xref: /openbmc/linux/mm/migrate.c (revision e481ff3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	__SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	__ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				__ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 				 unsigned long addr, void *old)
176 {
177 	struct page_vma_mapped_walk pvmw = {
178 		.page = old,
179 		.vma = vma,
180 		.address = addr,
181 		.flags = PVMW_SYNC | PVMW_MIGRATION,
182 	};
183 	struct page *new;
184 	pte_t pte;
185 	swp_entry_t entry;
186 
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		if (PageKsm(page))
190 			new = page;
191 		else
192 			new = page - pvmw.page->index +
193 				linear_page_index(vma, pvmw.address);
194 
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 		/* PMD-mapped THP migration entry */
197 		if (!pvmw.pte) {
198 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 			remove_migration_pmd(&pvmw, new);
200 			continue;
201 		}
202 #endif
203 
204 		get_page(new);
205 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 		if (pte_swp_soft_dirty(*pvmw.pte))
207 			pte = pte_mksoft_dirty(pte);
208 
209 		/*
210 		 * Recheck VMA as permissions can change since migration started
211 		 */
212 		entry = pte_to_swp_entry(*pvmw.pte);
213 		if (is_writable_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			if (pte_write(pte))
220 				entry = make_writable_device_private_entry(
221 							page_to_pfn(new));
222 			else
223 				entry = make_readable_device_private_entry(
224 							page_to_pfn(new));
225 			pte = swp_entry_to_pte(entry);
226 			if (pte_swp_soft_dirty(*pvmw.pte))
227 				pte = pte_swp_mksoft_dirty(pte);
228 			if (pte_swp_uffd_wp(*pvmw.pte))
229 				pte = pte_swp_mkuffd_wp(pte);
230 		}
231 
232 #ifdef CONFIG_HUGETLB_PAGE
233 		if (PageHuge(new)) {
234 			unsigned int shift = huge_page_shift(hstate_vma(vma));
235 
236 			pte = pte_mkhuge(pte);
237 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 			if (PageAnon(new))
240 				hugepage_add_anon_rmap(new, vma, pvmw.address);
241 			else
242 				page_dup_rmap(new, true);
243 		} else
244 #endif
245 		{
246 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247 
248 			if (PageAnon(new))
249 				page_add_anon_rmap(new, vma, pvmw.address, false);
250 			else
251 				page_add_file_rmap(new, false);
252 		}
253 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
254 			mlock_vma_page(new);
255 
256 		if (PageTransHuge(page) && PageMlocked(page))
257 			clear_page_mlock(page);
258 
259 		/* No need to invalidate - it was non-present before */
260 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
261 	}
262 
263 	return true;
264 }
265 
266 /*
267  * Get rid of all migration entries and replace them by
268  * references to the indicated page.
269  */
270 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
271 {
272 	struct rmap_walk_control rwc = {
273 		.rmap_one = remove_migration_pte,
274 		.arg = old,
275 	};
276 
277 	if (locked)
278 		rmap_walk_locked(new, &rwc);
279 	else
280 		rmap_walk(new, &rwc);
281 }
282 
283 /*
284  * Something used the pte of a page under migration. We need to
285  * get to the page and wait until migration is finished.
286  * When we return from this function the fault will be retried.
287  */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289 				spinlock_t *ptl)
290 {
291 	pte_t pte;
292 	swp_entry_t entry;
293 	struct page *page;
294 
295 	spin_lock(ptl);
296 	pte = *ptep;
297 	if (!is_swap_pte(pte))
298 		goto out;
299 
300 	entry = pte_to_swp_entry(pte);
301 	if (!is_migration_entry(entry))
302 		goto out;
303 
304 	page = pfn_swap_entry_to_page(entry);
305 	page = compound_head(page);
306 
307 	/*
308 	 * Once page cache replacement of page migration started, page_count
309 	 * is zero; but we must not call put_and_wait_on_page_locked() without
310 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
311 	 */
312 	if (!get_page_unless_zero(page))
313 		goto out;
314 	pte_unmap_unlock(ptep, ptl);
315 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
316 	return;
317 out:
318 	pte_unmap_unlock(ptep, ptl);
319 }
320 
321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
322 				unsigned long address)
323 {
324 	spinlock_t *ptl = pte_lockptr(mm, pmd);
325 	pte_t *ptep = pte_offset_map(pmd, address);
326 	__migration_entry_wait(mm, ptep, ptl);
327 }
328 
329 void migration_entry_wait_huge(struct vm_area_struct *vma,
330 		struct mm_struct *mm, pte_t *pte)
331 {
332 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
333 	__migration_entry_wait(mm, pte, ptl);
334 }
335 
336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
338 {
339 	spinlock_t *ptl;
340 	struct page *page;
341 
342 	ptl = pmd_lock(mm, pmd);
343 	if (!is_pmd_migration_entry(*pmd))
344 		goto unlock;
345 	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
346 	if (!get_page_unless_zero(page))
347 		goto unlock;
348 	spin_unlock(ptl);
349 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
350 	return;
351 unlock:
352 	spin_unlock(ptl);
353 }
354 #endif
355 
356 static int expected_page_refs(struct address_space *mapping, struct page *page)
357 {
358 	int expected_count = 1;
359 
360 	/*
361 	 * Device private pages have an extra refcount as they are
362 	 * ZONE_DEVICE pages.
363 	 */
364 	expected_count += is_device_private_page(page);
365 	if (mapping)
366 		expected_count += thp_nr_pages(page) + page_has_private(page);
367 
368 	return expected_count;
369 }
370 
371 /*
372  * Replace the page in the mapping.
373  *
374  * The number of remaining references must be:
375  * 1 for anonymous pages without a mapping
376  * 2 for pages with a mapping
377  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
378  */
379 int migrate_page_move_mapping(struct address_space *mapping,
380 		struct page *newpage, struct page *page, int extra_count)
381 {
382 	XA_STATE(xas, &mapping->i_pages, page_index(page));
383 	struct zone *oldzone, *newzone;
384 	int dirty;
385 	int expected_count = expected_page_refs(mapping, page) + extra_count;
386 	int nr = thp_nr_pages(page);
387 
388 	if (!mapping) {
389 		/* Anonymous page without mapping */
390 		if (page_count(page) != expected_count)
391 			return -EAGAIN;
392 
393 		/* No turning back from here */
394 		newpage->index = page->index;
395 		newpage->mapping = page->mapping;
396 		if (PageSwapBacked(page))
397 			__SetPageSwapBacked(newpage);
398 
399 		return MIGRATEPAGE_SUCCESS;
400 	}
401 
402 	oldzone = page_zone(page);
403 	newzone = page_zone(newpage);
404 
405 	xas_lock_irq(&xas);
406 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
407 		xas_unlock_irq(&xas);
408 		return -EAGAIN;
409 	}
410 
411 	if (!page_ref_freeze(page, expected_count)) {
412 		xas_unlock_irq(&xas);
413 		return -EAGAIN;
414 	}
415 
416 	/*
417 	 * Now we know that no one else is looking at the page:
418 	 * no turning back from here.
419 	 */
420 	newpage->index = page->index;
421 	newpage->mapping = page->mapping;
422 	page_ref_add(newpage, nr); /* add cache reference */
423 	if (PageSwapBacked(page)) {
424 		__SetPageSwapBacked(newpage);
425 		if (PageSwapCache(page)) {
426 			SetPageSwapCache(newpage);
427 			set_page_private(newpage, page_private(page));
428 		}
429 	} else {
430 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
431 	}
432 
433 	/* Move dirty while page refs frozen and newpage not yet exposed */
434 	dirty = PageDirty(page);
435 	if (dirty) {
436 		ClearPageDirty(page);
437 		SetPageDirty(newpage);
438 	}
439 
440 	xas_store(&xas, newpage);
441 	if (PageTransHuge(page)) {
442 		int i;
443 
444 		for (i = 1; i < nr; i++) {
445 			xas_next(&xas);
446 			xas_store(&xas, newpage);
447 		}
448 	}
449 
450 	/*
451 	 * Drop cache reference from old page by unfreezing
452 	 * to one less reference.
453 	 * We know this isn't the last reference.
454 	 */
455 	page_ref_unfreeze(page, expected_count - nr);
456 
457 	xas_unlock(&xas);
458 	/* Leave irq disabled to prevent preemption while updating stats */
459 
460 	/*
461 	 * If moved to a different zone then also account
462 	 * the page for that zone. Other VM counters will be
463 	 * taken care of when we establish references to the
464 	 * new page and drop references to the old page.
465 	 *
466 	 * Note that anonymous pages are accounted for
467 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 	 * are mapped to swap space.
469 	 */
470 	if (newzone != oldzone) {
471 		struct lruvec *old_lruvec, *new_lruvec;
472 		struct mem_cgroup *memcg;
473 
474 		memcg = page_memcg(page);
475 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477 
478 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
481 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 		}
484 #ifdef CONFIG_SWAP
485 		if (PageSwapCache(page)) {
486 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 		}
489 #endif
490 		if (dirty && mapping_can_writeback(mapping)) {
491 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 		}
496 	}
497 	local_irq_enable();
498 
499 	return MIGRATEPAGE_SUCCESS;
500 }
501 EXPORT_SYMBOL(migrate_page_move_mapping);
502 
503 /*
504  * The expected number of remaining references is the same as that
505  * of migrate_page_move_mapping().
506  */
507 int migrate_huge_page_move_mapping(struct address_space *mapping,
508 				   struct page *newpage, struct page *page)
509 {
510 	XA_STATE(xas, &mapping->i_pages, page_index(page));
511 	int expected_count;
512 
513 	xas_lock_irq(&xas);
514 	expected_count = 2 + page_has_private(page);
515 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
516 		xas_unlock_irq(&xas);
517 		return -EAGAIN;
518 	}
519 
520 	if (!page_ref_freeze(page, expected_count)) {
521 		xas_unlock_irq(&xas);
522 		return -EAGAIN;
523 	}
524 
525 	newpage->index = page->index;
526 	newpage->mapping = page->mapping;
527 
528 	get_page(newpage);
529 
530 	xas_store(&xas, newpage);
531 
532 	page_ref_unfreeze(page, expected_count - 1);
533 
534 	xas_unlock_irq(&xas);
535 
536 	return MIGRATEPAGE_SUCCESS;
537 }
538 
539 /*
540  * Gigantic pages are so large that we do not guarantee that page++ pointer
541  * arithmetic will work across the entire page.  We need something more
542  * specialized.
