xref: /openbmc/linux/mm/migrate.c (revision e5c86679)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44 
45 #include <asm/tlbflush.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49 
50 #include "internal.h"
51 
52 /*
53  * migrate_prep() needs to be called before we start compiling a list of pages
54  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55  * undesirable, use migrate_prep_local()
56  */
57 int migrate_prep(void)
58 {
59 	/*
60 	 * Clear the LRU lists so pages can be isolated.
61 	 * Note that pages may be moved off the LRU after we have
62 	 * drained them. Those pages will fail to migrate like other
63 	 * pages that may be busy.
64 	 */
65 	lru_add_drain_all();
66 
67 	return 0;
68 }
69 
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
72 {
73 	lru_add_drain();
74 
75 	return 0;
76 }
77 
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80 	struct address_space *mapping;
81 
82 	/*
83 	 * Avoid burning cycles with pages that are yet under __free_pages(),
84 	 * or just got freed under us.
85 	 *
86 	 * In case we 'win' a race for a movable page being freed under us and
87 	 * raise its refcount preventing __free_pages() from doing its job
88 	 * the put_page() at the end of this block will take care of
89 	 * release this page, thus avoiding a nasty leakage.
90 	 */
91 	if (unlikely(!get_page_unless_zero(page)))
92 		goto out;
93 
94 	/*
95 	 * Check PageMovable before holding a PG_lock because page's owner
96 	 * assumes anybody doesn't touch PG_lock of newly allocated page
97 	 * so unconditionally grapping the lock ruins page's owner side.
98 	 */
99 	if (unlikely(!__PageMovable(page)))
100 		goto out_putpage;
101 	/*
102 	 * As movable pages are not isolated from LRU lists, concurrent
103 	 * compaction threads can race against page migration functions
104 	 * as well as race against the releasing a page.
105 	 *
106 	 * In order to avoid having an already isolated movable page
107 	 * being (wrongly) re-isolated while it is under migration,
108 	 * or to avoid attempting to isolate pages being released,
109 	 * lets be sure we have the page lock
110 	 * before proceeding with the movable page isolation steps.
111 	 */
112 	if (unlikely(!trylock_page(page)))
113 		goto out_putpage;
114 
115 	if (!PageMovable(page) || PageIsolated(page))
116 		goto out_no_isolated;
117 
118 	mapping = page_mapping(page);
119 	VM_BUG_ON_PAGE(!mapping, page);
120 
121 	if (!mapping->a_ops->isolate_page(page, mode))
122 		goto out_no_isolated;
123 
124 	/* Driver shouldn't use PG_isolated bit of page->flags */
125 	WARN_ON_ONCE(PageIsolated(page));
126 	__SetPageIsolated(page);
127 	unlock_page(page);
128 
129 	return 0;
130 
131 out_no_isolated:
132 	unlock_page(page);
133 out_putpage:
134 	put_page(page);
135 out:
136 	return -EBUSY;
137 }
138 
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
141 {
142 	struct address_space *mapping;
143 
144 	VM_BUG_ON_PAGE(!PageLocked(page), page);
145 	VM_BUG_ON_PAGE(!PageMovable(page), page);
146 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 
148 	mapping = page_mapping(page);
149 	mapping->a_ops->putback_page(page);
150 	__ClearPageIsolated(page);
151 }
152 
153 /*
154  * Put previously isolated pages back onto the appropriate lists
155  * from where they were once taken off for compaction/migration.
156  *
157  * This function shall be used whenever the isolated pageset has been
158  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159  * and isolate_huge_page().
160  */
161 void putback_movable_pages(struct list_head *l)
162 {
163 	struct page *page;
164 	struct page *page2;
165 
166 	list_for_each_entry_safe(page, page2, l, lru) {
167 		if (unlikely(PageHuge(page))) {
168 			putback_active_hugepage(page);
169 			continue;
170 		}
171 		list_del(&page->lru);
172 		/*
173 		 * We isolated non-lru movable page so here we can use
174 		 * __PageMovable because LRU page's mapping cannot have
175 		 * PAGE_MAPPING_MOVABLE.
176 		 */
177 		if (unlikely(__PageMovable(page))) {
178 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 			lock_page(page);
180 			if (PageMovable(page))
181 				putback_movable_page(page);
182 			else
183 				__ClearPageIsolated(page);
184 			unlock_page(page);
185 			put_page(page);
186 		} else {
187 			dec_node_page_state(page, NR_ISOLATED_ANON +
188 					page_is_file_cache(page));
189 			putback_lru_page(page);
190 		}
191 	}
192 }
193 
194 /*
195  * Restore a potential migration pte to a working pte entry
196  */
197 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198 				 unsigned long addr, void *old)
199 {
200 	struct page_vma_mapped_walk pvmw = {
201 		.page = old,
202 		.vma = vma,
203 		.address = addr,
204 		.flags = PVMW_SYNC | PVMW_MIGRATION,
205 	};
206 	struct page *new;
207 	pte_t pte;
208 	swp_entry_t entry;
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	while (page_vma_mapped_walk(&pvmw)) {
212 		if (PageKsm(page))
213 			new = page;
214 		else
215 			new = page - pvmw.page->index +
216 				linear_page_index(vma, pvmw.address);
217 
218 		get_page(new);
219 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
220 		if (pte_swp_soft_dirty(*pvmw.pte))
221 			pte = pte_mksoft_dirty(pte);
222 
223 		/*
224 		 * Recheck VMA as permissions can change since migration started
225 		 */
226 		entry = pte_to_swp_entry(*pvmw.pte);
227 		if (is_write_migration_entry(entry))
228 			pte = maybe_mkwrite(pte, vma);
229 
230 #ifdef CONFIG_HUGETLB_PAGE
231 		if (PageHuge(new)) {
232 			pte = pte_mkhuge(pte);
233 			pte = arch_make_huge_pte(pte, vma, new, 0);
234 		}
235 #endif
236 		flush_dcache_page(new);
237 		set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
238 
239 		if (PageHuge(new)) {
240 			if (PageAnon(new))
241 				hugepage_add_anon_rmap(new, vma, pvmw.address);
242 			else
243 				page_dup_rmap(new, true);
244 		} else if (PageAnon(new))
245 			page_add_anon_rmap(new, vma, pvmw.address, false);
246 		else
247 			page_add_file_rmap(new, false);
248 
249 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
250 			mlock_vma_page(new);
251 
252 		/* No need to invalidate - it was non-present before */
253 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 	}
255 
256 	return SWAP_AGAIN;
257 }
258 
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265 	struct rmap_walk_control rwc = {
266 		.rmap_one = remove_migration_pte,
267 		.arg = old,
268 	};
269 
270 	if (locked)
271 		rmap_walk_locked(new, &rwc);
272 	else
273 		rmap_walk(new, &rwc);
274 }
275 
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 				spinlock_t *ptl)
283 {
284 	pte_t pte;
285 	swp_entry_t entry;
286 	struct page *page;
287 
288 	spin_lock(ptl);
289 	pte = *ptep;
290 	if (!is_swap_pte(pte))
291 		goto out;
292 
293 	entry = pte_to_swp_entry(pte);
294 	if (!is_migration_entry(entry))
295 		goto out;
296 
297 	page = migration_entry_to_page(entry);
298 
299 	/*
300 	 * Once radix-tree replacement of page migration started, page_count
301 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
302 	 * against a page without get_page().
303 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
304 	 * will occur again.
