xref: /openbmc/linux/mm/migrate.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once radix-tree replacement of page migration started, page_count
327 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 	 * against a page without get_page().
329 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 	 * will occur again.
331 	 */
332 	if (!get_page_unless_zero(page))
333 		goto out;
334 	pte_unmap_unlock(ptep, ptl);
335 	wait_on_page_locked(page);
336 	put_page(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	wait_on_page_locked(page);
371 	put_page(page);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 							enum migrate_mode mode)
382 {
383 	struct buffer_head *bh = head;
384 
385 	/* Simple case, sync compaction */
386 	if (mode != MIGRATE_ASYNC) {
387 		do {
388 			get_bh(bh);
389 			lock_buffer(bh);
390 			bh = bh->b_this_page;
391 
392 		} while (bh != head);
393 
394 		return true;
395 	}
396 
397 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
398 	do {
399 		get_bh(bh);
400 		if (!trylock_buffer(bh)) {
401 			/*
402 			 * We failed to lock the buffer and cannot stall in
403 			 * async migration. Release the taken locks
404 			 */
405 			struct buffer_head *failed_bh = bh;
406 			put_bh(failed_bh);
407 			bh = head;
408 			while (bh != failed_bh) {
409 				unlock_buffer(bh);
410 				put_bh(bh);
411 				bh = bh->b_this_page;
412 			}
413 			return false;
414 		}
415 
416 		bh = bh->b_this_page;
417 	} while (bh != head);
418 	return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 							enum migrate_mode mode)
423 {
424 	return true;
425 }
426 #endif /* CONFIG_BLOCK */
427 
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 		struct page *newpage, struct page *page,
438 		struct buffer_head *head, enum migrate_mode mode,
439 		int extra_count)
440 {
441 	struct zone *oldzone, *newzone;
442 	int dirty;
443 	int expected_count = 1 + extra_count;
444 	void **pslot;
445 
446 	/*
447 	 * Device public or private pages have an extra refcount as they are
448 	 * ZONE_DEVICE pages.
449 	 */
450 	expected_count += is_device_private_page(page);
451 	expected_count += is_device_public_page(page);
452 
453 	if (!mapping) {
454 		/* Anonymous page without mapping */
455 		if (page_count(page) != expected_count)
456 			return -EAGAIN;
457 
458 		/* No turning back from here */
459 		newpage->index = page->index;
460 		newpage->mapping = page->mapping;
461 		if (PageSwapBacked(page))
462 			__SetPageSwapBacked(newpage);
463 
464 		return MIGRATEPAGE_SUCCESS;
465 	}
466 
467 	oldzone = page_zone(page);
468 	newzone = page_zone(newpage);
469 
470 	xa_lock_irq(&mapping->i_pages);
471 
472 	pslot = radix_tree_lookup_slot(&mapping->i_pages,
473  					page_index(page));
474 
475 	expected_count += hpage_nr_pages(page) + page_has_private(page);
476 	if (page_count(page) != expected_count ||
477 		radix_tree_deref_slot_protected(pslot,
478 					&mapping->i_pages.xa_lock) != page) {
479 		xa_unlock_irq(&mapping->i_pages);
480 		return -EAGAIN;
481 	}
482 
483 	if (!page_ref_freeze(page, expected_count)) {
484 		xa_unlock_irq(&mapping->i_pages);
485 		return -EAGAIN;
486 	}
487 
488 	/*
489 	 * In the async migration case of moving a page with buffers, lock the
490 	 * buffers using trylock before the mapping is moved. If the mapping
491 	 * was moved, we later failed to lock the buffers and could not move
492 	 * the mapping back due to an elevated page count, we would have to
493 	 * block waiting on other references to be dropped.
494 	 */
495 	if (mode == MIGRATE_ASYNC && head &&
496 			!buffer_migrate_lock_buffers(head, mode)) {
497 		page_ref_unfreeze(page, expected_count);
498 		xa_unlock_irq(&mapping->i_pages);
499 		return -EAGAIN;
500 	}
501 
502 	/*
503 	 * Now we know that no one else is looking at the page:
504 	 * no turning back from here.
505 	 */
506 	newpage->index = page->index;
507 	newpage->mapping = page->mapping;
508 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 	if (PageSwapBacked(page)) {
510 		__SetPageSwapBacked(newpage);
511 		if (PageSwapCache(page)) {
512 			SetPageSwapCache(newpage);
513 			set_page_private(newpage, page_private(page));
514 		}
515 	} else {
516 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
517 	}
518 
519 	/* Move dirty while page refs frozen and newpage not yet exposed */
520 	dirty = PageDirty(page);
521 	if (dirty) {
522 		ClearPageDirty(page);
523 		SetPageDirty(newpage);
524 	}
525 
526 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 	if (PageTransHuge(page)) {
528 		int i;
529 		int index = page_index(page);
530 
531 		for (i = 0; i < HPAGE_PMD_NR; i++) {
532 			pslot = radix_tree_lookup_slot(&mapping->i_pages,
533 						       index + i);
534 			radix_tree_replace_slot(&mapping->i_pages, pslot,
535 						newpage + i);
536 		}
537 	} else {
538 		radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
539 	}
540 
541 	/*
542 	 * Drop cache reference from old page by unfreezing
543 	 * to one less reference.
544 	 * We know this isn't the last reference.
545 	 */
546 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
547 
548 	xa_unlock(&mapping->i_pages);
549 	/* Leave irq disabled to prevent preemption while updating stats */
550 
551 	/*
552 	 * If moved to a different zone then also account
553 	 * the page for that zone. Other VM counters will be
554 	 * taken care of when we establish references to the
555 	 * new page and drop references to the old page.
556 	 *
557 	 * Note that anonymous pages are accounted for
558 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
559 	 * are mapped to swap space.
560 	 */
561 	if (newzone != oldzone) {
562 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
563 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
564 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
565 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
566 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
567 		}
568 		if (dirty && mapping_cap_account_dirty(mapping)) {
569 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
570 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
571 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
572 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
573 		}
574 	}
575 	local_irq_enable();
576 
577 	return MIGRATEPAGE_SUCCESS;
578 }
579 EXPORT_SYMBOL(migrate_page_move_mapping);
580 
581 /*
582  * The expected number of remaining references is the same as that
583  * of migrate_page_move_mapping().
584  */
585 int migrate_huge_page_move_mapping(struct address_space *mapping,
586 				   struct page *newpage, struct page *page)
587 {
588 	int expected_count;
589 	void **pslot;
590 
591 	xa_lock_irq(&mapping->i_pages);
592 
593 	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
594 
595 	expected_count = 2 + page_has_private(page);
596 	if (page_count(page) != expected_count ||
597 		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
598 		xa_unlock_irq(&mapping->i_pages);
599 		return -EAGAIN;
600 	}
601 
602 	if (!page_ref_freeze(page, expected_count)) {
603 		xa_unlock_irq(&mapping->i_pages);
604 		return -EAGAIN;
605 	}
606 
607 	newpage->index = page->index;
608 	newpage->mapping = page->mapping;
609 
610 	get_page(newpage);
611 
612 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
613 
614 	page_ref_unfreeze(page, expected_count - 1);
615 
616 	xa_unlock_irq(&mapping->i_pages);
617 
618 	return MIGRATEPAGE_SUCCESS;
619 }
620 
621 /*
622  * Gigantic pages are so large that we do not guarantee that page++ pointer
623  * arithmetic will work across the entire page.  We need something more
624  * specialized.
625  */
626 static void __copy_gigantic_page(struct page *dst, struct page *src,
627 				int nr_pages)
628 {
629 	int i;
630 	struct page *dst_base = dst;
631 	struct page *src_base = src;
632 
633 	for (i = 0; i < nr_pages; ) {
634 		cond_resched();
635 		copy_highpage(dst, src);
636 
637 		i++;
638 		dst = mem_map_next(dst, dst_base, i);
639 		src = mem_map_next(src, src_base, i);
640 	}
641 }
642 
643 static void copy_huge_page(struct page *dst, struct page *src)
644 {
645 	int i;
646 	int nr_pages;
647 
648 	if (PageHuge(src)) {
649 		/* hugetlbfs page */
650 		struct hstate *h = page_hstate(src);
651 		nr_pages = pages_per_huge_page(h);
652 
653 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
654 			__copy_gigantic_page(dst, src, nr_pages);
655 			return;
656 		}
657 	} else {
658 		/* thp page */
659 		BUG_ON(!PageTransHuge(src));
660 		nr_pages = hpage_nr_pages(src);
661 	}
662 
663 	for (i = 0; i < nr_pages; i++) {
664 		cond_resched();
665 		copy_highpage(dst + i, src + i);
666 	}
667 }
668 
669 /*
670  * Copy the page to its new location
671  */
672 void migrate_page_states(struct page *newpage, struct page *page)
673 {
674 	int cpupid;
675 
676 	if (PageError(page))
677 		SetPageError(newpage);
678 	if (PageReferenced(page))
679 		SetPageReferenced(newpage);
680 	if (PageUptodate(page))
681 		SetPageUptodate(newpage);
682 	if (TestClearPageActive(page)) {
683 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
684 		SetPageActive(newpage);
685 	} else if (TestClearPageUnevictable(page))
686 		SetPageUnevictable(newpage);
687 	if (PageChecked(page))
688 		SetPageChecked(newpage);
689 	if (PageMappedToDisk(page))
690 		SetPageMappedToDisk(newpage);
691 
692 	/* Move dirty on pages not done by migrate_page_move_mapping() */
693 	if (PageDirty(page))
694 		SetPageDirty(newpage);
695 
696 	if (page_is_young(page))
697 		set_page_young(newpage);
698 	if (page_is_idle(page))
699 		set_page_idle(newpage);
700 
701 	/*
702 	 * Copy NUMA information to the new page, to prevent over-eager
703 	 * future migrations of this same page.
704 	 */
705 	cpupid = page_cpupid_xchg_last(page, -1);
706 	page_cpupid_xchg_last(newpage, cpupid);
707 
708 	ksm_migrate_page(newpage, page);
709 	/*
710 	 * Please do not reorder this without considering how mm/ksm.c's
711 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
712 	 */
713 	if (PageSwapCache(page))
714 		ClearPageSwapCache(page);
715 	ClearPagePrivate(page);
716 	set_page_private(page, 0);
717 
718 	/*
719 	 * If any waiters have accumulated on the new page then
720 	 * wake them up.
