xref: /openbmc/linux/mm/migrate.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once radix-tree replacement of page migration started, page_count
327 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 	 * against a page without get_page().
329 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 	 * will occur again.
331 	 */
332 	if (!get_page_unless_zero(page))
333 		goto out;
334 	pte_unmap_unlock(ptep, ptl);
335 	wait_on_page_locked(page);
336 	put_page(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	wait_on_page_locked(page);
371 	put_page(page);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 							enum migrate_mode mode)
382 {
383 	struct buffer_head *bh = head;
384 
385 	/* Simple case, sync compaction */
386 	if (mode != MIGRATE_ASYNC) {
387 		do {
388 			get_bh(bh);
389 			lock_buffer(bh);
390 			bh = bh->b_this_page;
391 
392 		} while (bh != head);
393 
394 		return true;
395 	}
396 
397 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
398 	do {
399 		get_bh(bh);
400 		if (!trylock_buffer(bh)) {
401 			/*
402 			 * We failed to lock the buffer and cannot stall in
403 			 * async migration. Release the taken locks
404 			 */
405 			struct buffer_head *failed_bh = bh;
406 			put_bh(failed_bh);
407 			bh = head;
408 			while (bh != failed_bh) {
409 				unlock_buffer(bh);
410 				put_bh(bh);
411 				bh = bh->b_this_page;
412 			}
413 			return false;
414 		}
415 
416 		bh = bh->b_this_page;
417 	} while (bh != head);
418 	return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 							enum migrate_mode mode)
423 {
424 	return true;
425 }
426 #endif /* CONFIG_BLOCK */
427 
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 		struct page *newpage, struct page *page,
438 		struct buffer_head *head, enum migrate_mode mode,
439 		int extra_count)
440 {
441 	struct zone *oldzone, *newzone;
442 	int dirty;
443 	int expected_count = 1 + extra_count;
444 	void **pslot;
445 
446 	/*
447 	 * Device public or private pages have an extra refcount as they are
448 	 * ZONE_DEVICE pages.
449 	 */
450 	expected_count += is_device_private_page(page);
451 	expected_count += is_device_public_page(page);
452 
453 	if (!mapping) {
454 		/* Anonymous page without mapping */
455 		if (page_count(page) != expected_count)
456 			return -EAGAIN;
457 
458 		/* No turning back from here */
459 		newpage->index = page->index;
460 		newpage->mapping = page->mapping;
461 		if (PageSwapBacked(page))
462 			__SetPageSwapBacked(newpage);
463 
464 		return MIGRATEPAGE_SUCCESS;
465 	}
466 
467 	oldzone = page_zone(page);
468 	newzone = page_zone(newpage);
469 
470 	xa_lock_irq(&mapping->i_pages);
471 
472 	pslot = radix_tree_lookup_slot(&mapping->i_pages,
473  					page_index(page));
474 
475 	expected_count += hpage_nr_pages(page) + page_has_private(page);
476 	if (page_count(page) != expected_count ||
477 		radix_tree_deref_slot_protected(pslot,
478 					&mapping->i_pages.xa_lock) != page) {
479 		xa_unlock_irq(&mapping->i_pages);
480 		return -EAGAIN;
481 	}
482 
483 	if (!page_ref_freeze(page, expected_count)) {
484 		xa_unlock_irq(&mapping->i_pages);
485 		return -EAGAIN;
486 	}
487 
488 	/*
489 	 * In the async migration case of moving a page with buffers, lock the
490 	 * buffers using trylock before the mapping is moved. If the mapping
491 	 * was moved, we later failed to lock the buffers and could not move
492 	 * the mapping back due to an elevated page count, we would have to
493 	 * block waiting on other references to be dropped.
494 	 */
495 	if (mode == MIGRATE_ASYNC && head &&
496 			!buffer_migrate_lock_buffers(head, mode)) {
497 		page_ref_unfreeze(page, expected_count);
498 		xa_unlock_irq(&mapping->i_pages);
499 		return -EAGAIN;
500 	}
501 
502 	/*
503 	 * Now we know that no one else is looking at the page:
504 	 * no turning back from here.
505 	 */
506 	newpage->index = page->index;
507 	newpage->mapping = page->mapping;
508 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 	if (PageSwapBacked(page)) {
510 		__SetPageSwapBacked(newpage);
511 		if (PageSwapCache(page)) {
512 			SetPageSwapCache(newpage);
513 			set_page_private(newpage, page_private(page));
514 		}
515 	} else {
516 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
517 	}
518 
519 	/* Move dirty while page refs frozen and newpage not yet exposed */
520 	dirty = PageDirty(page);
521 	if (dirty) {
522 		ClearPageDirty(page);
523 		SetPageDirty(newpage);
524 	}
525 
526 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 	if (PageTransHuge(page)) {
528 		int i;
529 		int index = page_index(page);
530 
531 		for (i = 1; i < HPAGE_PMD_NR; i++) {
532 			pslot = radix_tree_lookup_slot(&mapping->i_pages,
533 						       index + i);
534 			radix_tree_replace_slot(&mapping->i_pages, pslot,
535 						newpage + i);
536 		}
537 	}
538 
539 	/*
540 	 * Drop cache reference from old page by unfreezing
541 	 * to one less reference.
542 	 * We know this isn't the last reference.
543 	 */
544 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
545 
546 	xa_unlock(&mapping->i_pages);
547 	/* Leave irq disabled to prevent preemption while updating stats */
548 
549 	/*
550 	 * If moved to a different zone then also account
551 	 * the page for that zone. Other VM counters will be
552 	 * taken care of when we establish references to the
553 	 * new page and drop references to the old page.
554 	 *
555 	 * Note that anonymous pages are accounted for
556 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
557 	 * are mapped to swap space.
558 	 */
559 	if (newzone != oldzone) {
560 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
561 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
562 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
563 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
564 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
565 		}
566 		if (dirty && mapping_cap_account_dirty(mapping)) {
567 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
568 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
569 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
570 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
571 		}
572 	}
573 	local_irq_enable();
574 
575 	return MIGRATEPAGE_SUCCESS;
576 }
577 EXPORT_SYMBOL(migrate_page_move_mapping);
578 
579 /*
580  * The expected number of remaining references is the same as that
581  * of migrate_page_move_mapping().
582  */
583 int migrate_huge_page_move_mapping(struct address_space *mapping,
584 				   struct page *newpage, struct page *page)
585 {
586 	int expected_count;
587 	void **pslot;
588 
589 	xa_lock_irq(&mapping->i_pages);
590 
591 	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
592 
593 	expected_count = 2 + page_has_private(page);
594 	if (page_count(page) != expected_count ||
595 		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
596 		xa_unlock_irq(&mapping->i_pages);
597 		return -EAGAIN;
598 	}
599 
600 	if (!page_ref_freeze(page, expected_count)) {
601 		xa_unlock_irq(&mapping->i_pages);
602 		return -EAGAIN;
603 	}
604 
605 	newpage->index = page->index;
606 	newpage->mapping = page->mapping;
607 
608 	get_page(newpage);
609 
610 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
611 
612 	page_ref_unfreeze(page, expected_count - 1);
613 
614 	xa_unlock_irq(&mapping->i_pages);
615 
616 	return MIGRATEPAGE_SUCCESS;
617 }
618 
619 /*
620  * Gigantic pages are so large that we do not guarantee that page++ pointer
621  * arithmetic will work across the entire page.  We need something more
622  * specialized.
623  */
624 static void __copy_gigantic_page(struct page *dst, struct page *src,
625 				int nr_pages)
626 {
627 	int i;
628 	struct page *dst_base = dst;
629 	struct page *src_base = src;
630 
631 	for (i = 0; i < nr_pages; ) {
632 		cond_resched();
633 		copy_highpage(dst, src);
634 
635 		i++;
636 		dst = mem_map_next(dst, dst_base, i);
637 		src = mem_map_next(src, src_base, i);
638 	}
639 }
640 
641 static void copy_huge_page(struct page *dst, struct page *src)
642 {
643 	int i;
644 	int nr_pages;
645 
646 	if (PageHuge(src)) {
647 		/* hugetlbfs page */
648 		struct hstate *h = page_hstate(src);
649 		nr_pages = pages_per_huge_page(h);
650 
651 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
652 			__copy_gigantic_page(dst, src, nr_pages);
653 			return;
654 		}
655 	} else {
656 		/* thp page */
657 		BUG_ON(!PageTransHuge(src));
658 		nr_pages = hpage_nr_pages(src);
659 	}
660 
661 	for (i = 0; i < nr_pages; i++) {
662 		cond_resched();
663 		copy_highpage(dst + i, src + i);
664 	}
665 }
666 
667 /*
668  * Copy the page to its new location
669  */
670 void migrate_page_states(struct page *newpage, struct page *page)
671 {
672 	int cpupid;
673 
674 	if (PageError(page))
675 		SetPageError(newpage);
676 	if (PageReferenced(page))
677 		SetPageReferenced(newpage);
678 	if (PageUptodate(page))
679 		SetPageUptodate(newpage);
680 	if (TestClearPageActive(page)) {
681 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
682 		SetPageActive(newpage);
683 	} else if (TestClearPageUnevictable(page))
684 		SetPageUnevictable(newpage);
685 	if (PageChecked(page))
686 		SetPageChecked(newpage);
687 	if (PageMappedToDisk(page))
688 		SetPageMappedToDisk(newpage);
689 
690 	/* Move dirty on pages not done by migrate_page_move_mapping() */
691 	if (PageDirty(page))
692 		SetPageDirty(newpage);
693 
694 	if (page_is_young(page))
695 		set_page_young(newpage);
696 	if (page_is_idle(page))
697 		set_page_idle(newpage);
698 
699 	/*
700 	 * Copy NUMA information to the new page, to prevent over-eager
701 	 * future migrations of this same page.
702 	 */
703 	cpupid = page_cpupid_xchg_last(page, -1);
704 	page_cpupid_xchg_last(newpage, cpupid);
705 
706 	ksm_migrate_page(newpage, page);
707 	/*
708 	 * Please do not reorder this without considering how mm/ksm.c's
709 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
710 	 */
711 	if (PageSwapCache(page))
712 		ClearPageSwapCache(page);
713 	ClearPagePrivate(page);
714 	set_page_private(page, 0);
715 
716 	/*
717 	 * If any waiters have accumulated on the new page then
718 	 * wake them up.