305 	 */
306 	if (!get_page_unless_zero(page))
307 		goto out;
308 	pte_unmap_unlock(ptep, ptl);
309 	wait_on_page_locked(page);
310 	put_page(page);
311 	return;
312 out:
313 	pte_unmap_unlock(ptep, ptl);
314 }
315 
316 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317 				unsigned long address)
318 {
319 	spinlock_t *ptl = pte_lockptr(mm, pmd);
320 	pte_t *ptep = pte_offset_map(pmd, address);
321 	__migration_entry_wait(mm, ptep, ptl);
322 }
323 
324 void migration_entry_wait_huge(struct vm_area_struct *vma,
325 		struct mm_struct *mm, pte_t *pte)
326 {
327 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
328 	__migration_entry_wait(mm, pte, ptl);
329 }
330 
331 #ifdef CONFIG_BLOCK
332 /* Returns true if all buffers are successfully locked */
333 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
334 							enum migrate_mode mode)
335 {
336 	struct buffer_head *bh = head;
337 
338 	/* Simple case, sync compaction */
339 	if (mode != MIGRATE_ASYNC) {
340 		do {
341 			get_bh(bh);
342 			lock_buffer(bh);
343 			bh = bh->b_this_page;
344 
345 		} while (bh != head);
346 
347 		return true;
348 	}
349 
350 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
351 	do {
352 		get_bh(bh);
353 		if (!trylock_buffer(bh)) {
354 			/*
355 			 * We failed to lock the buffer and cannot stall in
356 			 * async migration. Release the taken locks
357 			 */
358 			struct buffer_head *failed_bh = bh;
359 			put_bh(failed_bh);
360 			bh = head;
361 			while (bh != failed_bh) {
362 				unlock_buffer(bh);
363 				put_bh(bh);
364 				bh = bh->b_this_page;
365 			}
366 			return false;
367 		}
368 
369 		bh = bh->b_this_page;
370 	} while (bh != head);
371 	return true;
372 }
373 #else
374 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
375 							enum migrate_mode mode)
376 {
377 	return true;
378 }
379 #endif /* CONFIG_BLOCK */
380 
381 /*
382  * Replace the page in the mapping.
383  *
384  * The number of remaining references must be:
385  * 1 for anonymous pages without a mapping
386  * 2 for pages with a mapping
387  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
388  */
389 int migrate_page_move_mapping(struct address_space *mapping,
390 		struct page *newpage, struct page *page,
391 		struct buffer_head *head, enum migrate_mode mode,
392 		int extra_count)
393 {
394 	struct zone *oldzone, *newzone;
395 	int dirty;
396 	int expected_count = 1 + extra_count;
397 	void **pslot;
398 
399 	if (!mapping) {
400 		/* Anonymous page without mapping */
401 		if (page_count(page) != expected_count)
402 			return -EAGAIN;
403 
404 		/* No turning back from here */
405 		newpage->index = page->index;
406 		newpage->mapping = page->mapping;
407 		if (PageSwapBacked(page))
408 			__SetPageSwapBacked(newpage);
409 
410 		return MIGRATEPAGE_SUCCESS;
411 	}
412 
413 	oldzone = page_zone(page);
414 	newzone = page_zone(newpage);
415 
416 	spin_lock_irq(&mapping->tree_lock);
417 
418 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
419  					page_index(page));
420 
421 	expected_count += 1 + page_has_private(page);
422 	if (page_count(page) != expected_count ||
423 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
424 		spin_unlock_irq(&mapping->tree_lock);
425 		return -EAGAIN;
426 	}
427 
428 	if (!page_ref_freeze(page, expected_count)) {
429 		spin_unlock_irq(&mapping->tree_lock);
430 		return -EAGAIN;
431 	}
432 
433 	/*
434 	 * In the async migration case of moving a page with buffers, lock the
435 	 * buffers using trylock before the mapping is moved. If the mapping
436 	 * was moved, we later failed to lock the buffers and could not move
437 	 * the mapping back due to an elevated page count, we would have to
438 	 * block waiting on other references to be dropped.
439 	 */
440 	if (mode == MIGRATE_ASYNC && head &&
441 			!buffer_migrate_lock_buffers(head, mode)) {
442 		page_ref_unfreeze(page, expected_count);
443 		spin_unlock_irq(&mapping->tree_lock);
444 		return -EAGAIN;
445 	}
446 
447 	/*
448 	 * Now we know that no one else is looking at the page:
449 	 * no turning back from here.
450 	 */
451 	newpage->index = page->index;
452 	newpage->mapping = page->mapping;
453 	get_page(newpage);	/* add cache reference */
454 	if (PageSwapBacked(page)) {
455 		__SetPageSwapBacked(newpage);
456 		if (PageSwapCache(page)) {
457 			SetPageSwapCache(newpage);
458 			set_page_private(newpage, page_private(page));
459 		}
460 	} else {
461 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
462 	}
463 
464 	/* Move dirty while page refs frozen and newpage not yet exposed */
465 	dirty = PageDirty(page);
466 	if (dirty) {
467 		ClearPageDirty(page);
468 		SetPageDirty(newpage);
469 	}
470 
471 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
472 
473 	/*
474 	 * Drop cache reference from old page by unfreezing
475 	 * to one less reference.
476 	 * We know this isn't the last reference.
477 	 */
478 	page_ref_unfreeze(page, expected_count - 1);
479 
480 	spin_unlock(&mapping->tree_lock);
481 	/* Leave irq disabled to prevent preemption while updating stats */
482 
483 	/*
484 	 * If moved to a different zone then also account
485 	 * the page for that zone. Other VM counters will be
486 	 * taken care of when we establish references to the
487 	 * new page and drop references to the old page.
488 	 *
489 	 * Note that anonymous pages are accounted for
490 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491 	 * are mapped to swap space.
492 	 */
493 	if (newzone != oldzone) {
494 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
495 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
496 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
497 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
498 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499 		}
500 		if (dirty && mapping_cap_account_dirty(mapping)) {
501 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
502 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
503 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
504 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
505 		}
506 	}
507 	local_irq_enable();
508 
509 	return MIGRATEPAGE_SUCCESS;
510 }
511 EXPORT_SYMBOL(migrate_page_move_mapping);
512 
513 /*
514  * The expected number of remaining references is the same as that
515  * of migrate_page_move_mapping().
516  */
517 int migrate_huge_page_move_mapping(struct address_space *mapping,
518 				   struct page *newpage, struct page *page)
519 {
520 	int expected_count;
521 	void **pslot;
522 
523 	spin_lock_irq(&mapping->tree_lock);
524 
525 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
526 					page_index(page));
527 
528 	expected_count = 2 + page_has_private(page);
529 	if (page_count(page) != expected_count ||
530 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
531 		spin_unlock_irq(&mapping->tree_lock);
532 		return -EAGAIN;
533 	}
534 
535 	if (!page_ref_freeze(page, expected_count)) {
536 		spin_unlock_irq(&mapping->tree_lock);
537 		return -EAGAIN;
538 	}
539 
540 	newpage->index = page->index;
541 	newpage->mapping = page->mapping;
542 
543 	get_page(newpage);
544 
545 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
546 
547 	page_ref_unfreeze(page, expected_count - 1);
548 
549 	spin_unlock_irq(&mapping->tree_lock);
550 
551 	return MIGRATEPAGE_SUCCESS;
552 }
553 
554 /*
555  * Gigantic pages are so large that we do not guarantee that page++ pointer
556  * arithmetic will work across the entire page.  We need something more
557  * specialized.