721 	 */
722 	if (PageWriteback(newpage))
723 		end_page_writeback(newpage);
724 
725 	copy_page_owner(page, newpage);
726 
727 	mem_cgroup_migrate(page, newpage);
728 }
729 EXPORT_SYMBOL(migrate_page_states);
730 
731 void migrate_page_copy(struct page *newpage, struct page *page)
732 {
733 	if (PageHuge(page) || PageTransHuge(page))
734 		copy_huge_page(newpage, page);
735 	else
736 		copy_highpage(newpage, page);
737 
738 	migrate_page_states(newpage, page);
739 }
740 EXPORT_SYMBOL(migrate_page_copy);
741 
742 /************************************************************
743  *                    Migration functions
744  ***********************************************************/
745 
746 /*
747  * Common logic to directly migrate a single LRU page suitable for
748  * pages that do not use PagePrivate/PagePrivate2.
749  *
750  * Pages are locked upon entry and exit.
751  */
752 int migrate_page(struct address_space *mapping,
753 		struct page *newpage, struct page *page,
754 		enum migrate_mode mode)
755 {
756 	int rc;
757 
758 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
759 
760 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
761 
762 	if (rc != MIGRATEPAGE_SUCCESS)
763 		return rc;
764 
765 	if (mode != MIGRATE_SYNC_NO_COPY)
766 		migrate_page_copy(newpage, page);
767 	else
768 		migrate_page_states(newpage, page);
769 	return MIGRATEPAGE_SUCCESS;
770 }
771 EXPORT_SYMBOL(migrate_page);
772 
773 #ifdef CONFIG_BLOCK
774 /*
775  * Migration function for pages with buffers. This function can only be used
776  * if the underlying filesystem guarantees that no other references to "page"
777  * exist.
778  */
779 int buffer_migrate_page(struct address_space *mapping,
780 		struct page *newpage, struct page *page, enum migrate_mode mode)
781 {
782 	struct buffer_head *bh, *head;
783 	int rc;
784 
785 	if (!page_has_buffers(page))
786 		return migrate_page(mapping, newpage, page, mode);
787 
788 	head = page_buffers(page);
789 
790 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
791 
792 	if (rc != MIGRATEPAGE_SUCCESS)
793 		return rc;
794 
795 	/*
796 	 * In the async case, migrate_page_move_mapping locked the buffers
797 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
798 	 * need to be locked now
799 	 */
800 	if (mode != MIGRATE_ASYNC)
801 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
802 
803 	ClearPagePrivate(page);
804 	set_page_private(newpage, page_private(page));
805 	set_page_private(page, 0);
806 	put_page(page);
807 	get_page(newpage);
808 
809 	bh = head;
810 	do {
811 		set_bh_page(bh, newpage, bh_offset(bh));
812 		bh = bh->b_this_page;
813 
814 	} while (bh != head);
815 
816 	SetPagePrivate(newpage);
817 
818 	if (mode != MIGRATE_SYNC_NO_COPY)
819 		migrate_page_copy(newpage, page);
820 	else
821 		migrate_page_states(newpage, page);
822 
823 	bh = head;
824 	do {
825 		unlock_buffer(bh);
826 		put_bh(bh);
827 		bh = bh->b_this_page;
828 
829 	} while (bh != head);
830 
831 	return MIGRATEPAGE_SUCCESS;
832 }
833 EXPORT_SYMBOL(buffer_migrate_page);
834 #endif
835 
836 /*
837  * Writeback a page to clean the dirty state
838  */
839 static int writeout(struct address_space *mapping, struct page *page)
840 {
841 	struct writeback_control wbc = {
842 		.sync_mode = WB_SYNC_NONE,
843 		.nr_to_write = 1,
844 		.range_start = 0,
845 		.range_end = LLONG_MAX,
846 		.for_reclaim = 1
847 	};
848 	int rc;
849 
850 	if (!mapping->a_ops->writepage)
851 		/* No write method for the address space */
852 		return -EINVAL;
853 
854 	if (!clear_page_dirty_for_io(page))
855 		/* Someone else already triggered a write */
856 		return -EAGAIN;
857 
858 	/*
859 	 * A dirty page may imply that the underlying filesystem has
860 	 * the page on some queue. So the page must be clean for
861 	 * migration. Writeout may mean we loose the lock and the
862 	 * page state is no longer what we checked for earlier.
863 	 * At this point we know that the migration attempt cannot
864 	 * be successful.
865 	 */
866 	remove_migration_ptes(page, page, false);
867 
868 	rc = mapping->a_ops->writepage(page, &wbc);
869 
870 	if (rc != AOP_WRITEPAGE_ACTIVATE)
871 		/* unlocked. Relock */
872 		lock_page(page);
873 
874 	return (rc < 0) ? -EIO : -EAGAIN;
875 }
876 
877 /*
878  * Default handling if a filesystem does not provide a migration function.
879  */
880 static int fallback_migrate_page(struct address_space *mapping,
881 	struct page *newpage, struct page *page, enum migrate_mode mode)
882 {
883 	if (PageDirty(page)) {
884 		/* Only writeback pages in full synchronous migration */
885 		switch (mode) {
886 		case MIGRATE_SYNC:
887 		case MIGRATE_SYNC_NO_COPY:
888 			break;
889 		default:
890 			return -EBUSY;
891 		}
892 		return writeout(mapping, page);
893 	}
894 
895 	/*
896 	 * Buffers may be managed in a filesystem specific way.
897 	 * We must have no buffers or drop them.
898 	 */
899 	if (page_has_private(page) &&
900 	    !try_to_release_page(page, GFP_KERNEL))
901 		return -EAGAIN;
902 
903 	return migrate_page(mapping, newpage, page, mode);
904 }
905 
906 /*
907  * Move a page to a newly allocated page
908  * The page is locked and all ptes have been successfully removed.
909  *
910  * The new page will have replaced the old page if this function
911  * is successful.
912  *
913  * Return value:
914  *   < 0 - error code
915  *  MIGRATEPAGE_SUCCESS - success
916  */
917 static int move_to_new_page(struct page *newpage, struct page *page,
918 				enum migrate_mode mode)
919 {
920 	struct address_space *mapping;
921 	int rc = -EAGAIN;
922 	bool is_lru = !__PageMovable(page);
923 
924 	VM_BUG_ON_PAGE(!PageLocked(page), page);
925 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
926 
927 	mapping = page_mapping(page);
928 
929 	if (likely(is_lru)) {
930 		if (!mapping)
931 			rc = migrate_page(mapping, newpage, page, mode);
932 		else if (mapping->a_ops->migratepage)
933 			/*
934 			 * Most pages have a mapping and most filesystems
935 			 * provide a migratepage callback. Anonymous pages
936 			 * are part of swap space which also has its own
937 			 * migratepage callback. This is the most common path
938 			 * for page migration.
939 			 */
940 			rc = mapping->a_ops->migratepage(mapping, newpage,
941 							page, mode);
942 		else
943 			rc = fallback_migrate_page(mapping, newpage,
944 							page, mode);
945 	} else {
946 		/*
947 		 * In case of non-lru page, it could be released after
948 		 * isolation step. In that case, we shouldn't try migration.
949 		 */
950 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
951 		if (!PageMovable(page)) {
952 			rc = MIGRATEPAGE_SUCCESS;
953 			__ClearPageIsolated(page);
954 			goto out;
955 		}
956 
957 		rc = mapping->a_ops->migratepage(mapping, newpage,
958 						page, mode);
959 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
960 			!PageIsolated(page));
961 	}
962 
963 	/*
964 	 * When successful, old pagecache page->mapping must be cleared before
965 	 * page is freed; but stats require that PageAnon be left as PageAnon.
966 	 */
967 	if (rc == MIGRATEPAGE_SUCCESS) {
968 		if (__PageMovable(page)) {
969 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
970 
971 			/*
972 			 * We clear PG_movable under page_lock so any compactor
973 			 * cannot try to migrate this page.
974 			 */
975 			__ClearPageIsolated(page);
976 		}
977 
978 		/*
979 		 * Anonymous and movable page->mapping will be cleard by
980 		 * free_pages_prepare so don't reset it here for keeping
981 		 * the type to work PageAnon, for example.
982 		 */
983 		if (!PageMappingFlags(page))
984 			page->mapping = NULL;
985 	}
986 out:
987 	return rc;
988 }
989 
990 static int __unmap_and_move(struct page *page, struct page *newpage,
991 				int force, enum migrate_mode mode)
992 {
993 	int rc = -EAGAIN;
994 	int page_was_mapped = 0;
995 	struct anon_vma *anon_vma = NULL;
996 	bool is_lru = !__PageMovable(page);
997 
998 	if (!trylock_page(page)) {
999 		if (!force || mode == MIGRATE_ASYNC)
1000 			goto out;
1001 
1002 		/*
1003 		 * It's not safe for direct compaction to call lock_page.
1004 		 * For example, during page readahead pages are added locked
1005 		 * to the LRU. Later, when the IO completes the pages are
1006 		 * marked uptodate and unlocked. However, the queueing
1007 		 * could be merging multiple pages for one bio (e.g.
1008 		 * mpage_readpages). If an allocation happens for the
1009 		 * second or third page, the process can end up locking
1010 		 * the same page twice and deadlocking. Rather than
1011 		 * trying to be clever about what pages can be locked,
1012 		 * avoid the use of lock_page for direct compaction
1013 		 * altogether.
1014 		 */
1015 		if (current->flags & PF_MEMALLOC)
1016 			goto out;
1017 
1018 		lock_page(page);
1019 	}
1020 
1021 	if (PageWriteback(page)) {
1022 		/*
1023 		 * Only in the case of a full synchronous migration is it
1024 		 * necessary to wait for PageWriteback. In the async case,
1025 		 * the retry loop is too short and in the sync-light case,
1026 		 * the overhead of stalling is too much
1027 		 */
1028 		switch (mode) {
1029 		case MIGRATE_SYNC:
1030 		case MIGRATE_SYNC_NO_COPY:
1031 			break;
1032 		default:
1033 			rc = -EBUSY;
1034 			goto out_unlock;
1035 		}
1036 		if (!force)
1037 			goto out_unlock;
1038 		wait_on_page_writeback(page);
1039 	}
1040 
1041 	/*
1042 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1043 	 * we cannot notice that anon_vma is freed while we migrates a page.
