1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 52 #include <asm/tlbflush.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/migrate.h> 56 57 #include "internal.h" 58 59 /* 60 * migrate_prep() needs to be called before we start compiling a list of pages 61 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 62 * undesirable, use migrate_prep_local() 63 */ 64 int migrate_prep(void) 65 { 66 /* 67 * Clear the LRU lists so pages can be isolated. 68 * Note that pages may be moved off the LRU after we have 69 * drained them. Those pages will fail to migrate like other 70 * pages that may be busy. 71 */ 72 lru_add_drain_all(); 73 74 return 0; 75 } 76 77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 78 int migrate_prep_local(void) 79 { 80 lru_add_drain(); 81 82 return 0; 83 } 84 85 int isolate_movable_page(struct page *page, isolate_mode_t mode) 86 { 87 struct address_space *mapping; 88 89 /* 90 * Avoid burning cycles with pages that are yet under __free_pages(), 91 * or just got freed under us. 92 * 93 * In case we 'win' a race for a movable page being freed under us and 94 * raise its refcount preventing __free_pages() from doing its job 95 * the put_page() at the end of this block will take care of 96 * release this page, thus avoiding a nasty leakage. 97 */ 98 if (unlikely(!get_page_unless_zero(page))) 99 goto out; 100 101 /* 102 * Check PageMovable before holding a PG_lock because page's owner 103 * assumes anybody doesn't touch PG_lock of newly allocated page 104 * so unconditionally grabbing the lock ruins page's owner side. 105 */ 106 if (unlikely(!__PageMovable(page))) 107 goto out_putpage; 108 /* 109 * As movable pages are not isolated from LRU lists, concurrent 110 * compaction threads can race against page migration functions 111 * as well as race against the releasing a page. 112 * 113 * In order to avoid having an already isolated movable page 114 * being (wrongly) re-isolated while it is under migration, 115 * or to avoid attempting to isolate pages being released, 116 * lets be sure we have the page lock 117 * before proceeding with the movable page isolation steps. 118 */ 119 if (unlikely(!trylock_page(page))) 120 goto out_putpage; 121 122 if (!PageMovable(page) || PageIsolated(page)) 123 goto out_no_isolated; 124 125 mapping = page_mapping(page); 126 VM_BUG_ON_PAGE(!mapping, page); 127 128 if (!mapping->a_ops->isolate_page(page, mode)) 129 goto out_no_isolated; 130 131 /* Driver shouldn't use PG_isolated bit of page->flags */ 132 WARN_ON_ONCE(PageIsolated(page)); 133 __SetPageIsolated(page); 134 unlock_page(page); 135 136 return 0; 137 138 out_no_isolated: 139 unlock_page(page); 140 out_putpage: 141 put_page(page); 142 out: 143 return -EBUSY; 144 } 145 146 /* It should be called on page which is PG_movable */ 147 void putback_movable_page(struct page *page) 148 { 149 struct address_space *mapping; 150 151 VM_BUG_ON_PAGE(!PageLocked(page), page); 152 VM_BUG_ON_PAGE(!PageMovable(page), page); 153 VM_BUG_ON_PAGE(!PageIsolated(page), page); 154 155 mapping = page_mapping(page); 156 mapping->a_ops->putback_page(page); 157 __ClearPageIsolated(page); 158 } 159 160 /* 161 * Put previously isolated pages back onto the appropriate lists 162 * from where they were once taken off for compaction/migration. 163 * 164 * This function shall be used whenever the isolated pageset has been 165 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 166 * and isolate_huge_page(). 167 */ 168 void putback_movable_pages(struct list_head *l) 169 { 170 struct page *page; 171 struct page *page2; 172 173 list_for_each_entry_safe(page, page2, l, lru) { 174 if (unlikely(PageHuge(page))) { 175 putback_active_hugepage(page); 176 continue; 177 } 178 list_del(&page->lru); 179 /* 180 * We isolated non-lru movable page so here we can use 181 * __PageMovable because LRU page's mapping cannot have 182 * PAGE_MAPPING_MOVABLE. 183 */ 184 if (unlikely(__PageMovable(page))) { 185 VM_BUG_ON_PAGE(!PageIsolated(page), page); 186 lock_page(page); 187 if (PageMovable(page)) 188 putback_movable_page(page); 189 else 190 __ClearPageIsolated(page); 191 unlock_page(page); 192 put_page(page); 193 } else { 194 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 195 page_is_file_cache(page), -hpage_nr_pages(page)); 196 putback_lru_page(page); 197 } 198 } 199 } 200 201 /* 202 * Restore a potential migration pte to a working pte entry 203 */ 204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 205 unsigned long addr, void *old) 206 { 207 struct page_vma_mapped_walk pvmw = { 208 .page = old, 209 .vma = vma, 210 .address = addr, 211 .flags = PVMW_SYNC | PVMW_MIGRATION, 212 }; 213 struct page *new; 214 pte_t pte; 215 swp_entry_t entry; 216 217 VM_BUG_ON_PAGE(PageTail(page), page); 218 while (page_vma_mapped_walk(&pvmw)) { 219 if (PageKsm(page)) 220 new = page; 221 else 222 new = page - pvmw.page->index + 223 linear_page_index(vma, pvmw.address); 224 225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 226 /* PMD-mapped THP migration entry */ 227 if (!pvmw.pte) { 228 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 229 remove_migration_pmd(&pvmw, new); 230 continue; 231 } 232 #endif 233 234 get_page(new); 235 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 236 if (pte_swp_soft_dirty(*pvmw.pte)) 237 pte = pte_mksoft_dirty(pte); 238 239 /* 240 * Recheck VMA as permissions can change since migration started 241 */ 242 entry = pte_to_swp_entry(*pvmw.pte); 243 if (is_write_migration_entry(entry)) 244 pte = maybe_mkwrite(pte, vma); 245 246 if (unlikely(is_zone_device_page(new))) { 247 if (is_device_private_page(new)) { 248 entry = make_device_private_entry(new, pte_write(pte)); 249 pte = swp_entry_to_pte(entry); 250 } 251 } 252 253 #ifdef CONFIG_HUGETLB_PAGE 254 if (PageHuge(new)) { 255 pte = pte_mkhuge(pte); 256 pte = arch_make_huge_pte(pte, vma, new, 0); 257 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 258 if (PageAnon(new)) 259 hugepage_add_anon_rmap(new, vma, pvmw.address); 260 else 261 page_dup_rmap(new, true); 262 } else 263 #endif 264 { 265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 266 267 if (PageAnon(new)) 268 page_add_anon_rmap(new, vma, pvmw.address, false); 269 else 270 page_add_file_rmap(new, false); 271 } 272 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 273 mlock_vma_page(new); 274 275 if (PageTransHuge(page) && PageMlocked(page)) 276 clear_page_mlock(page); 277 278 /* No need to invalidate - it was non-present before */ 279 update_mmu_cache(vma, pvmw.address, pvmw.pte); 280 } 281 282 return true; 283 } 284 285 /* 286 * Get rid of all migration entries and replace them by 287 * references to the indicated page. 288 */ 289 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 290 { 291 struct rmap_walk_control rwc = { 292 .rmap_one = remove_migration_pte, 293 .arg = old, 294 }; 295 296 if (locked) 297 rmap_walk_locked(new, &rwc); 298 else 299 rmap_walk(new, &rwc); 300 } 301 302 /* 303 * Something used the pte of a page under migration. We need to 304 * get to the page and wait until migration is finished. 305 * When we return from this function the fault will be retried. 306 */ 307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 308 spinlock_t *ptl) 309 { 310 pte_t pte; 311 swp_entry_t entry; 312 struct page *page; 313 314 spin_lock(ptl); 315 pte = *ptep; 316 if (!is_swap_pte(pte)) 317 goto out; 318 319 entry = pte_to_swp_entry(pte); 320 if (!is_migration_entry(entry)) 321 goto out; 322 323 page = migration_entry_to_page(entry); 324 325 /* 326 * Once page cache replacement of page migration started, page_count 327 * is zero; but we must not call put_and_wait_on_page_locked() without 328 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 329 */ 330 if (!get_page_unless_zero(page)) 331 goto out; 332 pte_unmap_unlock(ptep, ptl); 333 put_and_wait_on_page_locked(page); 334 return; 335 out: 336 pte_unmap_unlock(ptep, ptl); 337 } 338 339 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 340 unsigned long address) 341 { 342 spinlock_t *ptl = pte_lockptr(mm, pmd); 343 pte_t *ptep = pte_offset_map(pmd, address); 344 __migration_entry_wait(mm, ptep, ptl); 345 } 346 347 void migration_entry_wait_huge(struct vm_area_struct *vma, 348 struct mm_struct *mm, pte_t *pte) 349 { 350 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 351 __migration_entry_wait(mm, pte, ptl); 352 } 353 354 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 355 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 356 { 357 spinlock_t *ptl; 358 struct page *page; 359 360 ptl = pmd_lock(mm, pmd); 361 if (!is_pmd_migration_entry(*pmd)) 362 goto unlock; 363 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 364 if (!get_page_unless_zero(page)) 365 goto unlock; 366 spin_unlock(ptl); 367 put_and_wait_on_page_locked(page); 368 return; 369 unlock: 370 spin_unlock(ptl); 371 } 372 #endif 373 374 static int expected_page_refs(struct address_space *mapping, struct page *page) 375 { 376 int expected_count = 1; 377 378 /* 379 * Device public or private pages have an extra refcount as they are 380 * ZONE_DEVICE pages. 381 */ 382 expected_count += is_device_private_page(page); 383 if (mapping) 384 expected_count += hpage_nr_pages(page) + page_has_private(page); 385 386 return expected_count; 387 } 388 389 /* 390 * Replace the page in the mapping. 391 * 392 * The number of remaining references must be: 393 * 1 for anonymous pages without a mapping 394 * 2 for pages with a mapping 395 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 396 */ 397 int migrate_page_move_mapping(struct address_space *mapping, 398 struct page *newpage, struct page *page, int extra_count) 399 { 400 XA_STATE(xas, &mapping->i_pages, page_index(page)); 401 struct zone *oldzone, *newzone; 402 int dirty; 403 int expected_count = expected_page_refs(mapping, page) + extra_count; 404 405 if (!mapping) { 406 /* Anonymous page without mapping */ 407 if (page_count(page) != expected_count) 408 return -EAGAIN; 409 410 /* No turning back from here */ 411 newpage->index = page->index; 412 newpage->mapping = page->mapping; 413 if (PageSwapBacked(page)) 414 __SetPageSwapBacked(newpage); 415 416 return MIGRATEPAGE_SUCCESS; 417 } 418 419 oldzone = page_zone(page); 420 newzone = page_zone(newpage); 421 422 xas_lock_irq(&xas); 423 if (page_count(page) != expected_count || xas_load(&xas) != page) { 424 xas_unlock_irq(&xas); 425 return -EAGAIN; 426 } 427 428 if (!page_ref_freeze(page, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the page: 435 * no turning back from here. 436 */ 437 newpage->index = page->index; 438 newpage->mapping = page->mapping; 439 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 440 if (PageSwapBacked(page)) { 441 __SetPageSwapBacked(newpage); 442 if (PageSwapCache(page)) { 443 SetPageSwapCache(newpage); 444 set_page_private(newpage, page_private(page)); 445 } 446 } else { 447 VM_BUG_ON_PAGE(PageSwapCache(page), page); 448 } 449 450 /* Move dirty while page refs frozen and newpage not yet exposed */ 451 dirty = PageDirty(page); 452 if (dirty) { 453 ClearPageDirty(page); 454 SetPageDirty(newpage); 455 } 456 457 xas_store(&xas, newpage); 458 if (PageTransHuge(page)) { 459 int i; 460 461 for (i = 1; i < HPAGE_PMD_NR; i++) { 462 xas_next(&xas); 463 xas_store(&xas, newpage); 464 } 465 } 466 467 /* 468 * Drop cache reference from old page by unfreezing 469 * to one less reference. 