558  */
559 static void __copy_gigantic_page(struct page *dst, struct page *src,
560 				int nr_pages)
561 {
562 	int i;
563 	struct page *dst_base = dst;
564 	struct page *src_base = src;
565 
566 	for (i = 0; i < nr_pages; ) {
567 		cond_resched();
568 		copy_highpage(dst, src);
569 
570 		i++;
571 		dst = mem_map_next(dst, dst_base, i);
572 		src = mem_map_next(src, src_base, i);
573 	}
574 }
575 
576 static void copy_huge_page(struct page *dst, struct page *src)
577 {
578 	int i;
579 	int nr_pages;
580 
581 	if (PageHuge(src)) {
582 		/* hugetlbfs page */
583 		struct hstate *h = page_hstate(src);
584 		nr_pages = pages_per_huge_page(h);
585 
586 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
587 			__copy_gigantic_page(dst, src, nr_pages);
588 			return;
589 		}
590 	} else {
591 		/* thp page */
592 		BUG_ON(!PageTransHuge(src));
593 		nr_pages = hpage_nr_pages(src);
594 	}
595 
596 	for (i = 0; i < nr_pages; i++) {
597 		cond_resched();
598 		copy_highpage(dst + i, src + i);
599 	}
600 }
601 
602 /*
603  * Copy the page to its new location
604  */
605 void migrate_page_copy(struct page *newpage, struct page *page)
606 {
607 	int cpupid;
608 
609 	if (PageHuge(page) || PageTransHuge(page))
610 		copy_huge_page(newpage, page);
611 	else
612 		copy_highpage(newpage, page);
613 
614 	if (PageError(page))
615 		SetPageError(newpage);
616 	if (PageReferenced(page))
617 		SetPageReferenced(newpage);
618 	if (PageUptodate(page))
619 		SetPageUptodate(newpage);
620 	if (TestClearPageActive(page)) {
621 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
622 		SetPageActive(newpage);
623 	} else if (TestClearPageUnevictable(page))
624 		SetPageUnevictable(newpage);
625 	if (PageChecked(page))
626 		SetPageChecked(newpage);
627 	if (PageMappedToDisk(page))
628 		SetPageMappedToDisk(newpage);
629 
630 	/* Move dirty on pages not done by migrate_page_move_mapping() */
631 	if (PageDirty(page))
632 		SetPageDirty(newpage);
633 
634 	if (page_is_young(page))
635 		set_page_young(newpage);
636 	if (page_is_idle(page))
637 		set_page_idle(newpage);
638 
639 	/*
640 	 * Copy NUMA information to the new page, to prevent over-eager
641 	 * future migrations of this same page.
642 	 */
643 	cpupid = page_cpupid_xchg_last(page, -1);
644 	page_cpupid_xchg_last(newpage, cpupid);
645 
646 	ksm_migrate_page(newpage, page);
647 	/*
648 	 * Please do not reorder this without considering how mm/ksm.c's
649 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
650 	 */
651 	if (PageSwapCache(page))
652 		ClearPageSwapCache(page);
653 	ClearPagePrivate(page);
654 	set_page_private(page, 0);
655 
656 	/*
657 	 * If any waiters have accumulated on the new page then
658 	 * wake them up.
659 	 */
660 	if (PageWriteback(newpage))
661 		end_page_writeback(newpage);
662 
663 	copy_page_owner(page, newpage);
664 
665 	mem_cgroup_migrate(page, newpage);
666 }
667 EXPORT_SYMBOL(migrate_page_copy);
668 
669 /************************************************************
670  *                    Migration functions
671  ***********************************************************/
672 
673 /*
674  * Common logic to directly migrate a single LRU page suitable for
675  * pages that do not use PagePrivate/PagePrivate2.
676  *
677  * Pages are locked upon entry and exit.
678  */
679 int migrate_page(struct address_space *mapping,
680 		struct page *newpage, struct page *page,
681 		enum migrate_mode mode)
682 {
683 	int rc;
684 
685 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
686 
687 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
688 
689 	if (rc != MIGRATEPAGE_SUCCESS)
690 		return rc;
691 
692 	migrate_page_copy(newpage, page);
693 	return MIGRATEPAGE_SUCCESS;
694 }
695 EXPORT_SYMBOL(migrate_page);
696 
697 #ifdef CONFIG_BLOCK
698 /*
699  * Migration function for pages with buffers. This function can only be used
700  * if the underlying filesystem guarantees that no other references to "page"
701  * exist.
702  */
703 int buffer_migrate_page(struct address_space *mapping,
704 		struct page *newpage, struct page *page, enum migrate_mode mode)
705 {
706 	struct buffer_head *bh, *head;
707 	int rc;
708 
709 	if (!page_has_buffers(page))
710 		return migrate_page(mapping, newpage, page, mode);
711 
712 	head = page_buffers(page);
713 
714 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
715 
716 	if (rc != MIGRATEPAGE_SUCCESS)
717 		return rc;
718 
719 	/*
720 	 * In the async case, migrate_page_move_mapping locked the buffers
721 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
722 	 * need to be locked now
723 	 */
724 	if (mode != MIGRATE_ASYNC)
725 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
726 
727 	ClearPagePrivate(page);
728 	set_page_private(newpage, page_private(page));
729 	set_page_private(page, 0);
730 	put_page(page);
731 	get_page(newpage);
732 
733 	bh = head;
734 	do {
735 		set_bh_page(bh, newpage, bh_offset(bh));
736 		bh = bh->b_this_page;
737 
738 	} while (bh != head);
739 
740 	SetPagePrivate(newpage);
741 
742 	migrate_page_copy(newpage, page);
743 
744 	bh = head;
745 	do {
746 		unlock_buffer(bh);
747  		put_bh(bh);
748 		bh = bh->b_this_page;
749 
750 	} while (bh != head);
751 
752 	return MIGRATEPAGE_SUCCESS;
753 }
754 EXPORT_SYMBOL(buffer_migrate_page);
755 #endif
756 
757 /*
758  * Writeback a page to clean the dirty state
759  */
760 static int writeout(struct address_space *mapping, struct page *page)
761 {
762 	struct writeback_control wbc = {
763 		.sync_mode = WB_SYNC_NONE,
764 		.nr_to_write = 1,
765 		.range_start = 0,
766 		.range_end = LLONG_MAX,
767 		.for_reclaim = 1
768 	};
769 	int rc;
770 
771 	if (!mapping->a_ops->writepage)
772 		/* No write method for the address space */
773 		return -EINVAL;
774 
775 	if (!clear_page_dirty_for_io(page))
776 		/* Someone else already triggered a write */
777 		return -EAGAIN;
778 
779 	/*
780 	 * A dirty page may imply that the underlying filesystem has
781 	 * the page on some queue. So the page must be clean for
782 	 * migration. Writeout may mean we loose the lock and the
783 	 * page state is no longer what we checked for earlier.
784 	 * At this point we know that the migration attempt cannot
785 	 * be successful.
786 	 */
787 	remove_migration_ptes(page, page, false);
788 
789 	rc = mapping->a_ops->writepage(page, &wbc);
790 
791 	if (rc != AOP_WRITEPAGE_ACTIVATE)
792 		/* unlocked. Relock */
793 		lock_page(page);
794 
795 	return (rc < 0) ? -EIO : -EAGAIN;
796 }
797 
798 /*
799  * Default handling if a filesystem does not provide a migration function.
800  */
801 static int fallback_migrate_page(struct address_space *mapping,
802 	struct page *newpage, struct page *page, enum migrate_mode mode)
803 {
804 	if (PageDirty(page)) {
805 		/* Only writeback pages in full synchronous migration */
806 		if (mode != MIGRATE_SYNC)
807 			return -EBUSY;
808 		return writeout(mapping, page);
809 	}
810 
811 	/*
812 	 * Buffers may be managed in a filesystem specific way.
813 	 * We must have no buffers or drop them.
814 	 */
815 	if (page_has_private(page) &&
816 	    !try_to_release_page(page, GFP_KERNEL))
817 		return -EAGAIN;
818 
819 	return migrate_page(mapping, newpage, page, mode);
820 }
821 
822 /*
823  * Move a page to a newly allocated page
824  * The page is locked and all ptes have been successfully removed.
825  *
826  * The new page will have replaced the old page if this function
827  * is successful.