719 	 */
720 	if (PageWriteback(newpage))
721 		end_page_writeback(newpage);
722 
723 	copy_page_owner(page, newpage);
724 
725 	mem_cgroup_migrate(page, newpage);
726 }
727 EXPORT_SYMBOL(migrate_page_states);
728 
729 void migrate_page_copy(struct page *newpage, struct page *page)
730 {
731 	if (PageHuge(page) || PageTransHuge(page))
732 		copy_huge_page(newpage, page);
733 	else
734 		copy_highpage(newpage, page);
735 
736 	migrate_page_states(newpage, page);
737 }
738 EXPORT_SYMBOL(migrate_page_copy);
739 
740 /************************************************************
741  *                    Migration functions
742  ***********************************************************/
743 
744 /*
745  * Common logic to directly migrate a single LRU page suitable for
746  * pages that do not use PagePrivate/PagePrivate2.
747  *
748  * Pages are locked upon entry and exit.
749  */
750 int migrate_page(struct address_space *mapping,
751 		struct page *newpage, struct page *page,
752 		enum migrate_mode mode)
753 {
754 	int rc;
755 
756 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
757 
758 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
759 
760 	if (rc != MIGRATEPAGE_SUCCESS)
761 		return rc;
762 
763 	if (mode != MIGRATE_SYNC_NO_COPY)
764 		migrate_page_copy(newpage, page);
765 	else
766 		migrate_page_states(newpage, page);
767 	return MIGRATEPAGE_SUCCESS;
768 }
769 EXPORT_SYMBOL(migrate_page);
770 
771 #ifdef CONFIG_BLOCK
772 /*
773  * Migration function for pages with buffers. This function can only be used
774  * if the underlying filesystem guarantees that no other references to "page"
775  * exist.
776  */
777 int buffer_migrate_page(struct address_space *mapping,
778 		struct page *newpage, struct page *page, enum migrate_mode mode)
779 {
780 	struct buffer_head *bh, *head;
781 	int rc;
782 
783 	if (!page_has_buffers(page))
784 		return migrate_page(mapping, newpage, page, mode);
785 
786 	head = page_buffers(page);
787 
788 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
789 
790 	if (rc != MIGRATEPAGE_SUCCESS)
791 		return rc;
792 
793 	/*
794 	 * In the async case, migrate_page_move_mapping locked the buffers
795 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
796 	 * need to be locked now
797 	 */
798 	if (mode != MIGRATE_ASYNC)
799 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
800 
801 	ClearPagePrivate(page);
802 	set_page_private(newpage, page_private(page));
803 	set_page_private(page, 0);
804 	put_page(page);
805 	get_page(newpage);
806 
807 	bh = head;
808 	do {
809 		set_bh_page(bh, newpage, bh_offset(bh));
810 		bh = bh->b_this_page;
811 
812 	} while (bh != head);
813 
814 	SetPagePrivate(newpage);
815 
816 	if (mode != MIGRATE_SYNC_NO_COPY)
817 		migrate_page_copy(newpage, page);
818 	else
819 		migrate_page_states(newpage, page);
820 
821 	bh = head;
822 	do {
823 		unlock_buffer(bh);
824 		put_bh(bh);
825 		bh = bh->b_this_page;
826 
827 	} while (bh != head);
828 
829 	return MIGRATEPAGE_SUCCESS;
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832 #endif
833 
834 /*
835  * Writeback a page to clean the dirty state
836  */
837 static int writeout(struct address_space *mapping, struct page *page)
838 {
839 	struct writeback_control wbc = {
840 		.sync_mode = WB_SYNC_NONE,
841 		.nr_to_write = 1,
842 		.range_start = 0,
843 		.range_end = LLONG_MAX,
844 		.for_reclaim = 1
845 	};
846 	int rc;
847 
848 	if (!mapping->a_ops->writepage)
849 		/* No write method for the address space */
850 		return -EINVAL;
851 
852 	if (!clear_page_dirty_for_io(page))
853 		/* Someone else already triggered a write */
854 		return -EAGAIN;
855 
856 	/*
857 	 * A dirty page may imply that the underlying filesystem has
858 	 * the page on some queue. So the page must be clean for
859 	 * migration. Writeout may mean we loose the lock and the
860 	 * page state is no longer what we checked for earlier.
861 	 * At this point we know that the migration attempt cannot
862 	 * be successful.
863 	 */
864 	remove_migration_ptes(page, page, false);
865 
866 	rc = mapping->a_ops->writepage(page, &wbc);
867 
868 	if (rc != AOP_WRITEPAGE_ACTIVATE)
869 		/* unlocked. Relock */
870 		lock_page(page);
871 
872 	return (rc < 0) ? -EIO : -EAGAIN;
873 }
874 
875 /*
876  * Default handling if a filesystem does not provide a migration function.
877  */
878 static int fallback_migrate_page(struct address_space *mapping,
879 	struct page *newpage, struct page *page, enum migrate_mode mode)
880 {
881 	if (PageDirty(page)) {
882 		/* Only writeback pages in full synchronous migration */
883 		switch (mode) {
884 		case MIGRATE_SYNC:
885 		case MIGRATE_SYNC_NO_COPY:
886 			break;
887 		default:
888 			return -EBUSY;
889 		}
890 		return writeout(mapping, page);
891 	}
892 
893 	/*
894 	 * Buffers may be managed in a filesystem specific way.
895 	 * We must have no buffers or drop them.
896 	 */
897 	if (page_has_private(page) &&
898 	    !try_to_release_page(page, GFP_KERNEL))
899 		return -EAGAIN;
900 
901 	return migrate_page(mapping, newpage, page, mode);
902 }
903 
904 /*
905  * Move a page to a newly allocated page
906  * The page is locked and all ptes have been successfully removed.
907  *
908  * The new page will have replaced the old page if this function
909  * is successful.
910  *
911  * Return value:
912  *   < 0 - error code
913  *  MIGRATEPAGE_SUCCESS - success
914  */
915 static int move_to_new_page(struct page *newpage, struct page *page,
916 				enum migrate_mode mode)
917 {
918 	struct address_space *mapping;
919 	int rc = -EAGAIN;
920 	bool is_lru = !__PageMovable(page);
921 
922 	VM_BUG_ON_PAGE(!PageLocked(page), page);
923 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
924 
925 	mapping = page_mapping(page);
926 
927 	if (likely(is_lru)) {
928 		if (!mapping)
929 			rc = migrate_page(mapping, newpage, page, mode);
930 		else if (mapping->a_ops->migratepage)
931 			/*
932 			 * Most pages have a mapping and most filesystems
933 			 * provide a migratepage callback. Anonymous pages
934 			 * are part of swap space which also has its own
935 			 * migratepage callback. This is the most common path
936 			 * for page migration.
937 			 */
938 			rc = mapping->a_ops->migratepage(mapping, newpage,
939 							page, mode);
940 		else
941 			rc = fallback_migrate_page(mapping, newpage,
942 							page, mode);
943 	} else {
944 		/*
945 		 * In case of non-lru page, it could be released after
946 		 * isolation step. In that case, we shouldn't try migration.
947 		 */
948 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
949 		if (!PageMovable(page)) {
950 			rc = MIGRATEPAGE_SUCCESS;
951 			__ClearPageIsolated(page);
952 			goto out;
953 		}
954 
955 		rc = mapping->a_ops->migratepage(mapping, newpage,
956 						page, mode);
957 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
958 			!PageIsolated(page));
959 	}
960 
961 	/*
962 	 * When successful, old pagecache page->mapping must be cleared before
963 	 * page is freed; but stats require that PageAnon be left as PageAnon.
964 	 */
965 	if (rc == MIGRATEPAGE_SUCCESS) {
966 		if (__PageMovable(page)) {
967 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
968 
969 			/*
970 			 * We clear PG_movable under page_lock so any compactor
971 			 * cannot try to migrate this page.
972 			 */
973 			__ClearPageIsolated(page);
974 		}
975 
976 		/*
977 		 * Anonymous and movable page->mapping will be cleard by
978 		 * free_pages_prepare so don't reset it here for keeping
979 		 * the type to work PageAnon, for example.
980 		 */
981 		if (!PageMappingFlags(page))
982 			page->mapping = NULL;
983 	}
984 out:
985 	return rc;
986 }
987 
988 static int __unmap_and_move(struct page *page, struct page *newpage,
989 				int force, enum migrate_mode mode)
990 {
991 	int rc = -EAGAIN;
992 	int page_was_mapped = 0;
993 	struct anon_vma *anon_vma = NULL;
994 	bool is_lru = !__PageMovable(page);
995 
996 	if (!trylock_page(page)) {
997 		if (!force || mode == MIGRATE_ASYNC)
998 			goto out;
999 
1000 		/*
1001 		 * It's not safe for direct compaction to call lock_page.
1002 		 * For example, during page readahead pages are added locked
1003 		 * to the LRU. Later, when the IO completes the pages are
1004 		 * marked uptodate and unlocked. However, the queueing
1005 		 * could be merging multiple pages for one bio (e.g.
1006 		 * mpage_readpages). If an allocation happens for the
1007 		 * second or third page, the process can end up locking
1008 		 * the same page twice and deadlocking. Rather than
1009 		 * trying to be clever about what pages can be locked,
1010 		 * avoid the use of lock_page for direct compaction
1011 		 * altogether.
1012 		 */
1013 		if (current->flags & PF_MEMALLOC)
1014 			goto out;
1015 
1016 		lock_page(page);
1017 	}
1018 
1019 	if (PageWriteback(page)) {
1020 		/*
1021 		 * Only in the case of a full synchronous migration is it
1022 		 * necessary to wait for PageWriteback. In the async case,
1023 		 * the retry loop is too short and in the sync-light case,
1024 		 * the overhead of stalling is too much
1025 		 */
1026 		switch (mode) {
1027 		case MIGRATE_SYNC:
1028 		case MIGRATE_SYNC_NO_COPY:
1029 			break;
1030 		default:
1031 			rc = -EBUSY;
1032 			goto out_unlock;
1033 		}
1034 		if (!force)
1035 			goto out_unlock;
1036 		wait_on_page_writeback(page);
1037 	}
1038 
1039 	/*
1040 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041 	 * we cannot notice that anon_vma is freed while we migrates a page.