470 * We know this isn't the last reference. 471 */ 472 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 473 474 xas_unlock(&xas); 475 /* Leave irq disabled to prevent preemption while updating stats */ 476 477 /* 478 * If moved to a different zone then also account 479 * the page for that zone. Other VM counters will be 480 * taken care of when we establish references to the 481 * new page and drop references to the old page. 482 * 483 * Note that anonymous pages are accounted for 484 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 485 * are mapped to swap space. 486 */ 487 if (newzone != oldzone) { 488 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 489 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 490 if (PageSwapBacked(page) && !PageSwapCache(page)) { 491 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 492 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 493 } 494 if (dirty && mapping_cap_account_dirty(mapping)) { 495 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 496 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 497 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 498 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 499 } 500 } 501 local_irq_enable(); 502 503 return MIGRATEPAGE_SUCCESS; 504 } 505 EXPORT_SYMBOL(migrate_page_move_mapping); 506 507 /* 508 * The expected number of remaining references is the same as that 509 * of migrate_page_move_mapping(). 510 */ 511 int migrate_huge_page_move_mapping(struct address_space *mapping, 512 struct page *newpage, struct page *page) 513 { 514 XA_STATE(xas, &mapping->i_pages, page_index(page)); 515 int expected_count; 516 517 xas_lock_irq(&xas); 518 expected_count = 2 + page_has_private(page); 519 if (page_count(page) != expected_count || xas_load(&xas) != page) { 520 xas_unlock_irq(&xas); 521 return -EAGAIN; 522 } 523 524 if (!page_ref_freeze(page, expected_count)) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 newpage->index = page->index; 530 newpage->mapping = page->mapping; 531 532 get_page(newpage); 533 534 xas_store(&xas, newpage); 535 536 page_ref_unfreeze(page, expected_count - 1); 537 538 xas_unlock_irq(&xas); 539 540 return MIGRATEPAGE_SUCCESS; 541 } 542 543 /* 544 * Gigantic pages are so large that we do not guarantee that page++ pointer 545 * arithmetic will work across the entire page. We need something more 546 * specialized. 547 */ 548 static void __copy_gigantic_page(struct page *dst, struct page *src, 549 int nr_pages) 550 { 551 int i; 552 struct page *dst_base = dst; 553 struct page *src_base = src; 554 555 for (i = 0; i < nr_pages; ) { 556 cond_resched(); 557 copy_highpage(dst, src); 558 559 i++; 560 dst = mem_map_next(dst, dst_base, i); 561 src = mem_map_next(src, src_base, i); 562 } 563 } 564 565 static void copy_huge_page(struct page *dst, struct page *src) 566 { 567 int i; 568 int nr_pages; 569 570 if (PageHuge(src)) { 571 /* hugetlbfs page */ 572 struct hstate *h = page_hstate(src); 573 nr_pages = pages_per_huge_page(h); 574 575 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 576 __copy_gigantic_page(dst, src, nr_pages); 577 return; 578 } 579 } else { 580 /* thp page */ 581 BUG_ON(!PageTransHuge(src)); 582 nr_pages = hpage_nr_pages(src); 583 } 584 585 for (i = 0; i < nr_pages; i++) { 586 cond_resched(); 587 copy_highpage(dst + i, src + i); 588 } 589 } 590 591 /* 592 * Copy the page to its new location 593 */ 594 void migrate_page_states(struct page *newpage, struct page *page) 595 { 596 int cpupid; 597 598 if (PageError(page)) 599 SetPageError(newpage); 600 if (PageReferenced(page)) 601 SetPageReferenced(newpage); 602 if (PageUptodate(page)) 603 SetPageUptodate(newpage); 604 if (TestClearPageActive(page)) { 605 VM_BUG_ON_PAGE(PageUnevictable(page), page); 606 SetPageActive(newpage); 607 } else if (TestClearPageUnevictable(page)) 608 SetPageUnevictable(newpage); 609 if (PageWorkingset(page)) 610 SetPageWorkingset(newpage); 611 if (PageChecked(page)) 612 SetPageChecked(newpage); 613 if (PageMappedToDisk(page)) 614 SetPageMappedToDisk(newpage); 615 616 /* Move dirty on pages not done by migrate_page_move_mapping() */ 617 if (PageDirty(page)) 618 SetPageDirty(newpage); 619 620 if (page_is_young(page)) 621 set_page_young(newpage); 622 if (page_is_idle(page)) 623 set_page_idle(newpage); 624 625 /* 626 * Copy NUMA information to the new page, to prevent over-eager 627 * future migrations of this same page. 628 */ 629 cpupid = page_cpupid_xchg_last(page, -1); 630 page_cpupid_xchg_last(newpage, cpupid); 631 632 ksm_migrate_page(newpage, page); 633 /* 634 * Please do not reorder this without considering how mm/ksm.c's 635 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 636 */ 637 if (PageSwapCache(page)) 638 ClearPageSwapCache(page); 639 ClearPagePrivate(page); 640 set_page_private(page, 0); 641 642 /* 643 * If any waiters have accumulated on the new page then 644 * wake them up. 645 */ 646 if (PageWriteback(newpage)) 647 end_page_writeback(newpage); 648 649 copy_page_owner(page, newpage); 650 651 mem_cgroup_migrate(page, newpage); 652 } 653 EXPORT_SYMBOL(migrate_page_states); 654 655 void migrate_page_copy(struct page *newpage, struct page *page) 656 { 657 if (PageHuge(page) || PageTransHuge(page)) 658 copy_huge_page(newpage, page); 659 else 660 copy_highpage(newpage, page); 661 662 migrate_page_states(newpage, page); 663 } 664 EXPORT_SYMBOL(migrate_page_copy); 665 666 /************************************************************ 667 * Migration functions 668 ***********************************************************/ 669 670 /* 671 * Common logic to directly migrate a single LRU page suitable for 672 * pages that do not use PagePrivate/PagePrivate2. 673 * 674 * Pages are locked upon entry and exit. 675 */ 676 int migrate_page(struct address_space *mapping, 677 struct page *newpage, struct page *page, 678 enum migrate_mode mode) 679 { 680 int rc; 681 682 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 683 684 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 685 686 if (rc != MIGRATEPAGE_SUCCESS) 687 return rc; 688 689 if (mode != MIGRATE_SYNC_NO_COPY) 690 migrate_page_copy(newpage, page); 691 else 692 migrate_page_states(newpage, page); 693 return MIGRATEPAGE_SUCCESS; 694 } 695 EXPORT_SYMBOL(migrate_page); 696 697 #ifdef CONFIG_BLOCK 698 /* Returns true if all buffers are successfully locked */ 699 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 700 enum migrate_mode mode) 701 { 702 struct buffer_head *bh = head; 703 704 /* Simple case, sync compaction */ 705 if (mode != MIGRATE_ASYNC) { 706 do { 707 lock_buffer(bh); 708 bh = bh->b_this_page; 709 710 } while (bh != head); 711 712 return true; 713 } 714 715 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 716 do { 717 if (!trylock_buffer(bh)) { 718 /* 719 * We failed to lock the buffer and cannot stall in 720 * async migration. Release the taken locks 721 */ 722 struct buffer_head *failed_bh = bh; 723 bh = head; 724 while (bh != failed_bh) { 725 unlock_buffer(bh); 726 bh = bh->b_this_page; 727 } 728 return false; 729 } 730 731 bh = bh->b_this_page; 732 } while (bh != head); 733 return true; 734 } 735 736 static int __buffer_migrate_page(struct address_space *mapping, 737 struct page *newpage, struct page *page, enum migrate_mode mode, 738 bool check_refs) 739 { 740 struct buffer_head *bh, *head; 741 int rc; 742 int expected_count; 743 744 if (!page_has_buffers(page)) 745 return migrate_page(mapping, newpage, page, mode); 746 747 /* Check whether page does not have extra refs before we do more work */ 748 expected_count = expected_page_refs(mapping, page); 749 if (page_count(page) != expected_count) 750 return -EAGAIN; 751 752 head = page_buffers(page); 753 if (!buffer_migrate_lock_buffers(head, mode)) 754 return -EAGAIN; 755 756 if (check_refs) { 757 bool busy; 758 bool invalidated = false; 759 760 recheck_buffers: 761 busy = false; 762 spin_lock(&mapping->private_lock); 763 bh = head; 764 do { 765 if (atomic_read(&bh->b_count)) { 766 busy = true; 767 break; 768 } 769 bh = bh->b_this_page; 770 } while (bh != head); 771 if (busy) { 772 if (invalidated) { 773 rc = -EAGAIN; 774 goto unlock_buffers; 775 } 776 spin_unlock(&mapping->private_lock); 777 invalidate_bh_lrus(); 778 invalidated = true; 779 goto recheck_buffers; 780 } 781 } 782 783 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 784 if (rc != MIGRATEPAGE_SUCCESS) 785 goto unlock_buffers; 786 787 ClearPagePrivate(page); 788 set_page_private(newpage, page_private(page)); 789 set_page_private(page, 0); 790 put_page(page); 791 get_page(newpage); 792 793 bh = head; 794 do { 795 set_bh_page(bh, newpage, bh_offset(bh)); 796 bh = bh->b_this_page; 797 798 } while (bh != head); 799 800 SetPagePrivate(newpage); 801 802 if (mode != MIGRATE_SYNC_NO_COPY) 803 migrate_page_copy(newpage, page); 804 else 805 migrate_page_states(newpage, page); 806 807 rc = MIGRATEPAGE_SUCCESS; 808 unlock_buffers: 809 if (check_refs) 810 spin_unlock(&mapping->private_lock); 811 bh = head; 812 do { 813 unlock_buffer(bh); 814 bh = bh->b_this_page; 815 816 } while (bh != head); 817 818 return rc; 819 } 820 821 /* 822 * Migration function for pages with buffers. This function can only be used 823 * if the underlying filesystem guarantees that no other references to "page" 824 * exist. For example attached buffer heads are accessed only under page lock. 825 */ 826 int buffer_migrate_page(struct address_space *mapping, 827 struct page *newpage, struct page *page, enum migrate_mode mode) 828 { 829 return __buffer_migrate_page(mapping, newpage, page, mode, false); 830 } 831 EXPORT_SYMBOL(buffer_migrate_page); 832 833 /* 834 * Same as above except that this variant is more careful and checks that there 835 * are also no buffer head references. This function is the right one for 836 * mappings where buffer heads are directly looked up and referenced (such as 837 * block device mappings). 