 551 /* 552 * If moved to a different zone then also account 553 * the page for that zone. Other VM counters will be 554 * taken care of when we establish references to the 555 * new page and drop references to the old page. 556 * 557 * Note that anonymous pages are accounted for 558 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 559 * are mapped to swap space. 560 */ 561 if (newzone != oldzone) { 562 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 563 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 564 if (PageSwapBacked(page) && !PageSwapCache(page)) { 565 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 566 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 567 } 568 if (dirty && mapping_cap_account_dirty(mapping)) { 569 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 570 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 571 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 572 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 573 } 574 } 575 local_irq_enable(); 576 577 return MIGRATEPAGE_SUCCESS; 578 } 579 EXPORT_SYMBOL(migrate_page_move_mapping); 580 581 /* 582 * The expected number of remaining references is the same as that 583 * of migrate_page_move_mapping(). 584 */ 585 int migrate_huge_page_move_mapping(struct address_space *mapping, 586 struct page *newpage, struct page *page) 587 { 588 int expected_count; 589 void **pslot; 590 591 xa_lock_irq(&mapping->i_pages); 592 593 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page)); 594 595 expected_count = 2 + page_has_private(page); 596 if (page_count(page) != expected_count || 597 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) { 598 xa_unlock_irq(&mapping->i_pages); 599 return -EAGAIN; 600 } 601 602 if (!page_ref_freeze(page, expected_count)) { 603 xa_unlock_irq(&mapping->i_pages); 604 return -EAGAIN; 605 } 606 607 newpage->index = page->index; 608 newpage->mapping = page->mapping; 609 610 get_page(newpage); 611 612 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 613 614 page_ref_unfreeze(page, expected_count - 1); 615 616 xa_unlock_irq(&mapping->i_pages); 617 618 return MIGRATEPAGE_SUCCESS; 619 } 620 621 /* 622 * Gigantic pages are so large that we do not guarantee that page++ pointer 623 * arithmetic will work across the entire page. We need something more 624 * specialized. 625 */ 626 static void __copy_gigantic_page(struct page *dst, struct page *src, 627 int nr_pages) 628 { 629 int i; 630 struct page *dst_base = dst; 631 struct page *src_base = src; 632 633 for (i = 0; i < nr_pages; ) { 634 cond_resched(); 635 copy_highpage(dst, src); 636 637 i++; 638 dst = mem_map_next(dst, dst_base, i); 639 src = mem_map_next(src, src_base, i); 640 } 641 } 642 643 static void copy_huge_page(struct page *dst, struct page *src) 644 { 645 int i; 646 int nr_pages; 647 648 if (PageHuge(src)) { 649 /* hugetlbfs page */ 650 struct hstate *h = page_hstate(src); 651 nr_pages = pages_per_huge_page(h); 652 653 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 654 __copy_gigantic_page(dst, src, nr_pages); 655 return; 656 } 657 } else { 658 /* thp page */ 659 BUG_ON(!PageTransHuge(src)); 660 nr_pages = hpage_nr_pages(src); 661 } 662 663 for (i = 0; i < nr_pages; i++) { 664 cond_resched(); 665 copy_highpage(dst + i, src + i); 666 } 667 } 668 669 /* 670 * Copy the page to its new location 671 */ 672 void migrate_page_states(struct page *newpage, struct page *page) 673 { 674 int cpupid; 675 676 if (PageError(page)) 677 SetPageError(newpage); 678 if (PageReferenced(page)) 679 SetPageReferenced(newpage); 680 if (PageUptodate(page)) 681 SetPageUptodate(newpage); 682 if (TestClearPageActive(page)) { 683 VM_BUG_ON_PAGE(PageUnevictable(page), page); 684 SetPageActive(newpage); 685 } else if (TestClearPageUnevictable(page)) 686 SetPageUnevictable(newpage); 687 if (PageChecked(page)) 688 SetPageChecked(newpage); 689 if (PageMappedToDisk(page)) 690 SetPageMappedToDisk(newpage); 691 692 /* Move dirty on pages not done by migrate_page_move_mapping() */ 693 if (PageDirty(page)) 694 SetPageDirty(newpage); 695 696 if (page_is_young(page)) 697 set_page_young(newpage); 698 if (page_is_idle(page)) 699 set_page_idle(newpage); 700 701 /* 702 * Copy NUMA information to the new page, to prevent over-eager 703 * future migrations of this same page. 704 */ 705 cpupid = page_cpupid_xchg_last(page, -1); 706 page_cpupid_xchg_last(newpage, cpupid); 707 708 ksm_migrate_page(newpage, page); 709 /* 710 * Please do not reorder this without considering how mm/ksm.c's 711 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 712 */ 713 if (PageSwapCache(page)) 714 ClearPageSwapCache(page); 715 ClearPagePrivate(page); 716 set_page_private(page, 0); 717 718 /* 719 * If any waiters have accumulated on the new page then 720 * wake them up. 721 */ 722 if (PageWriteback(newpage)) 723 end_page_writeback(newpage); 724 725 copy_page_owner(page, newpage); 726 727 mem_cgroup_migrate(page, newpage); 728 } 729 EXPORT_SYMBOL(migrate_page_states); 730 731 void migrate_page_copy(struct page *newpage, struct page *page) 732 { 733 if (PageHuge(page) || PageTransHuge(page)) 734 copy_huge_page(newpage, page); 735 else 736 copy_highpage(newpage, page); 737 738 migrate_page_states(newpage, page); 739 } 740 EXPORT_SYMBOL(migrate_page_copy); 741 742 /************************************************************ 743 * Migration functions 744 ***********************************************************/ 745 746 /* 747 * Common logic to directly migrate a single LRU page suitable for 748 * pages that do not use PagePrivate/PagePrivate2. 749 * 750 * Pages are locked upon entry and exit. 751 */ 752 int migrate_page(struct address_space *mapping, 753 struct page *newpage, struct page *page, 754 enum migrate_mode mode) 755 { 756 int rc; 757 758 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 759 760 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 761 762 if (rc != MIGRATEPAGE_SUCCESS) 763 return rc; 764 765 if (mode != MIGRATE_SYNC_NO_COPY) 766 migrate_page_copy(newpage, page); 767 else 768 migrate_page_states(newpage, page); 769 return MIGRATEPAGE_SUCCESS; 770 } 771 EXPORT_SYMBOL(migrate_page); 772 773 #ifdef CONFIG_BLOCK 774 /* 775 * Migration function for pages with buffers. This function can only be used 776 * if the underlying filesystem guarantees that no other references to "page" 777 * exist. 778 */ 779 int buffer_migrate_page(struct address_space *mapping, 780 struct page *newpage, struct page *page, enum migrate_mode mode) 781 { 782 struct buffer_head *bh, *head; 783 int rc; 784 785 if (!page_has_buffers(page)) 786 return migrate_page(mapping, newpage, page, mode); 787 788 head = page_buffers(page); 789 790 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 791 792 if (rc != MIGRATEPAGE_SUCCESS) 793 return rc; 794 795 /* 796 * In the async case, migrate_page_move_mapping locked the buffers 797 * with an IRQ-safe spinlock held. In the sync case, the buffers 798 * need to be locked now 799 */ 800 if (mode != MIGRATE_ASYNC) 801 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 802 803 ClearPagePrivate(page); 804 set_page_private(newpage, page_private(page)); 805 set_page_private(page, 0); 806 put_page(page); 807 get_page(newpage); 808 809 bh = head; 810 do { 811 set_bh_page(bh, newpage, bh_offset(bh)); 812 bh = bh->b_this_page; 813 814 } while (bh != head); 815 816 SetPagePrivate(newpage); 817 818 if (mode != MIGRATE_SYNC_NO_COPY) 819 migrate_page_copy(newpage, page); 820 else 821 migrate_page_states(newpage, page); 822 823 bh = head; 824 do { 825 unlock_buffer(bh); 826 put_bh(bh); 827 bh = bh->b_this_page; 828 829 } while (bh != head); 830 831 return MIGRATEPAGE_SUCCESS; 832 } 833 EXPORT_SYMBOL(buffer_migrate_page); 834 #endif 835 836 /* 837 * Writeback a page to clean the dirty state 838 */ 839 static int writeout(struct address_space *mapping, struct page *page) 840 { 841 struct writeback_control wbc = { 842 .sync_mode = WB_SYNC_NONE, 843 .nr_to_write = 1, 844 .range_start = 0, 845 .range_end = LLONG_MAX, 846 .for_reclaim = 1 847 }; 848 int rc; 849 850 if (!mapping->a_ops->writepage) 851 /* No write method for the address space */ 852 return -EINVAL; 853 854 if (!clear_page_dirty_for_io(page)) 855 /* Someone else already triggered a write */ 856 return -EAGAIN; 857 858 /* 859 * A dirty page may imply that the underlying filesystem has 860 * the page on some queue. So the page must be clean for 861 * migration. Writeout may mean we loose the lock and the 862 * page state is no longer what we checked for earlier. 863 * At this point we know that the migration attempt cannot 864 * be successful. 865 */ 866 remove_migration_ptes(page, page, false); 867 868 rc = mapping->a_ops->writepage(page, &wbc); 869 870 if (rc != AOP_WRITEPAGE_ACTIVATE) 871 /* unlocked. Relock */ 872 lock_page(page); 873 874 return (rc < 0) ? -EIO : -EAGAIN; 875 } 876 877 /* 878 * Default handling if a filesystem does not provide a migration function. 