1042 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043 	 * of migration. File cache pages are no problem because of page_lock()
1044 	 * File Caches may use write_page() or lock_page() in migration, then,
1045 	 * just care Anon page here.
1046 	 *
1047 	 * Only page_get_anon_vma() understands the subtleties of
1048 	 * getting a hold on an anon_vma from outside one of its mms.
1049 	 * But if we cannot get anon_vma, then we won't need it anyway,
1050 	 * because that implies that the anon page is no longer mapped
1051 	 * (and cannot be remapped so long as we hold the page lock).
1052 	 */
1053 	if (PageAnon(page) && !PageKsm(page))
1054 		anon_vma = page_get_anon_vma(page);
1055 
1056 	/*
1057 	 * Block others from accessing the new page when we get around to
1058 	 * establishing additional references. We are usually the only one
1059 	 * holding a reference to newpage at this point. We used to have a BUG
1060 	 * here if trylock_page(newpage) fails, but would like to allow for
1061 	 * cases where there might be a race with the previous use of newpage.
1062 	 * This is much like races on refcount of oldpage: just don't BUG().
1063 	 */
1064 	if (unlikely(!trylock_page(newpage)))
1065 		goto out_unlock;
1066 
1067 	if (unlikely(!is_lru)) {
1068 		rc = move_to_new_page(newpage, page, mode);
1069 		goto out_unlock_both;
1070 	}
1071 
1072 	/*
1073 	 * Corner case handling:
1074 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1075 	 * and treated as swapcache but it has no rmap yet.
1076 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1077 	 * trigger a BUG.  So handle it here.
1078 	 * 2. An orphaned page (see truncate_complete_page) might have
1079 	 * fs-private metadata. The page can be picked up due to memory
1080 	 * offlining.  Everywhere else except page reclaim, the page is
1081 	 * invisible to the vm, so the page can not be migrated.  So try to
1082 	 * free the metadata, so the page can be freed.
1083 	 */
1084 	if (!page->mapping) {
1085 		VM_BUG_ON_PAGE(PageAnon(page), page);
1086 		if (page_has_private(page)) {
1087 			try_to_free_buffers(page);
1088 			goto out_unlock_both;
1089 		}
1090 	} else if (page_mapped(page)) {
1091 		/* Establish migration ptes */
1092 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093 				page);
1094 		try_to_unmap(page,
1095 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096 		page_was_mapped = 1;
1097 	}
1098 
1099 	if (!page_mapped(page))
1100 		rc = move_to_new_page(newpage, page, mode);
1101 
1102 	if (page_was_mapped)
1103 		remove_migration_ptes(page,
1104 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1105 
1106 out_unlock_both:
1107 	unlock_page(newpage);
1108 out_unlock:
1109 	/* Drop an anon_vma reference if we took one */
1110 	if (anon_vma)
1111 		put_anon_vma(anon_vma);
1112 	unlock_page(page);
1113 out:
1114 	/*
1115 	 * If migration is successful, decrease refcount of the newpage
1116 	 * which will not free the page because new page owner increased
1117 	 * refcounter. As well, if it is LRU page, add the page to LRU
1118 	 * list in here.
1119 	 */
1120 	if (rc == MIGRATEPAGE_SUCCESS) {
1121 		if (unlikely(__PageMovable(newpage)))
1122 			put_page(newpage);
1123 		else
1124 			putback_lru_page(newpage);
1125 	}
1126 
1127 	return rc;
1128 }
1129 
1130 /*
1131  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1132  * around it.
1133  */
1134 #if defined(CONFIG_ARM) && \
1135 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1136 #define ICE_noinline noinline
1137 #else
1138 #define ICE_noinline
1139 #endif
1140 
1141 /*
1142  * Obtain the lock on page, remove all ptes and migrate the page
1143  * to the newly allocated page in newpage.
1144  */
1145 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1146 				   free_page_t put_new_page,
1147 				   unsigned long private, struct page *page,
1148 				   int force, enum migrate_mode mode,
1149 				   enum migrate_reason reason)
1150 {
1151 	int rc = MIGRATEPAGE_SUCCESS;
1152 	struct page *newpage;
1153 
1154 	if (!thp_migration_supported() && PageTransHuge(page))
1155 		return -ENOMEM;
1156 
1157 	newpage = get_new_page(page, private);
1158 	if (!newpage)
1159 		return -ENOMEM;
1160 
1161 	if (page_count(page) == 1) {
1162 		/* page was freed from under us. So we are done. */
1163 		ClearPageActive(page);
1164 		ClearPageUnevictable(page);
1165 		if (unlikely(__PageMovable(page))) {
1166 			lock_page(page);
1167 			if (!PageMovable(page))
1168 				__ClearPageIsolated(page);
1169 			unlock_page(page);
1170 		}
1171 		if (put_new_page)
1172 			put_new_page(newpage, private);
1173 		else
1174 			put_page(newpage);
1175 		goto out;
1176 	}
1177 
1178 	rc = __unmap_and_move(page, newpage, force, mode);
1179 	if (rc == MIGRATEPAGE_SUCCESS)
1180 		set_page_owner_migrate_reason(newpage, reason);
1181 
1182 out:
1183 	if (rc != -EAGAIN) {
1184 		/*
1185 		 * A page that has been migrated has all references
1186 		 * removed and will be freed. A page that has not been
1187 		 * migrated will have kepts its references and be
1188 		 * restored.
1189 		 */
1190 		list_del(&page->lru);
1191 
1192 		/*
1193 		 * Compaction can migrate also non-LRU pages which are
1194 		 * not accounted to NR_ISOLATED_*. They can be recognized
1195 		 * as __PageMovable
1196 		 */
1197 		if (likely(!__PageMovable(page)))
1198 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1199 					page_is_file_cache(page), -hpage_nr_pages(page));
1200 	}
1201 
1202 	/*
1203 	 * If migration is successful, releases reference grabbed during
1204 	 * isolation. Otherwise, restore the page to right list unless
1205 	 * we want to retry.
1206 	 */
1207 	if (rc == MIGRATEPAGE_SUCCESS) {
1208 		put_page(page);
1209 		if (reason == MR_MEMORY_FAILURE) {
1210 			/*
1211 			 * Set PG_HWPoison on just freed page
1212 			 * intentionally. Although it's rather weird,
1213 			 * it's how HWPoison flag works at the moment.
1214 			 */
1215 			if (set_hwpoison_free_buddy_page(page))
1216 				num_poisoned_pages_inc();
1217 		}
1218 	} else {
1219 		if (rc != -EAGAIN) {
1220 			if (likely(!__PageMovable(page))) {
1221 				putback_lru_page(page);
1222 				goto put_new;
1223 			}
1224 
1225 			lock_page(page);
1226 			if (PageMovable(page))
1227 				putback_movable_page(page);
1228 			else
1229 				__ClearPageIsolated(page);
1230 			unlock_page(page);
1231 			put_page(page);
1232 		}
1233 put_new:
1234 		if (put_new_page)
1235 			put_new_page(newpage, private);
1236 		else
1237 			put_page(newpage);
1238 	}
1239 
1240 	return rc;
1241 }
1242 
1243 /*
1244  * Counterpart of unmap_and_move_page() for hugepage migration.
1245  *
1246  * This function doesn't wait the completion of hugepage I/O
1247  * because there is no race between I/O and migration for hugepage.
1248  * Note that currently hugepage I/O occurs only in direct I/O
1249  * where no lock is held and PG_writeback is irrelevant,
1250  * and writeback status of all subpages are counted in the reference
1251  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252  * under direct I/O, the reference of the head page is 512 and a bit more.)
1253  * This means that when we try to migrate hugepage whose subpages are
1254  * doing direct I/O, some references remain after try_to_unmap() and
1255  * hugepage migration fails without data corruption.
1256  *
1257  * There is also no race when direct I/O is issued on the page under migration,
1258  * because then pte is replaced with migration swap entry and direct I/O code
1259  * will wait in the page fault for migration to complete.
1260  */
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 				free_page_t put_new_page, unsigned long private,
1263 				struct page *hpage, int force,
1264 				enum migrate_mode mode, int reason)
1265 {
1266 	int rc = -EAGAIN;
1267 	int page_was_mapped = 0;
1268 	struct page *new_hpage;
1269 	struct anon_vma *anon_vma = NULL;
1270 
1271 	/*
1272 	 * Movability of hugepages depends on architectures and hugepage size.
1273 	 * This check is necessary because some callers of hugepage migration
1274 	 * like soft offline and memory hotremove don't walk through page
1275 	 * tables or check whether the hugepage is pmd-based or not before
1276 	 * kicking migration.
1277 	 */
1278 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 		putback_active_hugepage(hpage);
1280 		return -ENOSYS;
1281 	}
1282 
1283 	new_hpage = get_new_page(hpage, private);
1284 	if (!new_hpage)
1285 		return -ENOMEM;
1286 
1287 	if (!trylock_page(hpage)) {
1288 		if (!force)
1289 			goto out;
1290 		switch (mode) {
1291 		case MIGRATE_SYNC:
1292 		case MIGRATE_SYNC_NO_COPY:
1293 			break;
1294 		default:
1295 			goto out;
1296 		}
1297 		lock_page(hpage);
1298 	}
1299 
1300 	if (PageAnon(hpage))
1301 		anon_vma = page_get_anon_vma(hpage);
1302 
1303 	if (unlikely(!trylock_page(new_hpage)))
1304 		goto put_anon;
1305 
1306 	if (page_mapped(hpage)) {
1307 		try_to_unmap(hpage,
1308 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1309 		page_was_mapped = 1;
1310 	}
1311 
1312 	if (!page_mapped(hpage))
1313 		rc = move_to_new_page(new_hpage, hpage, mode);
1314 
1315 	if (page_was_mapped)
1316 		remove_migration_ptes(hpage,
1317 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1318 
1319 	unlock_page(new_hpage);
1320 
1321 put_anon:
1322 	if (anon_vma)
1323 		put_anon_vma(anon_vma);
1324 
1325 	if (rc == MIGRATEPAGE_SUCCESS) {
1326 		move_hugetlb_state(hpage, new_hpage, reason);
1327 		put_new_page = NULL;
1328 	}
1329 
1330 	unlock_page(hpage);
1331 out:
1332 	if (rc != -EAGAIN)
1333 		putback_active_hugepage(hpage);
1334 
1335 	/*
1336 	 * If migration was not successful and there's a freeing callback, use
1337 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1338 	 * isolation.