1044 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1045 	 * of migration. File cache pages are no problem because of page_lock()
1046 	 * File Caches may use write_page() or lock_page() in migration, then,
1047 	 * just care Anon page here.
1048 	 *
1049 	 * Only page_get_anon_vma() understands the subtleties of
1050 	 * getting a hold on an anon_vma from outside one of its mms.
1051 	 * But if we cannot get anon_vma, then we won't need it anyway,
1052 	 * because that implies that the anon page is no longer mapped
1053 	 * (and cannot be remapped so long as we hold the page lock).
1054 	 */
1055 	if (PageAnon(page) && !PageKsm(page))
1056 		anon_vma = page_get_anon_vma(page);
1057 
1058 	/*
1059 	 * Block others from accessing the new page when we get around to
1060 	 * establishing additional references. We are usually the only one
1061 	 * holding a reference to newpage at this point. We used to have a BUG
1062 	 * here if trylock_page(newpage) fails, but would like to allow for
1063 	 * cases where there might be a race with the previous use of newpage.
1064 	 * This is much like races on refcount of oldpage: just don't BUG().
1065 	 */
1066 	if (unlikely(!trylock_page(newpage)))
1067 		goto out_unlock;
1068 
1069 	if (unlikely(!is_lru)) {
1070 		rc = move_to_new_page(newpage, page, mode);
1071 		goto out_unlock_both;
1072 	}
1073 
1074 	/*
1075 	 * Corner case handling:
1076 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1077 	 * and treated as swapcache but it has no rmap yet.
1078 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1079 	 * trigger a BUG.  So handle it here.
1080 	 * 2. An orphaned page (see truncate_complete_page) might have
1081 	 * fs-private metadata. The page can be picked up due to memory
1082 	 * offlining.  Everywhere else except page reclaim, the page is
1083 	 * invisible to the vm, so the page can not be migrated.  So try to
1084 	 * free the metadata, so the page can be freed.
1085 	 */
1086 	if (!page->mapping) {
1087 		VM_BUG_ON_PAGE(PageAnon(page), page);
1088 		if (page_has_private(page)) {
1089 			try_to_free_buffers(page);
1090 			goto out_unlock_both;
1091 		}
1092 	} else if (page_mapped(page)) {
1093 		/* Establish migration ptes */
1094 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1095 				page);
1096 		try_to_unmap(page,
1097 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1098 		page_was_mapped = 1;
1099 	}
1100 
1101 	if (!page_mapped(page))
1102 		rc = move_to_new_page(newpage, page, mode);
1103 
1104 	if (page_was_mapped)
1105 		remove_migration_ptes(page,
1106 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1107 
1108 out_unlock_both:
1109 	unlock_page(newpage);
1110 out_unlock:
1111 	/* Drop an anon_vma reference if we took one */
1112 	if (anon_vma)
1113 		put_anon_vma(anon_vma);
1114 	unlock_page(page);
1115 out:
1116 	/*
1117 	 * If migration is successful, decrease refcount of the newpage
1118 	 * which will not free the page because new page owner increased
1119 	 * refcounter. As well, if it is LRU page, add the page to LRU
1120 	 * list in here.
1121 	 */
1122 	if (rc == MIGRATEPAGE_SUCCESS) {
1123 		if (unlikely(__PageMovable(newpage)))
1124 			put_page(newpage);
1125 		else
1126 			putback_lru_page(newpage);
1127 	}
1128 
1129 	return rc;
1130 }
1131 
1132 /*
1133  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1134  * around it.
1135  */
1136 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1137 #define ICE_noinline noinline
1138 #else
1139 #define ICE_noinline
1140 #endif
1141 
1142 /*
1143  * Obtain the lock on page, remove all ptes and migrate the page
1144  * to the newly allocated page in newpage.
1145  */
1146 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1147 				   free_page_t put_new_page,
1148 				   unsigned long private, struct page *page,
1149 				   int force, enum migrate_mode mode,
1150 				   enum migrate_reason reason)
1151 {
1152 	int rc = MIGRATEPAGE_SUCCESS;
1153 	struct page *newpage;
1154 
1155 	if (!thp_migration_supported() && PageTransHuge(page))
1156 		return -ENOMEM;
1157 
1158 	newpage = get_new_page(page, private);
1159 	if (!newpage)
1160 		return -ENOMEM;
1161 
1162 	if (page_count(page) == 1) {
1163 		/* page was freed from under us. So we are done. */
1164 		ClearPageActive(page);
1165 		ClearPageUnevictable(page);
1166 		if (unlikely(__PageMovable(page))) {
1167 			lock_page(page);
1168 			if (!PageMovable(page))
1169 				__ClearPageIsolated(page);
1170 			unlock_page(page);
1171 		}
1172 		if (put_new_page)
1173 			put_new_page(newpage, private);
1174 		else
1175 			put_page(newpage);
1176 		goto out;
1177 	}
1178 
1179 	rc = __unmap_and_move(page, newpage, force, mode);
1180 	if (rc == MIGRATEPAGE_SUCCESS)
1181 		set_page_owner_migrate_reason(newpage, reason);
1182 
1183 out:
1184 	if (rc != -EAGAIN) {
1185 		/*
1186 		 * A page that has been migrated has all references
1187 		 * removed and will be freed. A page that has not been
1188 		 * migrated will have kepts its references and be
1189 		 * restored.
1190 		 */
1191 		list_del(&page->lru);
1192 
1193 		/*
1194 		 * Compaction can migrate also non-LRU pages which are
1195 		 * not accounted to NR_ISOLATED_*. They can be recognized
1196 		 * as __PageMovable
1197 		 */
1198 		if (likely(!__PageMovable(page)))
1199 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200 					page_is_file_cache(page), -hpage_nr_pages(page));
1201 	}
1202 
1203 	/*
1204 	 * If migration is successful, releases reference grabbed during
1205 	 * isolation. Otherwise, restore the page to right list unless
1206 	 * we want to retry.
1207 	 */
1208 	if (rc == MIGRATEPAGE_SUCCESS) {
1209 		put_page(page);
1210 		if (reason == MR_MEMORY_FAILURE) {
1211 			/*
1212 			 * Set PG_HWPoison on just freed page
1213 			 * intentionally. Although it's rather weird,
1214 			 * it's how HWPoison flag works at the moment.
1215 			 */
1216 			if (!test_set_page_hwpoison(page))
1217 				num_poisoned_pages_inc();
1218 		}
1219 	} else {
1220 		if (rc != -EAGAIN) {
1221 			if (likely(!__PageMovable(page))) {
1222 				putback_lru_page(page);
1223 				goto put_new;
1224 			}
1225 
1226 			lock_page(page);
1227 			if (PageMovable(page))
1228 				putback_movable_page(page);
1229 			else
1230 				__ClearPageIsolated(page);
1231 			unlock_page(page);
1232 			put_page(page);
1233 		}
1234 put_new:
1235 		if (put_new_page)
1236 			put_new_page(newpage, private);
1237 		else
1238 			put_page(newpage);
1239 	}
1240 
1241 	return rc;
1242 }
1243 
1244 /*
1245  * Counterpart of unmap_and_move_page() for hugepage migration.
1246  *
1247  * This function doesn't wait the completion of hugepage I/O
1248  * because there is no race between I/O and migration for hugepage.
1249  * Note that currently hugepage I/O occurs only in direct I/O
1250  * where no lock is held and PG_writeback is irrelevant,
1251  * and writeback status of all subpages are counted in the reference
1252  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1253  * under direct I/O, the reference of the head page is 512 and a bit more.)
1254  * This means that when we try to migrate hugepage whose subpages are
1255  * doing direct I/O, some references remain after try_to_unmap() and
1256  * hugepage migration fails without data corruption.
1257  *
1258  * There is also no race when direct I/O is issued on the page under migration,
1259  * because then pte is replaced with migration swap entry and direct I/O code
1260  * will wait in the page fault for migration to complete.
1261  */
1262 static int unmap_and_move_huge_page(new_page_t get_new_page,
1263 				free_page_t put_new_page, unsigned long private,
1264 				struct page *hpage, int force,
1265 				enum migrate_mode mode, int reason)
1266 {
1267 	int rc = -EAGAIN;
1268 	int page_was_mapped = 0;
1269 	struct page *new_hpage;
1270 	struct anon_vma *anon_vma = NULL;
1271 
1272 	/*
1273 	 * Movability of hugepages depends on architectures and hugepage size.
1274 	 * This check is necessary because some callers of hugepage migration
1275 	 * like soft offline and memory hotremove don't walk through page
1276 	 * tables or check whether the hugepage is pmd-based or not before
1277 	 * kicking migration.
1278 	 */
1279 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1280 		putback_active_hugepage(hpage);
1281 		return -ENOSYS;
1282 	}
1283 
1284 	new_hpage = get_new_page(hpage, private);
1285 	if (!new_hpage)
1286 		return -ENOMEM;
1287 
1288 	if (!trylock_page(hpage)) {
1289 		if (!force)
1290 			goto out;
1291 		switch (mode) {
1292 		case MIGRATE_SYNC:
1293 		case MIGRATE_SYNC_NO_COPY:
1294 			break;
1295 		default:
1296 			goto out;
1297 		}
1298 		lock_page(hpage);
1299 	}
1300 
1301 	if (PageAnon(hpage))
1302 		anon_vma = page_get_anon_vma(hpage);
1303 
1304 	if (unlikely(!trylock_page(new_hpage)))
1305 		goto put_anon;
1306 
1307 	if (page_mapped(hpage)) {
1308 		try_to_unmap(hpage,
1309 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310 		page_was_mapped = 1;
1311 	}
1312 
1313 	if (!page_mapped(hpage))
1314 		rc = move_to_new_page(new_hpage, hpage, mode);
1315 
1316 	if (page_was_mapped)
1317 		remove_migration_ptes(hpage,
1318 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1319 
1320 	unlock_page(new_hpage);
1321 
1322 put_anon:
1323 	if (anon_vma)
1324 		put_anon_vma(anon_vma);
1325 
1326 	if (rc == MIGRATEPAGE_SUCCESS) {
1327 		move_hugetlb_state(hpage, new_hpage, reason);
1328 		put_new_page = NULL;
1329 	}
1330 
1331 	unlock_page(hpage);
1332 out:
1333 	if (rc != -EAGAIN)
1334 		putback_active_hugepage(hpage);
1335 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 		num_poisoned_pages_inc();
1337 
1338 	/*
1339 	 * If migration was not successful and there's a freeing callback, use
1340 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1341 	 * isolation.