879 */ 880 static int fallback_migrate_page(struct address_space *mapping, 881 struct page *newpage, struct page *page, enum migrate_mode mode) 882 { 883 if (PageDirty(page)) { 884 /* Only writeback pages in full synchronous migration */ 885 switch (mode) { 886 case MIGRATE_SYNC: 887 case MIGRATE_SYNC_NO_COPY: 888 break; 889 default: 890 return -EBUSY; 891 } 892 return writeout(mapping, page); 893 } 894 895 /* 896 * Buffers may be managed in a filesystem specific way. 897 * We must have no buffers or drop them. 898 */ 899 if (page_has_private(page) && 900 !try_to_release_page(page, GFP_KERNEL)) 901 return -EAGAIN; 902 903 return migrate_page(mapping, newpage, page, mode); 904 } 905 906 /* 907 * Move a page to a newly allocated page 908 * The page is locked and all ptes have been successfully removed. 909 * 910 * The new page will have replaced the old page if this function 911 * is successful. 912 * 913 * Return value: 914 * < 0 - error code 915 * MIGRATEPAGE_SUCCESS - success 916 */ 917 static int move_to_new_page(struct page *newpage, struct page *page, 918 enum migrate_mode mode) 919 { 920 struct address_space *mapping; 921 int rc = -EAGAIN; 922 bool is_lru = !__PageMovable(page); 923 924 VM_BUG_ON_PAGE(!PageLocked(page), page); 925 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 926 927 mapping = page_mapping(page); 928 929 if (likely(is_lru)) { 930 if (!mapping) 931 rc = migrate_page(mapping, newpage, page, mode); 932 else if (mapping->a_ops->migratepage) 933 /* 934 * Most pages have a mapping and most filesystems 935 * provide a migratepage callback. Anonymous pages 936 * are part of swap space which also has its own 937 * migratepage callback. This is the most common path 938 * for page migration. 939 */ 940 rc = mapping->a_ops->migratepage(mapping, newpage, 941 page, mode); 942 else 943 rc = fallback_migrate_page(mapping, newpage, 944 page, mode); 945 } else { 946 /* 947 * In case of non-lru page, it could be released after 948 * isolation step. In that case, we shouldn't try migration. 949 */ 950 VM_BUG_ON_PAGE(!PageIsolated(page), page); 951 if (!PageMovable(page)) { 952 rc = MIGRATEPAGE_SUCCESS; 953 __ClearPageIsolated(page); 954 goto out; 955 } 956 957 rc = mapping->a_ops->migratepage(mapping, newpage, 958 page, mode); 959 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 960 !PageIsolated(page)); 961 } 962 963 /* 964 * When successful, old pagecache page->mapping must be cleared before 965 * page is freed; but stats require that PageAnon be left as PageAnon. 966 */ 967 if (rc == MIGRATEPAGE_SUCCESS) { 968 if (__PageMovable(page)) { 969 VM_BUG_ON_PAGE(!PageIsolated(page), page); 970 971 /* 972 * We clear PG_movable under page_lock so any compactor 973 * cannot try to migrate this page. 974 */ 975 __ClearPageIsolated(page); 976 } 977 978 /* 979 * Anonymous and movable page->mapping will be cleard by 980 * free_pages_prepare so don't reset it here for keeping 981 * the type to work PageAnon, for example. 982 */ 983 if (!PageMappingFlags(page)) 984 page->mapping = NULL; 985 } 986 out: 987 return rc; 988 } 989 990 static int __unmap_and_move(struct page *page, struct page *newpage, 991 int force, enum migrate_mode mode) 992 { 993 int rc = -EAGAIN; 994 int page_was_mapped = 0; 995 struct anon_vma *anon_vma = NULL; 996 bool is_lru = !__PageMovable(page); 997 998 if (!trylock_page(page)) { 999 if (!force || mode == MIGRATE_ASYNC) 1000 goto out; 1001 1002 /* 1003 * It's not safe for direct compaction to call lock_page. 1004 * For example, during page readahead pages are added locked 1005 * to the LRU. Later, when the IO completes the pages are 1006 * marked uptodate and unlocked. However, the queueing 1007 * could be merging multiple pages for one bio (e.g. 1008 * mpage_readpages). If an allocation happens for the 1009 * second or third page, the process can end up locking 1010 * the same page twice and deadlocking. Rather than 1011 * trying to be clever about what pages can be locked, 1012 * avoid the use of lock_page for direct compaction 1013 * altogether. 1014 */ 1015 if (current->flags & PF_MEMALLOC) 1016 goto out; 1017 1018 lock_page(page); 1019 } 1020 1021 if (PageWriteback(page)) { 1022 /* 1023 * Only in the case of a full synchronous migration is it 1024 * necessary to wait for PageWriteback. In the async case, 1025 * the retry loop is too short and in the sync-light case, 1026 * the overhead of stalling is too much 1027 */ 1028 switch (mode) { 1029 case MIGRATE_SYNC: 1030 case MIGRATE_SYNC_NO_COPY: 1031 break; 1032 default: 1033 rc = -EBUSY; 1034 goto out_unlock; 1035 } 1036 if (!force) 1037 goto out_unlock; 1038 wait_on_page_writeback(page); 1039 } 1040 1041 /* 1042 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1043 * we cannot notice that anon_vma is freed while we migrates a page. 1044 * This get_anon_vma() delays freeing anon_vma pointer until the end 1045 * of migration. File cache pages are no problem because of page_lock() 1046 * File Caches may use write_page() or lock_page() in migration, then, 1047 * just care Anon page here. 1048 * 1049 * Only page_get_anon_vma() understands the subtleties of 1050 * getting a hold on an anon_vma from outside one of its mms. 1051 * But if we cannot get anon_vma, then we won't need it anyway, 1052 * because that implies that the anon page is no longer mapped 1053 * (and cannot be remapped so long as we hold the page lock). 1054 */ 1055 if (PageAnon(page) && !PageKsm(page)) 1056 anon_vma = page_get_anon_vma(page); 1057 1058 /* 1059 * Block others from accessing the new page when we get around to 1060 * establishing additional references. We are usually the only one 1061 * holding a reference to newpage at this point. We used to have a BUG 1062 * here if trylock_page(newpage) fails, but would like to allow for 1063 * cases where there might be a race with the previous use of newpage. 1064 * This is much like races on refcount of oldpage: just don't BUG(). 1065 */ 1066 if (unlikely(!trylock_page(newpage))) 1067 goto out_unlock; 1068 1069 if (unlikely(!is_lru)) { 1070 rc = move_to_new_page(newpage, page, mode); 1071 goto out_unlock_both; 1072 } 1073 1074 /* 1075 * Corner case handling: 1076 * 1. When a new swap-cache page is read into, it is added to the LRU 1077 * and treated as swapcache but it has no rmap yet. 1078 * Calling try_to_unmap() against a page->mapping==NULL page will 1079 * trigger a BUG. So handle it here. 1080 * 2. An orphaned page (see truncate_complete_page) might have 1081 * fs-private metadata. The page can be picked up due to memory 1082 * offlining. Everywhere else except page reclaim, the page is 1083 * invisible to the vm, so the page can not be migrated. So try to 1084 * free the metadata, so the page can be freed. 1085 */ 1086 if (!page->mapping) { 1087 VM_BUG_ON_PAGE(PageAnon(page), page); 1088 if (page_has_private(page)) { 1089 try_to_free_buffers(page); 1090 goto out_unlock_both; 1091 } 1092 } else if (page_mapped(page)) { 1093 /* Establish migration ptes */ 1094 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1095 page); 1096 try_to_unmap(page, 1097 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1098 page_was_mapped = 1; 1099 } 1100 1101 if (!page_mapped(page)) 1102 rc = move_to_new_page(newpage, page, mode); 1103 1104 if (page_was_mapped) 1105 remove_migration_ptes(page, 1106 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1107 1108 out_unlock_both: 1109 unlock_page(newpage); 1110 out_unlock: 1111 /* Drop an anon_vma reference if we took one */ 1112 if (anon_vma) 1113 put_anon_vma(anon_vma); 1114 unlock_page(page); 1115 out: 1116 /* 1117 * If migration is successful, decrease refcount of the newpage 1118 * which will not free the page because new page owner increased 1119 * refcounter. As well, if it is LRU page, add the page to LRU 1120 * list in here. 1121 */ 1122 if (rc == MIGRATEPAGE_SUCCESS) { 1123 if (unlikely(__PageMovable(newpage))) 1124 put_page(newpage); 1125 else 1126 putback_lru_page(newpage); 1127 } 1128 1129 return rc; 1130 } 1131 1132 /* 1133 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1134 * around it. 1135 */ 1136 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1137 #define ICE_noinline noinline 1138 #else 1139 #define ICE_noinline 1140 #endif 1141 1142 /* 1143 * Obtain the lock on page, remove all ptes and migrate the page 1144 * to the newly allocated page in newpage. 1145 */ 1146 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1147 free_page_t put_new_page, 1148 unsigned long private, struct page *page, 1149 int force, enum migrate_mode mode, 1150 enum migrate_reason reason) 1151 { 1152 int rc = MIGRATEPAGE_SUCCESS; 1153 struct page *newpage; 1154 1155 if (!thp_migration_supported() && PageTransHuge(page)) 1156 return -ENOMEM; 1157 1158 newpage = get_new_page(page, private); 1159 if (!newpage) 1160 return -ENOMEM; 1161 1162 if (page_count(page) == 1) { 1163 /* page was freed from under us. So we are done. */ 1164 ClearPageActive(page); 1165 ClearPageUnevictable(page); 1166 if (unlikely(__PageMovable(page))) { 1167 lock_page(page); 1168 if (!PageMovable(page)) 1169 __ClearPageIsolated(page); 1170 unlock_page(page); 1171 } 1172 if (put_new_page) 1173 put_new_page(newpage, private); 1174 else 1175 put_page(newpage); 1176 goto out; 1177 } 1178 1179 rc = __unmap_and_move(page, newpage, force, mode); 1180 if (rc == MIGRATEPAGE_SUCCESS) 1181 set_page_owner_migrate_reason(newpage, reason); 1182 1183 out: 1184 if (rc != -EAGAIN) { 1185 /* 1186 * A page that has been migrated has all references 1187 * removed and will be freed. A page that has not been 1188 * migrated will have kepts its references and be 1189 * restored. 