543  */
544 static void __copy_gigantic_page(struct page *dst, struct page *src,
545 				int nr_pages)
546 {
547 	int i;
548 	struct page *dst_base = dst;
549 	struct page *src_base = src;
550 
551 	for (i = 0; i < nr_pages; ) {
552 		cond_resched();
553 		copy_highpage(dst, src);
554 
555 		i++;
556 		dst = mem_map_next(dst, dst_base, i);
557 		src = mem_map_next(src, src_base, i);
558 	}
559 }
560 
561 void copy_huge_page(struct page *dst, struct page *src)
562 {
563 	int i;
564 	int nr_pages;
565 
566 	if (PageHuge(src)) {
567 		/* hugetlbfs page */
568 		struct hstate *h = page_hstate(src);
569 		nr_pages = pages_per_huge_page(h);
570 
571 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
572 			__copy_gigantic_page(dst, src, nr_pages);
573 			return;
574 		}
575 	} else {
576 		/* thp page */
577 		BUG_ON(!PageTransHuge(src));
578 		nr_pages = thp_nr_pages(src);
579 	}
580 
581 	for (i = 0; i < nr_pages; i++) {
582 		cond_resched();
583 		copy_highpage(dst + i, src + i);
584 	}
585 }
586 
587 /*
588  * Copy the page to its new location
589  */
590 void migrate_page_states(struct page *newpage, struct page *page)
591 {
592 	int cpupid;
593 
594 	if (PageError(page))
595 		SetPageError(newpage);
596 	if (PageReferenced(page))
597 		SetPageReferenced(newpage);
598 	if (PageUptodate(page))
599 		SetPageUptodate(newpage);
600 	if (TestClearPageActive(page)) {
601 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
602 		SetPageActive(newpage);
603 	} else if (TestClearPageUnevictable(page))
604 		SetPageUnevictable(newpage);
605 	if (PageWorkingset(page))
606 		SetPageWorkingset(newpage);
607 	if (PageChecked(page))
608 		SetPageChecked(newpage);
609 	if (PageMappedToDisk(page))
610 		SetPageMappedToDisk(newpage);
611 
612 	/* Move dirty on pages not done by migrate_page_move_mapping() */
613 	if (PageDirty(page))
614 		SetPageDirty(newpage);
615 
616 	if (page_is_young(page))
617 		set_page_young(newpage);
618 	if (page_is_idle(page))
619 		set_page_idle(newpage);
620 
621 	/*
622 	 * Copy NUMA information to the new page, to prevent over-eager
623 	 * future migrations of this same page.
624 	 */
625 	cpupid = page_cpupid_xchg_last(page, -1);
626 	page_cpupid_xchg_last(newpage, cpupid);
627 
628 	ksm_migrate_page(newpage, page);
629 	/*
630 	 * Please do not reorder this without considering how mm/ksm.c's
631 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
632 	 */
633 	if (PageSwapCache(page))
634 		ClearPageSwapCache(page);
635 	ClearPagePrivate(page);
636 
637 	/* page->private contains hugetlb specific flags */
638 	if (!PageHuge(page))
639 		set_page_private(page, 0);
640 
641 	/*
642 	 * If any waiters have accumulated on the new page then
643 	 * wake them up.
644 	 */
645 	if (PageWriteback(newpage))
646 		end_page_writeback(newpage);
647 
648 	/*
649 	 * PG_readahead shares the same bit with PG_reclaim.  The above
650 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
651 	 * bit after that.
652 	 */
653 	if (PageReadahead(page))
654 		SetPageReadahead(newpage);
655 
656 	copy_page_owner(page, newpage);
657 
658 	if (!PageHuge(page))
659 		mem_cgroup_migrate(page, newpage);
660 }
661 EXPORT_SYMBOL(migrate_page_states);
662 
663 void migrate_page_copy(struct page *newpage, struct page *page)
664 {
665 	if (PageHuge(page) || PageTransHuge(page))
666 		copy_huge_page(newpage, page);
667 	else
668 		copy_highpage(newpage, page);
669 
670 	migrate_page_states(newpage, page);
671 }
672 EXPORT_SYMBOL(migrate_page_copy);
673 
674 /************************************************************
675  *                    Migration functions
676  ***********************************************************/
677 
678 /*
679  * Common logic to directly migrate a single LRU page suitable for
680  * pages that do not use PagePrivate/PagePrivate2.
681  *
682  * Pages are locked upon entry and exit.
683  */
684 int migrate_page(struct address_space *mapping,
685 		struct page *newpage, struct page *page,
686 		enum migrate_mode mode)
687 {
688 	int rc;
689 
690 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
691 
692 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
693 
694 	if (rc != MIGRATEPAGE_SUCCESS)
695 		return rc;
696 
697 	if (mode != MIGRATE_SYNC_NO_COPY)
698 		migrate_page_copy(newpage, page);
699 	else
700 		migrate_page_states(newpage, page);
701 	return MIGRATEPAGE_SUCCESS;
702 }
703 EXPORT_SYMBOL(migrate_page);
704 
705 #ifdef CONFIG_BLOCK
706 /* Returns true if all buffers are successfully locked */
707 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
708 							enum migrate_mode mode)
709 {
710 	struct buffer_head *bh = head;
711 
712 	/* Simple case, sync compaction */
713 	if (mode != MIGRATE_ASYNC) {
714 		do {
715 			lock_buffer(bh);
716 			bh = bh->b_this_page;
717 
718 		} while (bh != head);
719 
720 		return true;
721 	}
722 
723 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
724 	do {
725 		if (!trylock_buffer(bh)) {
726 			/*
727 			 * We failed to lock the buffer and cannot stall in
728 			 * async migration. Release the taken locks
729 			 */
730 			struct buffer_head *failed_bh = bh;
731 			bh = head;
732 			while (bh != failed_bh) {
733 				unlock_buffer(bh);
734 				bh = bh->b_this_page;
735 			}
736 			return false;
737 		}
738 
739 		bh = bh->b_this_page;
740 	} while (bh != head);
741 	return true;
742 }
743 
744 static int __buffer_migrate_page(struct address_space *mapping,
745 		struct page *newpage, struct page *page, enum migrate_mode mode,
746 		bool check_refs)
747 {
748 	struct buffer_head *bh, *head;
749 	int rc;
750 	int expected_count;
751 
752 	if (!page_has_buffers(page))
753 		return migrate_page(mapping, newpage, page, mode);
754 
755 	/* Check whether page does not have extra refs before we do more work */
756 	expected_count = expected_page_refs(mapping, page);
757 	if (page_count(page) != expected_count)
758 		return -EAGAIN;
759 
760 	head = page_buffers(page);
761 	if (!buffer_migrate_lock_buffers(head, mode))
762 		return -EAGAIN;
763 
764 	if (check_refs) {
765 		bool busy;
766 		bool invalidated = false;
767 
768 recheck_buffers:
769 		busy = false;
770 		spin_lock(&mapping->private_lock);
771 		bh = head;
772 		do {
773 			if (atomic_read(&bh->b_count)) {
774 				busy = true;
775 				break;
776 			}
777 			bh = bh->b_this_page;
778 		} while (bh != head);
779 		if (busy) {
780 			if (invalidated) {
781 				rc = -EAGAIN;
782 				goto unlock_buffers;
783 			}
784 			spin_unlock(&mapping->private_lock);
785 			invalidate_bh_lrus();
786 			invalidated = true;
787 			goto recheck_buffers;
788 		}
789 	}
790 
791 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
792 	if (rc != MIGRATEPAGE_SUCCESS)
793 		goto unlock_buffers;
794 
795 	attach_page_private(newpage, detach_page_private(page));
796 
797 	bh = head;
798 	do {
799 		set_bh_page(bh, newpage, bh_offset(bh));
800 		bh = bh->b_this_page;
801 
802 	} while (bh != head);
803 
804 	if (mode != MIGRATE_SYNC_NO_COPY)
805 		migrate_page_copy(newpage, page);
806 	else
807 		migrate_page_states(newpage, page);
808 
809 	rc = MIGRATEPAGE_SUCCESS;
810 unlock_buffers:
811 	if (check_refs)
812 		spin_unlock(&mapping->private_lock);
813 	bh = head;
814 	do {
815 		unlock_buffer(bh);
816 		bh = bh->b_this_page;
817 
818 	} while (bh != head);
819 
820 	return rc;
821 }
822 
823 /*
824  * Migration function for pages with buffers. This function can only be used
825  * if the underlying filesystem guarantees that no other references to "page"
826  * exist. For example attached buffer heads are accessed only under page lock.
827  */
828 int buffer_migrate_page(struct address_space *mapping,
829 		struct page *newpage, struct page *page, enum migrate_mode mode)
830 {
831 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
832 }
833 EXPORT_SYMBOL(buffer_migrate_page);
834 
835 /*
836  * Same as above except that this variant is more careful and checks that there
837  * are also no buffer head references. This function is the right one for
838  * mappings where buffer heads are directly looked up and referenced (such as
839  * block device mappings).
840  */
841 int buffer_migrate_page_norefs(struct address_space *mapping,
842 		struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
845 }
846 #endif
847 
848 /*
849  * Writeback a page to clean the dirty state
850  */
851 static int writeout(struct address_space *mapping, struct page *page)
852 {
853 	struct writeback_control wbc = {
854 		.sync_mode = WB_SYNC_NONE,
855 		.nr_to_write = 1,
856 		.range_start = 0,
857 		.range_end = LLONG_MAX,
858 		.for_reclaim = 1
859 	};
860 	int rc;
861 
862 	if (!mapping->a_ops->writepage)
863 		/* No write method for the address space */
864 		return -EINVAL;
865 
866 	if (!clear_page_dirty_for_io(page))
867 		/* Someone else already triggered a write */
868 		return -EAGAIN;
869 
870 	/*
871 	 * A dirty page may imply that the underlying filesystem has
872 	 * the page on some queue. So the page must be clean for
873 	 * migration. Writeout may mean we loose the lock and the
874 	 * page state is no longer what we checked for earlier.
875 	 * At this point we know that the migration attempt cannot
876 	 * be successful.
877 	 */
878 	remove_migration_ptes(page, page, false);
879 
880 	rc = mapping->a_ops->writepage(page, &wbc);
881 
882 	if (rc != AOP_WRITEPAGE_ACTIVATE)
883 		/* unlocked. Relock */
884 		lock_page(page);
885 
886 	return (rc < 0) ? -EIO : -EAGAIN;
887 }
888 
889 /*
890  * Default handling if a filesystem does not provide a migration function.
891  */
892 static int fallback_migrate_page(struct address_space *mapping,
893 	struct page *newpage, struct page *page, enum migrate_mode mode)
894 {
895 	if (PageDirty(page)) {
896 		/* Only writeback pages in full synchronous migration */
897 		switch (mode) {
898 		case MIGRATE_SYNC:
899 		case MIGRATE_SYNC_NO_COPY:
900 			break;
901 		default:
902 			return -EBUSY;
903 		}
904 		return writeout(mapping, page);
905 	}
906 
907 	/*
908 	 * Buffers may be managed in a filesystem specific way.
909 	 * We must have no buffers or drop them.
910 	 */
911 	if (page_has_private(page) &&
912 	    !try_to_release_page(page, GFP_KERNEL))
913 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
914 
915 	return migrate_page(mapping, newpage, page, mode);
916 }
917 
918 /*
919  * Move a page to a newly allocated page
920  * The page is locked and all ptes have been successfully removed.
921  *
922  * The new page will have replaced the old page if this function
923  * is successful.
924  *
925  * Return value:
926  *   < 0 - error code
927  *  MIGRATEPAGE_SUCCESS - success
928  */
929 static int move_to_new_page(struct page *newpage, struct page *page,
930 				enum migrate_mode mode)
931 {
932 	struct address_space *mapping;
933 	int rc = -EAGAIN;
934 	bool is_lru = !__PageMovable(page);
935 
936 	VM_BUG_ON_PAGE(!PageLocked(page), page);
937 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
938 
939 	mapping = page_mapping(page);
940 
941 	if (likely(is_lru)) {
942 		if (!mapping)
943 			rc = migrate_page(mapping, newpage, page, mode);
944 		else if (mapping->a_ops->migratepage)
945 			/*
946 			 * Most pages have a mapping and most filesystems
947 			 * provide a migratepage callback. Anonymous pages
948 			 * are part of swap space which also has its own
949 			 * migratepage callback. This is the most common path
950 			 * for page migration.