828  *
829  * Return value:
830  *   < 0 - error code
831  *  MIGRATEPAGE_SUCCESS - success
832  */
833 static int move_to_new_page(struct page *newpage, struct page *page,
834 				enum migrate_mode mode)
835 {
836 	struct address_space *mapping;
837 	int rc = -EAGAIN;
838 	bool is_lru = !__PageMovable(page);
839 
840 	VM_BUG_ON_PAGE(!PageLocked(page), page);
841 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
842 
843 	mapping = page_mapping(page);
844 
845 	if (likely(is_lru)) {
846 		if (!mapping)
847 			rc = migrate_page(mapping, newpage, page, mode);
848 		else if (mapping->a_ops->migratepage)
849 			/*
850 			 * Most pages have a mapping and most filesystems
851 			 * provide a migratepage callback. Anonymous pages
852 			 * are part of swap space which also has its own
853 			 * migratepage callback. This is the most common path
854 			 * for page migration.
855 			 */
856 			rc = mapping->a_ops->migratepage(mapping, newpage,
857 							page, mode);
858 		else
859 			rc = fallback_migrate_page(mapping, newpage,
860 							page, mode);
861 	} else {
862 		/*
863 		 * In case of non-lru page, it could be released after
864 		 * isolation step. In that case, we shouldn't try migration.
865 		 */
866 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
867 		if (!PageMovable(page)) {
868 			rc = MIGRATEPAGE_SUCCESS;
869 			__ClearPageIsolated(page);
870 			goto out;
871 		}
872 
873 		rc = mapping->a_ops->migratepage(mapping, newpage,
874 						page, mode);
875 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
876 			!PageIsolated(page));
877 	}
878 
879 	/*
880 	 * When successful, old pagecache page->mapping must be cleared before
881 	 * page is freed; but stats require that PageAnon be left as PageAnon.
882 	 */
883 	if (rc == MIGRATEPAGE_SUCCESS) {
884 		if (__PageMovable(page)) {
885 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
886 
887 			/*
888 			 * We clear PG_movable under page_lock so any compactor
889 			 * cannot try to migrate this page.
890 			 */
891 			__ClearPageIsolated(page);
892 		}
893 
894 		/*
895 		 * Anonymous and movable page->mapping will be cleard by
896 		 * free_pages_prepare so don't reset it here for keeping
897 		 * the type to work PageAnon, for example.
898 		 */
899 		if (!PageMappingFlags(page))
900 			page->mapping = NULL;
901 	}
902 out:
903 	return rc;
904 }
905 
906 static int __unmap_and_move(struct page *page, struct page *newpage,
907 				int force, enum migrate_mode mode)
908 {
909 	int rc = -EAGAIN;
910 	int page_was_mapped = 0;
911 	struct anon_vma *anon_vma = NULL;
912 	bool is_lru = !__PageMovable(page);
913 
914 	if (!trylock_page(page)) {
915 		if (!force || mode == MIGRATE_ASYNC)
916 			goto out;
917 
918 		/*
919 		 * It's not safe for direct compaction to call lock_page.
920 		 * For example, during page readahead pages are added locked
921 		 * to the LRU. Later, when the IO completes the pages are
922 		 * marked uptodate and unlocked. However, the queueing
923 		 * could be merging multiple pages for one bio (e.g.
924 		 * mpage_readpages). If an allocation happens for the
925 		 * second or third page, the process can end up locking
926 		 * the same page twice and deadlocking. Rather than
927 		 * trying to be clever about what pages can be locked,
928 		 * avoid the use of lock_page for direct compaction
929 		 * altogether.
930 		 */
931 		if (current->flags & PF_MEMALLOC)
932 			goto out;
933 
934 		lock_page(page);
935 	}
936 
937 	if (PageWriteback(page)) {
938 		/*
939 		 * Only in the case of a full synchronous migration is it
940 		 * necessary to wait for PageWriteback. In the async case,
941 		 * the retry loop is too short and in the sync-light case,
942 		 * the overhead of stalling is too much
943 		 */
944 		if (mode != MIGRATE_SYNC) {
945 			rc = -EBUSY;
946 			goto out_unlock;
947 		}
948 		if (!force)
949 			goto out_unlock;
950 		wait_on_page_writeback(page);
951 	}
952 
953 	/*
954 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
955 	 * we cannot notice that anon_vma is freed while we migrates a page.
956 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
957 	 * of migration. File cache pages are no problem because of page_lock()
958 	 * File Caches may use write_page() or lock_page() in migration, then,
959 	 * just care Anon page here.
960 	 *
961 	 * Only page_get_anon_vma() understands the subtleties of
962 	 * getting a hold on an anon_vma from outside one of its mms.
963 	 * But if we cannot get anon_vma, then we won't need it anyway,
964 	 * because that implies that the anon page is no longer mapped
965 	 * (and cannot be remapped so long as we hold the page lock).
966 	 */
967 	if (PageAnon(page) && !PageKsm(page))
968 		anon_vma = page_get_anon_vma(page);
969 
970 	/*
971 	 * Block others from accessing the new page when we get around to
972 	 * establishing additional references. We are usually the only one
973 	 * holding a reference to newpage at this point. We used to have a BUG
974 	 * here if trylock_page(newpage) fails, but would like to allow for
975 	 * cases where there might be a race with the previous use of newpage.
976 	 * This is much like races on refcount of oldpage: just don't BUG().
977 	 */
978 	if (unlikely(!trylock_page(newpage)))
979 		goto out_unlock;
980 
981 	if (unlikely(!is_lru)) {
982 		rc = move_to_new_page(newpage, page, mode);
983 		goto out_unlock_both;
984 	}
985 
986 	/*
987 	 * Corner case handling:
988 	 * 1. When a new swap-cache page is read into, it is added to the LRU
989 	 * and treated as swapcache but it has no rmap yet.
990 	 * Calling try_to_unmap() against a page->mapping==NULL page will
991 	 * trigger a BUG.  So handle it here.
992 	 * 2. An orphaned page (see truncate_complete_page) might have
993 	 * fs-private metadata. The page can be picked up due to memory
994 	 * offlining.  Everywhere else except page reclaim, the page is
995 	 * invisible to the vm, so the page can not be migrated.  So try to
996 	 * free the metadata, so the page can be freed.
997 	 */
998 	if (!page->mapping) {
999 		VM_BUG_ON_PAGE(PageAnon(page), page);
1000 		if (page_has_private(page)) {
1001 			try_to_free_buffers(page);
1002 			goto out_unlock_both;
1003 		}
1004 	} else if (page_mapped(page)) {
1005 		/* Establish migration ptes */
1006 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1007 				page);
1008 		try_to_unmap(page,
1009 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1010 		page_was_mapped = 1;
1011 	}
1012 
1013 	if (!page_mapped(page))
1014 		rc = move_to_new_page(newpage, page, mode);
1015 
1016 	if (page_was_mapped)
1017 		remove_migration_ptes(page,
1018 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1019 
1020 out_unlock_both:
1021 	unlock_page(newpage);
1022 out_unlock:
1023 	/* Drop an anon_vma reference if we took one */
1024 	if (anon_vma)
1025 		put_anon_vma(anon_vma);
1026 	unlock_page(page);
1027 out:
1028 	/*
1029 	 * If migration is successful, decrease refcount of the newpage
1030 	 * which will not free the page because new page owner increased
1031 	 * refcounter. As well, if it is LRU page, add the page to LRU
1032 	 * list in here.
1033 	 */
1034 	if (rc == MIGRATEPAGE_SUCCESS) {
1035 		if (unlikely(__PageMovable(newpage)))
1036 			put_page(newpage);
1037 		else
1038 			putback_lru_page(newpage);
1039 	}
1040 
1041 	return rc;
1042 }
1043 
1044 /*
1045  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1046  * around it.
1047  */
1048 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1049 #define ICE_noinline noinline
1050 #else
1051 #define ICE_noinline
1052 #endif
1053 
1054 /*
1055  * Obtain the lock on page, remove all ptes and migrate the page
1056  * to the newly allocated page in newpage.