838 */ 839 int buffer_migrate_page_norefs(struct address_space *mapping, 840 struct page *newpage, struct page *page, enum migrate_mode mode) 841 { 842 return __buffer_migrate_page(mapping, newpage, page, mode, true); 843 } 844 #endif 845 846 /* 847 * Writeback a page to clean the dirty state 848 */ 849 static int writeout(struct address_space *mapping, struct page *page) 850 { 851 struct writeback_control wbc = { 852 .sync_mode = WB_SYNC_NONE, 853 .nr_to_write = 1, 854 .range_start = 0, 855 .range_end = LLONG_MAX, 856 .for_reclaim = 1 857 }; 858 int rc; 859 860 if (!mapping->a_ops->writepage) 861 /* No write method for the address space */ 862 return -EINVAL; 863 864 if (!clear_page_dirty_for_io(page)) 865 /* Someone else already triggered a write */ 866 return -EAGAIN; 867 868 /* 869 * A dirty page may imply that the underlying filesystem has 870 * the page on some queue. So the page must be clean for 871 * migration. Writeout may mean we loose the lock and the 872 * page state is no longer what we checked for earlier. 873 * At this point we know that the migration attempt cannot 874 * be successful. 875 */ 876 remove_migration_ptes(page, page, false); 877 878 rc = mapping->a_ops->writepage(page, &wbc); 879 880 if (rc != AOP_WRITEPAGE_ACTIVATE) 881 /* unlocked. Relock */ 882 lock_page(page); 883 884 return (rc < 0) ? -EIO : -EAGAIN; 885 } 886 887 /* 888 * Default handling if a filesystem does not provide a migration function. 889 */ 890 static int fallback_migrate_page(struct address_space *mapping, 891 struct page *newpage, struct page *page, enum migrate_mode mode) 892 { 893 if (PageDirty(page)) { 894 /* Only writeback pages in full synchronous migration */ 895 switch (mode) { 896 case MIGRATE_SYNC: 897 case MIGRATE_SYNC_NO_COPY: 898 break; 899 default: 900 return -EBUSY; 901 } 902 return writeout(mapping, page); 903 } 904 905 /* 906 * Buffers may be managed in a filesystem specific way. 907 * We must have no buffers or drop them. 908 */ 909 if (page_has_private(page) && 910 !try_to_release_page(page, GFP_KERNEL)) 911 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 912 913 return migrate_page(mapping, newpage, page, mode); 914 } 915 916 /* 917 * Move a page to a newly allocated page 918 * The page is locked and all ptes have been successfully removed. 919 * 920 * The new page will have replaced the old page if this function 921 * is successful. 922 * 923 * Return value: 924 * < 0 - error code 925 * MIGRATEPAGE_SUCCESS - success 926 */ 927 static int move_to_new_page(struct page *newpage, struct page *page, 928 enum migrate_mode mode) 929 { 930 struct address_space *mapping; 931 int rc = -EAGAIN; 932 bool is_lru = !__PageMovable(page); 933 934 VM_BUG_ON_PAGE(!PageLocked(page), page); 935 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 936 937 mapping = page_mapping(page); 938 939 if (likely(is_lru)) { 940 if (!mapping) 941 rc = migrate_page(mapping, newpage, page, mode); 942 else if (mapping->a_ops->migratepage) 943 /* 944 * Most pages have a mapping and most filesystems 945 * provide a migratepage callback. Anonymous pages 946 * are part of swap space which also has its own 947 * migratepage callback. This is the most common path 948 * for page migration. 949 */ 950 rc = mapping->a_ops->migratepage(mapping, newpage, 951 page, mode); 952 else 953 rc = fallback_migrate_page(mapping, newpage, 954 page, mode); 955 } else { 956 /* 957 * In case of non-lru page, it could be released after 958 * isolation step. In that case, we shouldn't try migration. 959 */ 960 VM_BUG_ON_PAGE(!PageIsolated(page), page); 961 if (!PageMovable(page)) { 962 rc = MIGRATEPAGE_SUCCESS; 963 __ClearPageIsolated(page); 964 goto out; 965 } 966 967 rc = mapping->a_ops->migratepage(mapping, newpage, 968 page, mode); 969 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 970 !PageIsolated(page)); 971 } 972 973 /* 974 * When successful, old pagecache page->mapping must be cleared before 975 * page is freed; but stats require that PageAnon be left as PageAnon. 976 */ 977 if (rc == MIGRATEPAGE_SUCCESS) { 978 if (__PageMovable(page)) { 979 VM_BUG_ON_PAGE(!PageIsolated(page), page); 980 981 /* 982 * We clear PG_movable under page_lock so any compactor 983 * cannot try to migrate this page. 984 */ 985 __ClearPageIsolated(page); 986 } 987 988 /* 989 * Anonymous and movable page->mapping will be cleard by 990 * free_pages_prepare so don't reset it here for keeping 991 * the type to work PageAnon, for example. 992 */ 993 if (!PageMappingFlags(page)) 994 page->mapping = NULL; 995 996 if (likely(!is_zone_device_page(newpage))) 997 flush_dcache_page(newpage); 998 999 } 1000 out: 1001 return rc; 1002 } 1003 1004 static int __unmap_and_move(struct page *page, struct page *newpage, 1005 int force, enum migrate_mode mode) 1006 { 1007 int rc = -EAGAIN; 1008 int page_was_mapped = 0; 1009 struct anon_vma *anon_vma = NULL; 1010 bool is_lru = !__PageMovable(page); 1011 1012 if (!trylock_page(page)) { 1013 if (!force || mode == MIGRATE_ASYNC) 1014 goto out; 1015 1016 /* 1017 * It's not safe for direct compaction to call lock_page. 1018 * For example, during page readahead pages are added locked 1019 * to the LRU. Later, when the IO completes the pages are 1020 * marked uptodate and unlocked. However, the queueing 1021 * could be merging multiple pages for one bio (e.g. 1022 * mpage_readpages). If an allocation happens for the 1023 * second or third page, the process can end up locking 1024 * the same page twice and deadlocking. Rather than 1025 * trying to be clever about what pages can be locked, 1026 * avoid the use of lock_page for direct compaction 1027 * altogether. 1028 */ 1029 if (current->flags & PF_MEMALLOC) 1030 goto out; 1031 1032 lock_page(page); 1033 } 1034 1035 if (PageWriteback(page)) { 1036 /* 1037 * Only in the case of a full synchronous migration is it 1038 * necessary to wait for PageWriteback. In the async case, 1039 * the retry loop is too short and in the sync-light case, 1040 * the overhead of stalling is too much 1041 */ 1042 switch (mode) { 1043 case MIGRATE_SYNC: 1044 case MIGRATE_SYNC_NO_COPY: 1045 break; 1046 default: 1047 rc = -EBUSY; 1048 goto out_unlock; 1049 } 1050 if (!force) 1051 goto out_unlock; 1052 wait_on_page_writeback(page); 1053 } 1054 1055 /* 1056 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1057 * we cannot notice that anon_vma is freed while we migrates a page. 1058 * This get_anon_vma() delays freeing anon_vma pointer until the end 1059 * of migration. File cache pages are no problem because of page_lock() 1060 * File Caches may use write_page() or lock_page() in migration, then, 1061 * just care Anon page here. 1062 * 1063 * Only page_get_anon_vma() understands the subtleties of 1064 * getting a hold on an anon_vma from outside one of its mms. 1065 * But if we cannot get anon_vma, then we won't need it anyway, 1066 * because that implies that the anon page is no longer mapped 1067 * (and cannot be remapped so long as we hold the page lock). 1068 */ 1069 if (PageAnon(page) && !PageKsm(page)) 1070 anon_vma = page_get_anon_vma(page); 1071 1072 /* 1073 * Block others from accessing the new page when we get around to 1074 * establishing additional references. We are usually the only one 1075 * holding a reference to newpage at this point. We used to have a BUG 1076 * here if trylock_page(newpage) fails, but would like to allow for 1077 * cases where there might be a race with the previous use of newpage. 1078 * This is much like races on refcount of oldpage: just don't BUG(). 1079 */ 1080 if (unlikely(!trylock_page(newpage))) 1081 goto out_unlock; 1082 1083 if (unlikely(!is_lru)) { 1084 rc = move_to_new_page(newpage, page, mode); 1085 goto out_unlock_both; 1086 } 1087 1088 /* 1089 * Corner case handling: 1090 * 1. When a new swap-cache page is read into, it is added to the LRU 1091 * and treated as swapcache but it has no rmap yet. 1092 * Calling try_to_unmap() against a page->mapping==NULL page will 1093 * trigger a BUG. So handle it here. 1094 * 2. An orphaned page (see truncate_complete_page) might have 1095 * fs-private metadata. The page can be picked up due to memory 1096 * offlining. Everywhere else except page reclaim, the page is 1097 * invisible to the vm, so the page can not be migrated. So try to 1098 * free the metadata, so the page can be freed. 1099 */ 1100 if (!page->mapping) { 1101 VM_BUG_ON_PAGE(PageAnon(page), page); 1102 if (page_has_private(page)) { 1103 try_to_free_buffers(page); 1104 goto out_unlock_both; 1105 } 1106 } else if (page_mapped(page)) { 1107 /* Establish migration ptes */ 1108 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1109 page); 1110 try_to_unmap(page, 1111 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1112 page_was_mapped = 1; 1113 } 1114 1115 if (!page_mapped(page)) 1116 rc = move_to_new_page(newpage, page, mode); 1117 1118 if (page_was_mapped) 1119 remove_migration_ptes(page, 1120 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1121 1122 out_unlock_both: 1123 unlock_page(newpage); 1124 out_unlock: 1125 /* Drop an anon_vma reference if we took one */ 1126 if (anon_vma) 1127 put_anon_vma(anon_vma); 1128 unlock_page(page); 1129 out: 1130 /* 1131 * If migration is successful, decrease refcount of the newpage 1132 * which will not free the page because new page owner increased 1133 * refcounter. As well, if it is LRU page, add the page to LRU 1134 * list in here. Use the old state of the isolated source page to 1135 * determine if we migrated a LRU page. newpage was already unlocked 1136 * and possibly modified by its owner - don't rely on the page 1137 * state. 1138 */ 1139 if (rc == MIGRATEPAGE_SUCCESS) { 1140 if (unlikely(!is_lru)) 1141 put_page(newpage); 1142 else 1143 putback_lru_page(newpage); 1144 } 1145 1146 return rc; 1147 } 1148 1149 /* 1150 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1151 * around it. 1152 */ 1153 #if defined(CONFIG_ARM) && \ 1154 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1155 #define ICE_noinline noinline 1156 #else 1157 #define ICE_noinline 1158 #endif 1159 1160 /* 1161 * Obtain the lock on page, remove all ptes and migrate the page 1162 * to the newly allocated page in newpage. 