951 			 */
952 			rc = mapping->a_ops->migratepage(mapping, newpage,
953 							page, mode);
954 		else
955 			rc = fallback_migrate_page(mapping, newpage,
956 							page, mode);
957 	} else {
958 		/*
959 		 * In case of non-lru page, it could be released after
960 		 * isolation step. In that case, we shouldn't try migration.
961 		 */
962 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
963 		if (!PageMovable(page)) {
964 			rc = MIGRATEPAGE_SUCCESS;
965 			__ClearPageIsolated(page);
966 			goto out;
967 		}
968 
969 		rc = mapping->a_ops->migratepage(mapping, newpage,
970 						page, mode);
971 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
972 			!PageIsolated(page));
973 	}
974 
975 	/*
976 	 * When successful, old pagecache page->mapping must be cleared before
977 	 * page is freed; but stats require that PageAnon be left as PageAnon.
978 	 */
979 	if (rc == MIGRATEPAGE_SUCCESS) {
980 		if (__PageMovable(page)) {
981 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
982 
983 			/*
984 			 * We clear PG_movable under page_lock so any compactor
985 			 * cannot try to migrate this page.
986 			 */
987 			__ClearPageIsolated(page);
988 		}
989 
990 		/*
991 		 * Anonymous and movable page->mapping will be cleared by
992 		 * free_pages_prepare so don't reset it here for keeping
993 		 * the type to work PageAnon, for example.
994 		 */
995 		if (!PageMappingFlags(page))
996 			page->mapping = NULL;
997 
998 		if (likely(!is_zone_device_page(newpage)))
999 			flush_dcache_page(newpage);
1000 
1001 	}
1002 out:
1003 	return rc;
1004 }
1005 
1006 static int __unmap_and_move(struct page *page, struct page *newpage,
1007 				int force, enum migrate_mode mode)
1008 {
1009 	int rc = -EAGAIN;
1010 	int page_was_mapped = 0;
1011 	struct anon_vma *anon_vma = NULL;
1012 	bool is_lru = !__PageMovable(page);
1013 
1014 	if (!trylock_page(page)) {
1015 		if (!force || mode == MIGRATE_ASYNC)
1016 			goto out;
1017 
1018 		/*
1019 		 * It's not safe for direct compaction to call lock_page.
1020 		 * For example, during page readahead pages are added locked
1021 		 * to the LRU. Later, when the IO completes the pages are
1022 		 * marked uptodate and unlocked. However, the queueing
1023 		 * could be merging multiple pages for one bio (e.g.
1024 		 * mpage_readahead). If an allocation happens for the
1025 		 * second or third page, the process can end up locking
1026 		 * the same page twice and deadlocking. Rather than
1027 		 * trying to be clever about what pages can be locked,
1028 		 * avoid the use of lock_page for direct compaction
1029 		 * altogether.
1030 		 */
1031 		if (current->flags & PF_MEMALLOC)
1032 			goto out;
1033 
1034 		lock_page(page);
1035 	}
1036 
1037 	if (PageWriteback(page)) {
1038 		/*
1039 		 * Only in the case of a full synchronous migration is it
1040 		 * necessary to wait for PageWriteback. In the async case,
1041 		 * the retry loop is too short and in the sync-light case,
1042 		 * the overhead of stalling is too much
1043 		 */
1044 		switch (mode) {
1045 		case MIGRATE_SYNC:
1046 		case MIGRATE_SYNC_NO_COPY:
1047 			break;
1048 		default:
1049 			rc = -EBUSY;
1050 			goto out_unlock;
1051 		}
1052 		if (!force)
1053 			goto out_unlock;
1054 		wait_on_page_writeback(page);
1055 	}
1056 
1057 	/*
1058 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1059 	 * we cannot notice that anon_vma is freed while we migrates a page.
1060 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1061 	 * of migration. File cache pages are no problem because of page_lock()
1062 	 * File Caches may use write_page() or lock_page() in migration, then,
1063 	 * just care Anon page here.
1064 	 *
1065 	 * Only page_get_anon_vma() understands the subtleties of
1066 	 * getting a hold on an anon_vma from outside one of its mms.
1067 	 * But if we cannot get anon_vma, then we won't need it anyway,
1068 	 * because that implies that the anon page is no longer mapped
1069 	 * (and cannot be remapped so long as we hold the page lock).
1070 	 */
1071 	if (PageAnon(page) && !PageKsm(page))
1072 		anon_vma = page_get_anon_vma(page);
1073 
1074 	/*
1075 	 * Block others from accessing the new page when we get around to
1076 	 * establishing additional references. We are usually the only one
1077 	 * holding a reference to newpage at this point. We used to have a BUG
1078 	 * here if trylock_page(newpage) fails, but would like to allow for
1079 	 * cases where there might be a race with the previous use of newpage.
1080 	 * This is much like races on refcount of oldpage: just don't BUG().
1081 	 */
1082 	if (unlikely(!trylock_page(newpage)))
1083 		goto out_unlock;
1084 
1085 	if (unlikely(!is_lru)) {
1086 		rc = move_to_new_page(newpage, page, mode);
1087 		goto out_unlock_both;
1088 	}
1089 
1090 	/*
1091 	 * Corner case handling:
1092 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1093 	 * and treated as swapcache but it has no rmap yet.
1094 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1095 	 * trigger a BUG.  So handle it here.
1096 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1097 	 * fs-private metadata. The page can be picked up due to memory
1098 	 * offlining.  Everywhere else except page reclaim, the page is
1099 	 * invisible to the vm, so the page can not be migrated.  So try to
1100 	 * free the metadata, so the page can be freed.
1101 	 */
1102 	if (!page->mapping) {
1103 		VM_BUG_ON_PAGE(PageAnon(page), page);
1104 		if (page_has_private(page)) {
1105 			try_to_free_buffers(page);
1106 			goto out_unlock_both;
1107 		}
1108 	} else if (page_mapped(page)) {
1109 		/* Establish migration ptes */
1110 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1111 				page);
1112 		try_to_migrate(page, 0);
1113 		page_was_mapped = 1;
1114 	}
1115 
1116 	if (!page_mapped(page))
1117 		rc = move_to_new_page(newpage, page, mode);
1118 
1119 	if (page_was_mapped)
1120 		remove_migration_ptes(page,
1121 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122 
1123 out_unlock_both:
1124 	unlock_page(newpage);
1125 out_unlock:
1126 	/* Drop an anon_vma reference if we took one */
1127 	if (anon_vma)
1128 		put_anon_vma(anon_vma);
1129 	unlock_page(page);
1130 out:
1131 	/*
1132 	 * If migration is successful, decrease refcount of the newpage
1133 	 * which will not free the page because new page owner increased
1134 	 * refcounter. As well, if it is LRU page, add the page to LRU
1135 	 * list in here. Use the old state of the isolated source page to
1136 	 * determine if we migrated a LRU page. newpage was already unlocked
1137 	 * and possibly modified by its owner - don't rely on the page
1138 	 * state.
1139 	 */
1140 	if (rc == MIGRATEPAGE_SUCCESS) {
1141 		if (unlikely(!is_lru))
1142 			put_page(newpage);
1143 		else
1144 			putback_lru_page(newpage);
1145 	}
1146 
1147 	return rc;
1148 }
1149 
1150 /*
1151  * Obtain the lock on page, remove all ptes and migrate the page
1152  * to the newly allocated page in newpage.
1153  */
1154 static int unmap_and_move(new_page_t get_new_page,
1155 				   free_page_t put_new_page,
1156 				   unsigned long private, struct page *page,
1157 				   int force, enum migrate_mode mode,
1158 				   enum migrate_reason reason,
1159 				   struct list_head *ret)
1160 {
1161 	int rc = MIGRATEPAGE_SUCCESS;
1162 	struct page *newpage = NULL;
1163 
1164 	if (!thp_migration_supported() && PageTransHuge(page))
1165 		return -ENOSYS;
1166 
1167 	if (page_count(page) == 1) {
1168 		/* page was freed from under us. So we are done. */
1169 		ClearPageActive(page);
1170 		ClearPageUnevictable(page);
1171 		if (unlikely(__PageMovable(page))) {
1172 			lock_page(page);
1173 			if (!PageMovable(page))
1174 				__ClearPageIsolated(page);
1175 			unlock_page(page);
1176 		}
1177 		goto out;
1178 	}
1179 
1180 	newpage = get_new_page(page, private);
1181 	if (!newpage)
1182 		return -ENOMEM;
1183 
1184 	rc = __unmap_and_move(page, newpage, force, mode);
1185 	if (rc == MIGRATEPAGE_SUCCESS)
1186 		set_page_owner_migrate_reason(newpage, reason);
1187 
1188 out:
1189 	if (rc != -EAGAIN) {
1190 		/*
1191 		 * A page that has been migrated has all references
1192 		 * removed and will be freed. A page that has not been
1193 		 * migrated will have kept its references and be restored.
1194 		 */
1195 		list_del(&page->lru);
1196 	}
1197 
1198 	/*
1199 	 * If migration is successful, releases reference grabbed during
1200 	 * isolation. Otherwise, restore the page to right list unless
1201 	 * we want to retry.
1202 	 */
1203 	if (rc == MIGRATEPAGE_SUCCESS) {
1204 		/*
1205 		 * Compaction can migrate also non-LRU pages which are
1206 		 * not accounted to NR_ISOLATED_*. They can be recognized
1207 		 * as __PageMovable
1208 		 */
1209 		if (likely(!__PageMovable(page)))
1210 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1211 					page_is_file_lru(page), -thp_nr_pages(page));
1212 
1213 		if (reason != MR_MEMORY_FAILURE)
1214 			/*
1215 			 * We release the page in page_handle_poison.
1216 			 */
1217 			put_page(page);
1218 	} else {
1219 		if (rc != -EAGAIN)
1220 			list_add_tail(&page->lru, ret);
1221 
1222 		if (put_new_page)
1223 			put_new_page(newpage, private);
1224 		else
1225 			put_page(newpage);
1226 	}
1227 
1228 	return rc;
1229 }
1230 
1231 /*
1232  * Counterpart of unmap_and_move_page() for hugepage migration.
1233  *
1234  * This function doesn't wait the completion of hugepage I/O
1235  * because there is no race between I/O and migration for hugepage.
1236  * Note that currently hugepage I/O occurs only in direct I/O
1237  * where no lock is held and PG_writeback is irrelevant,
1238  * and writeback status of all subpages are counted in the reference
1239  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240  * under direct I/O, the reference of the head page is 512 and a bit more.)
1241  * This means that when we try to migrate hugepage whose subpages are
1242  * doing direct I/O, some references remain after try_to_unmap() and
1243  * hugepage migration fails without data corruption.
1244  *
1245  * There is also no race when direct I/O is issued on the page under migration,
1246  * because then pte is replaced with migration swap entry and direct I/O code
1247  * will wait in the page fault for migration to complete.