1342 	 */
1343 	if (put_new_page)
1344 		put_new_page(new_hpage, private);
1345 	else
1346 		putback_active_hugepage(new_hpage);
1347 
1348 	return rc;
1349 }
1350 
1351 /*
1352  * migrate_pages - migrate the pages specified in a list, to the free pages
1353  *		   supplied as the target for the page migration
1354  *
1355  * @from:		The list of pages to be migrated.
1356  * @get_new_page:	The function used to allocate free pages to be used
1357  *			as the target of the page migration.
1358  * @put_new_page:	The function used to free target pages if migration
1359  *			fails, or NULL if no special handling is necessary.
1360  * @private:		Private data to be passed on to get_new_page()
1361  * @mode:		The migration mode that specifies the constraints for
1362  *			page migration, if any.
1363  * @reason:		The reason for page migration.
1364  *
1365  * The function returns after 10 attempts or if no pages are movable any more
1366  * because the list has become empty or no retryable pages exist any more.
1367  * The caller should call putback_movable_pages() to return pages to the LRU
1368  * or free list only if ret != 0.
1369  *
1370  * Returns the number of pages that were not migrated, or an error code.
1371  */
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 		free_page_t put_new_page, unsigned long private,
1374 		enum migrate_mode mode, int reason)
1375 {
1376 	int retry = 1;
1377 	int nr_failed = 0;
1378 	int nr_succeeded = 0;
1379 	int pass = 0;
1380 	struct page *page;
1381 	struct page *page2;
1382 	int swapwrite = current->flags & PF_SWAPWRITE;
1383 	int rc;
1384 
1385 	if (!swapwrite)
1386 		current->flags |= PF_SWAPWRITE;
1387 
1388 	for(pass = 0; pass < 10 && retry; pass++) {
1389 		retry = 0;
1390 
1391 		list_for_each_entry_safe(page, page2, from, lru) {
1392 retry:
1393 			cond_resched();
1394 
1395 			if (PageHuge(page))
1396 				rc = unmap_and_move_huge_page(get_new_page,
1397 						put_new_page, private, page,
1398 						pass > 2, mode, reason);
1399 			else
1400 				rc = unmap_and_move(get_new_page, put_new_page,
1401 						private, page, pass > 2, mode,
1402 						reason);
1403 
1404 			switch(rc) {
1405 			case -ENOMEM:
1406 				/*
1407 				 * THP migration might be unsupported or the
1408 				 * allocation could've failed so we should
1409 				 * retry on the same page with the THP split
1410 				 * to base pages.
1411 				 *
1412 				 * Head page is retried immediately and tail
1413 				 * pages are added to the tail of the list so
1414 				 * we encounter them after the rest of the list
1415 				 * is processed.
1416 				 */
1417 				if (PageTransHuge(page)) {
1418 					lock_page(page);
1419 					rc = split_huge_page_to_list(page, from);
1420 					unlock_page(page);
1421 					if (!rc) {
1422 						list_safe_reset_next(page, page2, lru);
1423 						goto retry;
1424 					}
1425 				}
1426 				nr_failed++;
1427 				goto out;
1428 			case -EAGAIN:
1429 				retry++;
1430 				break;
1431 			case MIGRATEPAGE_SUCCESS:
1432 				nr_succeeded++;
1433 				break;
1434 			default:
1435 				/*
1436 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437 				 * unlike -EAGAIN case, the failed page is
1438 				 * removed from migration page list and not
1439 				 * retried in the next outer loop.
1440 				 */
1441 				nr_failed++;
1442 				break;
1443 			}
1444 		}
1445 	}
1446 	nr_failed += retry;
1447 	rc = nr_failed;
1448 out:
1449 	if (nr_succeeded)
1450 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451 	if (nr_failed)
1452 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454 
1455 	if (!swapwrite)
1456 		current->flags &= ~PF_SWAPWRITE;
1457 
1458 	return rc;
1459 }
1460 
1461 #ifdef CONFIG_NUMA
1462 
1463 static int store_status(int __user *status, int start, int value, int nr)
1464 {
1465 	while (nr-- > 0) {
1466 		if (put_user(value, status + start))
1467 			return -EFAULT;
1468 		start++;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475 		struct list_head *pagelist, int node)
1476 {
1477 	int err;
1478 
1479 	if (list_empty(pagelist))
1480 		return 0;
1481 
1482 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483 			MIGRATE_SYNC, MR_SYSCALL);
1484 	if (err)
1485 		putback_movable_pages(pagelist);
1486 	return err;
1487 }
1488 
1489 /*
1490  * Resolves the given address to a struct page, isolates it from the LRU and
1491  * puts it to the given pagelist.
1492  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493  * queued or the page doesn't need to be migrated because it is already on
1494  * the target node
1495  */
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497 		int node, struct list_head *pagelist, bool migrate_all)
1498 {
1499 	struct vm_area_struct *vma;
1500 	struct page *page;
1501 	unsigned int follflags;
1502 	int err;
1503 
1504 	down_read(&mm->mmap_sem);
1505 	err = -EFAULT;
1506 	vma = find_vma(mm, addr);
1507 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508 		goto out;
1509 
1510 	/* FOLL_DUMP to ignore special (like zero) pages */
1511 	follflags = FOLL_GET | FOLL_DUMP;
1512 	page = follow_page(vma, addr, follflags);
1513 
1514 	err = PTR_ERR(page);
1515 	if (IS_ERR(page))
1516 		goto out;
1517 
1518 	err = -ENOENT;
1519 	if (!page)
1520 		goto out;
1521 
1522 	err = 0;
1523 	if (page_to_nid(page) == node)
1524 		goto out_putpage;
1525 
1526 	err = -EACCES;
1527 	if (page_mapcount(page) > 1 && !migrate_all)
1528 		goto out_putpage;
1529 
1530 	if (PageHuge(page)) {
1531 		if (PageHead(page)) {
1532 			isolate_huge_page(page, pagelist);
1533 			err = 0;
1534 		}
1535 	} else {
1536 		struct page *head;
1537 
1538 		head = compound_head(page);
1539 		err = isolate_lru_page(head);
1540 		if (err)
1541 			goto out_putpage;
1542 
1543 		err = 0;
1544 		list_add_tail(&head->lru, pagelist);
1545 		mod_node_page_state(page_pgdat(head),
1546 			NR_ISOLATED_ANON + page_is_file_cache(head),
1547 			hpage_nr_pages(head));
1548 	}
1549 out_putpage:
1550 	/*
1551 	 * Either remove the duplicate refcount from
1552 	 * isolate_lru_page() or drop the page ref if it was
1553 	 * not isolated.
1554 	 */
1555 	put_page(page);
1556 out:
1557 	up_read(&mm->mmap_sem);
1558 	return err;
1559 }
1560 
1561 /*
1562  * Migrate an array of page address onto an array of nodes and fill
1563  * the corresponding array of status.
1564  */
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566 			 unsigned long nr_pages,
1567 			 const void __user * __user *pages,
1568 			 const int __user *nodes,
1569 			 int __user *status, int flags)
1570 {
1571 	int current_node = NUMA_NO_NODE;
1572 	LIST_HEAD(pagelist);
1573 	int start, i;
1574 	int err = 0, err1;
1575 
1576 	migrate_prep();
1577 
1578 	for (i = start = 0; i < nr_pages; i++) {
1579 		const void __user *p;
1580 		unsigned long addr;
1581 		int node;
1582 
1583 		err = -EFAULT;
1584 		if (get_user(p, pages + i))
1585 			goto out_flush;
1586 		if (get_user(node, nodes + i))
1587 			goto out_flush;
1588 		addr = (unsigned long)p;
1589 
1590 		err = -ENODEV;
1591 		if (node < 0 || node >= MAX_NUMNODES)
1592 			goto out_flush;
1593 		if (!node_state(node, N_MEMORY))
1594 			goto out_flush;
1595 
1596 		err = -EACCES;
1597 		if (!node_isset(node, task_nodes))
1598 			goto out_flush;
1599 
1600 		if (current_node == NUMA_NO_NODE) {
1601 			current_node = node;
1602 			start = i;
1603 		} else if (node != current_node) {
1604 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1605 			if (err)
1606 				goto out;
1607 			err = store_status(status, start, current_node, i - start);
1608 			if (err)
1609 				goto out;
1610 			start = i;
1611 			current_node = node;
1612 		}
1613 
1614 		/*
1615 		 * Errors in the page lookup or isolation are not fatal and we simply
1616 		 * report them via status
1617 		 */
1618 		err = add_page_for_migration(mm, addr, current_node,
1619 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1620 		if (!err)
1621 			continue;
1622 
1623 		err = store_status(status, i, err, 1);
1624 		if (err)
1625 			goto out_flush;
1626 
1627 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1628 		if (err)
1629 			goto out;
1630 		if (i > start) {
1631 			err = store_status(status, start, current_node, i - start);
1632 			if (err)
1633 				goto out;
1634 		}
1635 		current_node = NUMA_NO_NODE;
1636 	}
1637 out_flush:
1638 	if (list_empty(&pagelist))
1639 		return err;
1640 
1641 	/* Make sure we do not overwrite the existing error */
1642 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643 	if (!err1)
1644 		err1 = store_status(status, start, current_node, i - start);
1645 	if (!err)
1646 		err = err1;
1647 out:
1648 	return err;
1649 }
1650 
1651 /*
1652  * Determine the nodes of an array of pages and store it in an array of status.
1653  */
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655 				const void __user **pages, int *status)
1656 {
1657 	unsigned long i;
1658 
1659 	down_read(&mm->mmap_sem);
1660 
1661 	for (i = 0; i < nr_pages; i++) {
1662 		unsigned long addr = (unsigned long)(*pages);
1663 		struct vm_area_struct *vma;
1664 		struct page *page;
1665 		int err = -EFAULT;
1666 
1667 		vma = find_vma(mm, addr);
1668 		if (!vma || addr < vma->vm_start)
1669 			goto set_status;
1670 
1671 		/* FOLL_DUMP to ignore special (like zero) pages */
1672 		page = follow_page(vma, addr, FOLL_DUMP);
1673 
1674 		err = PTR_ERR(page);
1675 		if (IS_ERR(page))
1676 			goto set_status;
1677 
1678 		err = page ? page_to_nid(page) : -ENOENT;
1679 set_status:
1680 		*status = err;
1681 
1682 		pages++;
1683 		status++;
1684 	}
1685 
1686 	up_read(&mm->mmap_sem);
1687 }
1688 
1689 /*
1690  * Determine the nodes of a user array of pages and store it in
1691  * a user array of status.