1190 */ 1191 list_del(&page->lru); 1192 1193 /* 1194 * Compaction can migrate also non-LRU pages which are 1195 * not accounted to NR_ISOLATED_*. They can be recognized 1196 * as __PageMovable 1197 */ 1198 if (likely(!__PageMovable(page))) 1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1200 page_is_file_cache(page), -hpage_nr_pages(page)); 1201 } 1202 1203 /* 1204 * If migration is successful, releases reference grabbed during 1205 * isolation. Otherwise, restore the page to right list unless 1206 * we want to retry. 1207 */ 1208 if (rc == MIGRATEPAGE_SUCCESS) { 1209 put_page(page); 1210 if (reason == MR_MEMORY_FAILURE) { 1211 /* 1212 * Set PG_HWPoison on just freed page 1213 * intentionally. Although it's rather weird, 1214 * it's how HWPoison flag works at the moment. 1215 */ 1216 if (!test_set_page_hwpoison(page)) 1217 num_poisoned_pages_inc(); 1218 } 1219 } else { 1220 if (rc != -EAGAIN) { 1221 if (likely(!__PageMovable(page))) { 1222 putback_lru_page(page); 1223 goto put_new; 1224 } 1225 1226 lock_page(page); 1227 if (PageMovable(page)) 1228 putback_movable_page(page); 1229 else 1230 __ClearPageIsolated(page); 1231 unlock_page(page); 1232 put_page(page); 1233 } 1234 put_new: 1235 if (put_new_page) 1236 put_new_page(newpage, private); 1237 else 1238 put_page(newpage); 1239 } 1240 1241 return rc; 1242 } 1243 1244 /* 1245 * Counterpart of unmap_and_move_page() for hugepage migration. 1246 * 1247 * This function doesn't wait the completion of hugepage I/O 1248 * because there is no race between I/O and migration for hugepage. 1249 * Note that currently hugepage I/O occurs only in direct I/O 1250 * where no lock is held and PG_writeback is irrelevant, 1251 * and writeback status of all subpages are counted in the reference 1252 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1253 * under direct I/O, the reference of the head page is 512 and a bit more.) 1254 * This means that when we try to migrate hugepage whose subpages are 1255 * doing direct I/O, some references remain after try_to_unmap() and 1256 * hugepage migration fails without data corruption. 1257 * 1258 * There is also no race when direct I/O is issued on the page under migration, 1259 * because then pte is replaced with migration swap entry and direct I/O code 1260 * will wait in the page fault for migration to complete. 1261 */ 1262 static int unmap_and_move_huge_page(new_page_t get_new_page, 1263 free_page_t put_new_page, unsigned long private, 1264 struct page *hpage, int force, 1265 enum migrate_mode mode, int reason) 1266 { 1267 int rc = -EAGAIN; 1268 int page_was_mapped = 0; 1269 struct page *new_hpage; 1270 struct anon_vma *anon_vma = NULL; 1271 1272 /* 1273 * Movability of hugepages depends on architectures and hugepage size. 1274 * This check is necessary because some callers of hugepage migration 1275 * like soft offline and memory hotremove don't walk through page 1276 * tables or check whether the hugepage is pmd-based or not before 1277 * kicking migration. 1278 */ 1279 if (!hugepage_migration_supported(page_hstate(hpage))) { 1280 putback_active_hugepage(hpage); 1281 return -ENOSYS; 1282 } 1283 1284 new_hpage = get_new_page(hpage, private); 1285 if (!new_hpage) 1286 return -ENOMEM; 1287 1288 if (!trylock_page(hpage)) { 1289 if (!force) 1290 goto out; 1291 switch (mode) { 1292 case MIGRATE_SYNC: 1293 case MIGRATE_SYNC_NO_COPY: 1294 break; 1295 default: 1296 goto out; 1297 } 1298 lock_page(hpage); 1299 } 1300 1301 if (PageAnon(hpage)) 1302 anon_vma = page_get_anon_vma(hpage); 1303 1304 if (unlikely(!trylock_page(new_hpage))) 1305 goto put_anon; 1306 1307 if (page_mapped(hpage)) { 1308 try_to_unmap(hpage, 1309 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1310 page_was_mapped = 1; 1311 } 1312 1313 if (!page_mapped(hpage)) 1314 rc = move_to_new_page(new_hpage, hpage, mode); 1315 1316 if (page_was_mapped) 1317 remove_migration_ptes(hpage, 1318 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1319 1320 unlock_page(new_hpage); 1321 1322 put_anon: 1323 if (anon_vma) 1324 put_anon_vma(anon_vma); 1325 1326 if (rc == MIGRATEPAGE_SUCCESS) { 1327 move_hugetlb_state(hpage, new_hpage, reason); 1328 put_new_page = NULL; 1329 } 1330 1331 unlock_page(hpage); 1332 out: 1333 if (rc != -EAGAIN) 1334 putback_active_hugepage(hpage); 1335 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage)) 1336 num_poisoned_pages_inc(); 1337 1338 /* 1339 * If migration was not successful and there's a freeing callback, use 1340 * it. Otherwise, put_page() will drop the reference grabbed during 1341 * isolation. 1342 */ 1343 if (put_new_page) 1344 put_new_page(new_hpage, private); 1345 else 1346 putback_active_hugepage(new_hpage); 1347 1348 return rc; 1349 } 1350 1351 /* 1352 * migrate_pages - migrate the pages specified in a list, to the free pages 1353 * supplied as the target for the page migration 1354 * 1355 * @from: The list of pages to be migrated. 1356 * @get_new_page: The function used to allocate free pages to be used 1357 * as the target of the page migration. 1358 * @put_new_page: The function used to free target pages if migration 1359 * fails, or NULL if no special handling is necessary. 1360 * @private: Private data to be passed on to get_new_page() 1361 * @mode: The migration mode that specifies the constraints for 1362 * page migration, if any. 1363 * @reason: The reason for page migration. 1364 * 1365 * The function returns after 10 attempts or if no pages are movable any more 1366 * because the list has become empty or no retryable pages exist any more. 1367 * The caller should call putback_movable_pages() to return pages to the LRU 1368 * or free list only if ret != 0. 1369 * 1370 * Returns the number of pages that were not migrated, or an error code. 1371 */ 1372 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1373 free_page_t put_new_page, unsigned long private, 1374 enum migrate_mode mode, int reason) 1375 { 1376 int retry = 1; 1377 int nr_failed = 0; 1378 int nr_succeeded = 0; 1379 int pass = 0; 1380 struct page *page; 1381 struct page *page2; 1382 int swapwrite = current->flags & PF_SWAPWRITE; 1383 int rc; 1384 1385 if (!swapwrite) 1386 current->flags |= PF_SWAPWRITE; 1387 1388 for(pass = 0; pass < 10 && retry; pass++) { 1389 retry = 0; 1390 1391 list_for_each_entry_safe(page, page2, from, lru) { 1392 retry: 1393 cond_resched(); 1394 1395 if (PageHuge(page)) 1396 rc = unmap_and_move_huge_page(get_new_page, 1397 put_new_page, private, page, 1398 pass > 2, mode, reason); 1399 else 1400 rc = unmap_and_move(get_new_page, put_new_page, 1401 private, page, pass > 2, mode, 1402 reason); 1403 1404 switch(rc) { 1405 case -ENOMEM: 1406 /* 1407 * THP migration might be unsupported or the 1408 * allocation could've failed so we should 1409 * retry on the same page with the THP split 1410 * to base pages. 1411 * 1412 * Head page is retried immediately and tail 1413 * pages are added to the tail of the list so 1414 * we encounter them after the rest of the list 1415 * is processed. 1416 */ 1417 if (PageTransHuge(page)) { 1418 lock_page(page); 1419 rc = split_huge_page_to_list(page, from); 1420 unlock_page(page); 1421 if (!rc) { 1422 list_safe_reset_next(page, page2, lru); 1423 goto retry; 1424 } 1425 } 1426 nr_failed++; 1427 goto out; 1428 case -EAGAIN: 1429 retry++; 1430 break; 1431 case MIGRATEPAGE_SUCCESS: 1432 nr_succeeded++; 1433 break; 1434 default: 1435 /* 1436 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1437 * unlike -EAGAIN case, the failed page is 1438 * removed from migration page list and not 1439 * retried in the next outer loop. 1440 */ 1441 nr_failed++; 1442 break; 1443 } 1444 } 1445 } 1446 nr_failed += retry; 1447 rc = nr_failed; 1448 out: 1449 if (nr_succeeded) 1450 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1451 if (nr_failed) 1452 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1453 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1454 1455 if (!swapwrite) 1456 current->flags &= ~PF_SWAPWRITE; 1457 1458 return rc; 1459 } 1460 1461 #ifdef CONFIG_NUMA 1462 1463 static int store_status(int __user *status, int start, int value, int nr) 1464 { 1465 while (nr-- > 0) { 1466 if (put_user(value, status + start)) 1467 return -EFAULT; 1468 start++; 1469 } 1470 1471 return 0; 1472 } 1473 1474 static int do_move_pages_to_node(struct mm_struct *mm, 1475 struct list_head *pagelist, int node) 1476 { 1477 int err; 1478 1479 if (list_empty(pagelist)) 1480 return 0; 1481 1482 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1483 MIGRATE_SYNC, MR_SYSCALL); 1484 if (err) 1485 putback_movable_pages(pagelist); 1486 return err; 1487 } 1488 1489 /* 1490 * Resolves the given address to a struct page, isolates it from the LRU and 1491 * puts it to the given pagelist. 