1248  */
1249 static int unmap_and_move_huge_page(new_page_t get_new_page,
1250 				free_page_t put_new_page, unsigned long private,
1251 				struct page *hpage, int force,
1252 				enum migrate_mode mode, int reason,
1253 				struct list_head *ret)
1254 {
1255 	int rc = -EAGAIN;
1256 	int page_was_mapped = 0;
1257 	struct page *new_hpage;
1258 	struct anon_vma *anon_vma = NULL;
1259 	struct address_space *mapping = NULL;
1260 
1261 	/*
1262 	 * Migratability of hugepages depends on architectures and their size.
1263 	 * This check is necessary because some callers of hugepage migration
1264 	 * like soft offline and memory hotremove don't walk through page
1265 	 * tables or check whether the hugepage is pmd-based or not before
1266 	 * kicking migration.
1267 	 */
1268 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1269 		list_move_tail(&hpage->lru, ret);
1270 		return -ENOSYS;
1271 	}
1272 
1273 	if (page_count(hpage) == 1) {
1274 		/* page was freed from under us. So we are done. */
1275 		putback_active_hugepage(hpage);
1276 		return MIGRATEPAGE_SUCCESS;
1277 	}
1278 
1279 	new_hpage = get_new_page(hpage, private);
1280 	if (!new_hpage)
1281 		return -ENOMEM;
1282 
1283 	if (!trylock_page(hpage)) {
1284 		if (!force)
1285 			goto out;
1286 		switch (mode) {
1287 		case MIGRATE_SYNC:
1288 		case MIGRATE_SYNC_NO_COPY:
1289 			break;
1290 		default:
1291 			goto out;
1292 		}
1293 		lock_page(hpage);
1294 	}
1295 
1296 	/*
1297 	 * Check for pages which are in the process of being freed.  Without
1298 	 * page_mapping() set, hugetlbfs specific move page routine will not
1299 	 * be called and we could leak usage counts for subpools.
1300 	 */
1301 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1302 		rc = -EBUSY;
1303 		goto out_unlock;
1304 	}
1305 
1306 	if (PageAnon(hpage))
1307 		anon_vma = page_get_anon_vma(hpage);
1308 
1309 	if (unlikely(!trylock_page(new_hpage)))
1310 		goto put_anon;
1311 
1312 	if (page_mapped(hpage)) {
1313 		bool mapping_locked = false;
1314 		enum ttu_flags ttu = 0;
1315 
1316 		if (!PageAnon(hpage)) {
1317 			/*
1318 			 * In shared mappings, try_to_unmap could potentially
1319 			 * call huge_pmd_unshare.  Because of this, take
1320 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1321 			 * to let lower levels know we have taken the lock.
1322 			 */
1323 			mapping = hugetlb_page_mapping_lock_write(hpage);
1324 			if (unlikely(!mapping))
1325 				goto unlock_put_anon;
1326 
1327 			mapping_locked = true;
1328 			ttu |= TTU_RMAP_LOCKED;
1329 		}
1330 
1331 		try_to_migrate(hpage, ttu);
1332 		page_was_mapped = 1;
1333 
1334 		if (mapping_locked)
1335 			i_mmap_unlock_write(mapping);
1336 	}
1337 
1338 	if (!page_mapped(hpage))
1339 		rc = move_to_new_page(new_hpage, hpage, mode);
1340 
1341 	if (page_was_mapped)
1342 		remove_migration_ptes(hpage,
1343 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1344 
1345 unlock_put_anon:
1346 	unlock_page(new_hpage);
1347 
1348 put_anon:
1349 	if (anon_vma)
1350 		put_anon_vma(anon_vma);
1351 
1352 	if (rc == MIGRATEPAGE_SUCCESS) {
1353 		move_hugetlb_state(hpage, new_hpage, reason);
1354 		put_new_page = NULL;
1355 	}
1356 
1357 out_unlock:
1358 	unlock_page(hpage);
1359 out:
1360 	if (rc == MIGRATEPAGE_SUCCESS)
1361 		putback_active_hugepage(hpage);
1362 	else if (rc != -EAGAIN)
1363 		list_move_tail(&hpage->lru, ret);
1364 
1365 	/*
1366 	 * If migration was not successful and there's a freeing callback, use
1367 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1368 	 * isolation.
1369 	 */
1370 	if (put_new_page)
1371 		put_new_page(new_hpage, private);
1372 	else
1373 		putback_active_hugepage(new_hpage);
1374 
1375 	return rc;
1376 }
1377 
1378 static inline int try_split_thp(struct page *page, struct page **page2,
1379 				struct list_head *from)
1380 {
1381 	int rc = 0;
1382 
1383 	lock_page(page);
1384 	rc = split_huge_page_to_list(page, from);
1385 	unlock_page(page);
1386 	if (!rc)
1387 		list_safe_reset_next(page, *page2, lru);
1388 
1389 	return rc;
1390 }
1391 
1392 /*
1393  * migrate_pages - migrate the pages specified in a list, to the free pages
1394  *		   supplied as the target for the page migration
1395  *
1396  * @from:		The list of pages to be migrated.
1397  * @get_new_page:	The function used to allocate free pages to be used
1398  *			as the target of the page migration.
1399  * @put_new_page:	The function used to free target pages if migration
1400  *			fails, or NULL if no special handling is necessary.
1401  * @private:		Private data to be passed on to get_new_page()
1402  * @mode:		The migration mode that specifies the constraints for
1403  *			page migration, if any.
1404  * @reason:		The reason for page migration.
1405  *
1406  * The function returns after 10 attempts or if no pages are movable any more
1407  * because the list has become empty or no retryable pages exist any more.
1408  * It is caller's responsibility to call putback_movable_pages() to return pages
1409  * to the LRU or free list only if ret != 0.
1410  *
1411  * Returns the number of pages that were not migrated, or an error code.
1412  */
1413 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1414 		free_page_t put_new_page, unsigned long private,
1415 		enum migrate_mode mode, int reason)
1416 {
1417 	int retry = 1;
1418 	int thp_retry = 1;
1419 	int nr_failed = 0;
1420 	int nr_succeeded = 0;
1421 	int nr_thp_succeeded = 0;
1422 	int nr_thp_failed = 0;
1423 	int nr_thp_split = 0;
1424 	int pass = 0;
1425 	bool is_thp = false;
1426 	struct page *page;
1427 	struct page *page2;
1428 	int swapwrite = current->flags & PF_SWAPWRITE;
1429 	int rc, nr_subpages;
1430 	LIST_HEAD(ret_pages);
1431 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1432 
1433 	trace_mm_migrate_pages_start(mode, reason);
1434 
1435 	if (!swapwrite)
1436 		current->flags |= PF_SWAPWRITE;
1437 
1438 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439 		retry = 0;
1440 		thp_retry = 0;
1441 
1442 		list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1444 			/*
1445 			 * THP statistics is based on the source huge page.
1446 			 * Capture required information that might get lost
1447 			 * during migration.
1448 			 */
1449 			is_thp = PageTransHuge(page) && !PageHuge(page);
1450 			nr_subpages = thp_nr_pages(page);
1451 			cond_resched();
1452 
1453 			if (PageHuge(page))
1454 				rc = unmap_and_move_huge_page(get_new_page,
1455 						put_new_page, private, page,
1456 						pass > 2, mode, reason,
1457 						&ret_pages);
1458 			else
1459 				rc = unmap_and_move(get_new_page, put_new_page,
1460 						private, page, pass > 2, mode,
1461 						reason, &ret_pages);
1462 			/*
1463 			 * The rules are:
1464 			 *	Success: non hugetlb page will be freed, hugetlb
1465 			 *		 page will be put back
1466 			 *	-EAGAIN: stay on the from list
1467 			 *	-ENOMEM: stay on the from list
1468 			 *	Other errno: put on ret_pages list then splice to
1469 			 *		     from list
1470 			 */
1471 			switch(rc) {
1472 			/*
1473 			 * THP migration might be unsupported or the
1474 			 * allocation could've failed so we should
1475 			 * retry on the same page with the THP split
1476 			 * to base pages.
1477 			 *
1478 			 * Head page is retried immediately and tail
1479 			 * pages are added to the tail of the list so
1480 			 * we encounter them after the rest of the list
1481 			 * is processed.
1482 			 */
1483 			case -ENOSYS:
1484 				/* THP migration is unsupported */
1485 				if (is_thp) {
1486 					if (!try_split_thp(page, &page2, from)) {
1487 						nr_thp_split++;
1488 						goto retry;
1489 					}
1490 
1491 					nr_thp_failed++;
1492 					nr_failed += nr_subpages;
1493 					break;
1494 				}
1495 
1496 				/* Hugetlb migration is unsupported */
1497 				nr_failed++;
1498 				break;
1499 			case -ENOMEM:
1500 				/*
1501 				 * When memory is low, don't bother to try to migrate
1502 				 * other pages, just exit.
1503 				 * THP NUMA faulting doesn't split THP to retry.
1504 				 */
1505 				if (is_thp && !nosplit) {
1506 					if (!try_split_thp(page, &page2, from)) {
1507 						nr_thp_split++;
1508 						goto retry;
1509 					}
1510 
1511 					nr_thp_failed++;
1512 					nr_failed += nr_subpages;
1513 					goto out;
1514 				}
1515 				nr_failed++;
1516 				goto out;
1517 			case -EAGAIN:
1518 				if (is_thp) {
1519 					thp_retry++;
1520 					break;
1521 				}
1522 				retry++;
1523 				break;
1524 			case MIGRATEPAGE_SUCCESS:
1525 				if (is_thp) {
1526 					nr_thp_succeeded++;
1527 					nr_succeeded += nr_subpages;
1528 					break;
1529 				}
1530 				nr_succeeded++;
1531 				break;
1532 			default:
1533 				/*
1534 				 * Permanent failure (-EBUSY, etc.):
1535 				 * unlike -EAGAIN case, the failed page is
1536 				 * removed from migration page list and not
1537 				 * retried in the next outer loop.
1538 				 */
1539 				if (is_thp) {
1540 					nr_thp_failed++;
1541 					nr_failed += nr_subpages;
1542 					break;
1543 				}
1544 				nr_failed++;
1545 				break;
1546 			}
1547 		}
1548 	}
1549 	nr_failed += retry + thp_retry;
1550 	nr_thp_failed += thp_retry;
1551 	rc = nr_failed;
1552 out:
1553 	/*
1554 	 * Put the permanent failure page back to migration list, they
1555 	 * will be put back to the right list by the caller.
1556 	 */
1557 	list_splice(&ret_pages, from);
1558 
1559 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1560 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1561 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1562 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1563 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1564 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1565 			       nr_thp_failed, nr_thp_split, mode, reason);
1566 
1567 	if (!swapwrite)
1568 		current->flags &= ~PF_SWAPWRITE;
1569 
1570 	return rc;
1571 }
1572 
1573 struct page *alloc_migration_target(struct page *page, unsigned long private)
1574 {
1575 	struct migration_target_control *mtc;
1576 	gfp_t gfp_mask;
1577 	unsigned int order = 0;
1578 	struct page *new_page = NULL;
1579 	int nid;
1580 	int zidx;
1581 
1582 	mtc = (struct migration_target_control *)private;
1583 	gfp_mask = mtc->gfp_mask;
1584 	nid = mtc->nid;
1585 	if (nid == NUMA_NO_NODE)
1586 		nid = page_to_nid(page);
1587 
1588 	if (PageHuge(page)) {
1589 		struct hstate *h = page_hstate(compound_head(page));
1590 
1591 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1592 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1593 	}
1594 
1595 	if (PageTransHuge(page)) {
1596 		/*
1597 		 * clear __GFP_RECLAIM to make the migration callback
1598 		 * consistent with regular THP allocations.