1692  */
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694 			 const void __user * __user *pages,
1695 			 int __user *status)
1696 {
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1700 
1701 	while (nr_pages) {
1702 		unsigned long chunk_nr;
1703 
1704 		chunk_nr = nr_pages;
1705 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707 
1708 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709 			break;
1710 
1711 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712 
1713 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714 			break;
1715 
1716 		pages += chunk_nr;
1717 		status += chunk_nr;
1718 		nr_pages -= chunk_nr;
1719 	}
1720 	return nr_pages ? -EFAULT : 0;
1721 }
1722 
1723 /*
1724  * Move a list of pages in the address space of the currently executing
1725  * process.
1726  */
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728 			     const void __user * __user *pages,
1729 			     const int __user *nodes,
1730 			     int __user *status, int flags)
1731 {
1732 	struct task_struct *task;
1733 	struct mm_struct *mm;
1734 	int err;
1735 	nodemask_t task_nodes;
1736 
1737 	/* Check flags */
1738 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739 		return -EINVAL;
1740 
1741 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742 		return -EPERM;
1743 
1744 	/* Find the mm_struct */
1745 	rcu_read_lock();
1746 	task = pid ? find_task_by_vpid(pid) : current;
1747 	if (!task) {
1748 		rcu_read_unlock();
1749 		return -ESRCH;
1750 	}
1751 	get_task_struct(task);
1752 
1753 	/*
1754 	 * Check if this process has the right to modify the specified
1755 	 * process. Use the regular "ptrace_may_access()" checks.
1756 	 */
1757 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758 		rcu_read_unlock();
1759 		err = -EPERM;
1760 		goto out;
1761 	}
1762 	rcu_read_unlock();
1763 
1764  	err = security_task_movememory(task);
1765  	if (err)
1766 		goto out;
1767 
1768 	task_nodes = cpuset_mems_allowed(task);
1769 	mm = get_task_mm(task);
1770 	put_task_struct(task);
1771 
1772 	if (!mm)
1773 		return -EINVAL;
1774 
1775 	if (nodes)
1776 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777 				    nodes, status, flags);
1778 	else
1779 		err = do_pages_stat(mm, nr_pages, pages, status);
1780 
1781 	mmput(mm);
1782 	return err;
1783 
1784 out:
1785 	put_task_struct(task);
1786 	return err;
1787 }
1788 
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790 		const void __user * __user *, pages,
1791 		const int __user *, nodes,
1792 		int __user *, status, int, flags)
1793 {
1794 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795 }
1796 
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799 		       compat_uptr_t __user *, pages32,
1800 		       const int __user *, nodes,
1801 		       int __user *, status,
1802 		       int, flags)
1803 {
1804 	const void __user * __user *pages;
1805 	int i;
1806 
1807 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808 	for (i = 0; i < nr_pages; i++) {
1809 		compat_uptr_t p;
1810 
1811 		if (get_user(p, pages32 + i) ||
1812 			put_user(compat_ptr(p), pages + i))
1813 			return -EFAULT;
1814 	}
1815 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816 }
1817 #endif /* CONFIG_COMPAT */
1818 
1819 #ifdef CONFIG_NUMA_BALANCING
1820 /*
1821  * Returns true if this is a safe migration target node for misplaced NUMA
1822  * pages. Currently it only checks the watermarks which crude
1823  */
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825 				   unsigned long nr_migrate_pages)
1826 {
1827 	int z;
1828 
1829 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830 		struct zone *zone = pgdat->node_zones + z;
1831 
1832 		if (!populated_zone(zone))
1833 			continue;
1834 
1835 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836 		if (!zone_watermark_ok(zone, 0,
1837 				       high_wmark_pages(zone) +
1838 				       nr_migrate_pages,
1839 				       0, 0))
1840 			continue;
1841 		return true;
1842 	}
1843 	return false;
1844 }
1845 
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1847 					   unsigned long data)
1848 {
1849 	int nid = (int) data;
1850 	struct page *newpage;
1851 
1852 	newpage = __alloc_pages_node(nid,
1853 					 (GFP_HIGHUSER_MOVABLE |
1854 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1855 					  __GFP_NORETRY | __GFP_NOWARN) &
1856 					 ~__GFP_RECLAIM, 0);
1857 
1858 	return newpage;
1859 }
1860 
1861 /*
1862  * page migration rate limiting control.
1863  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1864  * window of time. Default here says do not migrate more than 1280M per second.
1865  */
1866 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1867 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1868 
1869 /* Returns true if the node is migrate rate-limited after the update */
1870 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1871 					unsigned long nr_pages)
1872 {
1873 	/*
1874 	 * Rate-limit the amount of data that is being migrated to a node.
1875 	 * Optimal placement is no good if the memory bus is saturated and
1876 	 * all the time is being spent migrating!
1877 	 */
1878 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1879 		spin_lock(&pgdat->numabalancing_migrate_lock);
1880 		pgdat->numabalancing_migrate_nr_pages = 0;
1881 		pgdat->numabalancing_migrate_next_window = jiffies +
1882 			msecs_to_jiffies(migrate_interval_millisecs);
1883 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1884 	}
1885 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1886 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1887 								nr_pages);
1888 		return true;
1889 	}
1890 
1891 	/*
1892 	 * This is an unlocked non-atomic update so errors are possible.
1893 	 * The consequences are failing to migrate when we potentiall should
1894 	 * have which is not severe enough to warrant locking. If it is ever
1895 	 * a problem, it can be converted to a per-cpu counter.
1896 	 */
1897 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1898 	return false;
1899 }
1900 
1901 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1902 {
1903 	int page_lru;
1904 
1905 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1906 
1907 	/* Avoid migrating to a node that is nearly full */
1908 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1909 		return 0;
1910 
1911 	if (isolate_lru_page(page))
1912 		return 0;
1913 
1914 	/*
1915 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1916 	 * check on page_count(), so we must do it here, now that the page
1917 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1918 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1919 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1920 	 */
1921 	if (PageTransHuge(page) && page_count(page) != 3) {
1922 		putback_lru_page(page);
1923 		return 0;
1924 	}
1925 
1926 	page_lru = page_is_file_cache(page);
1927 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1928 				hpage_nr_pages(page));
1929 
1930 	/*
1931 	 * Isolating the page has taken another reference, so the
1932 	 * caller's reference can be safely dropped without the page
1933 	 * disappearing underneath us during migration.
1934 	 */
1935 	put_page(page);
1936 	return 1;
1937 }
1938 
1939 bool pmd_trans_migrating(pmd_t pmd)
1940 {
1941 	struct page *page = pmd_page(pmd);
1942 	return PageLocked(page);
1943 }
1944 
1945 /*
1946  * Attempt to migrate a misplaced page to the specified destination
1947  * node. Caller is expected to have an elevated reference count on
1948  * the page that will be dropped by this function before returning.
1949  */
1950 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1951 			   int node)
1952 {
1953 	pg_data_t *pgdat = NODE_DATA(node);
1954 	int isolated;
1955 	int nr_remaining;
1956 	LIST_HEAD(migratepages);
1957 
1958 	/*
1959 	 * Don't migrate file pages that are mapped in multiple processes
1960 	 * with execute permissions as they are probably shared libraries.
1961 	 */
1962 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1963 	    (vma->vm_flags & VM_EXEC))
1964 		goto out;
1965 
1966 	/*
1967 	 * Also do not migrate dirty pages as not all filesystems can move
1968 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1969 	 */
1970 	if (page_is_file_cache(page) && PageDirty(page))
1971 		goto out;
1972 
1973 	/*
1974 	 * Rate-limit the amount of data that is being migrated to a node.
1975 	 * Optimal placement is no good if the memory bus is saturated and
1976 	 * all the time is being spent migrating!
1977 	 */
1978 	if (numamigrate_update_ratelimit(pgdat, 1))
1979 		goto out;
1980 
1981 	isolated = numamigrate_isolate_page(pgdat, page);
1982 	if (!isolated)
1983 		goto out;
1984 
1985 	list_add(&page->lru, &migratepages);
1986 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1987 				     NULL, node, MIGRATE_ASYNC,
1988 				     MR_NUMA_MISPLACED);
1989 	if (nr_remaining) {
1990 		if (!list_empty(&migratepages)) {
1991 			list_del(&page->lru);
1992 			dec_node_page_state(page, NR_ISOLATED_ANON +
1993 					page_is_file_cache(page));
1994 			putback_lru_page(page);
1995 		}
1996 		isolated = 0;
1997 	} else
1998 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1999 	BUG_ON(!list_empty(&migratepages));
2000 	return isolated;
2001 
2002 out:
2003 	put_page(page);
2004 	return 0;
2005 }
2006 #endif /* CONFIG_NUMA_BALANCING */
2007 
2008 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2009 /*
2010  * Migrates a THP to a given target node. page must be locked and is unlocked
2011  * before returning.
2012  */
2013 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2014 				struct vm_area_struct *vma,
2015 				pmd_t *pmd, pmd_t entry,
2016 				unsigned long address,
2017 				struct page *page, int node)
2018 {
2019 	spinlock_t *ptl;
2020 	pg_data_t *pgdat = NODE_DATA(node);
2021 	int isolated = 0;
2022 	struct page *new_page = NULL;
2023 	int page_lru = page_is_file_cache(page);
2024 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2025 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2026 
2027 	/*
2028 	 * Rate-limit the amount of data that is being migrated to a node.
2029 	 * Optimal placement is no good if the memory bus is saturated and
2030 	 * all the time is being spent migrating!