1492 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1493 * queued or the page doesn't need to be migrated because it is already on 1494 * the target node 1495 */ 1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1497 int node, struct list_head *pagelist, bool migrate_all) 1498 { 1499 struct vm_area_struct *vma; 1500 struct page *page; 1501 unsigned int follflags; 1502 int err; 1503 1504 down_read(&mm->mmap_sem); 1505 err = -EFAULT; 1506 vma = find_vma(mm, addr); 1507 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1508 goto out; 1509 1510 /* FOLL_DUMP to ignore special (like zero) pages */ 1511 follflags = FOLL_GET | FOLL_DUMP; 1512 page = follow_page(vma, addr, follflags); 1513 1514 err = PTR_ERR(page); 1515 if (IS_ERR(page)) 1516 goto out; 1517 1518 err = -ENOENT; 1519 if (!page) 1520 goto out; 1521 1522 err = 0; 1523 if (page_to_nid(page) == node) 1524 goto out_putpage; 1525 1526 err = -EACCES; 1527 if (page_mapcount(page) > 1 && !migrate_all) 1528 goto out_putpage; 1529 1530 if (PageHuge(page)) { 1531 if (PageHead(page)) { 1532 isolate_huge_page(page, pagelist); 1533 err = 0; 1534 } 1535 } else { 1536 struct page *head; 1537 1538 head = compound_head(page); 1539 err = isolate_lru_page(head); 1540 if (err) 1541 goto out_putpage; 1542 1543 err = 0; 1544 list_add_tail(&head->lru, pagelist); 1545 mod_node_page_state(page_pgdat(head), 1546 NR_ISOLATED_ANON + page_is_file_cache(head), 1547 hpage_nr_pages(head)); 1548 } 1549 out_putpage: 1550 /* 1551 * Either remove the duplicate refcount from 1552 * isolate_lru_page() or drop the page ref if it was 1553 * not isolated. 1554 */ 1555 put_page(page); 1556 out: 1557 up_read(&mm->mmap_sem); 1558 return err; 1559 } 1560 1561 /* 1562 * Migrate an array of page address onto an array of nodes and fill 1563 * the corresponding array of status. 1564 */ 1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1566 unsigned long nr_pages, 1567 const void __user * __user *pages, 1568 const int __user *nodes, 1569 int __user *status, int flags) 1570 { 1571 int current_node = NUMA_NO_NODE; 1572 LIST_HEAD(pagelist); 1573 int start, i; 1574 int err = 0, err1; 1575 1576 migrate_prep(); 1577 1578 for (i = start = 0; i < nr_pages; i++) { 1579 const void __user *p; 1580 unsigned long addr; 1581 int node; 1582 1583 err = -EFAULT; 1584 if (get_user(p, pages + i)) 1585 goto out_flush; 1586 if (get_user(node, nodes + i)) 1587 goto out_flush; 1588 addr = (unsigned long)p; 1589 1590 err = -ENODEV; 1591 if (node < 0 || node >= MAX_NUMNODES) 1592 goto out_flush; 1593 if (!node_state(node, N_MEMORY)) 1594 goto out_flush; 1595 1596 err = -EACCES; 1597 if (!node_isset(node, task_nodes)) 1598 goto out_flush; 1599 1600 if (current_node == NUMA_NO_NODE) { 1601 current_node = node; 1602 start = i; 1603 } else if (node != current_node) { 1604 err = do_move_pages_to_node(mm, &pagelist, current_node); 1605 if (err) 1606 goto out; 1607 err = store_status(status, start, current_node, i - start); 1608 if (err) 1609 goto out; 1610 start = i; 1611 current_node = node; 1612 } 1613 1614 /* 1615 * Errors in the page lookup or isolation are not fatal and we simply 1616 * report them via status 1617 */ 1618 err = add_page_for_migration(mm, addr, current_node, 1619 &pagelist, flags & MPOL_MF_MOVE_ALL); 1620 if (!err) 1621 continue; 1622 1623 err = store_status(status, i, err, 1); 1624 if (err) 1625 goto out_flush; 1626 1627 err = do_move_pages_to_node(mm, &pagelist, current_node); 1628 if (err) 1629 goto out; 1630 if (i > start) { 1631 err = store_status(status, start, current_node, i - start); 1632 if (err) 1633 goto out; 1634 } 1635 current_node = NUMA_NO_NODE; 1636 } 1637 out_flush: 1638 if (list_empty(&pagelist)) 1639 return err; 1640 1641 /* Make sure we do not overwrite the existing error */ 1642 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1643 if (!err1) 1644 err1 = store_status(status, start, current_node, i - start); 1645 if (!err) 1646 err = err1; 1647 out: 1648 return err; 1649 } 1650 1651 /* 1652 * Determine the nodes of an array of pages and store it in an array of status. 1653 */ 1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1655 const void __user **pages, int *status) 1656 { 1657 unsigned long i; 1658 1659 down_read(&mm->mmap_sem); 1660 1661 for (i = 0; i < nr_pages; i++) { 1662 unsigned long addr = (unsigned long)(*pages); 1663 struct vm_area_struct *vma; 1664 struct page *page; 1665 int err = -EFAULT; 1666 1667 vma = find_vma(mm, addr); 1668 if (!vma || addr < vma->vm_start) 1669 goto set_status; 1670 1671 /* FOLL_DUMP to ignore special (like zero) pages */ 1672 page = follow_page(vma, addr, FOLL_DUMP); 1673 1674 err = PTR_ERR(page); 1675 if (IS_ERR(page)) 1676 goto set_status; 1677 1678 err = page ? page_to_nid(page) : -ENOENT; 1679 set_status: 1680 *status = err; 1681 1682 pages++; 1683 status++; 1684 } 1685 1686 up_read(&mm->mmap_sem); 1687 } 1688 1689 /* 1690 * Determine the nodes of a user array of pages and store it in 1691 * a user array of status. 1692 */ 1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1694 const void __user * __user *pages, 1695 int __user *status) 1696 { 1697 #define DO_PAGES_STAT_CHUNK_NR 16 1698 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1699 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1700 1701 while (nr_pages) { 1702 unsigned long chunk_nr; 1703 1704 chunk_nr = nr_pages; 1705 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1706 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1707 1708 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1709 break; 1710 1711 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1712 1713 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1714 break; 1715 1716 pages += chunk_nr; 1717 status += chunk_nr; 1718 nr_pages -= chunk_nr; 1719 } 1720 return nr_pages ? -EFAULT : 0; 1721 } 1722 1723 /* 1724 * Move a list of pages in the address space of the currently executing 1725 * process. 1726 */ 1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1728 const void __user * __user *pages, 1729 const int __user *nodes, 1730 int __user *status, int flags) 1731 { 1732 struct task_struct *task; 1733 struct mm_struct *mm; 1734 int err; 1735 nodemask_t task_nodes; 1736 1737 /* Check flags */ 1738 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1739 return -EINVAL; 1740 1741 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1742 return -EPERM; 1743 1744 /* Find the mm_struct */ 1745 rcu_read_lock(); 1746 task = pid ? find_task_by_vpid(pid) : current; 1747 if (!task) { 1748 rcu_read_unlock(); 1749 return -ESRCH; 1750 } 1751 get_task_struct(task); 1752 1753 /* 1754 * Check if this process has the right to modify the specified 1755 * process. Use the regular "ptrace_may_access()" checks. 1756 */ 1757 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1758 rcu_read_unlock(); 1759 err = -EPERM; 1760 goto out; 1761 } 1762 rcu_read_unlock(); 1763 1764 err = security_task_movememory(task); 1765 if (err) 1766 goto out; 1767 1768 task_nodes = cpuset_mems_allowed(task); 1769 mm = get_task_mm(task); 1770 put_task_struct(task); 1771 1772 if (!mm) 1773 return -EINVAL; 1774 1775 if (nodes) 1776 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1777 nodes, status, flags); 1778 else 1779 err = do_pages_stat(mm, nr_pages, pages, status); 1780 1781 mmput(mm); 1782 return err; 1783 1784 out: 1785 put_task_struct(task); 1786 return err; 1787 } 1788 1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1790 const void __user * __user *, pages, 1791 const int __user *, nodes, 1792 int __user *, status, int, flags) 1793 { 1794 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1795 } 1796 1797 #ifdef CONFIG_COMPAT 1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1799 compat_uptr_t __user *, pages32, 1800 const int __user *, nodes, 1801 int __user *, status, 1802 int, flags) 1803 { 1804 const void __user * __user *pages; 1805 int i; 1806 1807 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1808 for (i = 0; i < nr_pages; i++) { 1809 compat_uptr_t p; 1810 1811 if (get_user(p, pages32 + i) || 1812 put_user(compat_ptr(p), pages + i)) 1813 return -EFAULT; 1814 } 1815 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1816 } 1817 #endif /* CONFIG_COMPAT */ 1818 1819 #ifdef CONFIG_NUMA_BALANCING 1820 /* 1821 * Returns true if this is a safe migration target node for misplaced NUMA 1822 * pages. Currently it only checks the watermarks which crude 1823 */ 1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1825 unsigned long nr_migrate_pages) 1826 { 1827 int z; 1828 1829 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1830 struct zone *zone = pgdat->node_zones + z; 1831 1832 if (!populated_zone(zone)) 1833 continue; 1834 1835 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1836 if (!zone_watermark_ok(zone, 0, 1837 high_wmark_pages(zone) + 1838 nr_migrate_pages, 1839 0, 0)) 1840 continue; 1841 return true; 1842 } 1843 return false; 1844 } 1845 1846 static struct page *alloc_misplaced_dst_page(struct page *page, 1847 unsigned long data) 1848 { 1849 int nid = (int) data; 1850 struct page *newpage; 1851 1852 newpage = __alloc_pages_node(nid, 1853 (GFP_HIGHUSER_MOVABLE | 1854 __GFP_THISNODE | __GFP_NOMEMALLOC | 1855 __GFP_NORETRY | __GFP_NOWARN) & 1856 ~__GFP_RECLAIM, 0); 1857 1858 return newpage; 1859 } 1860 1861 /* 1862 * page migration rate limiting control. 