1599 		 */
1600 		gfp_mask &= ~__GFP_RECLAIM;
1601 		gfp_mask |= GFP_TRANSHUGE;
1602 		order = HPAGE_PMD_ORDER;
1603 	}
1604 	zidx = zone_idx(page_zone(page));
1605 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1606 		gfp_mask |= __GFP_HIGHMEM;
1607 
1608 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1609 
1610 	if (new_page && PageTransHuge(new_page))
1611 		prep_transhuge_page(new_page);
1612 
1613 	return new_page;
1614 }
1615 
1616 #ifdef CONFIG_NUMA
1617 
1618 static int store_status(int __user *status, int start, int value, int nr)
1619 {
1620 	while (nr-- > 0) {
1621 		if (put_user(value, status + start))
1622 			return -EFAULT;
1623 		start++;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static int do_move_pages_to_node(struct mm_struct *mm,
1630 		struct list_head *pagelist, int node)
1631 {
1632 	int err;
1633 	struct migration_target_control mtc = {
1634 		.nid = node,
1635 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636 	};
1637 
1638 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1640 	if (err)
1641 		putback_movable_pages(pagelist);
1642 	return err;
1643 }
1644 
1645 /*
1646  * Resolves the given address to a struct page, isolates it from the LRU and
1647  * puts it to the given pagelist.
1648  * Returns:
1649  *     errno - if the page cannot be found/isolated
1650  *     0 - when it doesn't have to be migrated because it is already on the
1651  *         target node
1652  *     1 - when it has been queued
1653  */
1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655 		int node, struct list_head *pagelist, bool migrate_all)
1656 {
1657 	struct vm_area_struct *vma;
1658 	struct page *page;
1659 	unsigned int follflags;
1660 	int err;
1661 
1662 	mmap_read_lock(mm);
1663 	err = -EFAULT;
1664 	vma = find_vma(mm, addr);
1665 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1666 		goto out;
1667 
1668 	/* FOLL_DUMP to ignore special (like zero) pages */
1669 	follflags = FOLL_GET | FOLL_DUMP;
1670 	page = follow_page(vma, addr, follflags);
1671 
1672 	err = PTR_ERR(page);
1673 	if (IS_ERR(page))
1674 		goto out;
1675 
1676 	err = -ENOENT;
1677 	if (!page)
1678 		goto out;
1679 
1680 	err = 0;
1681 	if (page_to_nid(page) == node)
1682 		goto out_putpage;
1683 
1684 	err = -EACCES;
1685 	if (page_mapcount(page) > 1 && !migrate_all)
1686 		goto out_putpage;
1687 
1688 	if (PageHuge(page)) {
1689 		if (PageHead(page)) {
1690 			isolate_huge_page(page, pagelist);
1691 			err = 1;
1692 		}
1693 	} else {
1694 		struct page *head;
1695 
1696 		head = compound_head(page);
1697 		err = isolate_lru_page(head);
1698 		if (err)
1699 			goto out_putpage;
1700 
1701 		err = 1;
1702 		list_add_tail(&head->lru, pagelist);
1703 		mod_node_page_state(page_pgdat(head),
1704 			NR_ISOLATED_ANON + page_is_file_lru(head),
1705 			thp_nr_pages(head));
1706 	}
1707 out_putpage:
1708 	/*
1709 	 * Either remove the duplicate refcount from
1710 	 * isolate_lru_page() or drop the page ref if it was
1711 	 * not isolated.
1712 	 */
1713 	put_page(page);
1714 out:
1715 	mmap_read_unlock(mm);
1716 	return err;
1717 }
1718 
1719 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1720 		struct list_head *pagelist, int __user *status,
1721 		int start, int i, unsigned long nr_pages)
1722 {
1723 	int err;
1724 
1725 	if (list_empty(pagelist))
1726 		return 0;
1727 
1728 	err = do_move_pages_to_node(mm, pagelist, node);
1729 	if (err) {
1730 		/*
1731 		 * Positive err means the number of failed
1732 		 * pages to migrate.  Since we are going to
1733 		 * abort and return the number of non-migrated
1734 		 * pages, so need to include the rest of the
1735 		 * nr_pages that have not been attempted as
1736 		 * well.
1737 		 */
1738 		if (err > 0)
1739 			err += nr_pages - i - 1;
1740 		return err;
1741 	}
1742 	return store_status(status, start, node, i - start);
1743 }
1744 
1745 /*
1746  * Migrate an array of page address onto an array of nodes and fill
1747  * the corresponding array of status.
1748  */
1749 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1750 			 unsigned long nr_pages,
1751 			 const void __user * __user *pages,
1752 			 const int __user *nodes,
1753 			 int __user *status, int flags)
1754 {
1755 	int current_node = NUMA_NO_NODE;
1756 	LIST_HEAD(pagelist);
1757 	int start, i;
1758 	int err = 0, err1;
1759 
1760 	lru_cache_disable();
1761 
1762 	for (i = start = 0; i < nr_pages; i++) {
1763 		const void __user *p;
1764 		unsigned long addr;
1765 		int node;
1766 
1767 		err = -EFAULT;
1768 		if (get_user(p, pages + i))
1769 			goto out_flush;
1770 		if (get_user(node, nodes + i))
1771 			goto out_flush;
1772 		addr = (unsigned long)untagged_addr(p);
1773 
1774 		err = -ENODEV;
1775 		if (node < 0 || node >= MAX_NUMNODES)
1776 			goto out_flush;
1777 		if (!node_state(node, N_MEMORY))
1778 			goto out_flush;
1779 
1780 		err = -EACCES;
1781 		if (!node_isset(node, task_nodes))
1782 			goto out_flush;
1783 
1784 		if (current_node == NUMA_NO_NODE) {
1785 			current_node = node;
1786 			start = i;
1787 		} else if (node != current_node) {
1788 			err = move_pages_and_store_status(mm, current_node,
1789 					&pagelist, status, start, i, nr_pages);
1790 			if (err)
1791 				goto out;
1792 			start = i;
1793 			current_node = node;
1794 		}
1795 
1796 		/*
1797 		 * Errors in the page lookup or isolation are not fatal and we simply
1798 		 * report them via status
1799 		 */
1800 		err = add_page_for_migration(mm, addr, current_node,
1801 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1802 
1803 		if (err > 0) {
1804 			/* The page is successfully queued for migration */
1805 			continue;
1806 		}
1807 
1808 		/*
1809 		 * If the page is already on the target node (!err), store the
1810 		 * node, otherwise, store the err.
1811 		 */
1812 		err = store_status(status, i, err ? : current_node, 1);
1813 		if (err)
1814 			goto out_flush;
1815 
1816 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1817 				status, start, i, nr_pages);
1818 		if (err)
1819 			goto out;
1820 		current_node = NUMA_NO_NODE;
1821 	}
1822 out_flush:
1823 	/* Make sure we do not overwrite the existing error */
1824 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1825 				status, start, i, nr_pages);
1826 	if (err >= 0)
1827 		err = err1;
1828 out:
1829 	lru_cache_enable();
1830 	return err;
1831 }
1832 
1833 /*
1834  * Determine the nodes of an array of pages and store it in an array of status.
1835  */
1836 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1837 				const void __user **pages, int *status)
1838 {
1839 	unsigned long i;
1840 
1841 	mmap_read_lock(mm);
1842 
1843 	for (i = 0; i < nr_pages; i++) {
1844 		unsigned long addr = (unsigned long)(*pages);
1845 		struct vm_area_struct *vma;
1846 		struct page *page;
1847 		int err = -EFAULT;
1848 
1849 		vma = vma_lookup(mm, addr);
1850 		if (!vma)
1851 			goto set_status;
1852 
1853 		/* FOLL_DUMP to ignore special (like zero) pages */
1854 		page = follow_page(vma, addr, FOLL_DUMP);
1855 
1856 		err = PTR_ERR(page);
1857 		if (IS_ERR(page))
1858 			goto set_status;
1859 
1860 		err = page ? page_to_nid(page) : -ENOENT;
1861 set_status:
1862 		*status = err;
1863 
1864 		pages++;
1865 		status++;
1866 	}
1867 
1868 	mmap_read_unlock(mm);
1869 }
1870 
1871 /*
1872  * Determine the nodes of a user array of pages and store it in
1873  * a user array of status.
1874  */
1875 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1876 			 const void __user * __user *pages,
1877 			 int __user *status)
1878 {
1879 #define DO_PAGES_STAT_CHUNK_NR 16
1880 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1881 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1882 
1883 	while (nr_pages) {
1884 		unsigned long chunk_nr;
1885 
1886 		chunk_nr = nr_pages;
1887 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1888 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1889 
1890 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1891 			break;
1892 
1893 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1894 
1895 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1896 			break;
1897 
1898 		pages += chunk_nr;
1899 		status += chunk_nr;
1900 		nr_pages -= chunk_nr;
1901 	}
1902 	return nr_pages ? -EFAULT : 0;
1903 }
1904 
1905 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1906 {
1907 	struct task_struct *task;
1908 	struct mm_struct *mm;
1909 
1910 	/*
1911 	 * There is no need to check if current process has the right to modify
1912 	 * the specified process when they are same.
1913 	 */
1914 	if (!pid) {
1915 		mmget(current->mm);
1916 		*mem_nodes = cpuset_mems_allowed(current);
1917 		return current->mm;
1918 	}
1919 
1920 	/* Find the mm_struct */
1921 	rcu_read_lock();
1922 	task = find_task_by_vpid(pid);
1923 	if (!task) {
1924 		rcu_read_unlock();
1925 		return ERR_PTR(-ESRCH);
1926 	}
1927 	get_task_struct(task);
1928 
1929 	/*
1930 	 * Check if this process has the right to modify the specified
1931 	 * process. Use the regular "ptrace_may_access()" checks.
1932 	 */
1933 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1934 		rcu_read_unlock();
1935 		mm = ERR_PTR(-EPERM);
1936 		goto out;
1937 	}
1938 	rcu_read_unlock();
1939 
1940 	mm = ERR_PTR(security_task_movememory(task));
1941 	if (IS_ERR(mm))
1942 		goto out;
1943 	*mem_nodes = cpuset_mems_allowed(task);
1944 	mm = get_task_mm(task);
1945 out:
1946 	put_task_struct(task);
1947 	if (!mm)
1948 		mm = ERR_PTR(-EINVAL);
1949 	return mm;
1950 }
1951 
1952 /*
1953  * Move a list of pages in the address space of the currently executing
1954  * process.