1057  */
1058 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1059 				   free_page_t put_new_page,
1060 				   unsigned long private, struct page *page,
1061 				   int force, enum migrate_mode mode,
1062 				   enum migrate_reason reason)
1063 {
1064 	int rc = MIGRATEPAGE_SUCCESS;
1065 	int *result = NULL;
1066 	struct page *newpage;
1067 
1068 	newpage = get_new_page(page, private, &result);
1069 	if (!newpage)
1070 		return -ENOMEM;
1071 
1072 	if (page_count(page) == 1) {
1073 		/* page was freed from under us. So we are done. */
1074 		ClearPageActive(page);
1075 		ClearPageUnevictable(page);
1076 		if (unlikely(__PageMovable(page))) {
1077 			lock_page(page);
1078 			if (!PageMovable(page))
1079 				__ClearPageIsolated(page);
1080 			unlock_page(page);
1081 		}
1082 		if (put_new_page)
1083 			put_new_page(newpage, private);
1084 		else
1085 			put_page(newpage);
1086 		goto out;
1087 	}
1088 
1089 	if (unlikely(PageTransHuge(page))) {
1090 		lock_page(page);
1091 		rc = split_huge_page(page);
1092 		unlock_page(page);
1093 		if (rc)
1094 			goto out;
1095 	}
1096 
1097 	rc = __unmap_and_move(page, newpage, force, mode);
1098 	if (rc == MIGRATEPAGE_SUCCESS)
1099 		set_page_owner_migrate_reason(newpage, reason);
1100 
1101 out:
1102 	if (rc != -EAGAIN) {
1103 		/*
1104 		 * A page that has been migrated has all references
1105 		 * removed and will be freed. A page that has not been
1106 		 * migrated will have kepts its references and be
1107 		 * restored.
1108 		 */
1109 		list_del(&page->lru);
1110 
1111 		/*
1112 		 * Compaction can migrate also non-LRU pages which are
1113 		 * not accounted to NR_ISOLATED_*. They can be recognized
1114 		 * as __PageMovable
1115 		 */
1116 		if (likely(!__PageMovable(page)))
1117 			dec_node_page_state(page, NR_ISOLATED_ANON +
1118 					page_is_file_cache(page));
1119 	}
1120 
1121 	/*
1122 	 * If migration is successful, releases reference grabbed during
1123 	 * isolation. Otherwise, restore the page to right list unless
1124 	 * we want to retry.
1125 	 */
1126 	if (rc == MIGRATEPAGE_SUCCESS) {
1127 		put_page(page);
1128 		if (reason == MR_MEMORY_FAILURE) {
1129 			/*
1130 			 * Set PG_HWPoison on just freed page
1131 			 * intentionally. Although it's rather weird,
1132 			 * it's how HWPoison flag works at the moment.
1133 			 */
1134 			if (!test_set_page_hwpoison(page))
1135 				num_poisoned_pages_inc();
1136 		}
1137 	} else {
1138 		if (rc != -EAGAIN) {
1139 			if (likely(!__PageMovable(page))) {
1140 				putback_lru_page(page);
1141 				goto put_new;
1142 			}
1143 
1144 			lock_page(page);
1145 			if (PageMovable(page))
1146 				putback_movable_page(page);
1147 			else
1148 				__ClearPageIsolated(page);
1149 			unlock_page(page);
1150 			put_page(page);
1151 		}
1152 put_new:
1153 		if (put_new_page)
1154 			put_new_page(newpage, private);
1155 		else
1156 			put_page(newpage);
1157 	}
1158 
1159 	if (result) {
1160 		if (rc)
1161 			*result = rc;
1162 		else
1163 			*result = page_to_nid(newpage);
1164 	}
1165 	return rc;
1166 }
1167 
1168 /*
1169  * Counterpart of unmap_and_move_page() for hugepage migration.
1170  *
1171  * This function doesn't wait the completion of hugepage I/O
1172  * because there is no race between I/O and migration for hugepage.
1173  * Note that currently hugepage I/O occurs only in direct I/O
1174  * where no lock is held and PG_writeback is irrelevant,
1175  * and writeback status of all subpages are counted in the reference
1176  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1177  * under direct I/O, the reference of the head page is 512 and a bit more.)
1178  * This means that when we try to migrate hugepage whose subpages are
1179  * doing direct I/O, some references remain after try_to_unmap() and
1180  * hugepage migration fails without data corruption.
1181  *
1182  * There is also no race when direct I/O is issued on the page under migration,
1183  * because then pte is replaced with migration swap entry and direct I/O code
1184  * will wait in the page fault for migration to complete.
1185  */
1186 static int unmap_and_move_huge_page(new_page_t get_new_page,
1187 				free_page_t put_new_page, unsigned long private,
1188 				struct page *hpage, int force,
1189 				enum migrate_mode mode, int reason)
1190 {
1191 	int rc = -EAGAIN;
1192 	int *result = NULL;
1193 	int page_was_mapped = 0;
1194 	struct page *new_hpage;
1195 	struct anon_vma *anon_vma = NULL;
1196 
1197 	/*
1198 	 * Movability of hugepages depends on architectures and hugepage size.
1199 	 * This check is necessary because some callers of hugepage migration
1200 	 * like soft offline and memory hotremove don't walk through page
1201 	 * tables or check whether the hugepage is pmd-based or not before
1202 	 * kicking migration.
1203 	 */
1204 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1205 		putback_active_hugepage(hpage);
1206 		return -ENOSYS;
1207 	}
1208 
1209 	new_hpage = get_new_page(hpage, private, &result);
1210 	if (!new_hpage)
1211 		return -ENOMEM;
1212 
1213 	if (!trylock_page(hpage)) {
1214 		if (!force || mode != MIGRATE_SYNC)
1215 			goto out;
1216 		lock_page(hpage);
1217 	}
1218 
1219 	if (PageAnon(hpage))
1220 		anon_vma = page_get_anon_vma(hpage);
1221 
1222 	if (unlikely(!trylock_page(new_hpage)))
1223 		goto put_anon;
1224 
1225 	if (page_mapped(hpage)) {
1226 		try_to_unmap(hpage,
1227 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1228 		page_was_mapped = 1;
1229 	}
1230 
1231 	if (!page_mapped(hpage))
1232 		rc = move_to_new_page(new_hpage, hpage, mode);
1233 
1234 	if (page_was_mapped)
1235 		remove_migration_ptes(hpage,
1236 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1237 
1238 	unlock_page(new_hpage);
1239 
1240 put_anon:
1241 	if (anon_vma)
1242 		put_anon_vma(anon_vma);
1243 
1244 	if (rc == MIGRATEPAGE_SUCCESS) {
1245 		hugetlb_cgroup_migrate(hpage, new_hpage);
1246 		put_new_page = NULL;
1247 		set_page_owner_migrate_reason(new_hpage, reason);
1248 	}
1249 
1250 	unlock_page(hpage);
1251 out:
1252 	if (rc != -EAGAIN)
1253 		putback_active_hugepage(hpage);
1254 
1255 	/*
1256 	 * If migration was not successful and there's a freeing callback, use
1257 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1258 	 * isolation.
1259 	 */
1260 	if (put_new_page)
1261 		put_new_page(new_hpage, private);
1262 	else
1263 		putback_active_hugepage(new_hpage);
1264 
1265 	if (result) {
1266 		if (rc)
1267 			*result = rc;
1268 		else
1269 			*result = page_to_nid(new_hpage);
1270 	}
1271 	return rc;
1272 }
1273 
1274 /*
1275  * migrate_pages - migrate the pages specified in a list, to the free pages
1276  *		   supplied as the target for the page migration
1277  *
1278  * @from:		The list of pages to be migrated.
1279  * @get_new_page:	The function used to allocate free pages to be used
1280  *			as the target of the page migration.
1281  * @put_new_page:	The function used to free target pages if migration
1282  *			fails, or NULL if no special handling is necessary.
1283  * @private:		Private data to be passed on to get_new_page()
1284  * @mode:		The migration mode that specifies the constraints for
1285  *			page migration, if any.