1863 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1864 * window of time. Default here says do not migrate more than 1280M per second. 1865 */ 1866 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1867 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1868 1869 /* Returns true if the node is migrate rate-limited after the update */ 1870 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1871 unsigned long nr_pages) 1872 { 1873 /* 1874 * Rate-limit the amount of data that is being migrated to a node. 1875 * Optimal placement is no good if the memory bus is saturated and 1876 * all the time is being spent migrating! 1877 */ 1878 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1879 spin_lock(&pgdat->numabalancing_migrate_lock); 1880 pgdat->numabalancing_migrate_nr_pages = 0; 1881 pgdat->numabalancing_migrate_next_window = jiffies + 1882 msecs_to_jiffies(migrate_interval_millisecs); 1883 spin_unlock(&pgdat->numabalancing_migrate_lock); 1884 } 1885 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1886 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1887 nr_pages); 1888 return true; 1889 } 1890 1891 /* 1892 * This is an unlocked non-atomic update so errors are possible. 1893 * The consequences are failing to migrate when we potentiall should 1894 * have which is not severe enough to warrant locking. If it is ever 1895 * a problem, it can be converted to a per-cpu counter. 1896 */ 1897 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1898 return false; 1899 } 1900 1901 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1902 { 1903 int page_lru; 1904 1905 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1906 1907 /* Avoid migrating to a node that is nearly full */ 1908 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1909 return 0; 1910 1911 if (isolate_lru_page(page)) 1912 return 0; 1913 1914 /* 1915 * migrate_misplaced_transhuge_page() skips page migration's usual 1916 * check on page_count(), so we must do it here, now that the page 1917 * has been isolated: a GUP pin, or any other pin, prevents migration. 1918 * The expected page count is 3: 1 for page's mapcount and 1 for the 1919 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1920 */ 1921 if (PageTransHuge(page) && page_count(page) != 3) { 1922 putback_lru_page(page); 1923 return 0; 1924 } 1925 1926 page_lru = page_is_file_cache(page); 1927 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1928 hpage_nr_pages(page)); 1929 1930 /* 1931 * Isolating the page has taken another reference, so the 1932 * caller's reference can be safely dropped without the page 1933 * disappearing underneath us during migration. 1934 */ 1935 put_page(page); 1936 return 1; 1937 } 1938 1939 bool pmd_trans_migrating(pmd_t pmd) 1940 { 1941 struct page *page = pmd_page(pmd); 1942 return PageLocked(page); 1943 } 1944 1945 /* 1946 * Attempt to migrate a misplaced page to the specified destination 1947 * node. Caller is expected to have an elevated reference count on 1948 * the page that will be dropped by this function before returning. 1949 */ 1950 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1951 int node) 1952 { 1953 pg_data_t *pgdat = NODE_DATA(node); 1954 int isolated; 1955 int nr_remaining; 1956 LIST_HEAD(migratepages); 1957 1958 /* 1959 * Don't migrate file pages that are mapped in multiple processes 1960 * with execute permissions as they are probably shared libraries. 1961 */ 1962 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1963 (vma->vm_flags & VM_EXEC)) 1964 goto out; 1965 1966 /* 1967 * Also do not migrate dirty pages as not all filesystems can move 1968 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1969 */ 1970 if (page_is_file_cache(page) && PageDirty(page)) 1971 goto out; 1972 1973 /* 1974 * Rate-limit the amount of data that is being migrated to a node. 1975 * Optimal placement is no good if the memory bus is saturated and 1976 * all the time is being spent migrating! 1977 */ 1978 if (numamigrate_update_ratelimit(pgdat, 1)) 1979 goto out; 1980 1981 isolated = numamigrate_isolate_page(pgdat, page); 1982 if (!isolated) 1983 goto out; 1984 1985 list_add(&page->lru, &migratepages); 1986 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1987 NULL, node, MIGRATE_ASYNC, 1988 MR_NUMA_MISPLACED); 1989 if (nr_remaining) { 1990 if (!list_empty(&migratepages)) { 1991 list_del(&page->lru); 1992 dec_node_page_state(page, NR_ISOLATED_ANON + 1993 page_is_file_cache(page)); 1994 putback_lru_page(page); 1995 } 1996 isolated = 0; 1997 } else 1998 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1999 BUG_ON(!list_empty(&migratepages)); 2000 return isolated; 2001 2002 out: 2003 put_page(page); 2004 return 0; 2005 } 2006 #endif /* CONFIG_NUMA_BALANCING */ 2007 2008 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2009 /* 2010 * Migrates a THP to a given target node. page must be locked and is unlocked 2011 * before returning. 2012 */ 2013 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2014 struct vm_area_struct *vma, 2015 pmd_t *pmd, pmd_t entry, 2016 unsigned long address, 2017 struct page *page, int node) 2018 { 2019 spinlock_t *ptl; 2020 pg_data_t *pgdat = NODE_DATA(node); 2021 int isolated = 0; 2022 struct page *new_page = NULL; 2023 int page_lru = page_is_file_cache(page); 2024 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2025 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 2026 2027 /* 2028 * Rate-limit the amount of data that is being migrated to a node. 2029 * Optimal placement is no good if the memory bus is saturated and 2030 * all the time is being spent migrating! 2031 */ 2032 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 2033 goto out_dropref; 2034 2035 new_page = alloc_pages_node(node, 2036 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2037 HPAGE_PMD_ORDER); 2038 if (!new_page) 2039 goto out_fail; 2040 prep_transhuge_page(new_page); 2041 2042 isolated = numamigrate_isolate_page(pgdat, page); 2043 if (!isolated) { 2044 put_page(new_page); 2045 goto out_fail; 2046 } 2047 2048 /* Prepare a page as a migration target */ 2049 __SetPageLocked(new_page); 2050 if (PageSwapBacked(page)) 2051 __SetPageSwapBacked(new_page); 2052 2053 /* anon mapping, we can simply copy page->mapping to the new page: */ 2054 new_page->mapping = page->mapping; 2055 new_page->index = page->index; 2056 migrate_page_copy(new_page, page); 2057 WARN_ON(PageLRU(new_page)); 2058 2059 /* Recheck the target PMD */ 2060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2061 ptl = pmd_lock(mm, pmd); 2062 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2063 spin_unlock(ptl); 2064 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2065 2066 /* Reverse changes made by migrate_page_copy() */ 2067 if (TestClearPageActive(new_page)) 2068 SetPageActive(page); 2069 if (TestClearPageUnevictable(new_page)) 2070 SetPageUnevictable(page); 2071 2072 unlock_page(new_page); 2073 put_page(new_page); /* Free it */ 2074 2075 /* Retake the callers reference and putback on LRU */ 2076 get_page(page); 2077 putback_lru_page(page); 2078 mod_node_page_state(page_pgdat(page), 2079 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2080 2081 goto out_unlock; 2082 } 2083 2084 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2085 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2086 2087 /* 2088 * Clear the old entry under pagetable lock and establish the new PTE. 2089 * Any parallel GUP will either observe the old page blocking on the 2090 * page lock, block on the page table lock or observe the new page. 2091 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2092 * guarantee the copy is visible before the pagetable update. 