1955  */
1956 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1957 			     const void __user * __user *pages,
1958 			     const int __user *nodes,
1959 			     int __user *status, int flags)
1960 {
1961 	struct mm_struct *mm;
1962 	int err;
1963 	nodemask_t task_nodes;
1964 
1965 	/* Check flags */
1966 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1967 		return -EINVAL;
1968 
1969 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1970 		return -EPERM;
1971 
1972 	mm = find_mm_struct(pid, &task_nodes);
1973 	if (IS_ERR(mm))
1974 		return PTR_ERR(mm);
1975 
1976 	if (nodes)
1977 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1978 				    nodes, status, flags);
1979 	else
1980 		err = do_pages_stat(mm, nr_pages, pages, status);
1981 
1982 	mmput(mm);
1983 	return err;
1984 }
1985 
1986 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1987 		const void __user * __user *, pages,
1988 		const int __user *, nodes,
1989 		int __user *, status, int, flags)
1990 {
1991 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1992 }
1993 
1994 #ifdef CONFIG_COMPAT
1995 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1996 		       compat_uptr_t __user *, pages32,
1997 		       const int __user *, nodes,
1998 		       int __user *, status,
1999 		       int, flags)
2000 {
2001 	const void __user * __user *pages;
2002 	int i;
2003 
2004 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2005 	for (i = 0; i < nr_pages; i++) {
2006 		compat_uptr_t p;
2007 
2008 		if (get_user(p, pages32 + i) ||
2009 			put_user(compat_ptr(p), pages + i))
2010 			return -EFAULT;
2011 	}
2012 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2013 }
2014 #endif /* CONFIG_COMPAT */
2015 
2016 #ifdef CONFIG_NUMA_BALANCING
2017 /*
2018  * Returns true if this is a safe migration target node for misplaced NUMA
2019  * pages. Currently it only checks the watermarks which crude
2020  */
2021 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2022 				   unsigned long nr_migrate_pages)
2023 {
2024 	int z;
2025 
2026 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2027 		struct zone *zone = pgdat->node_zones + z;
2028 
2029 		if (!populated_zone(zone))
2030 			continue;
2031 
2032 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2033 		if (!zone_watermark_ok(zone, 0,
2034 				       high_wmark_pages(zone) +
2035 				       nr_migrate_pages,
2036 				       ZONE_MOVABLE, 0))
2037 			continue;
2038 		return true;
2039 	}
2040 	return false;
2041 }
2042 
2043 static struct page *alloc_misplaced_dst_page(struct page *page,
2044 					   unsigned long data)
2045 {
2046 	int nid = (int) data;
2047 	struct page *newpage;
2048 
2049 	newpage = __alloc_pages_node(nid,
2050 					 (GFP_HIGHUSER_MOVABLE |
2051 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2052 					  __GFP_NORETRY | __GFP_NOWARN) &
2053 					 ~__GFP_RECLAIM, 0);
2054 
2055 	return newpage;
2056 }
2057 
2058 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2059 						 unsigned long data)
2060 {
2061 	int nid = (int) data;
2062 	struct page *newpage;
2063 
2064 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2065 				   HPAGE_PMD_ORDER);
2066 	if (!newpage)
2067 		goto out;
2068 
2069 	prep_transhuge_page(newpage);
2070 
2071 out:
2072 	return newpage;
2073 }
2074 
2075 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2076 {
2077 	int page_lru;
2078 
2079 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2080 
2081 	/* Do not migrate THP mapped by multiple processes */
2082 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2083 		return 0;
2084 
2085 	/* Avoid migrating to a node that is nearly full */
2086 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2087 		return 0;
2088 
2089 	if (isolate_lru_page(page))
2090 		return 0;
2091 
2092 	page_lru = page_is_file_lru(page);
2093 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2094 				thp_nr_pages(page));
2095 
2096 	/*
2097 	 * Isolating the page has taken another reference, so the
2098 	 * caller's reference can be safely dropped without the page
2099 	 * disappearing underneath us during migration.
2100 	 */
2101 	put_page(page);
2102 	return 1;
2103 }
2104 
2105 /*
2106  * Attempt to migrate a misplaced page to the specified destination
2107  * node. Caller is expected to have an elevated reference count on
2108  * the page that will be dropped by this function before returning.
2109  */
2110 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2111 			   int node)
2112 {
2113 	pg_data_t *pgdat = NODE_DATA(node);
2114 	int isolated;
2115 	int nr_remaining;
2116 	LIST_HEAD(migratepages);
2117 	new_page_t *new;
2118 	bool compound;
2119 	unsigned int nr_pages = thp_nr_pages(page);
2120 
2121 	/*
2122 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2123 	 * be either base page or THP.  And it must be head page if it is
2124 	 * THP.
2125 	 */
2126 	compound = PageTransHuge(page);
2127 
2128 	if (compound)
2129 		new = alloc_misplaced_dst_page_thp;
2130 	else
2131 		new = alloc_misplaced_dst_page;
2132 
2133 	/*
2134 	 * Don't migrate file pages that are mapped in multiple processes
2135 	 * with execute permissions as they are probably shared libraries.
2136 	 */
2137 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2138 	    (vma->vm_flags & VM_EXEC))
2139 		goto out;
2140 
2141 	/*
2142 	 * Also do not migrate dirty pages as not all filesystems can move
2143 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2144 	 */
2145 	if (page_is_file_lru(page) && PageDirty(page))
2146 		goto out;
2147 
2148 	isolated = numamigrate_isolate_page(pgdat, page);
2149 	if (!isolated)
2150 		goto out;
2151 
2152 	list_add(&page->lru, &migratepages);
2153 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2154 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2155 	if (nr_remaining) {
2156 		if (!list_empty(&migratepages)) {
2157 			list_del(&page->lru);
2158 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2159 					page_is_file_lru(page), -nr_pages);
2160 			putback_lru_page(page);
2161 		}
2162 		isolated = 0;
2163 	} else
2164 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2165 	BUG_ON(!list_empty(&migratepages));
2166 	return isolated;
2167 
2168 out:
2169 	put_page(page);
2170 	return 0;
2171 }
2172 #endif /* CONFIG_NUMA_BALANCING */
2173 #endif /* CONFIG_NUMA */
2174 
2175 #ifdef CONFIG_DEVICE_PRIVATE
2176 static int migrate_vma_collect_skip(unsigned long start,
2177 				    unsigned long end,
2178 				    struct mm_walk *walk)
2179 {
2180 	struct migrate_vma *migrate = walk->private;
2181 	unsigned long addr;
2182 
2183 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2184 		migrate->dst[migrate->npages] = 0;
2185 		migrate->src[migrate->npages++] = 0;
2186 	}
2187 
2188 	return 0;
2189 }
2190 
2191 static int migrate_vma_collect_hole(unsigned long start,
2192 				    unsigned long end,
2193 				    __always_unused int depth,
2194 				    struct mm_walk *walk)
2195 {
2196 	struct migrate_vma *migrate = walk->private;
2197 	unsigned long addr;
2198 
2199 	/* Only allow populating anonymous memory. */
2200 	if (!vma_is_anonymous(walk->vma))
2201 		return migrate_vma_collect_skip(start, end, walk);
2202 
2203 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2204 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2205 		migrate->dst[migrate->npages] = 0;
2206 		migrate->npages++;
2207 		migrate->cpages++;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2214 				   unsigned long start,
2215 				   unsigned long end,
2216 				   struct mm_walk *walk)
2217 {
2218 	struct migrate_vma *migrate = walk->private;
2219 	struct vm_area_struct *vma = walk->vma;
2220 	struct mm_struct *mm = vma->vm_mm;
2221 	unsigned long addr = start, unmapped = 0;
2222 	spinlock_t *ptl;
2223 	pte_t *ptep;
2224 
2225 again:
2226 	if (pmd_none(*pmdp))
2227 		return migrate_vma_collect_hole(start, end, -1, walk);
2228 
2229 	if (pmd_trans_huge(*pmdp)) {
2230 		struct page *page;
2231 
2232 		ptl = pmd_lock(mm, pmdp);
2233 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2234 			spin_unlock(ptl);
2235 			goto again;
2236 		}
2237 
2238 		page = pmd_page(*pmdp);
2239 		if (is_huge_zero_page(page)) {
2240 			spin_unlock(ptl);
2241 			split_huge_pmd(vma, pmdp, addr);
2242 			if (pmd_trans_unstable(pmdp))
2243 				return migrate_vma_collect_skip(start, end,
2244 								walk);
2245 		} else {
2246 			int ret;
2247 
2248 			get_page(page);
2249 			spin_unlock(ptl);
2250 			if (unlikely(!trylock_page(page)))
2251 				return migrate_vma_collect_skip(start, end,
2252 								walk);
2253 			ret = split_huge_page(page);
2254 			unlock_page(page);
2255 			put_page(page);
2256 			if (ret)
2257 				return migrate_vma_collect_skip(start, end,
2258 								walk);
2259 			if (pmd_none(*pmdp))
2260 				return migrate_vma_collect_hole(start, end, -1,
2261 								walk);
2262 		}
2263 	}
2264 
2265 	if (unlikely(pmd_bad(*pmdp)))
2266 		return migrate_vma_collect_skip(start, end, walk);
2267 
2268 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2269 	arch_enter_lazy_mmu_mode();
2270 
2271 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2272 		unsigned long mpfn = 0, pfn;
2273 		struct page *page;
2274 		swp_entry_t entry;
2275 		pte_t pte;
2276 
2277 		pte = *ptep;
2278 
2279 		if (pte_none(pte)) {
2280 			if (vma_is_anonymous(vma)) {
2281 				mpfn = MIGRATE_PFN_MIGRATE;
2282 				migrate->cpages++;
2283 			}
2284 			goto next;
2285 		}
2286 
2287 		if (!pte_present(pte)) {
2288 			/*
2289 			 * Only care about unaddressable device page special
2290 			 * page table entry. Other special swap entries are not
2291 			 * migratable, and we ignore regular swapped page.
2292 			 */
2293 			entry = pte_to_swp_entry(pte);
2294 			if (!is_device_private_entry(entry))
2295 				goto next;
2296 
2297 			page = pfn_swap_entry_to_page(entry);
2298 			if (!(migrate->flags &
2299 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2300 			    page->pgmap->owner != migrate->pgmap_owner)
2301 				goto next;
2302 
2303 			mpfn = migrate_pfn(page_to_pfn(page)) |
2304 					MIGRATE_PFN_MIGRATE;
2305 			if (is_writable_device_private_entry(entry))
2306 				mpfn |= MIGRATE_PFN_WRITE;
2307 		} else {
2308 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2309 				goto next;
2310 			pfn = pte_pfn(pte);
2311 			if (is_zero_pfn(pfn)) {
2312 				mpfn = MIGRATE_PFN_MIGRATE;
2313 				migrate->cpages++;
2314 				goto next;
2315 			}
2316 			page = vm_normal_page(migrate->vma, addr, pte);
2317 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2318 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2319 		}
2320 
2321 		/* FIXME support THP */
2322 		if (!page || !page->mapping || PageTransCompound(page)) {
2323 			mpfn = 0;
2324 			goto next;
2325 		}
2326 
2327 		/*
2328 		 * By getting a reference on the page we pin it and that blocks
2329 		 * any kind of migration. Side effect is that it "freezes" the
2330 		 * pte.
2331 		 *
2332 		 * We drop this reference after isolating the page from the lru
2333 		 * for non device page (device page are not on the lru and thus
2334 		 * can't be dropped from it).