1286  * @reason:		The reason for page migration.
1287  *
1288  * The function returns after 10 attempts or if no pages are movable any more
1289  * because the list has become empty or no retryable pages exist any more.
1290  * The caller should call putback_movable_pages() to return pages to the LRU
1291  * or free list only if ret != 0.
1292  *
1293  * Returns the number of pages that were not migrated, or an error code.
1294  */
1295 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1296 		free_page_t put_new_page, unsigned long private,
1297 		enum migrate_mode mode, int reason)
1298 {
1299 	int retry = 1;
1300 	int nr_failed = 0;
1301 	int nr_succeeded = 0;
1302 	int pass = 0;
1303 	struct page *page;
1304 	struct page *page2;
1305 	int swapwrite = current->flags & PF_SWAPWRITE;
1306 	int rc;
1307 
1308 	if (!swapwrite)
1309 		current->flags |= PF_SWAPWRITE;
1310 
1311 	for(pass = 0; pass < 10 && retry; pass++) {
1312 		retry = 0;
1313 
1314 		list_for_each_entry_safe(page, page2, from, lru) {
1315 			cond_resched();
1316 
1317 			if (PageHuge(page))
1318 				rc = unmap_and_move_huge_page(get_new_page,
1319 						put_new_page, private, page,
1320 						pass > 2, mode, reason);
1321 			else
1322 				rc = unmap_and_move(get_new_page, put_new_page,
1323 						private, page, pass > 2, mode,
1324 						reason);
1325 
1326 			switch(rc) {
1327 			case -ENOMEM:
1328 				nr_failed++;
1329 				goto out;
1330 			case -EAGAIN:
1331 				retry++;
1332 				break;
1333 			case MIGRATEPAGE_SUCCESS:
1334 				nr_succeeded++;
1335 				break;
1336 			default:
1337 				/*
1338 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1339 				 * unlike -EAGAIN case, the failed page is
1340 				 * removed from migration page list and not
1341 				 * retried in the next outer loop.
1342 				 */
1343 				nr_failed++;
1344 				break;
1345 			}
1346 		}
1347 	}
1348 	nr_failed += retry;
1349 	rc = nr_failed;
1350 out:
1351 	if (nr_succeeded)
1352 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1353 	if (nr_failed)
1354 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1355 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1356 
1357 	if (!swapwrite)
1358 		current->flags &= ~PF_SWAPWRITE;
1359 
1360 	return rc;
1361 }
1362 
1363 #ifdef CONFIG_NUMA
1364 /*
1365  * Move a list of individual pages
1366  */
1367 struct page_to_node {
1368 	unsigned long addr;
1369 	struct page *page;
1370 	int node;
1371 	int status;
1372 };
1373 
1374 static struct page *new_page_node(struct page *p, unsigned long private,
1375 		int **result)
1376 {
1377 	struct page_to_node *pm = (struct page_to_node *)private;
1378 
1379 	while (pm->node != MAX_NUMNODES && pm->page != p)
1380 		pm++;
1381 
1382 	if (pm->node == MAX_NUMNODES)
1383 		return NULL;
1384 
1385 	*result = &pm->status;
1386 
1387 	if (PageHuge(p))
1388 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1389 					pm->node);
1390 	else
1391 		return __alloc_pages_node(pm->node,
1392 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1393 }
1394 
1395 /*
1396  * Move a set of pages as indicated in the pm array. The addr
1397  * field must be set to the virtual address of the page to be moved
1398  * and the node number must contain a valid target node.
1399  * The pm array ends with node = MAX_NUMNODES.
1400  */
1401 static int do_move_page_to_node_array(struct mm_struct *mm,
1402 				      struct page_to_node *pm,
1403 				      int migrate_all)
1404 {
1405 	int err;
1406 	struct page_to_node *pp;
1407 	LIST_HEAD(pagelist);
1408 
1409 	down_read(&mm->mmap_sem);
1410 
1411 	/*
1412 	 * Build a list of pages to migrate
1413 	 */
1414 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1415 		struct vm_area_struct *vma;
1416 		struct page *page;
1417 
1418 		err = -EFAULT;
1419 		vma = find_vma(mm, pp->addr);
1420 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1421 			goto set_status;
1422 
1423 		/* FOLL_DUMP to ignore special (like zero) pages */
1424 		page = follow_page(vma, pp->addr,
1425 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1426 
1427 		err = PTR_ERR(page);
1428 		if (IS_ERR(page))
1429 			goto set_status;
1430 
1431 		err = -ENOENT;
1432 		if (!page)
1433 			goto set_status;
1434 
1435 		pp->page = page;
1436 		err = page_to_nid(page);
1437 
1438 		if (err == pp->node)
1439 			/*
1440 			 * Node already in the right place
1441 			 */
1442 			goto put_and_set;
1443 
1444 		err = -EACCES;
1445 		if (page_mapcount(page) > 1 &&
1446 				!migrate_all)
1447 			goto put_and_set;
1448 
1449 		if (PageHuge(page)) {
1450 			if (PageHead(page))
1451 				isolate_huge_page(page, &pagelist);
1452 			goto put_and_set;
1453 		}
1454 
1455 		err = isolate_lru_page(page);
1456 		if (!err) {
1457 			list_add_tail(&page->lru, &pagelist);
1458 			inc_node_page_state(page, NR_ISOLATED_ANON +
1459 					    page_is_file_cache(page));
1460 		}
1461 put_and_set:
1462 		/*
1463 		 * Either remove the duplicate refcount from
1464 		 * isolate_lru_page() or drop the page ref if it was
1465 		 * not isolated.
1466 		 */
1467 		put_page(page);
1468 set_status:
1469 		pp->status = err;
1470 	}
1471 
1472 	err = 0;
1473 	if (!list_empty(&pagelist)) {
1474 		err = migrate_pages(&pagelist, new_page_node, NULL,
1475 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1476 		if (err)
1477 			putback_movable_pages(&pagelist);
1478 	}
1479 
1480 	up_read(&mm->mmap_sem);
1481 	return err;
1482 }
1483 
1484 /*
1485  * Migrate an array of page address onto an array of nodes and fill
1486  * the corresponding array of status.
1487  */
1488 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1489 			 unsigned long nr_pages,
1490 			 const void __user * __user *pages,
1491 			 const int __user *nodes,
1492 			 int __user *status, int flags)
1493 {
1494 	struct page_to_node *pm;
1495 	unsigned long chunk_nr_pages;
1496 	unsigned long chunk_start;
1497 	int err;
1498 
1499 	err = -ENOMEM;
1500 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1501 	if (!pm)
1502 		goto out;
1503 
1504 	migrate_prep();
1505 
1506 	/*
1507 	 * Store a chunk of page_to_node array in a page,
1508 	 * but keep the last one as a marker
1509 	 */
1510 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1511 
1512 	for (chunk_start = 0;
1513 	     chunk_start < nr_pages;
1514 	     chunk_start += chunk_nr_pages) {
1515 		int j;
1516 
1517 		if (chunk_start + chunk_nr_pages > nr_pages)
1518 			chunk_nr_pages = nr_pages - chunk_start;
1519 
1520 		/* fill the chunk pm with addrs and nodes from user-space */
1521 		for (j = 0; j < chunk_nr_pages; j++) {
1522 			const void __user *p;
1523 			int node;
1524 
1525 			err = -EFAULT;
1526 			if (get_user(p, pages + j + chunk_start))
1527 				goto out_pm;
1528 			pm[j].addr = (unsigned long) p;
1529 
1530 			if (get_user(node, nodes + j + chunk_start))
1531 				goto out_pm;
1532 
1533 			err = -ENODEV;
1534 			if (node < 0 || node >= MAX_NUMNODES)
1535 				goto out_pm;
1536 
1537 			if (!node_state(node, N_MEMORY))
1538 				goto out_pm;
1539 
1540 			err = -EACCES;
1541 			if (!node_isset(node, task_nodes))
1542 				goto out_pm;
1543 
1544 			pm[j].node = node;
1545 		}
1546 
1547 		/* End marker for this chunk */
1548 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1549 
1550 		/* Migrate this chunk */
1551 		err = do_move_page_to_node_array(mm, pm,
1552 						 flags & MPOL_MF_MOVE_ALL);
1553 		if (err < 0)
1554 			goto out_pm;
1555 
1556 		/* Return status information */
1557 		for (j = 0; j < chunk_nr_pages; j++)
1558 			if (put_user(pm[j].status, status + j + chunk_start)) {
1559 				err = -EFAULT;
1560 				goto out_pm;
1561 			}
1562 	}
1563 	err = 0;
1564 
1565 out_pm:
1566 	free_page((unsigned long)pm);
1567 out:
1568 	return err;
1569 }
1570 
1571 /*
1572  * Determine the nodes of an array of pages and store it in an array of status.