2093 */ 2094 flush_cache_range(vma, mmun_start, mmun_end); 2095 page_add_anon_rmap(new_page, vma, mmun_start, true); 2096 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2097 set_pmd_at(mm, mmun_start, pmd, entry); 2098 update_mmu_cache_pmd(vma, address, &entry); 2099 2100 page_ref_unfreeze(page, 2); 2101 mlock_migrate_page(new_page, page); 2102 page_remove_rmap(page, true); 2103 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2104 2105 spin_unlock(ptl); 2106 /* 2107 * No need to double call mmu_notifier->invalidate_range() callback as 2108 * the above pmdp_huge_clear_flush_notify() did already call it. 2109 */ 2110 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2111 2112 /* Take an "isolate" reference and put new page on the LRU. */ 2113 get_page(new_page); 2114 putback_lru_page(new_page); 2115 2116 unlock_page(new_page); 2117 unlock_page(page); 2118 put_page(page); /* Drop the rmap reference */ 2119 put_page(page); /* Drop the LRU isolation reference */ 2120 2121 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2122 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2123 2124 mod_node_page_state(page_pgdat(page), 2125 NR_ISOLATED_ANON + page_lru, 2126 -HPAGE_PMD_NR); 2127 return isolated; 2128 2129 out_fail: 2130 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2131 out_dropref: 2132 ptl = pmd_lock(mm, pmd); 2133 if (pmd_same(*pmd, entry)) { 2134 entry = pmd_modify(entry, vma->vm_page_prot); 2135 set_pmd_at(mm, mmun_start, pmd, entry); 2136 update_mmu_cache_pmd(vma, address, &entry); 2137 } 2138 spin_unlock(ptl); 2139 2140 out_unlock: 2141 unlock_page(page); 2142 put_page(page); 2143 return 0; 2144 } 2145 #endif /* CONFIG_NUMA_BALANCING */ 2146 2147 #endif /* CONFIG_NUMA */ 2148 2149 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2150 struct migrate_vma { 2151 struct vm_area_struct *vma; 2152 unsigned long *dst; 2153 unsigned long *src; 2154 unsigned long cpages; 2155 unsigned long npages; 2156 unsigned long start; 2157 unsigned long end; 2158 }; 2159 2160 static int migrate_vma_collect_hole(unsigned long start, 2161 unsigned long end, 2162 struct mm_walk *walk) 2163 { 2164 struct migrate_vma *migrate = walk->private; 2165 unsigned long addr; 2166 2167 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2168 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2169 migrate->dst[migrate->npages] = 0; 2170 migrate->npages++; 2171 migrate->cpages++; 2172 } 2173 2174 return 0; 2175 } 2176 2177 static int migrate_vma_collect_skip(unsigned long start, 2178 unsigned long end, 2179 struct mm_walk *walk) 2180 { 2181 struct migrate_vma *migrate = walk->private; 2182 unsigned long addr; 2183 2184 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2185 migrate->dst[migrate->npages] = 0; 2186 migrate->src[migrate->npages++] = 0; 2187 } 2188 2189 return 0; 2190 } 2191 2192 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2193 unsigned long start, 2194 unsigned long end, 2195 struct mm_walk *walk) 2196 { 2197 struct migrate_vma *migrate = walk->private; 2198 struct vm_area_struct *vma = walk->vma; 2199 struct mm_struct *mm = vma->vm_mm; 2200 unsigned long addr = start, unmapped = 0; 2201 spinlock_t *ptl; 2202 pte_t *ptep; 2203 2204 again: 2205 if (pmd_none(*pmdp)) 2206 return migrate_vma_collect_hole(start, end, walk); 2207 2208 if (pmd_trans_huge(*pmdp)) { 2209 struct page *page; 2210 2211 ptl = pmd_lock(mm, pmdp); 2212 if (unlikely(!pmd_trans_huge(*pmdp))) { 2213 spin_unlock(ptl); 2214 goto again; 2215 } 2216 2217 page = pmd_page(*pmdp); 2218 if (is_huge_zero_page(page)) { 2219 spin_unlock(ptl); 2220 split_huge_pmd(vma, pmdp, addr); 2221 if (pmd_trans_unstable(pmdp)) 2222 return migrate_vma_collect_skip(start, end, 2223 walk); 2224 } else { 2225 int ret; 2226 2227 get_page(page); 2228 spin_unlock(ptl); 2229 if (unlikely(!trylock_page(page))) 2230 return migrate_vma_collect_skip(start, end, 2231 walk); 2232 ret = split_huge_page(page); 2233 unlock_page(page); 2234 put_page(page); 2235 if (ret) 2236 return migrate_vma_collect_skip(start, end, 2237 walk); 2238 if (pmd_none(*pmdp)) 2239 return migrate_vma_collect_hole(start, end, 2240 walk); 2241 } 2242 } 2243 2244 if (unlikely(pmd_bad(*pmdp))) 2245 return migrate_vma_collect_skip(start, end, walk); 2246 2247 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2248 arch_enter_lazy_mmu_mode(); 2249 2250 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2251 unsigned long mpfn, pfn; 2252 struct page *page; 2253 swp_entry_t entry; 2254 pte_t pte; 2255 2256 pte = *ptep; 2257 pfn = pte_pfn(pte); 2258 2259 if (pte_none(pte)) { 2260 mpfn = MIGRATE_PFN_MIGRATE; 2261 migrate->cpages++; 2262 pfn = 0; 2263 goto next; 2264 } 2265 2266 if (!pte_present(pte)) { 2267 mpfn = pfn = 0; 2268 2269 /* 2270 * Only care about unaddressable device page special 2271 * page table entry. Other special swap entries are not 2272 * migratable, and we ignore regular swapped page. 2273 */ 2274 entry = pte_to_swp_entry(pte); 2275 if (!is_device_private_entry(entry)) 2276 goto next; 2277 2278 page = device_private_entry_to_page(entry); 2279 mpfn = migrate_pfn(page_to_pfn(page))| 2280 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2281 if (is_write_device_private_entry(entry)) 2282 mpfn |= MIGRATE_PFN_WRITE; 2283 } else { 2284 if (is_zero_pfn(pfn)) { 2285 mpfn = MIGRATE_PFN_MIGRATE; 2286 migrate->cpages++; 2287 pfn = 0; 2288 goto next; 2289 } 2290 page = _vm_normal_page(migrate->vma, addr, pte, true); 2291 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2292 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2293 } 2294 2295 /* FIXME support THP */ 2296 if (!page || !page->mapping || PageTransCompound(page)) { 2297 mpfn = pfn = 0; 2298 goto next; 2299 } 2300 pfn = page_to_pfn(page); 2301 2302 /* 2303 * By getting a reference on the page we pin it and that blocks 2304 * any kind of migration. Side effect is that it "freezes" the 2305 * pte. 2306 * 2307 * We drop this reference after isolating the page from the lru 2308 * for non device page (device page are not on the lru and thus 2309 * can't be dropped from it). 2310 */ 2311 get_page(page); 2312 migrate->cpages++; 2313 2314 /* 2315 * Optimize for the common case where page is only mapped once 2316 * in one process. If we can lock the page, then we can safely 2317 * set up a special migration page table entry now. 2318 */ 2319 if (trylock_page(page)) { 2320 pte_t swp_pte; 2321 2322 mpfn |= MIGRATE_PFN_LOCKED; 2323 ptep_get_and_clear(mm, addr, ptep); 2324 2325 /* Setup special migration page table entry */ 2326 entry = make_migration_entry(page, mpfn & 2327 MIGRATE_PFN_WRITE); 2328 swp_pte = swp_entry_to_pte(entry); 2329 if (pte_soft_dirty(pte)) 2330 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2331 set_pte_at(mm, addr, ptep, swp_pte); 2332 2333 /* 2334 * This is like regular unmap: we remove the rmap and 2335 * drop page refcount. Page won't be freed, as we took 2336 * a reference just above. 2337 */ 2338 page_remove_rmap(page, false); 2339 put_page(page); 2340 2341 if (pte_present(pte)) 2342 unmapped++; 2343 } 2344 2345 next: 2346 migrate->dst[migrate->npages] = 0; 2347 migrate->src[migrate->npages++] = mpfn; 2348 } 2349 arch_leave_lazy_mmu_mode(); 2350 pte_unmap_unlock(ptep - 1, ptl); 2351 2352 /* Only flush the TLB if we actually modified any entries */ 2353 if (unmapped) 2354 flush_tlb_range(walk->vma, start, end); 2355 2356 return 0; 2357 } 2358 2359 /* 2360 * migrate_vma_collect() - collect pages over a range of virtual addresses 2361 * @migrate: migrate struct containing all migration information 2362 * 2363 * This will walk the CPU page table. For each virtual address backed by a 2364 * valid page, it updates the src array and takes a reference on the page, in 2365 * order to pin the page until we lock it and unmap it. 2366 */ 2367 static void migrate_vma_collect(struct migrate_vma *migrate) 2368 { 2369 struct mm_walk mm_walk; 2370 2371 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2372 mm_walk.pte_entry = NULL; 2373 mm_walk.pte_hole = migrate_vma_collect_hole; 2374 mm_walk.hugetlb_entry = NULL; 2375 mm_walk.test_walk = NULL; 2376 mm_walk.vma = migrate->vma; 2377 mm_walk.mm = migrate->vma->vm_mm; 2378 mm_walk.private = migrate; 2379 2380 mmu_notifier_invalidate_range_start(mm_walk.mm, 2381 migrate->start, 2382 migrate->end); 2383 walk_page_range(migrate->start, migrate->end, &mm_walk); 2384 mmu_notifier_invalidate_range_end(mm_walk.mm, 2385 migrate->start, 2386 migrate->end); 2387 2388 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2389 } 2390 2391 /* 2392 * migrate_vma_check_page() - check if page is pinned or not 2393 * @page: struct page to check 2394 * 2395 * Pinned pages cannot be migrated. This is the same test as in 2396 * migrate_page_move_mapping(), except that here we allow migration of a 2397 * ZONE_DEVICE page. 2398 */ 2399 static bool migrate_vma_check_page(struct page *page) 2400 { 2401 /* 2402 * One extra ref because caller holds an extra reference, either from 2403 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2404 * a device page. 2405 */ 2406 int extra = 1; 2407 2408 /* 2409 * FIXME support THP (transparent huge page), it is bit more complex to 2410 * check them than regular pages, because they can be mapped with a pmd 2411 * or with a pte (split pte mapping). 