1163 */ 1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1165 free_page_t put_new_page, 1166 unsigned long private, struct page *page, 1167 int force, enum migrate_mode mode, 1168 enum migrate_reason reason) 1169 { 1170 int rc = MIGRATEPAGE_SUCCESS; 1171 struct page *newpage; 1172 1173 if (!thp_migration_supported() && PageTransHuge(page)) 1174 return -ENOMEM; 1175 1176 newpage = get_new_page(page, private); 1177 if (!newpage) 1178 return -ENOMEM; 1179 1180 if (page_count(page) == 1) { 1181 /* page was freed from under us. So we are done. */ 1182 ClearPageActive(page); 1183 ClearPageUnevictable(page); 1184 if (unlikely(__PageMovable(page))) { 1185 lock_page(page); 1186 if (!PageMovable(page)) 1187 __ClearPageIsolated(page); 1188 unlock_page(page); 1189 } 1190 if (put_new_page) 1191 put_new_page(newpage, private); 1192 else 1193 put_page(newpage); 1194 goto out; 1195 } 1196 1197 rc = __unmap_and_move(page, newpage, force, mode); 1198 if (rc == MIGRATEPAGE_SUCCESS) 1199 set_page_owner_migrate_reason(newpage, reason); 1200 1201 out: 1202 if (rc != -EAGAIN) { 1203 /* 1204 * A page that has been migrated has all references 1205 * removed and will be freed. A page that has not been 1206 * migrated will have kepts its references and be 1207 * restored. 1208 */ 1209 list_del(&page->lru); 1210 1211 /* 1212 * Compaction can migrate also non-LRU pages which are 1213 * not accounted to NR_ISOLATED_*. They can be recognized 1214 * as __PageMovable 1215 */ 1216 if (likely(!__PageMovable(page))) 1217 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1218 page_is_file_cache(page), -hpage_nr_pages(page)); 1219 } 1220 1221 /* 1222 * If migration is successful, releases reference grabbed during 1223 * isolation. Otherwise, restore the page to right list unless 1224 * we want to retry. 1225 */ 1226 if (rc == MIGRATEPAGE_SUCCESS) { 1227 put_page(page); 1228 if (reason == MR_MEMORY_FAILURE) { 1229 /* 1230 * Set PG_HWPoison on just freed page 1231 * intentionally. Although it's rather weird, 1232 * it's how HWPoison flag works at the moment. 1233 */ 1234 if (set_hwpoison_free_buddy_page(page)) 1235 num_poisoned_pages_inc(); 1236 } 1237 } else { 1238 if (rc != -EAGAIN) { 1239 if (likely(!__PageMovable(page))) { 1240 putback_lru_page(page); 1241 goto put_new; 1242 } 1243 1244 lock_page(page); 1245 if (PageMovable(page)) 1246 putback_movable_page(page); 1247 else 1248 __ClearPageIsolated(page); 1249 unlock_page(page); 1250 put_page(page); 1251 } 1252 put_new: 1253 if (put_new_page) 1254 put_new_page(newpage, private); 1255 else 1256 put_page(newpage); 1257 } 1258 1259 return rc; 1260 } 1261 1262 /* 1263 * Counterpart of unmap_and_move_page() for hugepage migration. 1264 * 1265 * This function doesn't wait the completion of hugepage I/O 1266 * because there is no race between I/O and migration for hugepage. 1267 * Note that currently hugepage I/O occurs only in direct I/O 1268 * where no lock is held and PG_writeback is irrelevant, 1269 * and writeback status of all subpages are counted in the reference 1270 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1271 * under direct I/O, the reference of the head page is 512 and a bit more.) 1272 * This means that when we try to migrate hugepage whose subpages are 1273 * doing direct I/O, some references remain after try_to_unmap() and 1274 * hugepage migration fails without data corruption. 1275 * 1276 * There is also no race when direct I/O is issued on the page under migration, 1277 * because then pte is replaced with migration swap entry and direct I/O code 1278 * will wait in the page fault for migration to complete. 1279 */ 1280 static int unmap_and_move_huge_page(new_page_t get_new_page, 1281 free_page_t put_new_page, unsigned long private, 1282 struct page *hpage, int force, 1283 enum migrate_mode mode, int reason) 1284 { 1285 int rc = -EAGAIN; 1286 int page_was_mapped = 0; 1287 struct page *new_hpage; 1288 struct anon_vma *anon_vma = NULL; 1289 1290 /* 1291 * Migratability of hugepages depends on architectures and their size. 1292 * This check is necessary because some callers of hugepage migration 1293 * like soft offline and memory hotremove don't walk through page 1294 * tables or check whether the hugepage is pmd-based or not before 1295 * kicking migration. 1296 */ 1297 if (!hugepage_migration_supported(page_hstate(hpage))) { 1298 putback_active_hugepage(hpage); 1299 return -ENOSYS; 1300 } 1301 1302 new_hpage = get_new_page(hpage, private); 1303 if (!new_hpage) 1304 return -ENOMEM; 1305 1306 if (!trylock_page(hpage)) { 1307 if (!force) 1308 goto out; 1309 switch (mode) { 1310 case MIGRATE_SYNC: 1311 case MIGRATE_SYNC_NO_COPY: 1312 break; 1313 default: 1314 goto out; 1315 } 1316 lock_page(hpage); 1317 } 1318 1319 /* 1320 * Check for pages which are in the process of being freed. Without 1321 * page_mapping() set, hugetlbfs specific move page routine will not 1322 * be called and we could leak usage counts for subpools. 1323 */ 1324 if (page_private(hpage) && !page_mapping(hpage)) { 1325 rc = -EBUSY; 1326 goto out_unlock; 1327 } 1328 1329 if (PageAnon(hpage)) 1330 anon_vma = page_get_anon_vma(hpage); 1331 1332 if (unlikely(!trylock_page(new_hpage))) 1333 goto put_anon; 1334 1335 if (page_mapped(hpage)) { 1336 try_to_unmap(hpage, 1337 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1338 page_was_mapped = 1; 1339 } 1340 1341 if (!page_mapped(hpage)) 1342 rc = move_to_new_page(new_hpage, hpage, mode); 1343 1344 if (page_was_mapped) 1345 remove_migration_ptes(hpage, 1346 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1347 1348 unlock_page(new_hpage); 1349 1350 put_anon: 1351 if (anon_vma) 1352 put_anon_vma(anon_vma); 1353 1354 if (rc == MIGRATEPAGE_SUCCESS) { 1355 move_hugetlb_state(hpage, new_hpage, reason); 1356 put_new_page = NULL; 1357 } 1358 1359 out_unlock: 1360 unlock_page(hpage); 1361 out: 1362 if (rc != -EAGAIN) 1363 putback_active_hugepage(hpage); 1364 1365 /* 1366 * If migration was not successful and there's a freeing callback, use 1367 * it. Otherwise, put_page() will drop the reference grabbed during 1368 * isolation. 1369 */ 1370 if (put_new_page) 1371 put_new_page(new_hpage, private); 1372 else 1373 putback_active_hugepage(new_hpage); 1374 1375 return rc; 1376 } 1377 1378 /* 1379 * migrate_pages - migrate the pages specified in a list, to the free pages 1380 * supplied as the target for the page migration 1381 * 1382 * @from: The list of pages to be migrated. 1383 * @get_new_page: The function used to allocate free pages to be used 1384 * as the target of the page migration. 1385 * @put_new_page: The function used to free target pages if migration 1386 * fails, or NULL if no special handling is necessary. 1387 * @private: Private data to be passed on to get_new_page() 1388 * @mode: The migration mode that specifies the constraints for 1389 * page migration, if any. 1390 * @reason: The reason for page migration. 1391 * 1392 * The function returns after 10 attempts or if no pages are movable any more 1393 * because the list has become empty or no retryable pages exist any more. 1394 * The caller should call putback_movable_pages() to return pages to the LRU 1395 * or free list only if ret != 0. 1396 * 1397 * Returns the number of pages that were not migrated, or an error code. 1398 */ 1399 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1400 free_page_t put_new_page, unsigned long private, 1401 enum migrate_mode mode, int reason) 1402 { 1403 int retry = 1; 1404 int nr_failed = 0; 1405 int nr_succeeded = 0; 1406 int pass = 0; 1407 struct page *page; 1408 struct page *page2; 1409 int swapwrite = current->flags & PF_SWAPWRITE; 1410 int rc; 1411 1412 if (!swapwrite) 1413 current->flags |= PF_SWAPWRITE; 1414 1415 for(pass = 0; pass < 10 && retry; pass++) { 1416 retry = 0; 1417 1418 list_for_each_entry_safe(page, page2, from, lru) { 1419 retry: 1420 cond_resched(); 1421 1422 if (PageHuge(page)) 1423 rc = unmap_and_move_huge_page(get_new_page, 1424 put_new_page, private, page, 1425 pass > 2, mode, reason); 1426 else 1427 rc = unmap_and_move(get_new_page, put_new_page, 1428 private, page, pass > 2, mode, 1429 reason); 1430 1431 switch(rc) { 1432 case -ENOMEM: 1433 /* 1434 * THP migration might be unsupported or the 1435 * allocation could've failed so we should 1436 * retry on the same page with the THP split 1437 * to base pages. 1438 * 1439 * Head page is retried immediately and tail 1440 * pages are added to the tail of the list so 1441 * we encounter them after the rest of the list 1442 * is processed. 1443 */ 1444 if (PageTransHuge(page) && !PageHuge(page)) { 1445 lock_page(page); 1446 rc = split_huge_page_to_list(page, from); 1447 unlock_page(page); 1448 if (!rc) { 1449 list_safe_reset_next(page, page2, lru); 1450 goto retry; 1451 } 1452 } 1453 nr_failed++; 1454 goto out; 1455 case -EAGAIN: 1456 retry++; 1457 break; 1458 case MIGRATEPAGE_SUCCESS: 1459 nr_succeeded++; 1460 break; 1461 default: 1462 /* 1463 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1464 * unlike -EAGAIN case, the failed page is 1465 * removed from migration page list and not 1466 * retried in the next outer loop. 1467 */ 1468 nr_failed++; 1469 break; 1470 } 1471 } 1472 } 1473 nr_failed += retry; 1474 rc = nr_failed; 1475 out: 1476 if (nr_succeeded) 1477 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1478 if (nr_failed) 1479 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1480 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1481 1482 if (!swapwrite) 1483 current->flags &= ~PF_SWAPWRITE; 1484 1485 return rc; 1486 } 1487 1488 #ifdef CONFIG_NUMA 1489 1490 static int store_status(int __user *status, int start, int value, int nr) 1491 { 1492 while (nr-- > 0) { 1493 if (put_user(value, status + start)) 1494 return -EFAULT; 1495 start++; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int do_move_pages_to_node(struct mm_struct *mm, 1502 struct list_head *pagelist, int node) 1503 { 1504 int err; 1505 1506 if (list_empty(pagelist)) 1507 return 0; 1508 1509 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1510 MIGRATE_SYNC, MR_SYSCALL); 1511 if (err) 1512 putback_movable_pages(pagelist); 1513 return err; 1514 } 1515 1516 /* 1517 * Resolves the given address to a struct page, isolates it from the LRU and 1518 * puts it to the given pagelist. 