1339 	 */
1340 	if (put_new_page)
1341 		put_new_page(new_hpage, private);
1342 	else
1343 		putback_active_hugepage(new_hpage);
1344 
1345 	return rc;
1346 }
1347 
1348 /*
1349  * migrate_pages - migrate the pages specified in a list, to the free pages
1350  *		   supplied as the target for the page migration
1351  *
1352  * @from:		The list of pages to be migrated.
1353  * @get_new_page:	The function used to allocate free pages to be used
1354  *			as the target of the page migration.
1355  * @put_new_page:	The function used to free target pages if migration
1356  *			fails, or NULL if no special handling is necessary.
1357  * @private:		Private data to be passed on to get_new_page()
1358  * @mode:		The migration mode that specifies the constraints for
1359  *			page migration, if any.
1360  * @reason:		The reason for page migration.
1361  *
1362  * The function returns after 10 attempts or if no pages are movable any more
1363  * because the list has become empty or no retryable pages exist any more.
1364  * The caller should call putback_movable_pages() to return pages to the LRU
1365  * or free list only if ret != 0.
1366  *
1367  * Returns the number of pages that were not migrated, or an error code.
1368  */
1369 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1370 		free_page_t put_new_page, unsigned long private,
1371 		enum migrate_mode mode, int reason)
1372 {
1373 	int retry = 1;
1374 	int nr_failed = 0;
1375 	int nr_succeeded = 0;
1376 	int pass = 0;
1377 	struct page *page;
1378 	struct page *page2;
1379 	int swapwrite = current->flags & PF_SWAPWRITE;
1380 	int rc;
1381 
1382 	if (!swapwrite)
1383 		current->flags |= PF_SWAPWRITE;
1384 
1385 	for(pass = 0; pass < 10 && retry; pass++) {
1386 		retry = 0;
1387 
1388 		list_for_each_entry_safe(page, page2, from, lru) {
1389 retry:
1390 			cond_resched();
1391 
1392 			if (PageHuge(page))
1393 				rc = unmap_and_move_huge_page(get_new_page,
1394 						put_new_page, private, page,
1395 						pass > 2, mode, reason);
1396 			else
1397 				rc = unmap_and_move(get_new_page, put_new_page,
1398 						private, page, pass > 2, mode,
1399 						reason);
1400 
1401 			switch(rc) {
1402 			case -ENOMEM:
1403 				/*
1404 				 * THP migration might be unsupported or the
1405 				 * allocation could've failed so we should
1406 				 * retry on the same page with the THP split
1407 				 * to base pages.
1408 				 *
1409 				 * Head page is retried immediately and tail
1410 				 * pages are added to the tail of the list so
1411 				 * we encounter them after the rest of the list
1412 				 * is processed.
1413 				 */
1414 				if (PageTransHuge(page)) {
1415 					lock_page(page);
1416 					rc = split_huge_page_to_list(page, from);
1417 					unlock_page(page);
1418 					if (!rc) {
1419 						list_safe_reset_next(page, page2, lru);
1420 						goto retry;
1421 					}
1422 				}
1423 				nr_failed++;
1424 				goto out;
1425 			case -EAGAIN:
1426 				retry++;
1427 				break;
1428 			case MIGRATEPAGE_SUCCESS:
1429 				nr_succeeded++;
1430 				break;
1431 			default:
1432 				/*
1433 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1434 				 * unlike -EAGAIN case, the failed page is
1435 				 * removed from migration page list and not
1436 				 * retried in the next outer loop.
1437 				 */
1438 				nr_failed++;
1439 				break;
1440 			}
1441 		}
1442 	}
1443 	nr_failed += retry;
1444 	rc = nr_failed;
1445 out:
1446 	if (nr_succeeded)
1447 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1448 	if (nr_failed)
1449 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1450 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1451 
1452 	if (!swapwrite)
1453 		current->flags &= ~PF_SWAPWRITE;
1454 
1455 	return rc;
1456 }
1457 
1458 #ifdef CONFIG_NUMA
1459 
1460 static int store_status(int __user *status, int start, int value, int nr)
1461 {
1462 	while (nr-- > 0) {
1463 		if (put_user(value, status + start))
1464 			return -EFAULT;
1465 		start++;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 static int do_move_pages_to_node(struct mm_struct *mm,
1472 		struct list_head *pagelist, int node)
1473 {
1474 	int err;
1475 
1476 	if (list_empty(pagelist))
1477 		return 0;
1478 
1479 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1480 			MIGRATE_SYNC, MR_SYSCALL);
1481 	if (err)
1482 		putback_movable_pages(pagelist);
1483 	return err;
1484 }
1485 
1486 /*
1487  * Resolves the given address to a struct page, isolates it from the LRU and
1488  * puts it to the given pagelist.
1489  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1490  * queued or the page doesn't need to be migrated because it is already on
1491  * the target node
1492  */
1493 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1494 		int node, struct list_head *pagelist, bool migrate_all)
1495 {
1496 	struct vm_area_struct *vma;
1497 	struct page *page;
1498 	unsigned int follflags;
1499 	int err;
1500 
1501 	down_read(&mm->mmap_sem);
1502 	err = -EFAULT;
1503 	vma = find_vma(mm, addr);
1504 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1505 		goto out;
1506 
1507 	/* FOLL_DUMP to ignore special (like zero) pages */
1508 	follflags = FOLL_GET | FOLL_DUMP;
1509 	page = follow_page(vma, addr, follflags);
1510 
1511 	err = PTR_ERR(page);
1512 	if (IS_ERR(page))
1513 		goto out;
1514 
1515 	err = -ENOENT;
1516 	if (!page)
1517 		goto out;
1518 
1519 	err = 0;
1520 	if (page_to_nid(page) == node)
1521 		goto out_putpage;
1522 
1523 	err = -EACCES;
1524 	if (page_mapcount(page) > 1 && !migrate_all)
1525 		goto out_putpage;
1526 
1527 	if (PageHuge(page)) {
1528 		if (PageHead(page)) {
1529 			isolate_huge_page(page, pagelist);
1530 			err = 0;
1531 		}
1532 	} else {
1533 		struct page *head;
1534 
1535 		head = compound_head(page);
1536 		err = isolate_lru_page(head);
1537 		if (err)
1538 			goto out_putpage;
1539 
1540 		err = 0;
1541 		list_add_tail(&head->lru, pagelist);
1542 		mod_node_page_state(page_pgdat(head),
1543 			NR_ISOLATED_ANON + page_is_file_cache(head),
1544 			hpage_nr_pages(head));
1545 	}
1546 out_putpage:
1547 	/*
1548 	 * Either remove the duplicate refcount from
1549 	 * isolate_lru_page() or drop the page ref if it was
1550 	 * not isolated.
1551 	 */
1552 	put_page(page);
1553 out:
1554 	up_read(&mm->mmap_sem);
1555 	return err;
1556 }
1557 
1558 /*
1559  * Migrate an array of page address onto an array of nodes and fill
1560  * the corresponding array of status.
1561  */
1562 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1563 			 unsigned long nr_pages,
1564 			 const void __user * __user *pages,
1565 			 const int __user *nodes,
1566 			 int __user *status, int flags)
1567 {
1568 	int current_node = NUMA_NO_NODE;
1569 	LIST_HEAD(pagelist);
1570 	int start, i;
1571 	int err = 0, err1;
1572 
1573 	migrate_prep();
1574 
1575 	for (i = start = 0; i < nr_pages; i++) {
1576 		const void __user *p;
1577 		unsigned long addr;
1578 		int node;
1579 
1580 		err = -EFAULT;
1581 		if (get_user(p, pages + i))
1582 			goto out_flush;
1583 		if (get_user(node, nodes + i))
1584 			goto out_flush;
1585 		addr = (unsigned long)p;
1586 
1587 		err = -ENODEV;
1588 		if (node < 0 || node >= MAX_NUMNODES)
1589 			goto out_flush;
1590 		if (!node_state(node, N_MEMORY))
1591 			goto out_flush;
1592 
1593 		err = -EACCES;
1594 		if (!node_isset(node, task_nodes))
1595 			goto out_flush;
1596 
1597 		if (current_node == NUMA_NO_NODE) {
1598 			current_node = node;
1599 			start = i;
1600 		} else if (node != current_node) {
1601 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1602 			if (err)
1603 				goto out;
1604 			err = store_status(status, start, current_node, i - start);
1605 			if (err)
1606 				goto out;
1607 			start = i;
1608 			current_node = node;
1609 		}
1610 
1611 		/*
1612 		 * Errors in the page lookup or isolation are not fatal and we simply
1613 		 * report them via status
1614 		 */
1615 		err = add_page_for_migration(mm, addr, current_node,
1616 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1617 		if (!err)
1618 			continue;
1619 
1620 		err = store_status(status, i, err, 1);
1621 		if (err)
1622 			goto out_flush;
1623 
1624 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1625 		if (err)
1626 			goto out;
1627 		if (i > start) {
1628 			err = store_status(status, start, current_node, i - start);
1629 			if (err)
1630 				goto out;
1631 		}
1632 		current_node = NUMA_NO_NODE;
1633 	}
1634 out_flush:
1635 	if (list_empty(&pagelist))
1636 		return err;
1637 
1638 	/* Make sure we do not overwrite the existing error */
1639 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1640 	if (!err1)
1641 		err1 = store_status(status, start, current_node, i - start);
1642 	if (!err)
1643 		err = err1;
1644 out:
1645 	return err;
1646 }
1647 
1648 /*
1649  * Determine the nodes of an array of pages and store it in an array of status.