1573  */
1574 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1575 				const void __user **pages, int *status)
1576 {
1577 	unsigned long i;
1578 
1579 	down_read(&mm->mmap_sem);
1580 
1581 	for (i = 0; i < nr_pages; i++) {
1582 		unsigned long addr = (unsigned long)(*pages);
1583 		struct vm_area_struct *vma;
1584 		struct page *page;
1585 		int err = -EFAULT;
1586 
1587 		vma = find_vma(mm, addr);
1588 		if (!vma || addr < vma->vm_start)
1589 			goto set_status;
1590 
1591 		/* FOLL_DUMP to ignore special (like zero) pages */
1592 		page = follow_page(vma, addr, FOLL_DUMP);
1593 
1594 		err = PTR_ERR(page);
1595 		if (IS_ERR(page))
1596 			goto set_status;
1597 
1598 		err = page ? page_to_nid(page) : -ENOENT;
1599 set_status:
1600 		*status = err;
1601 
1602 		pages++;
1603 		status++;
1604 	}
1605 
1606 	up_read(&mm->mmap_sem);
1607 }
1608 
1609 /*
1610  * Determine the nodes of a user array of pages and store it in
1611  * a user array of status.
1612  */
1613 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1614 			 const void __user * __user *pages,
1615 			 int __user *status)
1616 {
1617 #define DO_PAGES_STAT_CHUNK_NR 16
1618 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1619 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1620 
1621 	while (nr_pages) {
1622 		unsigned long chunk_nr;
1623 
1624 		chunk_nr = nr_pages;
1625 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1626 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1627 
1628 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1629 			break;
1630 
1631 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1632 
1633 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1634 			break;
1635 
1636 		pages += chunk_nr;
1637 		status += chunk_nr;
1638 		nr_pages -= chunk_nr;
1639 	}
1640 	return nr_pages ? -EFAULT : 0;
1641 }
1642 
1643 /*
1644  * Move a list of pages in the address space of the currently executing
1645  * process.
1646  */
1647 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1648 		const void __user * __user *, pages,
1649 		const int __user *, nodes,
1650 		int __user *, status, int, flags)
1651 {
1652 	const struct cred *cred = current_cred(), *tcred;
1653 	struct task_struct *task;
1654 	struct mm_struct *mm;
1655 	int err;
1656 	nodemask_t task_nodes;
1657 
1658 	/* Check flags */
1659 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1660 		return -EINVAL;
1661 
1662 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1663 		return -EPERM;
1664 
1665 	/* Find the mm_struct */
1666 	rcu_read_lock();
1667 	task = pid ? find_task_by_vpid(pid) : current;
1668 	if (!task) {
1669 		rcu_read_unlock();
1670 		return -ESRCH;
1671 	}
1672 	get_task_struct(task);
1673 
1674 	/*
1675 	 * Check if this process has the right to modify the specified
1676 	 * process. The right exists if the process has administrative
1677 	 * capabilities, superuser privileges or the same
1678 	 * userid as the target process.
1679 	 */
1680 	tcred = __task_cred(task);
1681 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1682 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1683 	    !capable(CAP_SYS_NICE)) {
1684 		rcu_read_unlock();
1685 		err = -EPERM;
1686 		goto out;
1687 	}
1688 	rcu_read_unlock();
1689 
1690  	err = security_task_movememory(task);
1691  	if (err)
1692 		goto out;
1693 
1694 	task_nodes = cpuset_mems_allowed(task);
1695 	mm = get_task_mm(task);
1696 	put_task_struct(task);
1697 
1698 	if (!mm)
1699 		return -EINVAL;
1700 
1701 	if (nodes)
1702 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1703 				    nodes, status, flags);
1704 	else
1705 		err = do_pages_stat(mm, nr_pages, pages, status);
1706 
1707 	mmput(mm);
1708 	return err;
1709 
1710 out:
1711 	put_task_struct(task);
1712 	return err;
1713 }
1714 
1715 #ifdef CONFIG_NUMA_BALANCING
1716 /*
1717  * Returns true if this is a safe migration target node for misplaced NUMA
1718  * pages. Currently it only checks the watermarks which crude
1719  */
1720 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1721 				   unsigned long nr_migrate_pages)
1722 {
1723 	int z;
1724 
1725 	if (!pgdat_reclaimable(pgdat))
1726 		return false;
1727 
1728 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1729 		struct zone *zone = pgdat->node_zones + z;
1730 
1731 		if (!populated_zone(zone))
1732 			continue;
1733 
1734 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1735 		if (!zone_watermark_ok(zone, 0,
1736 				       high_wmark_pages(zone) +
1737 				       nr_migrate_pages,
1738 				       0, 0))
1739 			continue;
1740 		return true;
1741 	}
1742 	return false;
1743 }
1744 
1745 static struct page *alloc_misplaced_dst_page(struct page *page,
1746 					   unsigned long data,
1747 					   int **result)
1748 {
1749 	int nid = (int) data;
1750 	struct page *newpage;
1751 
1752 	newpage = __alloc_pages_node(nid,
1753 					 (GFP_HIGHUSER_MOVABLE |
1754 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1755 					  __GFP_NORETRY | __GFP_NOWARN) &
1756 					 ~__GFP_RECLAIM, 0);
1757 
1758 	return newpage;
1759 }
1760 
1761 /*
1762  * page migration rate limiting control.
1763  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1764  * window of time. Default here says do not migrate more than 1280M per second.
1765  */
1766 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1767 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1768 
1769 /* Returns true if the node is migrate rate-limited after the update */
1770 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1771 					unsigned long nr_pages)
1772 {
1773 	/*
1774 	 * Rate-limit the amount of data that is being migrated to a node.
1775 	 * Optimal placement is no good if the memory bus is saturated and
1776 	 * all the time is being spent migrating!
1777 	 */
1778 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1779 		spin_lock(&pgdat->numabalancing_migrate_lock);
1780 		pgdat->numabalancing_migrate_nr_pages = 0;
1781 		pgdat->numabalancing_migrate_next_window = jiffies +
1782 			msecs_to_jiffies(migrate_interval_millisecs);
1783 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1784 	}
1785 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1786 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1787 								nr_pages);
1788 		return true;
1789 	}
1790 
1791 	/*
1792 	 * This is an unlocked non-atomic update so errors are possible.
1793 	 * The consequences are failing to migrate when we potentiall should
1794 	 * have which is not severe enough to warrant locking. If it is ever
1795 	 * a problem, it can be converted to a per-cpu counter.