1519 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1520 * queued or the page doesn't need to be migrated because it is already on 1521 * the target node 1522 */ 1523 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1524 int node, struct list_head *pagelist, bool migrate_all) 1525 { 1526 struct vm_area_struct *vma; 1527 struct page *page; 1528 unsigned int follflags; 1529 int err; 1530 1531 down_read(&mm->mmap_sem); 1532 err = -EFAULT; 1533 vma = find_vma(mm, addr); 1534 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1535 goto out; 1536 1537 /* FOLL_DUMP to ignore special (like zero) pages */ 1538 follflags = FOLL_GET | FOLL_DUMP; 1539 page = follow_page(vma, addr, follflags); 1540 1541 err = PTR_ERR(page); 1542 if (IS_ERR(page)) 1543 goto out; 1544 1545 err = -ENOENT; 1546 if (!page) 1547 goto out; 1548 1549 err = 0; 1550 if (page_to_nid(page) == node) 1551 goto out_putpage; 1552 1553 err = -EACCES; 1554 if (page_mapcount(page) > 1 && !migrate_all) 1555 goto out_putpage; 1556 1557 if (PageHuge(page)) { 1558 if (PageHead(page)) { 1559 isolate_huge_page(page, pagelist); 1560 err = 0; 1561 } 1562 } else { 1563 struct page *head; 1564 1565 head = compound_head(page); 1566 err = isolate_lru_page(head); 1567 if (err) 1568 goto out_putpage; 1569 1570 err = 0; 1571 list_add_tail(&head->lru, pagelist); 1572 mod_node_page_state(page_pgdat(head), 1573 NR_ISOLATED_ANON + page_is_file_cache(head), 1574 hpage_nr_pages(head)); 1575 } 1576 out_putpage: 1577 /* 1578 * Either remove the duplicate refcount from 1579 * isolate_lru_page() or drop the page ref if it was 1580 * not isolated. 1581 */ 1582 put_page(page); 1583 out: 1584 up_read(&mm->mmap_sem); 1585 return err; 1586 } 1587 1588 /* 1589 * Migrate an array of page address onto an array of nodes and fill 1590 * the corresponding array of status. 1591 */ 1592 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1593 unsigned long nr_pages, 1594 const void __user * __user *pages, 1595 const int __user *nodes, 1596 int __user *status, int flags) 1597 { 1598 int current_node = NUMA_NO_NODE; 1599 LIST_HEAD(pagelist); 1600 int start, i; 1601 int err = 0, err1; 1602 1603 migrate_prep(); 1604 1605 for (i = start = 0; i < nr_pages; i++) { 1606 const void __user *p; 1607 unsigned long addr; 1608 int node; 1609 1610 err = -EFAULT; 1611 if (get_user(p, pages + i)) 1612 goto out_flush; 1613 if (get_user(node, nodes + i)) 1614 goto out_flush; 1615 addr = (unsigned long)untagged_addr(p); 1616 1617 err = -ENODEV; 1618 if (node < 0 || node >= MAX_NUMNODES) 1619 goto out_flush; 1620 if (!node_state(node, N_MEMORY)) 1621 goto out_flush; 1622 1623 err = -EACCES; 1624 if (!node_isset(node, task_nodes)) 1625 goto out_flush; 1626 1627 if (current_node == NUMA_NO_NODE) { 1628 current_node = node; 1629 start = i; 1630 } else if (node != current_node) { 1631 err = do_move_pages_to_node(mm, &pagelist, current_node); 1632 if (err) 1633 goto out; 1634 err = store_status(status, start, current_node, i - start); 1635 if (err) 1636 goto out; 1637 start = i; 1638 current_node = node; 1639 } 1640 1641 /* 1642 * Errors in the page lookup or isolation are not fatal and we simply 1643 * report them via status 1644 */ 1645 err = add_page_for_migration(mm, addr, current_node, 1646 &pagelist, flags & MPOL_MF_MOVE_ALL); 1647 if (!err) 1648 continue; 1649 1650 err = store_status(status, i, err, 1); 1651 if (err) 1652 goto out_flush; 1653 1654 err = do_move_pages_to_node(mm, &pagelist, current_node); 1655 if (err) 1656 goto out; 1657 if (i > start) { 1658 err = store_status(status, start, current_node, i - start); 1659 if (err) 1660 goto out; 1661 } 1662 current_node = NUMA_NO_NODE; 1663 } 1664 out_flush: 1665 if (list_empty(&pagelist)) 1666 return err; 1667 1668 /* Make sure we do not overwrite the existing error */ 1669 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1670 if (!err1) 1671 err1 = store_status(status, start, current_node, i - start); 1672 if (!err) 1673 err = err1; 1674 out: 1675 return err; 1676 } 1677 1678 /* 1679 * Determine the nodes of an array of pages and store it in an array of status. 1680 */ 1681 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1682 const void __user **pages, int *status) 1683 { 1684 unsigned long i; 1685 1686 down_read(&mm->mmap_sem); 1687 1688 for (i = 0; i < nr_pages; i++) { 1689 unsigned long addr = (unsigned long)(*pages); 1690 struct vm_area_struct *vma; 1691 struct page *page; 1692 int err = -EFAULT; 1693 1694 vma = find_vma(mm, addr); 1695 if (!vma || addr < vma->vm_start) 1696 goto set_status; 1697 1698 /* FOLL_DUMP to ignore special (like zero) pages */ 1699 page = follow_page(vma, addr, FOLL_DUMP); 1700 1701 err = PTR_ERR(page); 1702 if (IS_ERR(page)) 1703 goto set_status; 1704 1705 err = page ? page_to_nid(page) : -ENOENT; 1706 set_status: 1707 *status = err; 1708 1709 pages++; 1710 status++; 1711 } 1712 1713 up_read(&mm->mmap_sem); 1714 } 1715 1716 /* 1717 * Determine the nodes of a user array of pages and store it in 1718 * a user array of status. 1719 */ 1720 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1721 const void __user * __user *pages, 1722 int __user *status) 1723 { 1724 #define DO_PAGES_STAT_CHUNK_NR 16 1725 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1726 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1727 1728 while (nr_pages) { 1729 unsigned long chunk_nr; 1730 1731 chunk_nr = nr_pages; 1732 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1733 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1734 1735 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1736 break; 1737 1738 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1739 1740 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1741 break; 1742 1743 pages += chunk_nr; 1744 status += chunk_nr; 1745 nr_pages -= chunk_nr; 1746 } 1747 return nr_pages ? -EFAULT : 0; 1748 } 1749 1750 /* 1751 * Move a list of pages in the address space of the currently executing 1752 * process. 1753 */ 1754 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1755 const void __user * __user *pages, 1756 const int __user *nodes, 1757 int __user *status, int flags) 1758 { 1759 struct task_struct *task; 1760 struct mm_struct *mm; 1761 int err; 1762 nodemask_t task_nodes; 1763 1764 /* Check flags */ 1765 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1766 return -EINVAL; 1767 1768 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1769 return -EPERM; 1770 1771 /* Find the mm_struct */ 1772 rcu_read_lock(); 1773 task = pid ? find_task_by_vpid(pid) : current; 1774 if (!task) { 1775 rcu_read_unlock(); 1776 return -ESRCH; 1777 } 1778 get_task_struct(task); 1779 1780 /* 1781 * Check if this process has the right to modify the specified 1782 * process. Use the regular "ptrace_may_access()" checks. 1783 */ 1784 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1785 rcu_read_unlock(); 1786 err = -EPERM; 1787 goto out; 1788 } 1789 rcu_read_unlock(); 1790 1791 err = security_task_movememory(task); 1792 if (err) 1793 goto out; 1794 1795 task_nodes = cpuset_mems_allowed(task); 1796 mm = get_task_mm(task); 1797 put_task_struct(task); 1798 1799 if (!mm) 1800 return -EINVAL; 1801 1802 if (nodes) 1803 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1804 nodes, status, flags); 1805 else 1806 err = do_pages_stat(mm, nr_pages, pages, status); 1807 1808 mmput(mm); 1809 return err; 1810 1811 out: 1812 put_task_struct(task); 1813 return err; 1814 } 1815 1816 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1817 const void __user * __user *, pages, 1818 const int __user *, nodes, 1819 int __user *, status, int, flags) 1820 { 1821 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1822 } 1823 1824 #ifdef CONFIG_COMPAT 1825 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1826 compat_uptr_t __user *, pages32, 1827 const int __user *, nodes, 1828 int __user *, status, 1829 int, flags) 1830 { 1831 const void __user * __user *pages; 1832 int i; 1833 1834 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1835 for (i = 0; i < nr_pages; i++) { 1836 compat_uptr_t p; 1837 1838 if (get_user(p, pages32 + i) || 1839 put_user(compat_ptr(p), pages + i)) 1840 return -EFAULT; 1841 } 1842 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1843 } 1844 #endif /* CONFIG_COMPAT */ 1845 1846 #ifdef CONFIG_NUMA_BALANCING 1847 /* 1848 * Returns true if this is a safe migration target node for misplaced NUMA 1849 * pages. Currently it only checks the watermarks which crude 1850 */ 1851 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1852 unsigned long nr_migrate_pages) 1853 { 1854 int z; 1855 1856 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1857 struct zone *zone = pgdat->node_zones + z; 1858 1859 if (!populated_zone(zone)) 1860 continue; 1861 1862 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1863 if (!zone_watermark_ok(zone, 0, 1864 high_wmark_pages(zone) + 1865 nr_migrate_pages, 1866 0, 0)) 1867 continue; 1868 return true; 1869 } 1870 return false; 1871 } 1872 1873 static struct page *alloc_misplaced_dst_page(struct page *page, 1874 unsigned long data) 1875 { 1876 int nid = (int) data; 1877 struct page *newpage; 1878 1879 newpage = __alloc_pages_node(nid, 1880 (GFP_HIGHUSER_MOVABLE | 1881 __GFP_THISNODE | __GFP_NOMEMALLOC | 1882 __GFP_NORETRY | __GFP_NOWARN) & 1883 ~__GFP_RECLAIM, 0); 1884 1885 return newpage; 1886 } 1887 1888 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1889 { 1890 int page_lru; 1891 1892 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1893 1894 /* Avoid migrating to a node that is nearly full */ 1895 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 1896 return 0; 1897 1898 if (isolate_lru_page(page)) 1899 return 0; 1900 1901 /* 1902 * migrate_misplaced_transhuge_page() skips page migration's usual 1903 * check on page_count(), so we must do it here, now that the page 1904 * has been isolated: a GUP pin, or any other pin, prevents migration. 1905 * The expected page count is 3: 1 for page's mapcount and 1 for the 1906 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1907 */ 1908 if (PageTransHuge(page) && page_count(page) != 3) { 1909 putback_lru_page(page); 1910 return 0; 1911 } 1912 1913 page_lru = page_is_file_cache(page); 1914 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1915 hpage_nr_pages(page)); 1916 1917 /* 1918 * Isolating the page has taken another reference, so the 1919 * caller's reference can be safely dropped without the page 1920 * disappearing underneath us during migration. 