1650  */
1651 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1652 				const void __user **pages, int *status)
1653 {
1654 	unsigned long i;
1655 
1656 	down_read(&mm->mmap_sem);
1657 
1658 	for (i = 0; i < nr_pages; i++) {
1659 		unsigned long addr = (unsigned long)(*pages);
1660 		struct vm_area_struct *vma;
1661 		struct page *page;
1662 		int err = -EFAULT;
1663 
1664 		vma = find_vma(mm, addr);
1665 		if (!vma || addr < vma->vm_start)
1666 			goto set_status;
1667 
1668 		/* FOLL_DUMP to ignore special (like zero) pages */
1669 		page = follow_page(vma, addr, FOLL_DUMP);
1670 
1671 		err = PTR_ERR(page);
1672 		if (IS_ERR(page))
1673 			goto set_status;
1674 
1675 		err = page ? page_to_nid(page) : -ENOENT;
1676 set_status:
1677 		*status = err;
1678 
1679 		pages++;
1680 		status++;
1681 	}
1682 
1683 	up_read(&mm->mmap_sem);
1684 }
1685 
1686 /*
1687  * Determine the nodes of a user array of pages and store it in
1688  * a user array of status.
1689  */
1690 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1691 			 const void __user * __user *pages,
1692 			 int __user *status)
1693 {
1694 #define DO_PAGES_STAT_CHUNK_NR 16
1695 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1696 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1697 
1698 	while (nr_pages) {
1699 		unsigned long chunk_nr;
1700 
1701 		chunk_nr = nr_pages;
1702 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1703 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1704 
1705 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1706 			break;
1707 
1708 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1709 
1710 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1711 			break;
1712 
1713 		pages += chunk_nr;
1714 		status += chunk_nr;
1715 		nr_pages -= chunk_nr;
1716 	}
1717 	return nr_pages ? -EFAULT : 0;
1718 }
1719 
1720 /*
1721  * Move a list of pages in the address space of the currently executing
1722  * process.
1723  */
1724 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1725 			     const void __user * __user *pages,
1726 			     const int __user *nodes,
1727 			     int __user *status, int flags)
1728 {
1729 	struct task_struct *task;
1730 	struct mm_struct *mm;
1731 	int err;
1732 	nodemask_t task_nodes;
1733 
1734 	/* Check flags */
1735 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1736 		return -EINVAL;
1737 
1738 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1739 		return -EPERM;
1740 
1741 	/* Find the mm_struct */
1742 	rcu_read_lock();
1743 	task = pid ? find_task_by_vpid(pid) : current;
1744 	if (!task) {
1745 		rcu_read_unlock();
1746 		return -ESRCH;
1747 	}
1748 	get_task_struct(task);
1749 
1750 	/*
1751 	 * Check if this process has the right to modify the specified
1752 	 * process. Use the regular "ptrace_may_access()" checks.
1753 	 */
1754 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1755 		rcu_read_unlock();
1756 		err = -EPERM;
1757 		goto out;
1758 	}
1759 	rcu_read_unlock();
1760 
1761  	err = security_task_movememory(task);
1762  	if (err)
1763 		goto out;
1764 
1765 	task_nodes = cpuset_mems_allowed(task);
1766 	mm = get_task_mm(task);
1767 	put_task_struct(task);
1768 
1769 	if (!mm)
1770 		return -EINVAL;
1771 
1772 	if (nodes)
1773 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1774 				    nodes, status, flags);
1775 	else
1776 		err = do_pages_stat(mm, nr_pages, pages, status);
1777 
1778 	mmput(mm);
1779 	return err;
1780 
1781 out:
1782 	put_task_struct(task);
1783 	return err;
1784 }
1785 
1786 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1787 		const void __user * __user *, pages,
1788 		const int __user *, nodes,
1789 		int __user *, status, int, flags)
1790 {
1791 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1792 }
1793 
1794 #ifdef CONFIG_COMPAT
1795 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1796 		       compat_uptr_t __user *, pages32,
1797 		       const int __user *, nodes,
1798 		       int __user *, status,
1799 		       int, flags)
1800 {
1801 	const void __user * __user *pages;
1802 	int i;
1803 
1804 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1805 	for (i = 0; i < nr_pages; i++) {
1806 		compat_uptr_t p;
1807 
1808 		if (get_user(p, pages32 + i) ||
1809 			put_user(compat_ptr(p), pages + i))
1810 			return -EFAULT;
1811 	}
1812 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1813 }
1814 #endif /* CONFIG_COMPAT */
1815 
1816 #ifdef CONFIG_NUMA_BALANCING
1817 /*
1818  * Returns true if this is a safe migration target node for misplaced NUMA
1819  * pages. Currently it only checks the watermarks which crude
1820  */
1821 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1822 				   unsigned long nr_migrate_pages)
1823 {
1824 	int z;
1825 
1826 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1827 		struct zone *zone = pgdat->node_zones + z;
1828 
1829 		if (!populated_zone(zone))
1830 			continue;
1831 
1832 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1833 		if (!zone_watermark_ok(zone, 0,
1834 				       high_wmark_pages(zone) +
1835 				       nr_migrate_pages,
1836 				       0, 0))
1837 			continue;
1838 		return true;
1839 	}
1840 	return false;
1841 }
1842 
1843 static struct page *alloc_misplaced_dst_page(struct page *page,
1844 					   unsigned long data)
1845 {
1846 	int nid = (int) data;
1847 	struct page *newpage;
1848 
1849 	newpage = __alloc_pages_node(nid,
1850 					 (GFP_HIGHUSER_MOVABLE |
1851 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1852 					  __GFP_NORETRY | __GFP_NOWARN) &
1853 					 ~__GFP_RECLAIM, 0);
1854 
1855 	return newpage;
1856 }
1857 
1858 /*
1859  * page migration rate limiting control.
1860  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1861  * window of time. Default here says do not migrate more than 1280M per second.
1862  */
1863 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1864 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1865 
1866 /* Returns true if the node is migrate rate-limited after the update */
1867 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1868 					unsigned long nr_pages)
1869 {
1870 	/*
1871 	 * Rate-limit the amount of data that is being migrated to a node.
1872 	 * Optimal placement is no good if the memory bus is saturated and
1873 	 * all the time is being spent migrating!
1874 	 */
1875 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1876 		spin_lock(&pgdat->numabalancing_migrate_lock);
1877 		pgdat->numabalancing_migrate_nr_pages = 0;
1878 		pgdat->numabalancing_migrate_next_window = jiffies +
1879 			msecs_to_jiffies(migrate_interval_millisecs);
1880 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1881 	}
1882 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1883 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1884 								nr_pages);
1885 		return true;
1886 	}
1887 
1888 	/*
1889 	 * This is an unlocked non-atomic update so errors are possible.
1890 	 * The consequences are failing to migrate when we potentiall should
1891 	 * have which is not severe enough to warrant locking. If it is ever
1892 	 * a problem, it can be converted to a per-cpu counter.
1893 	 */
1894 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1895 	return false;
1896 }
1897 
1898 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1899 {
1900 	int page_lru;
1901 
1902 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1903 
1904 	/* Avoid migrating to a node that is nearly full */
1905 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1906 		return 0;
1907 
1908 	if (isolate_lru_page(page))
1909 		return 0;
1910 
1911 	/*
1912 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1913 	 * check on page_count(), so we must do it here, now that the page
1914 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1915 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1916 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1917 	 */
1918 	if (PageTransHuge(page) && page_count(page) != 3) {
1919 		putback_lru_page(page);
1920 		return 0;
1921 	}
1922 
1923 	page_lru = page_is_file_cache(page);
1924 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1925 				hpage_nr_pages(page));
1926 
1927 	/*
1928 	 * Isolating the page has taken another reference, so the
1929 	 * caller's reference can be safely dropped without the page
1930 	 * disappearing underneath us during migration.
1931 	 */
1932 	put_page(page);
1933 	return 1;
1934 }
1935 
1936 bool pmd_trans_migrating(pmd_t pmd)
1937 {
1938 	struct page *page = pmd_page(pmd);
1939 	return PageLocked(page);
1940 }
1941 
1942 /*
1943  * Attempt to migrate a misplaced page to the specified destination
1944  * node. Caller is expected to have an elevated reference count on
1945  * the page that will be dropped by this function before returning.
1946  */
1947 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1948 			   int node)
1949 {
1950 	pg_data_t *pgdat = NODE_DATA(node);
1951 	int isolated;
1952 	int nr_remaining;
1953 	LIST_HEAD(migratepages);
1954 
1955 	/*
1956 	 * Don't migrate file pages that are mapped in multiple processes
1957 	 * with execute permissions as they are probably shared libraries.
1958 	 */
1959 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1960 	    (vma->vm_flags & VM_EXEC))
1961 		goto out;
1962 
1963 	/*
1964 	 * Also do not migrate dirty pages as not all filesystems can move
1965 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1966 	 */
1967 	if (page_is_file_cache(page) && PageDirty(page))
1968 		goto out;
1969 
1970 	/*
1971 	 * Rate-limit the amount of data that is being migrated to a node.
1972 	 * Optimal placement is no good if the memory bus is saturated and
1973 	 * all the time is being spent migrating!
1974 	 */
1975 	if (numamigrate_update_ratelimit(pgdat, 1))
1976 		goto out;
1977 
1978 	isolated = numamigrate_isolate_page(pgdat, page);
1979 	if (!isolated)
1980 		goto out;
1981 
1982 	list_add(&page->lru, &migratepages);
1983 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1984 				     NULL, node, MIGRATE_ASYNC,
1985 				     MR_NUMA_MISPLACED);
1986 	if (nr_remaining) {
1987 		if (!list_empty(&migratepages)) {
1988 			list_del(&page->lru);
1989 			dec_node_page_state(page, NR_ISOLATED_ANON +
1990 					page_is_file_cache(page));
1991 			putback_lru_page(page);
1992 		}
1993 		isolated = 0;
1994 	} else
1995 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1996 	BUG_ON(!list_empty(&migratepages));
1997 	return isolated;
1998 
1999 out:
2000 	put_page(page);
2001 	return 0;
2002 }
2003 #endif /* CONFIG_NUMA_BALANCING */
2004 
2005 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2006 /*
2007  * Migrates a THP to a given target node. page must be locked and is unlocked
2008  * before returning.
2009  */
2010 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2011 				struct vm_area_struct *vma,
2012 				pmd_t *pmd, pmd_t entry,
2013 				unsigned long address,
2014 				struct page *page, int node)
2015 {
2016 	spinlock_t *ptl;
2017 	pg_data_t *pgdat = NODE_DATA(node);
2018 	int isolated = 0;
2019 	struct page *new_page = NULL;
2020 	int page_lru = page_is_file_cache(page);
2021 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2022 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2023 
2024 	/*
2025 	 * Rate-limit the amount of data that is being migrated to a node.