2412 */ 2413 if (PageCompound(page)) 2414 return false; 2415 2416 /* Page from ZONE_DEVICE have one extra reference */ 2417 if (is_zone_device_page(page)) { 2418 /* 2419 * Private page can never be pin as they have no valid pte and 2420 * GUP will fail for those. Yet if there is a pending migration 2421 * a thread might try to wait on the pte migration entry and 2422 * will bump the page reference count. Sadly there is no way to 2423 * differentiate a regular pin from migration wait. Hence to 2424 * avoid 2 racing thread trying to migrate back to CPU to enter 2425 * infinite loop (one stoping migration because the other is 2426 * waiting on pte migration entry). We always return true here. 2427 * 2428 * FIXME proper solution is to rework migration_entry_wait() so 2429 * it does not need to take a reference on page. 2430 */ 2431 if (is_device_private_page(page)) 2432 return true; 2433 2434 /* 2435 * Only allow device public page to be migrated and account for 2436 * the extra reference count imply by ZONE_DEVICE pages. 2437 */ 2438 if (!is_device_public_page(page)) 2439 return false; 2440 extra++; 2441 } 2442 2443 /* For file back page */ 2444 if (page_mapping(page)) 2445 extra += 1 + page_has_private(page); 2446 2447 if ((page_count(page) - extra) > page_mapcount(page)) 2448 return false; 2449 2450 return true; 2451 } 2452 2453 /* 2454 * migrate_vma_prepare() - lock pages and isolate them from the lru 2455 * @migrate: migrate struct containing all migration information 2456 * 2457 * This locks pages that have been collected by migrate_vma_collect(). Once each 2458 * page is locked it is isolated from the lru (for non-device pages). Finally, 2459 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2460 * migrated by concurrent kernel threads. 2461 */ 2462 static void migrate_vma_prepare(struct migrate_vma *migrate) 2463 { 2464 const unsigned long npages = migrate->npages; 2465 const unsigned long start = migrate->start; 2466 unsigned long addr, i, restore = 0; 2467 bool allow_drain = true; 2468 2469 lru_add_drain(); 2470 2471 for (i = 0; (i < npages) && migrate->cpages; i++) { 2472 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2473 bool remap = true; 2474 2475 if (!page) 2476 continue; 2477 2478 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2479 /* 2480 * Because we are migrating several pages there can be 2481 * a deadlock between 2 concurrent migration where each 2482 * are waiting on each other page lock. 2483 * 2484 * Make migrate_vma() a best effort thing and backoff 2485 * for any page we can not lock right away. 2486 */ 2487 if (!trylock_page(page)) { 2488 migrate->src[i] = 0; 2489 migrate->cpages--; 2490 put_page(page); 2491 continue; 2492 } 2493 remap = false; 2494 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2495 } 2496 2497 /* ZONE_DEVICE pages are not on LRU */ 2498 if (!is_zone_device_page(page)) { 2499 if (!PageLRU(page) && allow_drain) { 2500 /* Drain CPU's pagevec */ 2501 lru_add_drain_all(); 2502 allow_drain = false; 2503 } 2504 2505 if (isolate_lru_page(page)) { 2506 if (remap) { 2507 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2508 migrate->cpages--; 2509 restore++; 2510 } else { 2511 migrate->src[i] = 0; 2512 unlock_page(page); 2513 migrate->cpages--; 2514 put_page(page); 2515 } 2516 continue; 2517 } 2518 2519 /* Drop the reference we took in collect */ 2520 put_page(page); 2521 } 2522 2523 if (!migrate_vma_check_page(page)) { 2524 if (remap) { 2525 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2526 migrate->cpages--; 2527 restore++; 2528 2529 if (!is_zone_device_page(page)) { 2530 get_page(page); 2531 putback_lru_page(page); 2532 } 2533 } else { 2534 migrate->src[i] = 0; 2535 unlock_page(page); 2536 migrate->cpages--; 2537 2538 if (!is_zone_device_page(page)) 2539 putback_lru_page(page); 2540 else 2541 put_page(page); 2542 } 2543 } 2544 } 2545 2546 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2547 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2548 2549 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2550 continue; 2551 2552 remove_migration_pte(page, migrate->vma, addr, page); 2553 2554 migrate->src[i] = 0; 2555 unlock_page(page); 2556 put_page(page); 2557 restore--; 2558 } 2559 } 2560 2561 /* 2562 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2563 * @migrate: migrate struct containing all migration information 2564 * 2565 * Replace page mapping (CPU page table pte) with a special migration pte entry 2566 * and check again if it has been pinned. Pinned pages are restored because we 2567 * cannot migrate them. 2568 * 2569 * This is the last step before we call the device driver callback to allocate 2570 * destination memory and copy contents of original page over to new page. 2571 */ 2572 static void migrate_vma_unmap(struct migrate_vma *migrate) 2573 { 2574 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2575 const unsigned long npages = migrate->npages; 2576 const unsigned long start = migrate->start; 2577 unsigned long addr, i, restore = 0; 2578 2579 for (i = 0; i < npages; i++) { 2580 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2581 2582 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2583 continue; 2584 2585 if (page_mapped(page)) { 2586 try_to_unmap(page, flags); 2587 if (page_mapped(page)) 2588 goto restore; 2589 } 2590 2591 if (migrate_vma_check_page(page)) 2592 continue; 2593 2594 restore: 2595 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2596 migrate->cpages--; 2597 restore++; 2598 } 2599 2600 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2601 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2602 2603 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2604 continue; 2605 2606 remove_migration_ptes(page, page, false); 2607 2608 migrate->src[i] = 0; 2609 unlock_page(page); 2610 restore--; 2611 2612 if (is_zone_device_page(page)) 2613 put_page(page); 2614 else 2615 putback_lru_page(page); 2616 } 2617 } 2618 2619 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2620 unsigned long addr, 2621 struct page *page, 2622 unsigned long *src, 2623 unsigned long *dst) 2624 { 2625 struct vm_area_struct *vma = migrate->vma; 2626 struct mm_struct *mm = vma->vm_mm; 2627 struct mem_cgroup *memcg; 2628 bool flush = false; 2629 spinlock_t *ptl; 2630 pte_t entry; 2631 pgd_t *pgdp; 2632 p4d_t *p4dp; 2633 pud_t *pudp; 2634 pmd_t *pmdp; 2635 pte_t *ptep; 2636 2637 /* Only allow populating anonymous memory */ 2638 if (!vma_is_anonymous(vma)) 2639 goto abort; 2640 2641 pgdp = pgd_offset(mm, addr); 2642 p4dp = p4d_alloc(mm, pgdp, addr); 2643 if (!p4dp) 2644 goto abort; 2645 pudp = pud_alloc(mm, p4dp, addr); 2646 if (!pudp) 2647 goto abort; 2648 pmdp = pmd_alloc(mm, pudp, addr); 2649 if (!pmdp) 2650 goto abort; 2651 2652 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2653 goto abort; 2654 2655 /* 2656 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2657 * pte_offset_map() on pmds where a huge pmd might be created 2658 * from a different thread. 2659 * 2660 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2661 * parallel threads are excluded by other means. 2662 * 2663 * Here we only have down_read(mmap_sem). 2664 */ 2665 if (pte_alloc(mm, pmdp, addr)) 2666 goto abort; 2667 2668 /* See the comment in pte_alloc_one_map() */ 2669 if (unlikely(pmd_trans_unstable(pmdp))) 2670 goto abort; 2671 2672 if (unlikely(anon_vma_prepare(vma))) 2673 goto abort; 2674 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2675 goto abort; 2676 2677 /* 2678 * The memory barrier inside __SetPageUptodate makes sure that 2679 * preceding stores to the page contents become visible before 2680 * the set_pte_at() write. 2681 */ 2682 __SetPageUptodate(page); 2683 2684 if (is_zone_device_page(page)) { 2685 if (is_device_private_page(page)) { 2686 swp_entry_t swp_entry; 2687 2688 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2689 entry = swp_entry_to_pte(swp_entry); 2690 } else if (is_device_public_page(page)) { 2691 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2692 if (vma->vm_flags & VM_WRITE) 2693 entry = pte_mkwrite(pte_mkdirty(entry)); 2694 entry = pte_mkdevmap(entry); 2695 } 2696 } else { 2697 entry = mk_pte(page, vma->vm_page_prot); 2698 if (vma->vm_flags & VM_WRITE) 2699 entry = pte_mkwrite(pte_mkdirty(entry)); 2700 } 2701 2702 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2703 2704 if (pte_present(*ptep)) { 2705 unsigned long pfn = pte_pfn(*ptep); 2706 2707 if (!is_zero_pfn(pfn)) { 2708 pte_unmap_unlock(ptep, ptl); 2709 mem_cgroup_cancel_charge(page, memcg, false); 2710 goto abort; 2711 } 2712 flush = true; 2713 } else if (!pte_none(*ptep)) { 2714 pte_unmap_unlock(ptep, ptl); 2715 mem_cgroup_cancel_charge(page, memcg, false); 2716 goto abort; 2717 } 2718 2719 /* 2720 * Check for usefaultfd but do not deliver the fault. Instead, 2721 * just back off. 2722 */ 2723 if (userfaultfd_missing(vma)) { 2724 pte_unmap_unlock(ptep, ptl); 2725 mem_cgroup_cancel_charge(page, memcg, false); 2726 goto abort; 2727 } 2728 2729 inc_mm_counter(mm, MM_ANONPAGES); 2730 page_add_new_anon_rmap(page, vma, addr, false); 2731 mem_cgroup_commit_charge(page, memcg, false, false); 2732 if (!is_zone_device_page(page)) 2733 lru_cache_add_active_or_unevictable(page, vma); 2734 get_page(page); 2735 2736 if (flush) { 2737 