1921 */ 1922 put_page(page); 1923 return 1; 1924 } 1925 1926 bool pmd_trans_migrating(pmd_t pmd) 1927 { 1928 struct page *page = pmd_page(pmd); 1929 return PageLocked(page); 1930 } 1931 1932 /* 1933 * Attempt to migrate a misplaced page to the specified destination 1934 * node. Caller is expected to have an elevated reference count on 1935 * the page that will be dropped by this function before returning. 1936 */ 1937 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1938 int node) 1939 { 1940 pg_data_t *pgdat = NODE_DATA(node); 1941 int isolated; 1942 int nr_remaining; 1943 LIST_HEAD(migratepages); 1944 1945 /* 1946 * Don't migrate file pages that are mapped in multiple processes 1947 * with execute permissions as they are probably shared libraries. 1948 */ 1949 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1950 (vma->vm_flags & VM_EXEC)) 1951 goto out; 1952 1953 /* 1954 * Also do not migrate dirty pages as not all filesystems can move 1955 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1956 */ 1957 if (page_is_file_cache(page) && PageDirty(page)) 1958 goto out; 1959 1960 isolated = numamigrate_isolate_page(pgdat, page); 1961 if (!isolated) 1962 goto out; 1963 1964 list_add(&page->lru, &migratepages); 1965 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1966 NULL, node, MIGRATE_ASYNC, 1967 MR_NUMA_MISPLACED); 1968 if (nr_remaining) { 1969 if (!list_empty(&migratepages)) { 1970 list_del(&page->lru); 1971 dec_node_page_state(page, NR_ISOLATED_ANON + 1972 page_is_file_cache(page)); 1973 putback_lru_page(page); 1974 } 1975 isolated = 0; 1976 } else 1977 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1978 BUG_ON(!list_empty(&migratepages)); 1979 return isolated; 1980 1981 out: 1982 put_page(page); 1983 return 0; 1984 } 1985 #endif /* CONFIG_NUMA_BALANCING */ 1986 1987 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1988 /* 1989 * Migrates a THP to a given target node. page must be locked and is unlocked 1990 * before returning. 1991 */ 1992 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1993 struct vm_area_struct *vma, 1994 pmd_t *pmd, pmd_t entry, 1995 unsigned long address, 1996 struct page *page, int node) 1997 { 1998 spinlock_t *ptl; 1999 pg_data_t *pgdat = NODE_DATA(node); 2000 int isolated = 0; 2001 struct page *new_page = NULL; 2002 int page_lru = page_is_file_cache(page); 2003 unsigned long start = address & HPAGE_PMD_MASK; 2004 2005 new_page = alloc_pages_node(node, 2006 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2007 HPAGE_PMD_ORDER); 2008 if (!new_page) 2009 goto out_fail; 2010 prep_transhuge_page(new_page); 2011 2012 isolated = numamigrate_isolate_page(pgdat, page); 2013 if (!isolated) { 2014 put_page(new_page); 2015 goto out_fail; 2016 } 2017 2018 /* Prepare a page as a migration target */ 2019 __SetPageLocked(new_page); 2020 if (PageSwapBacked(page)) 2021 __SetPageSwapBacked(new_page); 2022 2023 /* anon mapping, we can simply copy page->mapping to the new page: */ 2024 new_page->mapping = page->mapping; 2025 new_page->index = page->index; 2026 /* flush the cache before copying using the kernel virtual address */ 2027 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2028 migrate_page_copy(new_page, page); 2029 WARN_ON(PageLRU(new_page)); 2030 2031 /* Recheck the target PMD */ 2032 ptl = pmd_lock(mm, pmd); 2033 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2034 spin_unlock(ptl); 2035 2036 /* Reverse changes made by migrate_page_copy() */ 2037 if (TestClearPageActive(new_page)) 2038 SetPageActive(page); 2039 if (TestClearPageUnevictable(new_page)) 2040 SetPageUnevictable(page); 2041 2042 unlock_page(new_page); 2043 put_page(new_page); /* Free it */ 2044 2045 /* Retake the callers reference and putback on LRU */ 2046 get_page(page); 2047 putback_lru_page(page); 2048 mod_node_page_state(page_pgdat(page), 2049 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2050 2051 goto out_unlock; 2052 } 2053 2054 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2055 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2056 2057 /* 2058 * Overwrite the old entry under pagetable lock and establish 2059 * the new PTE. Any parallel GUP will either observe the old 2060 * page blocking on the page lock, block on the page table 2061 * lock or observe the new page. The SetPageUptodate on the 2062 * new page and page_add_new_anon_rmap guarantee the copy is 2063 * visible before the pagetable update. 2064 */ 2065 page_add_anon_rmap(new_page, vma, start, true); 2066 /* 2067 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2068 * has already been flushed globally. So no TLB can be currently 2069 * caching this non present pmd mapping. There's no need to clear the 2070 * pmd before doing set_pmd_at(), nor to flush the TLB after 2071 * set_pmd_at(). Clearing the pmd here would introduce a race 2072 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2073 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2074 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2075 * pmd. 2076 */ 2077 set_pmd_at(mm, start, pmd, entry); 2078 update_mmu_cache_pmd(vma, address, &entry); 2079 2080 page_ref_unfreeze(page, 2); 2081 mlock_migrate_page(new_page, page); 2082 page_remove_rmap(page, true); 2083 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2084 2085 spin_unlock(ptl); 2086 2087 /* Take an "isolate" reference and put new page on the LRU. */ 2088 get_page(new_page); 2089 putback_lru_page(new_page); 2090 2091 unlock_page(new_page); 2092 unlock_page(page); 2093 put_page(page); /* Drop the rmap reference */ 2094 put_page(page); /* Drop the LRU isolation reference */ 2095 2096 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2097 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2098 2099 mod_node_page_state(page_pgdat(page), 2100 NR_ISOLATED_ANON + page_lru, 2101 -HPAGE_PMD_NR); 2102 return isolated; 2103 2104 out_fail: 2105 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2106 ptl = pmd_lock(mm, pmd); 2107 if (pmd_same(*pmd, entry)) { 2108 entry = pmd_modify(entry, vma->vm_page_prot); 2109 set_pmd_at(mm, start, pmd, entry); 2110 update_mmu_cache_pmd(vma, address, &entry); 2111 } 2112 spin_unlock(ptl); 2113 2114 out_unlock: 2115 unlock_page(page); 2116 put_page(page); 2117 return 0; 2118 } 2119 #endif /* CONFIG_NUMA_BALANCING */ 2120 2121 #endif /* CONFIG_NUMA */ 2122 2123 #ifdef CONFIG_DEVICE_PRIVATE 2124 static int migrate_vma_collect_hole(unsigned long start, 2125 unsigned long end, 2126 struct mm_walk *walk) 2127 { 2128 struct migrate_vma *migrate = walk->private; 2129 unsigned long addr; 2130 2131 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2132 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2133 migrate->dst[migrate->npages] = 0; 2134 migrate->npages++; 2135 migrate->cpages++; 2136 } 2137 2138 return 0; 2139 } 2140 2141 static int migrate_vma_collect_skip(unsigned long start, 2142 unsigned long end, 2143 struct mm_walk *walk) 2144 { 2145 struct migrate_vma *migrate = walk->private; 2146 unsigned long addr; 2147 2148 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2149 migrate->dst[migrate->npages] = 0; 2150 migrate->src[migrate->npages++] = 0; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2157 unsigned long start, 2158 unsigned long end, 2159 struct mm_walk *walk) 2160 { 2161 struct migrate_vma *migrate = walk->private; 2162 struct vm_area_struct *vma = walk->vma; 2163 struct mm_struct *mm = vma->vm_mm; 2164 unsigned long addr = start, unmapped = 0; 2165 spinlock_t *ptl; 2166 pte_t *ptep; 2167 2168 again: 2169 if (pmd_none(*pmdp)) 2170 return migrate_vma_collect_hole(start, end, walk); 2171 2172 if (pmd_trans_huge(*pmdp)) { 2173 struct page *page; 2174 2175 ptl = pmd_lock(mm, pmdp); 2176 if (unlikely(!pmd_trans_huge(*pmdp))) { 2177 spin_unlock(ptl); 2178 goto again; 2179 } 2180 2181 page = pmd_page(*pmdp); 2182 if (is_huge_zero_page(page)) { 2183 spin_unlock(ptl); 2184 split_huge_pmd(vma, pmdp, addr); 2185 if (pmd_trans_unstable(pmdp)) 2186 return migrate_vma_collect_skip(start, end, 2187 walk); 2188 } else { 2189 int ret; 2190 2191 get_page(page); 2192 spin_unlock(ptl); 2193 if (unlikely(!trylock_page(page))) 2194 return migrate_vma_collect_skip(start, end, 2195 walk); 2196 ret = split_huge_page(page); 2197 unlock_page(page); 2198 put_page(page); 2199 if (ret) 2200 return migrate_vma_collect_skip(start, end, 2201 walk); 2202 if (pmd_none(*pmdp)) 2203 return migrate_vma_collect_hole(start, end, 2204 walk); 2205 } 2206 } 2207 2208 if (unlikely(pmd_bad(*pmdp))) 2209 return migrate_vma_collect_skip(start, end, walk); 2210 2211 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2212 arch_enter_lazy_mmu_mode(); 2213 2214 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2215 unsigned long mpfn, pfn; 2216 struct page *page; 2217 swp_entry_t entry; 2218 pte_t pte; 2219 2220 pte = *ptep; 2221 2222 if (pte_none(pte)) { 2223 mpfn = MIGRATE_PFN_MIGRATE; 2224 migrate->cpages++; 2225 goto next; 2226 } 2227 2228 if (!pte_present(pte)) { 2229 mpfn = 0; 2230 2231 /* 2232 * Only care about unaddressable device page special 2233 * page table entry. Other special swap entries are not 2234 * migratable, and we ignore regular swapped page. 2235 */ 2236 entry = pte_to_swp_entry(pte); 2237 if (!is_device_private_entry(entry)) 2238 goto next; 2239 2240 page = device_private_entry_to_page(entry); 2241 mpfn = migrate_pfn(page_to_pfn(page)) | 2242 MIGRATE_PFN_MIGRATE; 2243 if (is_write_device_private_entry(entry)) 2244 mpfn |= MIGRATE_PFN_WRITE; 2245 } else { 2246 pfn = pte_pfn(pte); 2247 if (is_zero_pfn(pfn)) { 2248 mpfn = MIGRATE_PFN_MIGRATE; 2249 migrate->cpages++; 2250 goto next; 2251 } 2252 page = vm_normal_page(migrate->vma, addr, pte); 2253 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2254 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2255 } 2256 2257 /* FIXME support THP */ 2258 if (!page || !page->mapping || PageTransCompound(page)) { 2259 mpfn = 0; 2260 goto next; 2261 } 2262 2263 /* 2264 * By getting a reference on the page we pin it and that blocks 2265 * any kind of migration. Side effect is that it "freezes" the 2266 * pte. 2267 * 2268 * We drop this reference after isolating the page from the lru 2269 * for non device page (device page are not on the lru and thus 2270 * can't be dropped from it). 