2026 	 * Optimal placement is no good if the memory bus is saturated and
2027 	 * all the time is being spent migrating!
2028 	 */
2029 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2030 		goto out_dropref;
2031 
2032 	new_page = alloc_pages_node(node,
2033 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2034 		HPAGE_PMD_ORDER);
2035 	if (!new_page)
2036 		goto out_fail;
2037 	prep_transhuge_page(new_page);
2038 
2039 	isolated = numamigrate_isolate_page(pgdat, page);
2040 	if (!isolated) {
2041 		put_page(new_page);
2042 		goto out_fail;
2043 	}
2044 
2045 	/* Prepare a page as a migration target */
2046 	__SetPageLocked(new_page);
2047 	if (PageSwapBacked(page))
2048 		__SetPageSwapBacked(new_page);
2049 
2050 	/* anon mapping, we can simply copy page->mapping to the new page: */
2051 	new_page->mapping = page->mapping;
2052 	new_page->index = page->index;
2053 	migrate_page_copy(new_page, page);
2054 	WARN_ON(PageLRU(new_page));
2055 
2056 	/* Recheck the target PMD */
2057 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2058 	ptl = pmd_lock(mm, pmd);
2059 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2060 		spin_unlock(ptl);
2061 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2062 
2063 		/* Reverse changes made by migrate_page_copy() */
2064 		if (TestClearPageActive(new_page))
2065 			SetPageActive(page);
2066 		if (TestClearPageUnevictable(new_page))
2067 			SetPageUnevictable(page);
2068 
2069 		unlock_page(new_page);
2070 		put_page(new_page);		/* Free it */
2071 
2072 		/* Retake the callers reference and putback on LRU */
2073 		get_page(page);
2074 		putback_lru_page(page);
2075 		mod_node_page_state(page_pgdat(page),
2076 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2077 
2078 		goto out_unlock;
2079 	}
2080 
2081 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2082 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2083 
2084 	/*
2085 	 * Clear the old entry under pagetable lock and establish the new PTE.
2086 	 * Any parallel GUP will either observe the old page blocking on the
2087 	 * page lock, block on the page table lock or observe the new page.
2088 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2089 	 * guarantee the copy is visible before the pagetable update.
2090 	 */
2091 	flush_cache_range(vma, mmun_start, mmun_end);
2092 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2093 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2094 	set_pmd_at(mm, mmun_start, pmd, entry);
2095 	update_mmu_cache_pmd(vma, address, &entry);
2096 
2097 	page_ref_unfreeze(page, 2);
2098 	mlock_migrate_page(new_page, page);
2099 	page_remove_rmap(page, true);
2100 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2101 
2102 	spin_unlock(ptl);
2103 	/*
2104 	 * No need to double call mmu_notifier->invalidate_range() callback as
2105 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2106 	 */
2107 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2108 
2109 	/* Take an "isolate" reference and put new page on the LRU. */
2110 	get_page(new_page);
2111 	putback_lru_page(new_page);
2112 
2113 	unlock_page(new_page);
2114 	unlock_page(page);
2115 	put_page(page);			/* Drop the rmap reference */
2116 	put_page(page);			/* Drop the LRU isolation reference */
2117 
2118 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2119 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2120 
2121 	mod_node_page_state(page_pgdat(page),
2122 			NR_ISOLATED_ANON + page_lru,
2123 			-HPAGE_PMD_NR);
2124 	return isolated;
2125 
2126 out_fail:
2127 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2128 out_dropref:
2129 	ptl = pmd_lock(mm, pmd);
2130 	if (pmd_same(*pmd, entry)) {
2131 		entry = pmd_modify(entry, vma->vm_page_prot);
2132 		set_pmd_at(mm, mmun_start, pmd, entry);
2133 		update_mmu_cache_pmd(vma, address, &entry);
2134 	}
2135 	spin_unlock(ptl);
2136 
2137 out_unlock:
2138 	unlock_page(page);
2139 	put_page(page);
2140 	return 0;
2141 }
2142 #endif /* CONFIG_NUMA_BALANCING */
2143 
2144 #endif /* CONFIG_NUMA */
2145 
2146 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2147 struct migrate_vma {
2148 	struct vm_area_struct	*vma;
2149 	unsigned long		*dst;
2150 	unsigned long		*src;
2151 	unsigned long		cpages;
2152 	unsigned long		npages;
2153 	unsigned long		start;
2154 	unsigned long		end;
2155 };
2156 
2157 static int migrate_vma_collect_hole(unsigned long start,
2158 				    unsigned long end,
2159 				    struct mm_walk *walk)
2160 {
2161 	struct migrate_vma *migrate = walk->private;
2162 	unsigned long addr;
2163 
2164 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2165 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2166 		migrate->dst[migrate->npages] = 0;
2167 		migrate->npages++;
2168 		migrate->cpages++;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static int migrate_vma_collect_skip(unsigned long start,
2175 				    unsigned long end,
2176 				    struct mm_walk *walk)
2177 {
2178 	struct migrate_vma *migrate = walk->private;
2179 	unsigned long addr;
2180 
2181 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2182 		migrate->dst[migrate->npages] = 0;
2183 		migrate->src[migrate->npages++] = 0;
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2190 				   unsigned long start,
2191 				   unsigned long end,
2192 				   struct mm_walk *walk)
2193 {
2194 	struct migrate_vma *migrate = walk->private;
2195 	struct vm_area_struct *vma = walk->vma;
2196 	struct mm_struct *mm = vma->vm_mm;
2197 	unsigned long addr = start, unmapped = 0;
2198 	spinlock_t *ptl;
2199 	pte_t *ptep;
2200 
2201 again:
2202 	if (pmd_none(*pmdp))
2203 		return migrate_vma_collect_hole(start, end, walk);
2204 
2205 	if (pmd_trans_huge(*pmdp)) {
2206 		struct page *page;
2207 
2208 		ptl = pmd_lock(mm, pmdp);
2209 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2210 			spin_unlock(ptl);
2211 			goto again;
2212 		}
2213 
2214 		page = pmd_page(*pmdp);
2215 		if (is_huge_zero_page(page)) {
2216 			spin_unlock(ptl);
2217 			split_huge_pmd(vma, pmdp, addr);
2218 			if (pmd_trans_unstable(pmdp))
2219 				return migrate_vma_collect_skip(start, end,
2220 								walk);
2221 		} else {
2222 			int ret;
2223 
2224 			get_page(page);
2225 			spin_unlock(ptl);
2226 			if (unlikely(!trylock_page(page)))
2227 				return migrate_vma_collect_skip(start, end,
2228 								walk);
2229 			ret = split_huge_page(page);
2230 			unlock_page(page);
2231 			put_page(page);
2232 			if (ret)
2233 				return migrate_vma_collect_skip(start, end,
2234 								walk);
2235 			if (pmd_none(*pmdp))
2236 				return migrate_vma_collect_hole(start, end,
2237 								walk);
2238 		}
2239 	}
2240 
2241 	if (unlikely(pmd_bad(*pmdp)))
2242 		return migrate_vma_collect_skip(start, end, walk);
2243 
2244 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2245 	arch_enter_lazy_mmu_mode();
2246 
2247 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2248 		unsigned long mpfn, pfn;
2249 		struct page *page;
2250 		swp_entry_t entry;
2251 		pte_t pte;
2252 
2253 		pte = *ptep;
2254 		pfn = pte_pfn(pte);
2255 
2256 		if (pte_none(pte)) {
2257 			mpfn = MIGRATE_PFN_MIGRATE;
2258 			migrate->cpages++;
2259 			pfn = 0;
2260 			goto next;
2261 		}
2262 
2263 		if (!pte_present(pte)) {
2264 			mpfn = pfn = 0;
2265 
2266 			/*
2267 			 * Only care about unaddressable device page special
2268 			 * page table entry. Other special swap entries are not
2269 			 * migratable, and we ignore regular swapped page.
2270 			 */
2271 			entry = pte_to_swp_entry(pte);
2272 			if (!is_device_private_entry(entry))
2273 				goto next;
2274 
2275 			page = device_private_entry_to_page(entry);
2276 			mpfn = migrate_pfn(page_to_pfn(page))|
2277 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2278 			if (is_write_device_private_entry(entry))
2279 				mpfn |= MIGRATE_PFN_WRITE;
2280 		} else {
2281 			if (is_zero_pfn(pfn)) {
2282 				mpfn = MIGRATE_PFN_MIGRATE;
2283 				migrate->cpages++;
2284 				pfn = 0;
2285 				goto next;
2286 			}
2287 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2288 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2289 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2290 		}
2291 
2292 		/* FIXME support THP */
2293 		if (!page || !page->mapping || PageTransCompound(page)) {
2294 			mpfn = pfn = 0;
2295 			goto next;
2296 		}
2297 		pfn = page_to_pfn(page);
2298 
2299 		/*
2300 		 * By getting a reference on the page we pin it and that blocks
2301 		 * any kind of migration. Side effect is that it "freezes" the
2302 		 * pte.
2303 		 *
2304 		 * We drop this reference after isolating the page from the lru
2305 		 * for non device page (device page are not on the lru and thus
2306 		 * can't be dropped from it).
2307 		 */
2308 		get_page(page);
2309 		migrate->cpages++;
2310 
2311 		/*
2312 		 * Optimize for the common case where page is only mapped once
2313 		 * in one process. If we can lock the page, then we can safely
2314 		 * set up a special migration page table entry now.
2315 		 */
2316 		if (trylock_page(page)) {
2317 			pte_t swp_pte;
2318 
2319 			mpfn |= MIGRATE_PFN_LOCKED;
2320 			ptep_get_and_clear(mm, addr, ptep);
2321 
2322 			/* Setup special migration page table entry */
2323 			entry = make_migration_entry(page, mpfn &
2324 						     MIGRATE_PFN_WRITE);
2325 			swp_pte = swp_entry_to_pte(entry);
2326 			if (pte_soft_dirty(pte))
2327 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2328 			set_pte_at(mm, addr, ptep, swp_pte);
2329 
2330 			/*
2331 			 * This is like regular unmap: we remove the rmap and
2332 			 * drop page refcount. Page won't be freed, as we took
2333 			 * a reference just above.