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2738 ptep_clear_flush_notify(vma, addr, ptep); 2739 set_pte_at_notify(mm, addr, ptep, entry); 2740 update_mmu_cache(vma, addr, ptep); 2741 } else { 2742 /* No need to invalidate - it was non-present before */ 2743 set_pte_at(mm, addr, ptep, entry); 2744 update_mmu_cache(vma, addr, ptep); 2745 } 2746 2747 pte_unmap_unlock(ptep, ptl); 2748 *src = MIGRATE_PFN_MIGRATE; 2749 return; 2750 2751 abort: 2752 *src &= ~MIGRATE_PFN_MIGRATE; 2753 } 2754 2755 /* 2756 * migrate_vma_pages() - migrate meta-data from src page to dst page 2757 * @migrate: migrate struct containing all migration information 2758 * 2759 * This migrates struct page meta-data from source struct page to destination 2760 * struct page. This effectively finishes the migration from source page to the 2761 * destination page. 2762 */ 2763 static void migrate_vma_pages(struct migrate_vma *migrate) 2764 { 2765 const unsigned long npages = migrate->npages; 2766 const unsigned long start = migrate->start; 2767 struct vm_area_struct *vma = migrate->vma; 2768 struct mm_struct *mm = vma->vm_mm; 2769 unsigned long addr, i, mmu_start; 2770 bool notified = false; 2771 2772 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2773 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2774 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2775 struct address_space *mapping; 2776 int r; 2777 2778 if (!newpage) { 2779 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2780 continue; 2781 } 2782 2783 if (!page) { 2784 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2785 continue; 2786 } 2787 if (!notified) { 2788 mmu_start = addr; 2789 notified = true; 2790 mmu_notifier_invalidate_range_start(mm, 2791 mmu_start, 2792 migrate->end); 2793 } 2794 migrate_vma_insert_page(migrate, addr, newpage, 2795 &migrate->src[i], 2796 &migrate->dst[i]); 2797 continue; 2798 } 2799 2800 mapping = page_mapping(page); 2801 2802 if (is_zone_device_page(newpage)) { 2803 if (is_device_private_page(newpage)) { 2804 /* 2805 * For now only support private anonymous when 2806 * migrating to un-addressable device memory. 2807 */ 2808 if (mapping) { 2809 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2810 continue; 2811 } 2812 } else if (!is_device_public_page(newpage)) { 2813 /* 2814 * Other types of ZONE_DEVICE page are not 2815 * supported. 2816 */ 2817 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2818 continue; 2819 } 2820 } 2821 2822 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2823 if (r != MIGRATEPAGE_SUCCESS) 2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2825 } 2826 2827 /* 2828 * No need to double call mmu_notifier->invalidate_range() callback as 2829 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2830 * did already call it. 2831 */ 2832 if (notified) 2833 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2834 migrate->end); 2835 } 2836 2837 /* 2838 * migrate_vma_finalize() - restore CPU page table entry 2839 * @migrate: migrate struct containing all migration information 2840 * 2841 * This replaces the special migration pte entry with either a mapping to the 2842 * new page if migration was successful for that page, or to the original page 2843 * otherwise. 2844 * 2845 * This also unlocks the pages and puts them back on the lru, or drops the extra 2846 * refcount, for device pages. 2847 */ 2848 static void migrate_vma_finalize(struct migrate_vma *migrate) 2849 { 2850 const unsigned long npages = migrate->npages; 2851 unsigned long i; 2852 2853 for (i = 0; i < npages; i++) { 2854 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2855 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2856 2857 if (!page) { 2858 if (newpage) { 2859 unlock_page(newpage); 2860 put_page(newpage); 2861 } 2862 continue; 2863 } 2864 2865 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2866 if (newpage) { 2867 unlock_page(newpage); 2868 put_page(newpage); 2869 } 2870 newpage = page; 2871 } 2872 2873 remove_migration_ptes(page, newpage, false); 2874 unlock_page(page); 2875 migrate->cpages--; 2876 2877 if (is_zone_device_page(page)) 2878 put_page(page); 2879 else 2880 putback_lru_page(page); 2881 2882 if (newpage != page) { 2883 unlock_page(newpage); 2884 if (is_zone_device_page(newpage)) 2885 put_page(newpage); 2886 else 2887 putback_lru_page(newpage); 2888 } 2889 } 2890 } 2891 2892 /* 2893 * migrate_vma() - migrate a range of memory inside vma 2894 * 2895 * @ops: migration callback for allocating destination memory and copying 2896 * @vma: virtual memory area containing the range to be migrated 2897 * @start: start address of the range to migrate (inclusive) 2898 * @end: end address of the range to migrate (exclusive) 2899 * @src: array of hmm_pfn_t containing source pfns 2900 * @dst: array of hmm_pfn_t containing destination pfns 2901 * @private: pointer passed back to each of the callback 2902 * Returns: 0 on success, error code otherwise 2903 * 2904 * This function tries to migrate a range of memory virtual address range, using 2905 * callbacks to allocate and copy memory from source to destination. First it 2906 * collects all the pages backing each virtual address in the range, saving this 2907 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2908 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2909 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2910 * in the corresponding src array entry. It then restores any pages that are 2911 * pinned, by remapping and unlocking those pages. 2912 * 2913 * At this point it calls the alloc_and_copy() callback. For documentation on 2914 * what is expected from that callback, see struct migrate_vma_ops comments in 2915 * include/linux/migrate.h 2916 * 2917 * After the alloc_and_copy() callback, this function goes over each entry in 2918 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2919 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2920 * then the function tries to migrate struct page information from the source 2921 * struct page to the destination struct page. If it fails to migrate the struct 2922 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2923 * array. 2924 * 2925 * At this point all successfully migrated pages have an entry in the src 2926 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2927 * array entry with MIGRATE_PFN_VALID flag set. 2928 * 2929 * It then calls the finalize_and_map() callback. See comments for "struct 2930 * migrate_vma_ops", in include/linux/migrate.h for details about 2931 * finalize_and_map() behavior. 2932 * 2933 * After the finalize_and_map() callback, for successfully migrated pages, this 2934 * function updates the CPU page table to point to new pages, otherwise it 2935 * restores the CPU page table to point to the original source pages. 2936 * 2937 * Function returns 0 after the above steps, even if no pages were migrated 2938 * (The function only returns an error if any of the arguments are invalid.) 2939 * 2940 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2941 * unsigned long entries. 2942 */ 2943 int migrate_vma(const struct migrate_vma_ops *ops, 2944 struct vm_area_struct *vma, 2945 unsigned long start, 2946 unsigned long end, 2947 unsigned long *src, 2948 unsigned long *dst, 2949 void *private) 2950 { 2951 struct migrate_vma migrate; 2952 2953 /* Sanity check the arguments */ 2954 start &= PAGE_MASK; 2955 end &= PAGE_MASK; 2956 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) 2957 return -EINVAL; 2958 if (start < vma->vm_start || start >= vma->vm_end) 2959 return -EINVAL; 2960 if (end <= vma->vm_start || end > vma->vm_end) 2961 return -EINVAL; 2962 if (!ops || !src || !dst || start >= end) 2963 return -EINVAL; 2964 2965 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2966 migrate.src = src; 2967 migrate.dst = dst; 2968 migrate.start = start; 2969 migrate.npages = 0; 2970 migrate.cpages = 0; 2971 migrate.end = end; 2972 migrate.vma = vma; 2973 2974 /* Collect, and try to unmap source pages */ 2975 migrate_vma_collect(&migrate); 2976 if (!migrate.cpages) 2977 return 0; 2978 2979 /* Lock and isolate page */ 2980 migrate_vma_prepare(&migrate); 2981 if (!migrate.cpages) 2982 return 0; 2983 2984 /* Unmap pages */ 2985 migrate_vma_unmap(&migrate); 2986 if (!migrate.cpages) 2987 return 0; 2988 2989 /* 2990 * At this point pages are locked and unmapped, and thus they have 2991 * stable content and can safely be copied to destination memory that 2992 * is allocated by the callback. 2993 * 2994 * Note that migration can fail in migrate_vma_struct_page() for each 2995 * individual page. 2996 */ 2997 ops->alloc_and_copy(vma, src, dst, start, end, private); 2998 2999 /* This does the real migration of struct page */ 3000 migrate_vma_pages(&migrate); 3001 3002 ops->finalize_and_map(vma, src, dst, start, end, private); 3003 3004 /* Unlock and remap pages */ 3005 migrate_vma_finalize(&migrate); 3006 3007 return 0; 3008 } 3009 EXPORT_SYMBOL(migrate_vma); 3010 #endif /* defined(MIGRATE_VMA_HELPER) */ 3011