2271 */ 2272 get_page(page); 2273 migrate->cpages++; 2274 2275 /* 2276 * Optimize for the common case where page is only mapped once 2277 * in one process. If we can lock the page, then we can safely 2278 * set up a special migration page table entry now. 2279 */ 2280 if (trylock_page(page)) { 2281 pte_t swp_pte; 2282 2283 mpfn |= MIGRATE_PFN_LOCKED; 2284 ptep_get_and_clear(mm, addr, ptep); 2285 2286 /* Setup special migration page table entry */ 2287 entry = make_migration_entry(page, mpfn & 2288 MIGRATE_PFN_WRITE); 2289 swp_pte = swp_entry_to_pte(entry); 2290 if (pte_soft_dirty(pte)) 2291 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2292 set_pte_at(mm, addr, ptep, swp_pte); 2293 2294 /* 2295 * This is like regular unmap: we remove the rmap and 2296 * drop page refcount. Page won't be freed, as we took 2297 * a reference just above. 2298 */ 2299 page_remove_rmap(page, false); 2300 put_page(page); 2301 2302 if (pte_present(pte)) 2303 unmapped++; 2304 } 2305 2306 next: 2307 migrate->dst[migrate->npages] = 0; 2308 migrate->src[migrate->npages++] = mpfn; 2309 } 2310 arch_leave_lazy_mmu_mode(); 2311 pte_unmap_unlock(ptep - 1, ptl); 2312 2313 /* Only flush the TLB if we actually modified any entries */ 2314 if (unmapped) 2315 flush_tlb_range(walk->vma, start, end); 2316 2317 return 0; 2318 } 2319 2320 static const struct mm_walk_ops migrate_vma_walk_ops = { 2321 .pmd_entry = migrate_vma_collect_pmd, 2322 .pte_hole = migrate_vma_collect_hole, 2323 }; 2324 2325 /* 2326 * migrate_vma_collect() - collect pages over a range of virtual addresses 2327 * @migrate: migrate struct containing all migration information 2328 * 2329 * This will walk the CPU page table. For each virtual address backed by a 2330 * valid page, it updates the src array and takes a reference on the page, in 2331 * order to pin the page until we lock it and unmap it. 2332 */ 2333 static void migrate_vma_collect(struct migrate_vma *migrate) 2334 { 2335 struct mmu_notifier_range range; 2336 2337 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, 2338 migrate->vma->vm_mm, migrate->start, migrate->end); 2339 mmu_notifier_invalidate_range_start(&range); 2340 2341 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2342 &migrate_vma_walk_ops, migrate); 2343 2344 mmu_notifier_invalidate_range_end(&range); 2345 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2346 } 2347 2348 /* 2349 * migrate_vma_check_page() - check if page is pinned or not 2350 * @page: struct page to check 2351 * 2352 * Pinned pages cannot be migrated. This is the same test as in 2353 * migrate_page_move_mapping(), except that here we allow migration of a 2354 * ZONE_DEVICE page. 2355 */ 2356 static bool migrate_vma_check_page(struct page *page) 2357 { 2358 /* 2359 * One extra ref because caller holds an extra reference, either from 2360 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2361 * a device page. 2362 */ 2363 int extra = 1; 2364 2365 /* 2366 * FIXME support THP (transparent huge page), it is bit more complex to 2367 * check them than regular pages, because they can be mapped with a pmd 2368 * or with a pte (split pte mapping). 2369 */ 2370 if (PageCompound(page)) 2371 return false; 2372 2373 /* Page from ZONE_DEVICE have one extra reference */ 2374 if (is_zone_device_page(page)) { 2375 /* 2376 * Private page can never be pin as they have no valid pte and 2377 * GUP will fail for those. Yet if there is a pending migration 2378 * a thread might try to wait on the pte migration entry and 2379 * will bump the page reference count. Sadly there is no way to 2380 * differentiate a regular pin from migration wait. Hence to 2381 * avoid 2 racing thread trying to migrate back to CPU to enter 2382 * infinite loop (one stoping migration because the other is 2383 * waiting on pte migration entry). We always return true here. 2384 * 2385 * FIXME proper solution is to rework migration_entry_wait() so 2386 * it does not need to take a reference on page. 2387 */ 2388 return is_device_private_page(page); 2389 } 2390 2391 /* For file back page */ 2392 if (page_mapping(page)) 2393 extra += 1 + page_has_private(page); 2394 2395 if ((page_count(page) - extra) > page_mapcount(page)) 2396 return false; 2397 2398 return true; 2399 } 2400 2401 /* 2402 * migrate_vma_prepare() - lock pages and isolate them from the lru 2403 * @migrate: migrate struct containing all migration information 2404 * 2405 * This locks pages that have been collected by migrate_vma_collect(). Once each 2406 * page is locked it is isolated from the lru (for non-device pages). Finally, 2407 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2408 * migrated by concurrent kernel threads. 2409 */ 2410 static void migrate_vma_prepare(struct migrate_vma *migrate) 2411 { 2412 const unsigned long npages = migrate->npages; 2413 const unsigned long start = migrate->start; 2414 unsigned long addr, i, restore = 0; 2415 bool allow_drain = true; 2416 2417 lru_add_drain(); 2418 2419 for (i = 0; (i < npages) && migrate->cpages; i++) { 2420 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2421 bool remap = true; 2422 2423 if (!page) 2424 continue; 2425 2426 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2427 /* 2428 * Because we are migrating several pages there can be 2429 * a deadlock between 2 concurrent migration where each 2430 * are waiting on each other page lock. 2431 * 2432 * Make migrate_vma() a best effort thing and backoff 2433 * for any page we can not lock right away. 2434 */ 2435 if (!trylock_page(page)) { 2436 migrate->src[i] = 0; 2437 migrate->cpages--; 2438 put_page(page); 2439 continue; 2440 } 2441 remap = false; 2442 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2443 } 2444 2445 /* ZONE_DEVICE pages are not on LRU */ 2446 if (!is_zone_device_page(page)) { 2447 if (!PageLRU(page) && allow_drain) { 2448 /* Drain CPU's pagevec */ 2449 lru_add_drain_all(); 2450 allow_drain = false; 2451 } 2452 2453 if (isolate_lru_page(page)) { 2454 if (remap) { 2455 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2456 migrate->cpages--; 2457 restore++; 2458 } else { 2459 migrate->src[i] = 0; 2460 unlock_page(page); 2461 migrate->cpages--; 2462 put_page(page); 2463 } 2464 continue; 2465 } 2466 2467 /* Drop the reference we took in collect */ 2468 put_page(page); 2469 } 2470 2471 if (!migrate_vma_check_page(page)) { 2472 if (remap) { 2473 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2474 migrate->cpages--; 2475 restore++; 2476 2477 if (!is_zone_device_page(page)) { 2478 get_page(page); 2479 putback_lru_page(page); 2480 } 2481 } else { 2482 migrate->src[i] = 0; 2483 unlock_page(page); 2484 migrate->cpages--; 2485 2486 if (!is_zone_device_page(page)) 2487 putback_lru_page(page); 2488 else 2489 put_page(page); 2490 } 2491 } 2492 } 2493 2494 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2495 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2496 2497 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2498 continue; 2499 2500 remove_migration_pte(page, migrate->vma, addr, page); 2501 2502 migrate->src[i] = 0; 2503 unlock_page(page); 2504 put_page(page); 2505 restore--; 2506 } 2507 } 2508 2509 /* 2510 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2511 * @migrate: migrate struct containing all migration information 2512 * 2513 * Replace page mapping (CPU page table pte) with a special migration pte entry 2514 * and check again if it has been pinned. Pinned pages are restored because we 2515 * cannot migrate them. 2516 * 2517 * This is the last step before we call the device driver callback to allocate 2518 * destination memory and copy contents of original page over to new page. 2519 */ 2520 static void migrate_vma_unmap(struct migrate_vma *migrate) 2521 { 2522 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2523 const unsigned long npages = migrate->npages; 2524 const unsigned long start = migrate->start; 2525 unsigned long addr, i, restore = 0; 2526 2527 for (i = 0; i < npages; i++) { 2528 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2529 2530 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2531 continue; 2532 2533 if (page_mapped(page)) { 2534 try_to_unmap(page, flags); 2535 if (page_mapped(page)) 2536 goto restore; 2537 } 2538 2539 if (migrate_vma_check_page(page)) 2540 continue; 2541 2542 restore: 2543 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2544 migrate->cpages--; 2545 restore++; 2546 } 2547 2548 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2549 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2550 2551 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2552 continue; 2553 2554 remove_migration_ptes(page, page, false); 2555 2556 migrate->src[i] = 0; 2557 unlock_page(page); 2558 restore--; 2559 2560 if (is_zone_device_page(page)) 2561 put_page(page); 2562 else 2563 putback_lru_page(page); 2564 } 2565 } 2566 2567 /** 2568 * migrate_vma_setup() - prepare to migrate a range of memory 2569 * @args: contains the vma, start, and and pfns arrays for the migration 2570 * 2571 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2572 * without an error. 2573 * 2574 * Prepare to migrate a range of memory virtual address range by collecting all 2575 * the pages backing each virtual address in the range, saving them inside the 2576 * src array. Then lock those pages and unmap them. Once the pages are locked 2577 * and unmapped, check whether each page is pinned or not. Pages that aren't 2578 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2579 * corresponding src array entry. Then restores any pages that are pinned, by 2580 * remapping and unlocking those pages. 2581 * 2582 * The caller should then allocate destination memory and copy source memory to 2583 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2584 * flag set). Once these are allocated and copied, the caller must update each 2585 * corresponding entry in the dst array with the pfn value of the destination 2586 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2587 * (destination pages must have their struct pages locked, via lock_page()). 2588 * 2589 * Note that the caller does not have to migrate all the pages that are marked 2590 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2591 * device memory to system memory. If the caller cannot migrate a device page 2592 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2593 * consequences for the userspace process, so it must be avoided if at all 2594 * possible. 