2334 			 */
2335 			page_remove_rmap(page, false);
2336 			put_page(page);
2337 
2338 			if (pte_present(pte))
2339 				unmapped++;
2340 		}
2341 
2342 next:
2343 		migrate->dst[migrate->npages] = 0;
2344 		migrate->src[migrate->npages++] = mpfn;
2345 	}
2346 	arch_leave_lazy_mmu_mode();
2347 	pte_unmap_unlock(ptep - 1, ptl);
2348 
2349 	/* Only flush the TLB if we actually modified any entries */
2350 	if (unmapped)
2351 		flush_tlb_range(walk->vma, start, end);
2352 
2353 	return 0;
2354 }
2355 
2356 /*
2357  * migrate_vma_collect() - collect pages over a range of virtual addresses
2358  * @migrate: migrate struct containing all migration information
2359  *
2360  * This will walk the CPU page table. For each virtual address backed by a
2361  * valid page, it updates the src array and takes a reference on the page, in
2362  * order to pin the page until we lock it and unmap it.
2363  */
2364 static void migrate_vma_collect(struct migrate_vma *migrate)
2365 {
2366 	struct mm_walk mm_walk;
2367 
2368 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2369 	mm_walk.pte_entry = NULL;
2370 	mm_walk.pte_hole = migrate_vma_collect_hole;
2371 	mm_walk.hugetlb_entry = NULL;
2372 	mm_walk.test_walk = NULL;
2373 	mm_walk.vma = migrate->vma;
2374 	mm_walk.mm = migrate->vma->vm_mm;
2375 	mm_walk.private = migrate;
2376 
2377 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2378 					    migrate->start,
2379 					    migrate->end);
2380 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2381 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2382 					  migrate->start,
2383 					  migrate->end);
2384 
2385 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2386 }
2387 
2388 /*
2389  * migrate_vma_check_page() - check if page is pinned or not
2390  * @page: struct page to check
2391  *
2392  * Pinned pages cannot be migrated. This is the same test as in
2393  * migrate_page_move_mapping(), except that here we allow migration of a
2394  * ZONE_DEVICE page.
2395  */
2396 static bool migrate_vma_check_page(struct page *page)
2397 {
2398 	/*
2399 	 * One extra ref because caller holds an extra reference, either from
2400 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2401 	 * a device page.
2402 	 */
2403 	int extra = 1;
2404 
2405 	/*
2406 	 * FIXME support THP (transparent huge page), it is bit more complex to
2407 	 * check them than regular pages, because they can be mapped with a pmd
2408 	 * or with a pte (split pte mapping).
2409 	 */
2410 	if (PageCompound(page))
2411 		return false;
2412 
2413 	/* Page from ZONE_DEVICE have one extra reference */
2414 	if (is_zone_device_page(page)) {
2415 		/*
2416 		 * Private page can never be pin as they have no valid pte and
2417 		 * GUP will fail for those. Yet if there is a pending migration
2418 		 * a thread might try to wait on the pte migration entry and
2419 		 * will bump the page reference count. Sadly there is no way to
2420 		 * differentiate a regular pin from migration wait. Hence to
2421 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2422 		 * infinite loop (one stoping migration because the other is
2423 		 * waiting on pte migration entry). We always return true here.
2424 		 *
2425 		 * FIXME proper solution is to rework migration_entry_wait() so
2426 		 * it does not need to take a reference on page.
2427 		 */
2428 		if (is_device_private_page(page))
2429 			return true;
2430 
2431 		/*
2432 		 * Only allow device public page to be migrated and account for
2433 		 * the extra reference count imply by ZONE_DEVICE pages.
2434 		 */
2435 		if (!is_device_public_page(page))
2436 			return false;
2437 		extra++;
2438 	}
2439 
2440 	/* For file back page */
2441 	if (page_mapping(page))
2442 		extra += 1 + page_has_private(page);
2443 
2444 	if ((page_count(page) - extra) > page_mapcount(page))
2445 		return false;
2446 
2447 	return true;
2448 }
2449 
2450 /*
2451  * migrate_vma_prepare() - lock pages and isolate them from the lru
2452  * @migrate: migrate struct containing all migration information
2453  *
2454  * This locks pages that have been collected by migrate_vma_collect(). Once each
2455  * page is locked it is isolated from the lru (for non-device pages). Finally,
2456  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2457  * migrated by concurrent kernel threads.
2458  */
2459 static void migrate_vma_prepare(struct migrate_vma *migrate)
2460 {
2461 	const unsigned long npages = migrate->npages;
2462 	const unsigned long start = migrate->start;
2463 	unsigned long addr, i, restore = 0;
2464 	bool allow_drain = true;
2465 
2466 	lru_add_drain();
2467 
2468 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2469 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2470 		bool remap = true;
2471 
2472 		if (!page)
2473 			continue;
2474 
2475 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2476 			/*
2477 			 * Because we are migrating several pages there can be
2478 			 * a deadlock between 2 concurrent migration where each
2479 			 * are waiting on each other page lock.
2480 			 *
2481 			 * Make migrate_vma() a best effort thing and backoff
2482 			 * for any page we can not lock right away.
2483 			 */
2484 			if (!trylock_page(page)) {
2485 				migrate->src[i] = 0;
2486 				migrate->cpages--;
2487 				put_page(page);
2488 				continue;
2489 			}
2490 			remap = false;
2491 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2492 		}
2493 
2494 		/* ZONE_DEVICE pages are not on LRU */
2495 		if (!is_zone_device_page(page)) {
2496 			if (!PageLRU(page) && allow_drain) {
2497 				/* Drain CPU's pagevec */
2498 				lru_add_drain_all();
2499 				allow_drain = false;
2500 			}
2501 
2502 			if (isolate_lru_page(page)) {
2503 				if (remap) {
2504 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505 					migrate->cpages--;
2506 					restore++;
2507 				} else {
2508 					migrate->src[i] = 0;
2509 					unlock_page(page);
2510 					migrate->cpages--;
2511 					put_page(page);
2512 				}
2513 				continue;
2514 			}
2515 
2516 			/* Drop the reference we took in collect */
2517 			put_page(page);
2518 		}
2519 
2520 		if (!migrate_vma_check_page(page)) {
2521 			if (remap) {
2522 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 				migrate->cpages--;
2524 				restore++;
2525 
2526 				if (!is_zone_device_page(page)) {
2527 					get_page(page);
2528 					putback_lru_page(page);
2529 				}
2530 			} else {
2531 				migrate->src[i] = 0;
2532 				unlock_page(page);
2533 				migrate->cpages--;
2534 
2535 				if (!is_zone_device_page(page))
2536 					putback_lru_page(page);
2537 				else
2538 					put_page(page);
2539 			}
2540 		}
2541 	}
2542 
2543 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2544 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545 
2546 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 			continue;
2548 
2549 		remove_migration_pte(page, migrate->vma, addr, page);
2550 
2551 		migrate->src[i] = 0;
2552 		unlock_page(page);
2553 		put_page(page);
2554 		restore--;
2555 	}
2556 }
2557 
2558 /*
2559  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2560  * @migrate: migrate struct containing all migration information
2561  *
2562  * Replace page mapping (CPU page table pte) with a special migration pte entry
2563  * and check again if it has been pinned. Pinned pages are restored because we
2564  * cannot migrate them.
2565  *
2566  * This is the last step before we call the device driver callback to allocate
2567  * destination memory and copy contents of original page over to new page.
2568  */
2569 static void migrate_vma_unmap(struct migrate_vma *migrate)
2570 {
2571 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2572 	const unsigned long npages = migrate->npages;
2573 	const unsigned long start = migrate->start;
2574 	unsigned long addr, i, restore = 0;
2575 
2576 	for (i = 0; i < npages; i++) {
2577 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578 
2579 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 			continue;
2581 
2582 		if (page_mapped(page)) {
2583 			try_to_unmap(page, flags);
2584 			if (page_mapped(page))
2585 				goto restore;
2586 		}
2587 
2588 		if (migrate_vma_check_page(page))
2589 			continue;
2590 
2591 restore:
2592 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2593 		migrate->cpages--;
2594 		restore++;
2595 	}
2596 
2597 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2598 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2599 
2600 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2601 			continue;
2602 
2603 		remove_migration_ptes(page, page, false);
2604 
2605 		migrate->src[i] = 0;
2606 		unlock_page(page);
2607 		restore--;
2608 
2609 		if (is_zone_device_page(page))
2610 			put_page(page);
2611 		else
2612 			putback_lru_page(page);
2613 	}
2614 }
2615 
2616 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2617 				    unsigned long addr,
2618 				    struct page *page,
2619 				    unsigned long *src,
2620 				    unsigned long *dst)
2621 {
2622 	struct vm_area_struct *vma = migrate->vma;
2623 	struct mm_struct *mm = vma->vm_mm;
2624 	struct mem_cgroup *memcg;
2625 	bool flush = false;
2626 	spinlock_t *ptl;
2627 	pte_t entry;
2628 	pgd_t *pgdp;
2629 	p4d_t *p4dp;
2630 	pud_t *pudp;
2631 	pmd_t *pmdp;
2632 	pte_t *ptep;
2633 
2634 	/* Only allow populating anonymous memory */
2635 	if (!vma_is_anonymous(vma))
2636 		goto abort;
2637 
2638 	pgdp = pgd_offset(mm, addr);
2639 	p4dp = p4d_alloc(mm, pgdp, addr);
2640 	if (!p4dp)
2641 		goto abort;
2642 	pudp = pud_alloc(mm, p4dp, addr);
2643 	if (!pudp)
2644 		goto abort;
2645 	pmdp = pmd_alloc(mm, pudp, addr);
2646 	if (!pmdp)
2647 		goto abort;
2648 
2649 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2650 		goto abort;
2651 
2652 	/*
2653 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2654 	 * pte_offset_map() on pmds where a huge pmd might be created
2655 	 * from a different thread.
2656 	 *
2657 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2658 	 * parallel threads are excluded by other means.
2659 	 *
2660 	 * Here we only have down_read(mmap_sem).
2661 	 */
2662 	if (pte_alloc(mm, pmdp, addr))
2663 		goto abort;
2664 
2665 	/* See the comment in pte_alloc_one_map() */
2666 	if (unlikely(pmd_trans_unstable(pmdp)))
2667 		goto abort;
2668 
2669 	if (unlikely(anon_vma_prepare(vma)))
2670 		goto abort;
2671 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2672 		goto abort;
2673 
2674 	/*
2675 	 * The memory barrier inside __SetPageUptodate makes sure that
2676 	 * preceding stores to the page contents become visible before
2677 	 * the set_pte_at() write.