2031 	 */
2032 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2033 		goto out_dropref;
2034 
2035 	new_page = alloc_pages_node(node,
2036 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2037 		HPAGE_PMD_ORDER);
2038 	if (!new_page)
2039 		goto out_fail;
2040 	prep_transhuge_page(new_page);
2041 
2042 	isolated = numamigrate_isolate_page(pgdat, page);
2043 	if (!isolated) {
2044 		put_page(new_page);
2045 		goto out_fail;
2046 	}
2047 
2048 	/* Prepare a page as a migration target */
2049 	__SetPageLocked(new_page);
2050 	if (PageSwapBacked(page))
2051 		__SetPageSwapBacked(new_page);
2052 
2053 	/* anon mapping, we can simply copy page->mapping to the new page: */
2054 	new_page->mapping = page->mapping;
2055 	new_page->index = page->index;
2056 	migrate_page_copy(new_page, page);
2057 	WARN_ON(PageLRU(new_page));
2058 
2059 	/* Recheck the target PMD */
2060 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2061 	ptl = pmd_lock(mm, pmd);
2062 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2063 		spin_unlock(ptl);
2064 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2065 
2066 		/* Reverse changes made by migrate_page_copy() */
2067 		if (TestClearPageActive(new_page))
2068 			SetPageActive(page);
2069 		if (TestClearPageUnevictable(new_page))
2070 			SetPageUnevictable(page);
2071 
2072 		unlock_page(new_page);
2073 		put_page(new_page);		/* Free it */
2074 
2075 		/* Retake the callers reference and putback on LRU */
2076 		get_page(page);
2077 		putback_lru_page(page);
2078 		mod_node_page_state(page_pgdat(page),
2079 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2080 
2081 		goto out_unlock;
2082 	}
2083 
2084 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2085 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2086 
2087 	/*
2088 	 * Clear the old entry under pagetable lock and establish the new PTE.
2089 	 * Any parallel GUP will either observe the old page blocking on the
2090 	 * page lock, block on the page table lock or observe the new page.
2091 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2092 	 * guarantee the copy is visible before the pagetable update.
2093 	 */
2094 	flush_cache_range(vma, mmun_start, mmun_end);
2095 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2096 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2097 	set_pmd_at(mm, mmun_start, pmd, entry);
2098 	update_mmu_cache_pmd(vma, address, &entry);
2099 
2100 	page_ref_unfreeze(page, 2);
2101 	mlock_migrate_page(new_page, page);
2102 	page_remove_rmap(page, true);
2103 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2104 
2105 	spin_unlock(ptl);
2106 	/*
2107 	 * No need to double call mmu_notifier->invalidate_range() callback as
2108 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2109 	 */
2110 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2111 
2112 	/* Take an "isolate" reference and put new page on the LRU. */
2113 	get_page(new_page);
2114 	putback_lru_page(new_page);
2115 
2116 	unlock_page(new_page);
2117 	unlock_page(page);
2118 	put_page(page);			/* Drop the rmap reference */
2119 	put_page(page);			/* Drop the LRU isolation reference */
2120 
2121 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2122 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2123 
2124 	mod_node_page_state(page_pgdat(page),
2125 			NR_ISOLATED_ANON + page_lru,
2126 			-HPAGE_PMD_NR);
2127 	return isolated;
2128 
2129 out_fail:
2130 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2131 out_dropref:
2132 	ptl = pmd_lock(mm, pmd);
2133 	if (pmd_same(*pmd, entry)) {
2134 		entry = pmd_modify(entry, vma->vm_page_prot);
2135 		set_pmd_at(mm, mmun_start, pmd, entry);
2136 		update_mmu_cache_pmd(vma, address, &entry);
2137 	}
2138 	spin_unlock(ptl);
2139 
2140 out_unlock:
2141 	unlock_page(page);
2142 	put_page(page);
2143 	return 0;
2144 }
2145 #endif /* CONFIG_NUMA_BALANCING */
2146 
2147 #endif /* CONFIG_NUMA */
2148 
2149 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2150 struct migrate_vma {
2151 	struct vm_area_struct	*vma;
2152 	unsigned long		*dst;
2153 	unsigned long		*src;
2154 	unsigned long		cpages;
2155 	unsigned long		npages;
2156 	unsigned long		start;
2157 	unsigned long		end;
2158 };
2159 
2160 static int migrate_vma_collect_hole(unsigned long start,
2161 				    unsigned long end,
2162 				    struct mm_walk *walk)
2163 {
2164 	struct migrate_vma *migrate = walk->private;
2165 	unsigned long addr;
2166 
2167 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2168 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2169 		migrate->dst[migrate->npages] = 0;
2170 		migrate->npages++;
2171 		migrate->cpages++;
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 static int migrate_vma_collect_skip(unsigned long start,
2178 				    unsigned long end,
2179 				    struct mm_walk *walk)
2180 {
2181 	struct migrate_vma *migrate = walk->private;
2182 	unsigned long addr;
2183 
2184 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185 		migrate->dst[migrate->npages] = 0;
2186 		migrate->src[migrate->npages++] = 0;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2193 				   unsigned long start,
2194 				   unsigned long end,
2195 				   struct mm_walk *walk)
2196 {
2197 	struct migrate_vma *migrate = walk->private;
2198 	struct vm_area_struct *vma = walk->vma;
2199 	struct mm_struct *mm = vma->vm_mm;
2200 	unsigned long addr = start, unmapped = 0;
2201 	spinlock_t *ptl;
2202 	pte_t *ptep;
2203 
2204 again:
2205 	if (pmd_none(*pmdp))
2206 		return migrate_vma_collect_hole(start, end, walk);
2207 
2208 	if (pmd_trans_huge(*pmdp)) {
2209 		struct page *page;
2210 
2211 		ptl = pmd_lock(mm, pmdp);
2212 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2213 			spin_unlock(ptl);
2214 			goto again;
2215 		}
2216 
2217 		page = pmd_page(*pmdp);
2218 		if (is_huge_zero_page(page)) {
2219 			spin_unlock(ptl);
2220 			split_huge_pmd(vma, pmdp, addr);
2221 			if (pmd_trans_unstable(pmdp))
2222 				return migrate_vma_collect_skip(start, end,
2223 								walk);
2224 		} else {
2225 			int ret;
2226 
2227 			get_page(page);
2228 			spin_unlock(ptl);
2229 			if (unlikely(!trylock_page(page)))
2230 				return migrate_vma_collect_skip(start, end,
2231 								walk);
2232 			ret = split_huge_page(page);
2233 			unlock_page(page);
2234 			put_page(page);
2235 			if (ret)
2236 				return migrate_vma_collect_skip(start, end,
2237 								walk);
2238 			if (pmd_none(*pmdp))
2239 				return migrate_vma_collect_hole(start, end,
2240 								walk);
2241 		}
2242 	}
2243 
2244 	if (unlikely(pmd_bad(*pmdp)))
2245 		return migrate_vma_collect_skip(start, end, walk);
2246 
2247 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2248 	arch_enter_lazy_mmu_mode();
2249 
2250 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2251 		unsigned long mpfn, pfn;
2252 		struct page *page;
2253 		swp_entry_t entry;
2254 		pte_t pte;
2255 
2256 		pte = *ptep;
2257 		pfn = pte_pfn(pte);
2258 
2259 		if (pte_none(pte)) {
2260 			mpfn = MIGRATE_PFN_MIGRATE;
2261 			migrate->cpages++;
2262 			pfn = 0;
2263 			goto next;
2264 		}
2265 
2266 		if (!pte_present(pte)) {
2267 			mpfn = pfn = 0;
2268 
2269 			/*
2270 			 * Only care about unaddressable device page special
2271 			 * page table entry. Other special swap entries are not
2272 			 * migratable, and we ignore regular swapped page.
2273 			 */
2274 			entry = pte_to_swp_entry(pte);
2275 			if (!is_device_private_entry(entry))
2276 				goto next;
2277 
2278 			page = device_private_entry_to_page(entry);
2279 			mpfn = migrate_pfn(page_to_pfn(page))|
2280 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2281 			if (is_write_device_private_entry(entry))
2282 				mpfn |= MIGRATE_PFN_WRITE;
2283 		} else {
2284 			if (is_zero_pfn(pfn)) {
2285 				mpfn = MIGRATE_PFN_MIGRATE;
2286 				migrate->cpages++;
2287 				pfn = 0;
2288 				goto next;
2289 			}
2290 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2291 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2292 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2293 		}
2294 
2295 		/* FIXME support THP */
2296 		if (!page || !page->mapping || PageTransCompound(page)) {
2297 			mpfn = pfn = 0;
2298 			goto next;
2299 		}
2300 		pfn = page_to_pfn(page);
2301 
2302 		/*
2303 		 * By getting a reference on the page we pin it and that blocks
2304 		 * any kind of migration. Side effect is that it "freezes" the
2305 		 * pte.
2306 		 *
2307 		 * We drop this reference after isolating the page from the lru
2308 		 * for non device page (device page are not on the lru and thus
2309 		 * can't be dropped from it).
2310 		 */
2311 		get_page(page);
2312 		migrate->cpages++;
2313 
2314 		/*
2315 		 * Optimize for the common case where page is only mapped once
2316 		 * in one process. If we can lock the page, then we can safely
2317 		 * set up a special migration page table entry now.
2318 		 */
2319 		if (trylock_page(page)) {
2320 			pte_t swp_pte;
2321 
2322 			mpfn |= MIGRATE_PFN_LOCKED;
2323 			ptep_get_and_clear(mm, addr, ptep);
2324 
2325 			/* Setup special migration page table entry */
2326 			entry = make_migration_entry(page, mpfn &
2327 						     MIGRATE_PFN_WRITE);
2328 			swp_pte = swp_entry_to_pte(entry);
2329 			if (pte_soft_dirty(pte))
2330 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2331 			set_pte_at(mm, addr, ptep, swp_pte);
2332 
2333 			/*
2334 			 * This is like regular unmap: we remove the rmap and
2335 			 * drop page refcount. Page won't be freed, as we took
2336 			 * a reference just above.
2337 			 */
2338 			page_remove_rmap(page, false);
2339 			put_page(page);
2340 
2341 			if (pte_present(pte))
2342 				unmapped++;
2343 		}
2344 
2345 next:
2346 		migrate->dst[migrate->npages] = 0;
2347 		migrate->src[migrate->npages++] = mpfn;
2348 	}
2349 	arch_leave_lazy_mmu_mode();
2350 	pte_unmap_unlock(ptep - 1, ptl);
2351 
2352 	/* Only flush the TLB if we actually modified any entries */
2353 	if (unmapped)
2354 		flush_tlb_range(walk->vma, start, end);
2355 
2356 	return 0;
2357 }
2358 
2359 /*
2360  * migrate_vma_collect() - collect pages over a range of virtual addresses
2361  * @migrate: migrate struct containing all migration information
2362  *
2363  * This will walk the CPU page table. For each virtual address backed by a
2364  * valid page, it updates the src array and takes a reference on the page, in
2365  * order to pin the page until we lock it and unmap it.