2595 * 2596 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2597 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2598 * allowing the caller to allocate device memory for those unback virtual 2599 * address. For this the caller simply has to allocate device memory and 2600 * properly set the destination entry like for regular migration. Note that 2601 * this can still fails and thus inside the device driver must check if the 2602 * migration was successful for those entries after calling migrate_vma_pages() 2603 * just like for regular migration. 2604 * 2605 * After that, the callers must call migrate_vma_pages() to go over each entry 2606 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2607 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2608 * then migrate_vma_pages() to migrate struct page information from the source 2609 * struct page to the destination struct page. If it fails to migrate the 2610 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2611 * src array. 2612 * 2613 * At this point all successfully migrated pages have an entry in the src 2614 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2615 * array entry with MIGRATE_PFN_VALID flag set. 2616 * 2617 * Once migrate_vma_pages() returns the caller may inspect which pages were 2618 * successfully migrated, and which were not. Successfully migrated pages will 2619 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2620 * 2621 * It is safe to update device page table after migrate_vma_pages() because 2622 * both destination and source page are still locked, and the mmap_sem is held 2623 * in read mode (hence no one can unmap the range being migrated). 2624 * 2625 * Once the caller is done cleaning up things and updating its page table (if it 2626 * chose to do so, this is not an obligation) it finally calls 2627 * migrate_vma_finalize() to update the CPU page table to point to new pages 2628 * for successfully migrated pages or otherwise restore the CPU page table to 2629 * point to the original source pages. 2630 */ 2631 int migrate_vma_setup(struct migrate_vma *args) 2632 { 2633 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2634 2635 args->start &= PAGE_MASK; 2636 args->end &= PAGE_MASK; 2637 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2638 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2639 return -EINVAL; 2640 if (nr_pages <= 0) 2641 return -EINVAL; 2642 if (args->start < args->vma->vm_start || 2643 args->start >= args->vma->vm_end) 2644 return -EINVAL; 2645 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2646 return -EINVAL; 2647 if (!args->src || !args->dst) 2648 return -EINVAL; 2649 2650 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2651 args->cpages = 0; 2652 args->npages = 0; 2653 2654 migrate_vma_collect(args); 2655 2656 if (args->cpages) 2657 migrate_vma_prepare(args); 2658 if (args->cpages) 2659 migrate_vma_unmap(args); 2660 2661 /* 2662 * At this point pages are locked and unmapped, and thus they have 2663 * stable content and can safely be copied to destination memory that 2664 * is allocated by the drivers. 2665 */ 2666 return 0; 2667 2668 } 2669 EXPORT_SYMBOL(migrate_vma_setup); 2670 2671 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2672 unsigned long addr, 2673 struct page *page, 2674 unsigned long *src, 2675 unsigned long *dst) 2676 { 2677 struct vm_area_struct *vma = migrate->vma; 2678 struct mm_struct *mm = vma->vm_mm; 2679 struct mem_cgroup *memcg; 2680 bool flush = false; 2681 spinlock_t *ptl; 2682 pte_t entry; 2683 pgd_t *pgdp; 2684 p4d_t *p4dp; 2685 pud_t *pudp; 2686 pmd_t *pmdp; 2687 pte_t *ptep; 2688 2689 /* Only allow populating anonymous memory */ 2690 if (!vma_is_anonymous(vma)) 2691 goto abort; 2692 2693 pgdp = pgd_offset(mm, addr); 2694 p4dp = p4d_alloc(mm, pgdp, addr); 2695 if (!p4dp) 2696 goto abort; 2697 pudp = pud_alloc(mm, p4dp, addr); 2698 if (!pudp) 2699 goto abort; 2700 pmdp = pmd_alloc(mm, pudp, addr); 2701 if (!pmdp) 2702 goto abort; 2703 2704 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2705 goto abort; 2706 2707 /* 2708 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2709 * pte_offset_map() on pmds where a huge pmd might be created 2710 * from a different thread. 2711 * 2712 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2713 * parallel threads are excluded by other means. 2714 * 2715 * Here we only have down_read(mmap_sem). 2716 */ 2717 if (pte_alloc(mm, pmdp)) 2718 goto abort; 2719 2720 /* See the comment in pte_alloc_one_map() */ 2721 if (unlikely(pmd_trans_unstable(pmdp))) 2722 goto abort; 2723 2724 if (unlikely(anon_vma_prepare(vma))) 2725 goto abort; 2726 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2727 goto abort; 2728 2729 /* 2730 * The memory barrier inside __SetPageUptodate makes sure that 2731 * preceding stores to the page contents become visible before 2732 * the set_pte_at() write. 2733 */ 2734 __SetPageUptodate(page); 2735 2736 if (is_zone_device_page(page)) { 2737 if (is_device_private_page(page)) { 2738 swp_entry_t swp_entry; 2739 2740 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2741 entry = swp_entry_to_pte(swp_entry); 2742 } 2743 } else { 2744 entry = mk_pte(page, vma->vm_page_prot); 2745 if (vma->vm_flags & VM_WRITE) 2746 entry = pte_mkwrite(pte_mkdirty(entry)); 2747 } 2748 2749 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2750 2751 if (pte_present(*ptep)) { 2752 unsigned long pfn = pte_pfn(*ptep); 2753 2754 if (!is_zero_pfn(pfn)) { 2755 pte_unmap_unlock(ptep, ptl); 2756 mem_cgroup_cancel_charge(page, memcg, false); 2757 goto abort; 2758 } 2759 flush = true; 2760 } else if (!pte_none(*ptep)) { 2761 pte_unmap_unlock(ptep, ptl); 2762 mem_cgroup_cancel_charge(page, memcg, false); 2763 goto abort; 2764 } 2765 2766 /* 2767 * Check for usefaultfd but do not deliver the fault. Instead, 2768 * just back off. 2769 */ 2770 if (userfaultfd_missing(vma)) { 2771 pte_unmap_unlock(ptep, ptl); 2772 mem_cgroup_cancel_charge(page, memcg, false); 2773 goto abort; 2774 } 2775 2776 inc_mm_counter(mm, MM_ANONPAGES); 2777 page_add_new_anon_rmap(page, vma, addr, false); 2778 mem_cgroup_commit_charge(page, memcg, false, false); 2779 if (!is_zone_device_page(page)) 2780 lru_cache_add_active_or_unevictable(page, vma); 2781 get_page(page); 2782 2783 if (flush) { 2784 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2785 ptep_clear_flush_notify(vma, addr, ptep); 2786 set_pte_at_notify(mm, addr, ptep, entry); 2787 update_mmu_cache(vma, addr, ptep); 2788 } else { 2789 /* No need to invalidate - it was non-present before */ 2790 set_pte_at(mm, addr, ptep, entry); 2791 update_mmu_cache(vma, addr, ptep); 2792 } 2793 2794 pte_unmap_unlock(ptep, ptl); 2795 *src = MIGRATE_PFN_MIGRATE; 2796 return; 2797 2798 abort: 2799 *src &= ~MIGRATE_PFN_MIGRATE; 2800 } 2801 2802 /** 2803 * migrate_vma_pages() - migrate meta-data from src page to dst page 2804 * @migrate: migrate struct containing all migration information 2805 * 2806 * This migrates struct page meta-data from source struct page to destination 2807 * struct page. This effectively finishes the migration from source page to the 2808 * destination page. 2809 */ 2810 void migrate_vma_pages(struct migrate_vma *migrate) 2811 { 2812 const unsigned long npages = migrate->npages; 2813 const unsigned long start = migrate->start; 2814 struct mmu_notifier_range range; 2815 unsigned long addr, i; 2816 bool notified = false; 2817 2818 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2819 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2820 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2821 struct address_space *mapping; 2822 int r; 2823 2824 if (!newpage) { 2825 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2826 continue; 2827 } 2828 2829 if (!page) { 2830 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2831 continue; 2832 } 2833 if (!notified) { 2834 notified = true; 2835 2836 mmu_notifier_range_init(&range, 2837 MMU_NOTIFY_CLEAR, 0, 2838 NULL, 2839 migrate->vma->vm_mm, 2840 addr, migrate->end); 2841 mmu_notifier_invalidate_range_start(&range); 2842 } 2843 migrate_vma_insert_page(migrate, addr, newpage, 2844 &migrate->src[i], 2845 &migrate->dst[i]); 2846 continue; 2847 } 2848 2849 mapping = page_mapping(page); 2850 2851 if (is_zone_device_page(newpage)) { 2852 if (is_device_private_page(newpage)) { 2853 /* 2854 * For now only support private anonymous when 2855 * migrating to un-addressable device memory. 2856 */ 2857 if (mapping) { 2858 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2859 continue; 2860 } 2861 } else { 2862 /* 2863 * Other types of ZONE_DEVICE page are not 2864 * supported. 2865 */ 2866 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2867 continue; 2868 } 2869 } 2870 2871 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2872 if (r != MIGRATEPAGE_SUCCESS) 2873 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2874 } 2875 2876 /* 2877 * No need to double call mmu_notifier->invalidate_range() callback as 2878 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2879 * did already call it. 2880 */ 2881 if (notified) 2882 mmu_notifier_invalidate_range_only_end(&range); 2883 } 2884 EXPORT_SYMBOL(migrate_vma_pages); 2885 2886 /** 2887 * migrate_vma_finalize() - restore CPU page table entry 2888 * @migrate: migrate struct containing all migration information 2889 * 2890 * This replaces the special migration pte entry with either a mapping to the 2891 * new page if migration was successful for that page, or to the original page 2892 * otherwise. 2893 * 2894 * This also unlocks the pages and puts them back on the lru, or drops the extra 2895 * refcount, for device pages. 2896 */ 2897 void migrate_vma_finalize(struct migrate_vma *migrate) 2898 { 2899 const unsigned long npages = migrate->npages; 2900 unsigned long i; 2901 2902 for (i = 0; i < npages; i++) { 2903 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2904 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2905 2906 if (!page) { 2907 if (newpage) { 2908 unlock_page(newpage); 2909 put_page(newpage); 2910 } 2911 continue; 2912 } 2913 2914 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2915 if (newpage) { 2916 unlock_page(newpage); 2917 put_page(newpage); 2918 } 2919 newpage = page; 2920 } 2921 2922 remove_migration_ptes(page, newpage, false); 2923 unlock_page(page); 2924 migrate->cpages--; 2925 2926 if (is_zone_device_page(page)) 2927 put_page(page); 2928 else 2929 putback_lru_page(page); 2930 2931 if (newpage != page) { 2932 unlock_page(newpage); 2933 if (is_zone_device_page(newpage)) 2934 put_page(newpage); 2935 else 2936 putback_lru_page(newpage); 2937 } 2938 } 2939 } 2940 EXPORT_SYMBOL(migrate_vma_finalize); 2941 #endif /* CONFIG_DEVICE_PRIVATE */ 2942