2335 		 */
2336 		get_page(page);
2337 		migrate->cpages++;
2338 
2339 		/*
2340 		 * Optimize for the common case where page is only mapped once
2341 		 * in one process. If we can lock the page, then we can safely
2342 		 * set up a special migration page table entry now.
2343 		 */
2344 		if (trylock_page(page)) {
2345 			pte_t swp_pte;
2346 
2347 			mpfn |= MIGRATE_PFN_LOCKED;
2348 			ptep_get_and_clear(mm, addr, ptep);
2349 
2350 			/* Setup special migration page table entry */
2351 			if (mpfn & MIGRATE_PFN_WRITE)
2352 				entry = make_writable_migration_entry(
2353 							page_to_pfn(page));
2354 			else
2355 				entry = make_readable_migration_entry(
2356 							page_to_pfn(page));
2357 			swp_pte = swp_entry_to_pte(entry);
2358 			if (pte_present(pte)) {
2359 				if (pte_soft_dirty(pte))
2360 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2361 				if (pte_uffd_wp(pte))
2362 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2363 			} else {
2364 				if (pte_swp_soft_dirty(pte))
2365 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2366 				if (pte_swp_uffd_wp(pte))
2367 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2368 			}
2369 			set_pte_at(mm, addr, ptep, swp_pte);
2370 
2371 			/*
2372 			 * This is like regular unmap: we remove the rmap and
2373 			 * drop page refcount. Page won't be freed, as we took
2374 			 * a reference just above.
2375 			 */
2376 			page_remove_rmap(page, false);
2377 			put_page(page);
2378 
2379 			if (pte_present(pte))
2380 				unmapped++;
2381 		}
2382 
2383 next:
2384 		migrate->dst[migrate->npages] = 0;
2385 		migrate->src[migrate->npages++] = mpfn;
2386 	}
2387 	arch_leave_lazy_mmu_mode();
2388 	pte_unmap_unlock(ptep - 1, ptl);
2389 
2390 	/* Only flush the TLB if we actually modified any entries */
2391 	if (unmapped)
2392 		flush_tlb_range(walk->vma, start, end);
2393 
2394 	return 0;
2395 }
2396 
2397 static const struct mm_walk_ops migrate_vma_walk_ops = {
2398 	.pmd_entry		= migrate_vma_collect_pmd,
2399 	.pte_hole		= migrate_vma_collect_hole,
2400 };
2401 
2402 /*
2403  * migrate_vma_collect() - collect pages over a range of virtual addresses
2404  * @migrate: migrate struct containing all migration information
2405  *
2406  * This will walk the CPU page table. For each virtual address backed by a
2407  * valid page, it updates the src array and takes a reference on the page, in
2408  * order to pin the page until we lock it and unmap it.
2409  */
2410 static void migrate_vma_collect(struct migrate_vma *migrate)
2411 {
2412 	struct mmu_notifier_range range;
2413 
2414 	/*
2415 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2416 	 * that the registered device driver can skip invalidating device
2417 	 * private page mappings that won't be migrated.
2418 	 */
2419 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2420 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2421 		migrate->pgmap_owner);
2422 	mmu_notifier_invalidate_range_start(&range);
2423 
2424 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2425 			&migrate_vma_walk_ops, migrate);
2426 
2427 	mmu_notifier_invalidate_range_end(&range);
2428 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2429 }
2430 
2431 /*
2432  * migrate_vma_check_page() - check if page is pinned or not
2433  * @page: struct page to check
2434  *
2435  * Pinned pages cannot be migrated. This is the same test as in
2436  * migrate_page_move_mapping(), except that here we allow migration of a
2437  * ZONE_DEVICE page.
2438  */
2439 static bool migrate_vma_check_page(struct page *page)
2440 {
2441 	/*
2442 	 * One extra ref because caller holds an extra reference, either from
2443 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2444 	 * a device page.
2445 	 */
2446 	int extra = 1;
2447 
2448 	/*
2449 	 * FIXME support THP (transparent huge page), it is bit more complex to
2450 	 * check them than regular pages, because they can be mapped with a pmd
2451 	 * or with a pte (split pte mapping).
2452 	 */
2453 	if (PageCompound(page))
2454 		return false;
2455 
2456 	/* Page from ZONE_DEVICE have one extra reference */
2457 	if (is_zone_device_page(page)) {
2458 		/*
2459 		 * Private page can never be pin as they have no valid pte and
2460 		 * GUP will fail for those. Yet if there is a pending migration
2461 		 * a thread might try to wait on the pte migration entry and
2462 		 * will bump the page reference count. Sadly there is no way to
2463 		 * differentiate a regular pin from migration wait. Hence to
2464 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2465 		 * infinite loop (one stopping migration because the other is
2466 		 * waiting on pte migration entry). We always return true here.
2467 		 *
2468 		 * FIXME proper solution is to rework migration_entry_wait() so
2469 		 * it does not need to take a reference on page.
2470 		 */
2471 		return is_device_private_page(page);
2472 	}
2473 
2474 	/* For file back page */
2475 	if (page_mapping(page))
2476 		extra += 1 + page_has_private(page);
2477 
2478 	if ((page_count(page) - extra) > page_mapcount(page))
2479 		return false;
2480 
2481 	return true;
2482 }
2483 
2484 /*
2485  * migrate_vma_prepare() - lock pages and isolate them from the lru
2486  * @migrate: migrate struct containing all migration information
2487  *
2488  * This locks pages that have been collected by migrate_vma_collect(). Once each
2489  * page is locked it is isolated from the lru (for non-device pages). Finally,
2490  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2491  * migrated by concurrent kernel threads.
2492  */
2493 static void migrate_vma_prepare(struct migrate_vma *migrate)
2494 {
2495 	const unsigned long npages = migrate->npages;
2496 	const unsigned long start = migrate->start;
2497 	unsigned long addr, i, restore = 0;
2498 	bool allow_drain = true;
2499 
2500 	lru_add_drain();
2501 
2502 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2503 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2504 		bool remap = true;
2505 
2506 		if (!page)
2507 			continue;
2508 
2509 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2510 			/*
2511 			 * Because we are migrating several pages there can be
2512 			 * a deadlock between 2 concurrent migration where each
2513 			 * are waiting on each other page lock.
2514 			 *
2515 			 * Make migrate_vma() a best effort thing and backoff
2516 			 * for any page we can not lock right away.
2517 			 */
2518 			if (!trylock_page(page)) {
2519 				migrate->src[i] = 0;
2520 				migrate->cpages--;
2521 				put_page(page);
2522 				continue;
2523 			}
2524 			remap = false;
2525 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2526 		}
2527 
2528 		/* ZONE_DEVICE pages are not on LRU */
2529 		if (!is_zone_device_page(page)) {
2530 			if (!PageLRU(page) && allow_drain) {
2531 				/* Drain CPU's pagevec */
2532 				lru_add_drain_all();
2533 				allow_drain = false;
2534 			}
2535 
2536 			if (isolate_lru_page(page)) {
2537 				if (remap) {
2538 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2539 					migrate->cpages--;
2540 					restore++;
2541 				} else {
2542 					migrate->src[i] = 0;
2543 					unlock_page(page);
2544 					migrate->cpages--;
2545 					put_page(page);
2546 				}
2547 				continue;
2548 			}
2549 
2550 			/* Drop the reference we took in collect */
2551 			put_page(page);
2552 		}
2553 
2554 		if (!migrate_vma_check_page(page)) {
2555 			if (remap) {
2556 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557 				migrate->cpages--;
2558 				restore++;
2559 
2560 				if (!is_zone_device_page(page)) {
2561 					get_page(page);
2562 					putback_lru_page(page);
2563 				}
2564 			} else {
2565 				migrate->src[i] = 0;
2566 				unlock_page(page);
2567 				migrate->cpages--;
2568 
2569 				if (!is_zone_device_page(page))
2570 					putback_lru_page(page);
2571 				else
2572 					put_page(page);
2573 			}
2574 		}
2575 	}
2576 
2577 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2578 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579 
2580 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581 			continue;
2582 
2583 		remove_migration_pte(page, migrate->vma, addr, page);
2584 
2585 		migrate->src[i] = 0;
2586 		unlock_page(page);
2587 		put_page(page);
2588 		restore--;
2589 	}
2590 }
2591 
2592 /*
2593  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2594  * @migrate: migrate struct containing all migration information
2595  *
2596  * Replace page mapping (CPU page table pte) with a special migration pte entry
2597  * and check again if it has been pinned. Pinned pages are restored because we
2598  * cannot migrate them.
2599  *
2600  * This is the last step before we call the device driver callback to allocate
2601  * destination memory and copy contents of original page over to new page.
2602  */
2603 static void migrate_vma_unmap(struct migrate_vma *migrate)
2604 {
2605 	const unsigned long npages = migrate->npages;
2606 	const unsigned long start = migrate->start;
2607 	unsigned long addr, i, restore = 0;
2608 
2609 	for (i = 0; i < npages; i++) {
2610 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2611 
2612 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2613 			continue;
2614 
2615 		if (page_mapped(page)) {
2616 			try_to_migrate(page, 0);
2617 			if (page_mapped(page))
2618 				goto restore;
2619 		}
2620 
2621 		if (migrate_vma_check_page(page))
2622 			continue;
2623 
2624 restore:
2625 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2626 		migrate->cpages--;
2627 		restore++;
2628 	}
2629 
2630 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2631 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2632 
2633 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2634 			continue;
2635 
2636 		remove_migration_ptes(page, page, false);
2637 
2638 		migrate->src[i] = 0;
2639 		unlock_page(page);
2640 		restore--;
2641 
2642 		if (is_zone_device_page(page))
2643 			put_page(page);
2644 		else
2645 			putback_lru_page(page);
2646 	}
2647 }
2648 
2649 /**
2650  * migrate_vma_setup() - prepare to migrate a range of memory
2651  * @args: contains the vma, start, and pfns arrays for the migration
2652  *
2653  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2654  * without an error.
2655  *
2656  * Prepare to migrate a range of memory virtual address range by collecting all
2657  * the pages backing each virtual address in the range, saving them inside the
2658  * src array.  Then lock those pages and unmap them. Once the pages are locked
2659  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2660  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2661  * corresponding src array entry.  Then restores any pages that are pinned, by
2662  * remapping and unlocking those pages.
2663  *
2664  * The caller should then allocate destination memory and copy source memory to
2665  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2666  * flag set).  Once these are allocated and copied, the caller must update each
2667  * corresponding entry in the dst array with the pfn value of the destination
2668  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2669  * (destination pages must have their struct pages locked, via lock_page()).
2670  *
2671  * Note that the caller does not have to migrate all the pages that are marked
2672  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2673  * device memory to system memory.  If the caller cannot migrate a device page
2674  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2675  * consequences for the userspace process, so it must be avoided if at all
2676  * possible.
2677  *
2678  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2679  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2680  * allowing the caller to allocate device memory for those unbacked virtual
2681  * addresses.  For this the caller simply has to allocate device memory and
2682  * properly set the destination entry like for regular migration.  Note that
2683  * this can still fail, and thus inside the device driver you must check if the
2684  * migration was successful for those entries after calling migrate_vma_pages(),
2685  * just like for regular migration.