2366  */
2367 static void migrate_vma_collect(struct migrate_vma *migrate)
2368 {
2369 	struct mm_walk mm_walk;
2370 
2371 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2372 	mm_walk.pte_entry = NULL;
2373 	mm_walk.pte_hole = migrate_vma_collect_hole;
2374 	mm_walk.hugetlb_entry = NULL;
2375 	mm_walk.test_walk = NULL;
2376 	mm_walk.vma = migrate->vma;
2377 	mm_walk.mm = migrate->vma->vm_mm;
2378 	mm_walk.private = migrate;
2379 
2380 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2381 					    migrate->start,
2382 					    migrate->end);
2383 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2384 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2385 					  migrate->start,
2386 					  migrate->end);
2387 
2388 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2389 }
2390 
2391 /*
2392  * migrate_vma_check_page() - check if page is pinned or not
2393  * @page: struct page to check
2394  *
2395  * Pinned pages cannot be migrated. This is the same test as in
2396  * migrate_page_move_mapping(), except that here we allow migration of a
2397  * ZONE_DEVICE page.
2398  */
2399 static bool migrate_vma_check_page(struct page *page)
2400 {
2401 	/*
2402 	 * One extra ref because caller holds an extra reference, either from
2403 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2404 	 * a device page.
2405 	 */
2406 	int extra = 1;
2407 
2408 	/*
2409 	 * FIXME support THP (transparent huge page), it is bit more complex to
2410 	 * check them than regular pages, because they can be mapped with a pmd
2411 	 * or with a pte (split pte mapping).
2412 	 */
2413 	if (PageCompound(page))
2414 		return false;
2415 
2416 	/* Page from ZONE_DEVICE have one extra reference */
2417 	if (is_zone_device_page(page)) {
2418 		/*
2419 		 * Private page can never be pin as they have no valid pte and
2420 		 * GUP will fail for those. Yet if there is a pending migration
2421 		 * a thread might try to wait on the pte migration entry and
2422 		 * will bump the page reference count. Sadly there is no way to
2423 		 * differentiate a regular pin from migration wait. Hence to
2424 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2425 		 * infinite loop (one stoping migration because the other is
2426 		 * waiting on pte migration entry). We always return true here.
2427 		 *
2428 		 * FIXME proper solution is to rework migration_entry_wait() so
2429 		 * it does not need to take a reference on page.
2430 		 */
2431 		if (is_device_private_page(page))
2432 			return true;
2433 
2434 		/*
2435 		 * Only allow device public page to be migrated and account for
2436 		 * the extra reference count imply by ZONE_DEVICE pages.
2437 		 */
2438 		if (!is_device_public_page(page))
2439 			return false;
2440 		extra++;
2441 	}
2442 
2443 	/* For file back page */
2444 	if (page_mapping(page))
2445 		extra += 1 + page_has_private(page);
2446 
2447 	if ((page_count(page) - extra) > page_mapcount(page))
2448 		return false;
2449 
2450 	return true;
2451 }
2452 
2453 /*
2454  * migrate_vma_prepare() - lock pages and isolate them from the lru
2455  * @migrate: migrate struct containing all migration information
2456  *
2457  * This locks pages that have been collected by migrate_vma_collect(). Once each
2458  * page is locked it is isolated from the lru (for non-device pages). Finally,
2459  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2460  * migrated by concurrent kernel threads.
2461  */
2462 static void migrate_vma_prepare(struct migrate_vma *migrate)
2463 {
2464 	const unsigned long npages = migrate->npages;
2465 	const unsigned long start = migrate->start;
2466 	unsigned long addr, i, restore = 0;
2467 	bool allow_drain = true;
2468 
2469 	lru_add_drain();
2470 
2471 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2472 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2473 		bool remap = true;
2474 
2475 		if (!page)
2476 			continue;
2477 
2478 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2479 			/*
2480 			 * Because we are migrating several pages there can be
2481 			 * a deadlock between 2 concurrent migration where each
2482 			 * are waiting on each other page lock.
2483 			 *
2484 			 * Make migrate_vma() a best effort thing and backoff
2485 			 * for any page we can not lock right away.
2486 			 */
2487 			if (!trylock_page(page)) {
2488 				migrate->src[i] = 0;
2489 				migrate->cpages--;
2490 				put_page(page);
2491 				continue;
2492 			}
2493 			remap = false;
2494 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2495 		}
2496 
2497 		/* ZONE_DEVICE pages are not on LRU */
2498 		if (!is_zone_device_page(page)) {
2499 			if (!PageLRU(page) && allow_drain) {
2500 				/* Drain CPU's pagevec */
2501 				lru_add_drain_all();
2502 				allow_drain = false;
2503 			}
2504 
2505 			if (isolate_lru_page(page)) {
2506 				if (remap) {
2507 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2508 					migrate->cpages--;
2509 					restore++;
2510 				} else {
2511 					migrate->src[i] = 0;
2512 					unlock_page(page);
2513 					migrate->cpages--;
2514 					put_page(page);
2515 				}
2516 				continue;
2517 			}
2518 
2519 			/* Drop the reference we took in collect */
2520 			put_page(page);
2521 		}
2522 
2523 		if (!migrate_vma_check_page(page)) {
2524 			if (remap) {
2525 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2526 				migrate->cpages--;
2527 				restore++;
2528 
2529 				if (!is_zone_device_page(page)) {
2530 					get_page(page);
2531 					putback_lru_page(page);
2532 				}
2533 			} else {
2534 				migrate->src[i] = 0;
2535 				unlock_page(page);
2536 				migrate->cpages--;
2537 
2538 				if (!is_zone_device_page(page))
2539 					putback_lru_page(page);
2540 				else
2541 					put_page(page);
2542 			}
2543 		}
2544 	}
2545 
2546 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2547 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2548 
2549 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2550 			continue;
2551 
2552 		remove_migration_pte(page, migrate->vma, addr, page);
2553 
2554 		migrate->src[i] = 0;
2555 		unlock_page(page);
2556 		put_page(page);
2557 		restore--;
2558 	}
2559 }
2560 
2561 /*
2562  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2563  * @migrate: migrate struct containing all migration information
2564  *
2565  * Replace page mapping (CPU page table pte) with a special migration pte entry
2566  * and check again if it has been pinned. Pinned pages are restored because we
2567  * cannot migrate them.
2568  *
2569  * This is the last step before we call the device driver callback to allocate
2570  * destination memory and copy contents of original page over to new page.
2571  */
2572 static void migrate_vma_unmap(struct migrate_vma *migrate)
2573 {
2574 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2575 	const unsigned long npages = migrate->npages;
2576 	const unsigned long start = migrate->start;
2577 	unsigned long addr, i, restore = 0;
2578 
2579 	for (i = 0; i < npages; i++) {
2580 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581 
2582 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2583 			continue;
2584 
2585 		if (page_mapped(page)) {
2586 			try_to_unmap(page, flags);
2587 			if (page_mapped(page))
2588 				goto restore;
2589 		}
2590 
2591 		if (migrate_vma_check_page(page))
2592 			continue;
2593 
2594 restore:
2595 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2596 		migrate->cpages--;
2597 		restore++;
2598 	}
2599 
2600 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2601 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2602 
2603 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2604 			continue;
2605 
2606 		remove_migration_ptes(page, page, false);
2607 
2608 		migrate->src[i] = 0;
2609 		unlock_page(page);
2610 		restore--;
2611 
2612 		if (is_zone_device_page(page))
2613 			put_page(page);
2614 		else
2615 			putback_lru_page(page);
2616 	}
2617 }
2618 
2619 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2620 				    unsigned long addr,
2621 				    struct page *page,
2622 				    unsigned long *src,
2623 				    unsigned long *dst)
2624 {
2625 	struct vm_area_struct *vma = migrate->vma;
2626 	struct mm_struct *mm = vma->vm_mm;
2627 	struct mem_cgroup *memcg;
2628 	bool flush = false;
2629 	spinlock_t *ptl;
2630 	pte_t entry;
2631 	pgd_t *pgdp;
2632 	p4d_t *p4dp;
2633 	pud_t *pudp;
2634 	pmd_t *pmdp;
2635 	pte_t *ptep;
2636 
2637 	/* Only allow populating anonymous memory */
2638 	if (!vma_is_anonymous(vma))
2639 		goto abort;
2640 
2641 	pgdp = pgd_offset(mm, addr);
2642 	p4dp = p4d_alloc(mm, pgdp, addr);
2643 	if (!p4dp)
2644 		goto abort;
2645 	pudp = pud_alloc(mm, p4dp, addr);
2646 	if (!pudp)
2647 		goto abort;
2648 	pmdp = pmd_alloc(mm, pudp, addr);
2649 	if (!pmdp)
2650 		goto abort;
2651 
2652 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2653 		goto abort;
2654 
2655 	/*
2656 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2657 	 * pte_offset_map() on pmds where a huge pmd might be created
2658 	 * from a different thread.
2659 	 *
2660 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2661 	 * parallel threads are excluded by other means.
2662 	 *
2663 	 * Here we only have down_read(mmap_sem).
2664 	 */
2665 	if (pte_alloc(mm, pmdp, addr))
2666 		goto abort;
2667 
2668 	/* See the comment in pte_alloc_one_map() */
2669 	if (unlikely(pmd_trans_unstable(pmdp)))
2670 		goto abort;
2671 
2672 	if (unlikely(anon_vma_prepare(vma)))
2673 		goto abort;
2674 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2675 		goto abort;
2676 
2677 	/*
2678 	 * The memory barrier inside __SetPageUptodate makes sure that
2679 	 * preceding stores to the page contents become visible before
2680 	 * the set_pte_at() write.