1796 	 */
1797 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1798 	return false;
1799 }
1800 
1801 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1802 {
1803 	int page_lru;
1804 
1805 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1806 
1807 	/* Avoid migrating to a node that is nearly full */
1808 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1809 		return 0;
1810 
1811 	if (isolate_lru_page(page))
1812 		return 0;
1813 
1814 	/*
1815 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1816 	 * check on page_count(), so we must do it here, now that the page
1817 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1818 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1819 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1820 	 */
1821 	if (PageTransHuge(page) && page_count(page) != 3) {
1822 		putback_lru_page(page);
1823 		return 0;
1824 	}
1825 
1826 	page_lru = page_is_file_cache(page);
1827 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1828 				hpage_nr_pages(page));
1829 
1830 	/*
1831 	 * Isolating the page has taken another reference, so the
1832 	 * caller's reference can be safely dropped without the page
1833 	 * disappearing underneath us during migration.
1834 	 */
1835 	put_page(page);
1836 	return 1;
1837 }
1838 
1839 bool pmd_trans_migrating(pmd_t pmd)
1840 {
1841 	struct page *page = pmd_page(pmd);
1842 	return PageLocked(page);
1843 }
1844 
1845 /*
1846  * Attempt to migrate a misplaced page to the specified destination
1847  * node. Caller is expected to have an elevated reference count on
1848  * the page that will be dropped by this function before returning.
1849  */
1850 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1851 			   int node)
1852 {
1853 	pg_data_t *pgdat = NODE_DATA(node);
1854 	int isolated;
1855 	int nr_remaining;
1856 	LIST_HEAD(migratepages);
1857 
1858 	/*
1859 	 * Don't migrate file pages that are mapped in multiple processes
1860 	 * with execute permissions as they are probably shared libraries.
1861 	 */
1862 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1863 	    (vma->vm_flags & VM_EXEC))
1864 		goto out;
1865 
1866 	/*
1867 	 * Rate-limit the amount of data that is being migrated to a node.
1868 	 * Optimal placement is no good if the memory bus is saturated and
1869 	 * all the time is being spent migrating!
1870 	 */
1871 	if (numamigrate_update_ratelimit(pgdat, 1))
1872 		goto out;
1873 
1874 	isolated = numamigrate_isolate_page(pgdat, page);
1875 	if (!isolated)
1876 		goto out;
1877 
1878 	list_add(&page->lru, &migratepages);
1879 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1880 				     NULL, node, MIGRATE_ASYNC,
1881 				     MR_NUMA_MISPLACED);
1882 	if (nr_remaining) {
1883 		if (!list_empty(&migratepages)) {
1884 			list_del(&page->lru);
1885 			dec_node_page_state(page, NR_ISOLATED_ANON +
1886 					page_is_file_cache(page));
1887 			putback_lru_page(page);
1888 		}
1889 		isolated = 0;
1890 	} else
1891 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1892 	BUG_ON(!list_empty(&migratepages));
1893 	return isolated;
1894 
1895 out:
1896 	put_page(page);
1897 	return 0;
1898 }
1899 #endif /* CONFIG_NUMA_BALANCING */
1900 
1901 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1902 /*
1903  * Migrates a THP to a given target node. page must be locked and is unlocked
1904  * before returning.
1905  */
1906 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1907 				struct vm_area_struct *vma,
1908 				pmd_t *pmd, pmd_t entry,
1909 				unsigned long address,
1910 				struct page *page, int node)
1911 {
1912 	spinlock_t *ptl;
1913 	pg_data_t *pgdat = NODE_DATA(node);
1914 	int isolated = 0;
1915 	struct page *new_page = NULL;
1916 	int page_lru = page_is_file_cache(page);
1917 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1918 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1919 	pmd_t orig_entry;
1920 
1921 	/*
1922 	 * Rate-limit the amount of data that is being migrated to a node.
1923 	 * Optimal placement is no good if the memory bus is saturated and
1924 	 * all the time is being spent migrating!
1925 	 */
1926 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1927 		goto out_dropref;
1928 
1929 	new_page = alloc_pages_node(node,
1930 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1931 		HPAGE_PMD_ORDER);
1932 	if (!new_page)
1933 		goto out_fail;
1934 	prep_transhuge_page(new_page);
1935 
1936 	isolated = numamigrate_isolate_page(pgdat, page);
1937 	if (!isolated) {
1938 		put_page(new_page);
1939 		goto out_fail;
1940 	}
1941 	/*
1942 	 * We are not sure a pending tlb flush here is for a huge page
1943 	 * mapping or not. Hence use the tlb range variant
1944 	 */
1945 	if (mm_tlb_flush_pending(mm))
1946 		flush_tlb_range(vma, mmun_start, mmun_end);
1947 
1948 	/* Prepare a page as a migration target */
1949 	__SetPageLocked(new_page);
1950 	__SetPageSwapBacked(new_page);
1951 
1952 	/* anon mapping, we can simply copy page->mapping to the new page: */
1953 	new_page->mapping = page->mapping;
1954 	new_page->index = page->index;
1955 	migrate_page_copy(new_page, page);
1956 	WARN_ON(PageLRU(new_page));
1957 
1958 	/* Recheck the target PMD */
1959 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1960 	ptl = pmd_lock(mm, pmd);
1961 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1962 fail_putback:
1963 		spin_unlock(ptl);
1964 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1965 
1966 		/* Reverse changes made by migrate_page_copy() */
1967 		if (TestClearPageActive(new_page))
1968 			SetPageActive(page);
1969 		if (TestClearPageUnevictable(new_page))
1970 			SetPageUnevictable(page);
1971 
1972 		unlock_page(new_page);
1973 		put_page(new_page);		/* Free it */
1974 
1975 		/* Retake the callers reference and putback on LRU */
1976 		get_page(page);
1977 		putback_lru_page(page);
1978 		mod_node_page_state(page_pgdat(page),
1979 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1980 
1981 		goto out_unlock;
1982 	}
1983 
1984 	orig_entry = *pmd;
1985 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1986 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1987 
1988 	/*
1989 	 * Clear the old entry under pagetable lock and establish the new PTE.
1990 	 * Any parallel GUP will either observe the old page blocking on the
1991 	 * page lock, block on the page table lock or observe the new page.
1992 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1993 	 * guarantee the copy is visible before the pagetable update.
1994 	 */
1995 	flush_cache_range(vma, mmun_start, mmun_end);
1996 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1997 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1998 	set_pmd_at(mm, mmun_start, pmd, entry);
1999 	update_mmu_cache_pmd(vma, address, &entry);
2000 
2001 	if (page_count(page) != 2) {
2002 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2003 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2004 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2005 		update_mmu_cache_pmd(vma, address, &entry);
2006 		page_remove_rmap(new_page, true);
2007 		goto fail_putback;
2008 	}
2009 
2010 	mlock_migrate_page(new_page, page);
2011 	page_remove_rmap(page, true);
2012 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2013 
2014 	spin_unlock(ptl);
2015 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2016 
2017 	/* Take an "isolate" reference and put new page on the LRU. */
2018 	get_page(new_page);
2019 	putback_lru_page(new_page);
2020 
2021 	unlock_page(new_page);
2022 	unlock_page(page);
2023 	put_page(page);			/* Drop the rmap reference */
2024 	put_page(page);			/* Drop the LRU isolation reference */
2025 
2026 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2027 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2028 
2029 	mod_node_page_state(page_pgdat(page),
2030 			NR_ISOLATED_ANON + page_lru,
2031 			-HPAGE_PMD_NR);
2032 	return isolated;
2033 
2034 out_fail:
2035 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2036 out_dropref:
2037 	ptl = pmd_lock(mm, pmd);
2038 	if (pmd_same(*pmd, entry)) {
2039 		entry = pmd_modify(entry, vma->vm_page_prot);
2040 		set_pmd_at(mm, mmun_start, pmd, entry);
2041 		update_mmu_cache_pmd(vma, address, &entry);
2042 	}
2043 	spin_unlock(ptl);
2044 
2045 out_unlock:
2046 	unlock_page(page);
2047 	put_page(page);
2048 	return 0;
2049 }
2050 #endif /* CONFIG_NUMA_BALANCING */
2051 
2052 #endif /* CONFIG_NUMA */
2053