2686  *
2687  * After that, the callers must call migrate_vma_pages() to go over each entry
2688  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2689  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2690  * then migrate_vma_pages() to migrate struct page information from the source
2691  * struct page to the destination struct page.  If it fails to migrate the
2692  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2693  * src array.
2694  *
2695  * At this point all successfully migrated pages have an entry in the src
2696  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2697  * array entry with MIGRATE_PFN_VALID flag set.
2698  *
2699  * Once migrate_vma_pages() returns the caller may inspect which pages were
2700  * successfully migrated, and which were not.  Successfully migrated pages will
2701  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2702  *
2703  * It is safe to update device page table after migrate_vma_pages() because
2704  * both destination and source page are still locked, and the mmap_lock is held
2705  * in read mode (hence no one can unmap the range being migrated).
2706  *
2707  * Once the caller is done cleaning up things and updating its page table (if it
2708  * chose to do so, this is not an obligation) it finally calls
2709  * migrate_vma_finalize() to update the CPU page table to point to new pages
2710  * for successfully migrated pages or otherwise restore the CPU page table to
2711  * point to the original source pages.
2712  */
2713 int migrate_vma_setup(struct migrate_vma *args)
2714 {
2715 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2716 
2717 	args->start &= PAGE_MASK;
2718 	args->end &= PAGE_MASK;
2719 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2720 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2721 		return -EINVAL;
2722 	if (nr_pages <= 0)
2723 		return -EINVAL;
2724 	if (args->start < args->vma->vm_start ||
2725 	    args->start >= args->vma->vm_end)
2726 		return -EINVAL;
2727 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2728 		return -EINVAL;
2729 	if (!args->src || !args->dst)
2730 		return -EINVAL;
2731 
2732 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2733 	args->cpages = 0;
2734 	args->npages = 0;
2735 
2736 	migrate_vma_collect(args);
2737 
2738 	if (args->cpages)
2739 		migrate_vma_prepare(args);
2740 	if (args->cpages)
2741 		migrate_vma_unmap(args);
2742 
2743 	/*
2744 	 * At this point pages are locked and unmapped, and thus they have
2745 	 * stable content and can safely be copied to destination memory that
2746 	 * is allocated by the drivers.
2747 	 */
2748 	return 0;
2749 
2750 }
2751 EXPORT_SYMBOL(migrate_vma_setup);
2752 
2753 /*
2754  * This code closely matches the code in:
2755  *   __handle_mm_fault()
2756  *     handle_pte_fault()
2757  *       do_anonymous_page()
2758  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2759  * private page.
2760  */
2761 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2762 				    unsigned long addr,
2763 				    struct page *page,
2764 				    unsigned long *src)
2765 {
2766 	struct vm_area_struct *vma = migrate->vma;
2767 	struct mm_struct *mm = vma->vm_mm;
2768 	bool flush = false;
2769 	spinlock_t *ptl;
2770 	pte_t entry;
2771 	pgd_t *pgdp;
2772 	p4d_t *p4dp;
2773 	pud_t *pudp;
2774 	pmd_t *pmdp;
2775 	pte_t *ptep;
2776 
2777 	/* Only allow populating anonymous memory */
2778 	if (!vma_is_anonymous(vma))
2779 		goto abort;
2780 
2781 	pgdp = pgd_offset(mm, addr);
2782 	p4dp = p4d_alloc(mm, pgdp, addr);
2783 	if (!p4dp)
2784 		goto abort;
2785 	pudp = pud_alloc(mm, p4dp, addr);
2786 	if (!pudp)
2787 		goto abort;
2788 	pmdp = pmd_alloc(mm, pudp, addr);
2789 	if (!pmdp)
2790 		goto abort;
2791 
2792 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2793 		goto abort;
2794 
2795 	/*
2796 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2797 	 * pte_offset_map() on pmds where a huge pmd might be created
2798 	 * from a different thread.
2799 	 *
2800 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2801 	 * parallel threads are excluded by other means.
2802 	 *
2803 	 * Here we only have mmap_read_lock(mm).
2804 	 */
2805 	if (pte_alloc(mm, pmdp))
2806 		goto abort;
2807 
2808 	/* See the comment in pte_alloc_one_map() */
2809 	if (unlikely(pmd_trans_unstable(pmdp)))
2810 		goto abort;
2811 
2812 	if (unlikely(anon_vma_prepare(vma)))
2813 		goto abort;
2814 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2815 		goto abort;
2816 
2817 	/*
2818 	 * The memory barrier inside __SetPageUptodate makes sure that
2819 	 * preceding stores to the page contents become visible before
2820 	 * the set_pte_at() write.
2821 	 */
2822 	__SetPageUptodate(page);
2823 
2824 	if (is_zone_device_page(page)) {
2825 		if (is_device_private_page(page)) {
2826 			swp_entry_t swp_entry;
2827 
2828 			if (vma->vm_flags & VM_WRITE)
2829 				swp_entry = make_writable_device_private_entry(
2830 							page_to_pfn(page));
2831 			else
2832 				swp_entry = make_readable_device_private_entry(
2833 							page_to_pfn(page));
2834 			entry = swp_entry_to_pte(swp_entry);
2835 		} else {
2836 			/*
2837 			 * For now we only support migrating to un-addressable
2838 			 * device memory.
2839 			 */
2840 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2841 			goto abort;
2842 		}
2843 	} else {
2844 		entry = mk_pte(page, vma->vm_page_prot);
2845 		if (vma->vm_flags & VM_WRITE)
2846 			entry = pte_mkwrite(pte_mkdirty(entry));
2847 	}
2848 
2849 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2850 
2851 	if (check_stable_address_space(mm))
2852 		goto unlock_abort;
2853 
2854 	if (pte_present(*ptep)) {
2855 		unsigned long pfn = pte_pfn(*ptep);
2856 
2857 		if (!is_zero_pfn(pfn))
2858 			goto unlock_abort;
2859 		flush = true;
2860 	} else if (!pte_none(*ptep))
2861 		goto unlock_abort;
2862 
2863 	/*
2864 	 * Check for userfaultfd but do not deliver the fault. Instead,
2865 	 * just back off.
2866 	 */
2867 	if (userfaultfd_missing(vma))
2868 		goto unlock_abort;
2869 
2870 	inc_mm_counter(mm, MM_ANONPAGES);
2871 	page_add_new_anon_rmap(page, vma, addr, false);
2872 	if (!is_zone_device_page(page))
2873 		lru_cache_add_inactive_or_unevictable(page, vma);
2874 	get_page(page);
2875 
2876 	if (flush) {
2877 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2878 		ptep_clear_flush_notify(vma, addr, ptep);
2879 		set_pte_at_notify(mm, addr, ptep, entry);
2880 		update_mmu_cache(vma, addr, ptep);
2881 	} else {
2882 		/* No need to invalidate - it was non-present before */
2883 		set_pte_at(mm, addr, ptep, entry);
2884 		update_mmu_cache(vma, addr, ptep);
2885 	}
2886 
2887 	pte_unmap_unlock(ptep, ptl);
2888 	*src = MIGRATE_PFN_MIGRATE;
2889 	return;
2890 
2891 unlock_abort:
2892 	pte_unmap_unlock(ptep, ptl);
2893 abort:
2894 	*src &= ~MIGRATE_PFN_MIGRATE;
2895 }
2896 
2897 /**
2898  * migrate_vma_pages() - migrate meta-data from src page to dst page
2899  * @migrate: migrate struct containing all migration information
2900  *
2901  * This migrates struct page meta-data from source struct page to destination
2902  * struct page. This effectively finishes the migration from source page to the
2903  * destination page.
2904  */
2905 void migrate_vma_pages(struct migrate_vma *migrate)
2906 {
2907 	const unsigned long npages = migrate->npages;
2908 	const unsigned long start = migrate->start;
2909 	struct mmu_notifier_range range;
2910 	unsigned long addr, i;
2911 	bool notified = false;
2912 
2913 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2914 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2915 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2916 		struct address_space *mapping;
2917 		int r;
2918 
2919 		if (!newpage) {
2920 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2921 			continue;
2922 		}
2923 
2924 		if (!page) {
2925 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2926 				continue;
2927 			if (!notified) {
2928 				notified = true;
2929 
2930 				mmu_notifier_range_init_owner(&range,
2931 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2932 					migrate->vma->vm_mm, addr, migrate->end,
2933 					migrate->pgmap_owner);
2934 				mmu_notifier_invalidate_range_start(&range);
2935 			}
2936 			migrate_vma_insert_page(migrate, addr, newpage,
2937 						&migrate->src[i]);
2938 			continue;
2939 		}
2940 
2941 		mapping = page_mapping(page);
2942 
2943 		if (is_zone_device_page(newpage)) {
2944 			if (is_device_private_page(newpage)) {
2945 				/*
2946 				 * For now only support private anonymous when
2947 				 * migrating to un-addressable device memory.
2948 				 */
2949 				if (mapping) {
2950 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2951 					continue;
2952 				}
2953 			} else {
2954 				/*
2955 				 * Other types of ZONE_DEVICE page are not
2956 				 * supported.
2957 				 */
2958 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2959 				continue;
2960 			}
2961 		}
2962 
2963 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2964 		if (r != MIGRATEPAGE_SUCCESS)
2965 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2966 	}
2967 
2968 	/*
2969 	 * No need to double call mmu_notifier->invalidate_range() callback as
2970 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2971 	 * did already call it.
2972 	 */
2973 	if (notified)
2974 		mmu_notifier_invalidate_range_only_end(&range);
2975 }
2976 EXPORT_SYMBOL(migrate_vma_pages);
2977 
2978 /**
2979  * migrate_vma_finalize() - restore CPU page table entry
2980  * @migrate: migrate struct containing all migration information
2981  *
2982  * This replaces the special migration pte entry with either a mapping to the
2983  * new page if migration was successful for that page, or to the original page
2984  * otherwise.
2985  *
2986  * This also unlocks the pages and puts them back on the lru, or drops the extra
2987  * refcount, for device pages.
2988  */
2989 void migrate_vma_finalize(struct migrate_vma *migrate)
2990 {
2991 	const unsigned long npages = migrate->npages;
2992 	unsigned long i;
2993 
2994 	for (i = 0; i < npages; i++) {
2995 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2996 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2997 
2998 		if (!page) {
2999 			if (newpage) {
3000 				unlock_page(newpage);
3001 				put_page(newpage);
3002 			}
3003 			continue;
3004 		}
3005 
3006 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3007 			if (newpage) {
3008 				unlock_page(newpage);
3009 				put_page(newpage);
3010 			}
3011 			newpage = page;
3012 		}
3013 
3014 		remove_migration_ptes(page, newpage, false);
3015 		unlock_page(page);
3016 
3017 		if (is_zone_device_page(page))
3018 			put_page(page);
3019 		else
3020 			putback_lru_page(page);
3021 
3022 		if (newpage != page) {
3023 			unlock_page(newpage);
3024 			if (is_zone_device_page(newpage))
3025 				put_page(newpage);
3026 			else
3027 				putback_lru_page(newpage);
3028 		}
3029 	}
3030 }
3031 EXPORT_SYMBOL(migrate_vma_finalize);
3032 #endif /* CONFIG_DEVICE_PRIVATE */
3033