2681 	 */
2682 	__SetPageUptodate(page);
2683 
2684 	if (is_zone_device_page(page)) {
2685 		if (is_device_private_page(page)) {
2686 			swp_entry_t swp_entry;
2687 
2688 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2689 			entry = swp_entry_to_pte(swp_entry);
2690 		} else if (is_device_public_page(page)) {
2691 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2692 			if (vma->vm_flags & VM_WRITE)
2693 				entry = pte_mkwrite(pte_mkdirty(entry));
2694 			entry = pte_mkdevmap(entry);
2695 		}
2696 	} else {
2697 		entry = mk_pte(page, vma->vm_page_prot);
2698 		if (vma->vm_flags & VM_WRITE)
2699 			entry = pte_mkwrite(pte_mkdirty(entry));
2700 	}
2701 
2702 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2703 
2704 	if (pte_present(*ptep)) {
2705 		unsigned long pfn = pte_pfn(*ptep);
2706 
2707 		if (!is_zero_pfn(pfn)) {
2708 			pte_unmap_unlock(ptep, ptl);
2709 			mem_cgroup_cancel_charge(page, memcg, false);
2710 			goto abort;
2711 		}
2712 		flush = true;
2713 	} else if (!pte_none(*ptep)) {
2714 		pte_unmap_unlock(ptep, ptl);
2715 		mem_cgroup_cancel_charge(page, memcg, false);
2716 		goto abort;
2717 	}
2718 
2719 	/*
2720 	 * Check for usefaultfd but do not deliver the fault. Instead,
2721 	 * just back off.
2722 	 */
2723 	if (userfaultfd_missing(vma)) {
2724 		pte_unmap_unlock(ptep, ptl);
2725 		mem_cgroup_cancel_charge(page, memcg, false);
2726 		goto abort;
2727 	}
2728 
2729 	inc_mm_counter(mm, MM_ANONPAGES);
2730 	page_add_new_anon_rmap(page, vma, addr, false);
2731 	mem_cgroup_commit_charge(page, memcg, false, false);
2732 	if (!is_zone_device_page(page))
2733 		lru_cache_add_active_or_unevictable(page, vma);
2734 	get_page(page);
2735 
2736 	if (flush) {
2737 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2738 		ptep_clear_flush_notify(vma, addr, ptep);
2739 		set_pte_at_notify(mm, addr, ptep, entry);
2740 		update_mmu_cache(vma, addr, ptep);
2741 	} else {
2742 		/* No need to invalidate - it was non-present before */
2743 		set_pte_at(mm, addr, ptep, entry);
2744 		update_mmu_cache(vma, addr, ptep);
2745 	}
2746 
2747 	pte_unmap_unlock(ptep, ptl);
2748 	*src = MIGRATE_PFN_MIGRATE;
2749 	return;
2750 
2751 abort:
2752 	*src &= ~MIGRATE_PFN_MIGRATE;
2753 }
2754 
2755 /*
2756  * migrate_vma_pages() - migrate meta-data from src page to dst page
2757  * @migrate: migrate struct containing all migration information
2758  *
2759  * This migrates struct page meta-data from source struct page to destination
2760  * struct page. This effectively finishes the migration from source page to the
2761  * destination page.
2762  */
2763 static void migrate_vma_pages(struct migrate_vma *migrate)
2764 {
2765 	const unsigned long npages = migrate->npages;
2766 	const unsigned long start = migrate->start;
2767 	struct vm_area_struct *vma = migrate->vma;
2768 	struct mm_struct *mm = vma->vm_mm;
2769 	unsigned long addr, i, mmu_start;
2770 	bool notified = false;
2771 
2772 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2773 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2774 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2775 		struct address_space *mapping;
2776 		int r;
2777 
2778 		if (!newpage) {
2779 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2780 			continue;
2781 		}
2782 
2783 		if (!page) {
2784 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2785 				continue;
2786 			}
2787 			if (!notified) {
2788 				mmu_start = addr;
2789 				notified = true;
2790 				mmu_notifier_invalidate_range_start(mm,
2791 								mmu_start,
2792 								migrate->end);
2793 			}
2794 			migrate_vma_insert_page(migrate, addr, newpage,
2795 						&migrate->src[i],
2796 						&migrate->dst[i]);
2797 			continue;
2798 		}
2799 
2800 		mapping = page_mapping(page);
2801 
2802 		if (is_zone_device_page(newpage)) {
2803 			if (is_device_private_page(newpage)) {
2804 				/*
2805 				 * For now only support private anonymous when
2806 				 * migrating to un-addressable device memory.
2807 				 */
2808 				if (mapping) {
2809 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810 					continue;
2811 				}
2812 			} else if (!is_device_public_page(newpage)) {
2813 				/*
2814 				 * Other types of ZONE_DEVICE page are not
2815 				 * supported.
2816 				 */
2817 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2818 				continue;
2819 			}
2820 		}
2821 
2822 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2823 		if (r != MIGRATEPAGE_SUCCESS)
2824 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 	}
2826 
2827 	/*
2828 	 * No need to double call mmu_notifier->invalidate_range() callback as
2829 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2830 	 * did already call it.
2831 	 */
2832 	if (notified)
2833 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2834 						       migrate->end);
2835 }
2836 
2837 /*
2838  * migrate_vma_finalize() - restore CPU page table entry
2839  * @migrate: migrate struct containing all migration information
2840  *
2841  * This replaces the special migration pte entry with either a mapping to the
2842  * new page if migration was successful for that page, or to the original page
2843  * otherwise.
2844  *
2845  * This also unlocks the pages and puts them back on the lru, or drops the extra
2846  * refcount, for device pages.
2847  */
2848 static void migrate_vma_finalize(struct migrate_vma *migrate)
2849 {
2850 	const unsigned long npages = migrate->npages;
2851 	unsigned long i;
2852 
2853 	for (i = 0; i < npages; i++) {
2854 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2855 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2856 
2857 		if (!page) {
2858 			if (newpage) {
2859 				unlock_page(newpage);
2860 				put_page(newpage);
2861 			}
2862 			continue;
2863 		}
2864 
2865 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2866 			if (newpage) {
2867 				unlock_page(newpage);
2868 				put_page(newpage);
2869 			}
2870 			newpage = page;
2871 		}
2872 
2873 		remove_migration_ptes(page, newpage, false);
2874 		unlock_page(page);
2875 		migrate->cpages--;
2876 
2877 		if (is_zone_device_page(page))
2878 			put_page(page);
2879 		else
2880 			putback_lru_page(page);
2881 
2882 		if (newpage != page) {
2883 			unlock_page(newpage);
2884 			if (is_zone_device_page(newpage))
2885 				put_page(newpage);
2886 			else
2887 				putback_lru_page(newpage);
2888 		}
2889 	}
2890 }
2891 
2892 /*
2893  * migrate_vma() - migrate a range of memory inside vma
2894  *
2895  * @ops: migration callback for allocating destination memory and copying
2896  * @vma: virtual memory area containing the range to be migrated
2897  * @start: start address of the range to migrate (inclusive)
2898  * @end: end address of the range to migrate (exclusive)
2899  * @src: array of hmm_pfn_t containing source pfns
2900  * @dst: array of hmm_pfn_t containing destination pfns
2901  * @private: pointer passed back to each of the callback
2902  * Returns: 0 on success, error code otherwise
2903  *
2904  * This function tries to migrate a range of memory virtual address range, using
2905  * callbacks to allocate and copy memory from source to destination. First it
2906  * collects all the pages backing each virtual address in the range, saving this
2907  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2908  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2909  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2910  * in the corresponding src array entry. It then restores any pages that are
2911  * pinned, by remapping and unlocking those pages.
2912  *
2913  * At this point it calls the alloc_and_copy() callback. For documentation on
2914  * what is expected from that callback, see struct migrate_vma_ops comments in
2915  * include/linux/migrate.h
2916  *
2917  * After the alloc_and_copy() callback, this function goes over each entry in
2918  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2919  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2920  * then the function tries to migrate struct page information from the source
2921  * struct page to the destination struct page. If it fails to migrate the struct
2922  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2923  * array.
2924  *
2925  * At this point all successfully migrated pages have an entry in the src
2926  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2927  * array entry with MIGRATE_PFN_VALID flag set.
2928  *
2929  * It then calls the finalize_and_map() callback. See comments for "struct
2930  * migrate_vma_ops", in include/linux/migrate.h for details about
2931  * finalize_and_map() behavior.
2932  *
2933  * After the finalize_and_map() callback, for successfully migrated pages, this
2934  * function updates the CPU page table to point to new pages, otherwise it
2935  * restores the CPU page table to point to the original source pages.
2936  *
2937  * Function returns 0 after the above steps, even if no pages were migrated
2938  * (The function only returns an error if any of the arguments are invalid.)
2939  *
2940  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2941  * unsigned long entries.
2942  */
2943 int migrate_vma(const struct migrate_vma_ops *ops,
2944 		struct vm_area_struct *vma,
2945 		unsigned long start,
2946 		unsigned long end,
2947 		unsigned long *src,
2948 		unsigned long *dst,
2949 		void *private)
2950 {
2951 	struct migrate_vma migrate;
2952 
2953 	/* Sanity check the arguments */
2954 	start &= PAGE_MASK;
2955 	end &= PAGE_MASK;
2956 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2957 		return -EINVAL;
2958 	if (start < vma->vm_start || start >= vma->vm_end)
2959 		return -EINVAL;
2960 	if (end <= vma->vm_start || end > vma->vm_end)
2961 		return -EINVAL;
2962 	if (!ops || !src || !dst || start >= end)
2963 		return -EINVAL;
2964 
2965 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2966 	migrate.src = src;
2967 	migrate.dst = dst;
2968 	migrate.start = start;
2969 	migrate.npages = 0;
2970 	migrate.cpages = 0;
2971 	migrate.end = end;
2972 	migrate.vma = vma;
2973 
2974 	/* Collect, and try to unmap source pages */
2975 	migrate_vma_collect(&migrate);
2976 	if (!migrate.cpages)
2977 		return 0;
2978 
2979 	/* Lock and isolate page */
2980 	migrate_vma_prepare(&migrate);
2981 	if (!migrate.cpages)
2982 		return 0;
2983 
2984 	/* Unmap pages */
2985 	migrate_vma_unmap(&migrate);
2986 	if (!migrate.cpages)
2987 		return 0;
2988 
2989 	/*
2990 	 * At this point pages are locked and unmapped, and thus they have
2991 	 * stable content and can safely be copied to destination memory that
2992 	 * is allocated by the callback.
2993 	 *
2994 	 * Note that migration can fail in migrate_vma_struct_page() for each
2995 	 * individual page.
2996 	 */
2997 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2998 
2999 	/* This does the real migration of struct page */
3000 	migrate_vma_pages(&migrate);
3001 
3002 	ops->finalize_and_map(vma, src, dst, start, end, private);
3003 
3004 	/* Unlock and remap pages */
3005 	migrate_vma_finalize(&migrate);
3006 
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL(migrate_vma);
3010 #endif /* defined(MIGRATE_VMA_HELPER) */
3011