2678 	 */
2679 	__SetPageUptodate(page);
2680 
2681 	if (is_zone_device_page(page)) {
2682 		if (is_device_private_page(page)) {
2683 			swp_entry_t swp_entry;
2684 
2685 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2686 			entry = swp_entry_to_pte(swp_entry);
2687 		} else if (is_device_public_page(page)) {
2688 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2689 			if (vma->vm_flags & VM_WRITE)
2690 				entry = pte_mkwrite(pte_mkdirty(entry));
2691 			entry = pte_mkdevmap(entry);
2692 		}
2693 	} else {
2694 		entry = mk_pte(page, vma->vm_page_prot);
2695 		if (vma->vm_flags & VM_WRITE)
2696 			entry = pte_mkwrite(pte_mkdirty(entry));
2697 	}
2698 
2699 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2700 
2701 	if (pte_present(*ptep)) {
2702 		unsigned long pfn = pte_pfn(*ptep);
2703 
2704 		if (!is_zero_pfn(pfn)) {
2705 			pte_unmap_unlock(ptep, ptl);
2706 			mem_cgroup_cancel_charge(page, memcg, false);
2707 			goto abort;
2708 		}
2709 		flush = true;
2710 	} else if (!pte_none(*ptep)) {
2711 		pte_unmap_unlock(ptep, ptl);
2712 		mem_cgroup_cancel_charge(page, memcg, false);
2713 		goto abort;
2714 	}
2715 
2716 	/*
2717 	 * Check for usefaultfd but do not deliver the fault. Instead,
2718 	 * just back off.
2719 	 */
2720 	if (userfaultfd_missing(vma)) {
2721 		pte_unmap_unlock(ptep, ptl);
2722 		mem_cgroup_cancel_charge(page, memcg, false);
2723 		goto abort;
2724 	}
2725 
2726 	inc_mm_counter(mm, MM_ANONPAGES);
2727 	page_add_new_anon_rmap(page, vma, addr, false);
2728 	mem_cgroup_commit_charge(page, memcg, false, false);
2729 	if (!is_zone_device_page(page))
2730 		lru_cache_add_active_or_unevictable(page, vma);
2731 	get_page(page);
2732 
2733 	if (flush) {
2734 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2735 		ptep_clear_flush_notify(vma, addr, ptep);
2736 		set_pte_at_notify(mm, addr, ptep, entry);
2737 		update_mmu_cache(vma, addr, ptep);
2738 	} else {
2739 		/* No need to invalidate - it was non-present before */
2740 		set_pte_at(mm, addr, ptep, entry);
2741 		update_mmu_cache(vma, addr, ptep);
2742 	}
2743 
2744 	pte_unmap_unlock(ptep, ptl);
2745 	*src = MIGRATE_PFN_MIGRATE;
2746 	return;
2747 
2748 abort:
2749 	*src &= ~MIGRATE_PFN_MIGRATE;
2750 }
2751 
2752 /*
2753  * migrate_vma_pages() - migrate meta-data from src page to dst page
2754  * @migrate: migrate struct containing all migration information
2755  *
2756  * This migrates struct page meta-data from source struct page to destination
2757  * struct page. This effectively finishes the migration from source page to the
2758  * destination page.
2759  */
2760 static void migrate_vma_pages(struct migrate_vma *migrate)
2761 {
2762 	const unsigned long npages = migrate->npages;
2763 	const unsigned long start = migrate->start;
2764 	struct vm_area_struct *vma = migrate->vma;
2765 	struct mm_struct *mm = vma->vm_mm;
2766 	unsigned long addr, i, mmu_start;
2767 	bool notified = false;
2768 
2769 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2770 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2771 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2772 		struct address_space *mapping;
2773 		int r;
2774 
2775 		if (!newpage) {
2776 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2777 			continue;
2778 		}
2779 
2780 		if (!page) {
2781 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2782 				continue;
2783 			}
2784 			if (!notified) {
2785 				mmu_start = addr;
2786 				notified = true;
2787 				mmu_notifier_invalidate_range_start(mm,
2788 								mmu_start,
2789 								migrate->end);
2790 			}
2791 			migrate_vma_insert_page(migrate, addr, newpage,
2792 						&migrate->src[i],
2793 						&migrate->dst[i]);
2794 			continue;
2795 		}
2796 
2797 		mapping = page_mapping(page);
2798 
2799 		if (is_zone_device_page(newpage)) {
2800 			if (is_device_private_page(newpage)) {
2801 				/*
2802 				 * For now only support private anonymous when
2803 				 * migrating to un-addressable device memory.
2804 				 */
2805 				if (mapping) {
2806 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2807 					continue;
2808 				}
2809 			} else if (!is_device_public_page(newpage)) {
2810 				/*
2811 				 * Other types of ZONE_DEVICE page are not
2812 				 * supported.
2813 				 */
2814 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2815 				continue;
2816 			}
2817 		}
2818 
2819 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2820 		if (r != MIGRATEPAGE_SUCCESS)
2821 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2822 	}
2823 
2824 	/*
2825 	 * No need to double call mmu_notifier->invalidate_range() callback as
2826 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2827 	 * did already call it.
2828 	 */
2829 	if (notified)
2830 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2831 						       migrate->end);
2832 }
2833 
2834 /*
2835  * migrate_vma_finalize() - restore CPU page table entry
2836  * @migrate: migrate struct containing all migration information
2837  *
2838  * This replaces the special migration pte entry with either a mapping to the
2839  * new page if migration was successful for that page, or to the original page
2840  * otherwise.
2841  *
2842  * This also unlocks the pages and puts them back on the lru, or drops the extra
2843  * refcount, for device pages.
2844  */
2845 static void migrate_vma_finalize(struct migrate_vma *migrate)
2846 {
2847 	const unsigned long npages = migrate->npages;
2848 	unsigned long i;
2849 
2850 	for (i = 0; i < npages; i++) {
2851 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2852 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2853 
2854 		if (!page) {
2855 			if (newpage) {
2856 				unlock_page(newpage);
2857 				put_page(newpage);
2858 			}
2859 			continue;
2860 		}
2861 
2862 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2863 			if (newpage) {
2864 				unlock_page(newpage);
2865 				put_page(newpage);
2866 			}
2867 			newpage = page;
2868 		}
2869 
2870 		remove_migration_ptes(page, newpage, false);
2871 		unlock_page(page);
2872 		migrate->cpages--;
2873 
2874 		if (is_zone_device_page(page))
2875 			put_page(page);
2876 		else
2877 			putback_lru_page(page);
2878 
2879 		if (newpage != page) {
2880 			unlock_page(newpage);
2881 			if (is_zone_device_page(newpage))
2882 				put_page(newpage);
2883 			else
2884 				putback_lru_page(newpage);
2885 		}
2886 	}
2887 }
2888 
2889 /*
2890  * migrate_vma() - migrate a range of memory inside vma
2891  *
2892  * @ops: migration callback for allocating destination memory and copying
2893  * @vma: virtual memory area containing the range to be migrated
2894  * @start: start address of the range to migrate (inclusive)
2895  * @end: end address of the range to migrate (exclusive)
2896  * @src: array of hmm_pfn_t containing source pfns
2897  * @dst: array of hmm_pfn_t containing destination pfns
2898  * @private: pointer passed back to each of the callback
2899  * Returns: 0 on success, error code otherwise
2900  *
2901  * This function tries to migrate a range of memory virtual address range, using
2902  * callbacks to allocate and copy memory from source to destination. First it
2903  * collects all the pages backing each virtual address in the range, saving this
2904  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2905  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2906  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2907  * in the corresponding src array entry. It then restores any pages that are
2908  * pinned, by remapping and unlocking those pages.
2909  *
2910  * At this point it calls the alloc_and_copy() callback. For documentation on
2911  * what is expected from that callback, see struct migrate_vma_ops comments in
2912  * include/linux/migrate.h
2913  *
2914  * After the alloc_and_copy() callback, this function goes over each entry in
2915  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2916  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2917  * then the function tries to migrate struct page information from the source
2918  * struct page to the destination struct page. If it fails to migrate the struct
2919  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2920  * array.
2921  *
2922  * At this point all successfully migrated pages have an entry in the src
2923  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2924  * array entry with MIGRATE_PFN_VALID flag set.
2925  *
2926  * It then calls the finalize_and_map() callback. See comments for "struct
2927  * migrate_vma_ops", in include/linux/migrate.h for details about
2928  * finalize_and_map() behavior.
2929  *
2930  * After the finalize_and_map() callback, for successfully migrated pages, this
2931  * function updates the CPU page table to point to new pages, otherwise it
2932  * restores the CPU page table to point to the original source pages.
2933  *
2934  * Function returns 0 after the above steps, even if no pages were migrated
2935  * (The function only returns an error if any of the arguments are invalid.)
2936  *
2937  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2938  * unsigned long entries.
2939  */
2940 int migrate_vma(const struct migrate_vma_ops *ops,
2941 		struct vm_area_struct *vma,
2942 		unsigned long start,
2943 		unsigned long end,
2944 		unsigned long *src,
2945 		unsigned long *dst,
2946 		void *private)
2947 {
2948 	struct migrate_vma migrate;
2949 
2950 	/* Sanity check the arguments */
2951 	start &= PAGE_MASK;
2952 	end &= PAGE_MASK;
2953 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2954 			vma_is_dax(vma))
2955 		return -EINVAL;
2956 	if (start < vma->vm_start || start >= vma->vm_end)
2957 		return -EINVAL;
2958 	if (end <= vma->vm_start || end > vma->vm_end)
2959 		return -EINVAL;
2960 	if (!ops || !src || !dst || start >= end)
2961 		return -EINVAL;
2962 
2963 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964 	migrate.src = src;
2965 	migrate.dst = dst;
2966 	migrate.start = start;
2967 	migrate.npages = 0;
2968 	migrate.cpages = 0;
2969 	migrate.end = end;
2970 	migrate.vma = vma;
2971 
2972 	/* Collect, and try to unmap source pages */
2973 	migrate_vma_collect(&migrate);
2974 	if (!migrate.cpages)
2975 		return 0;
2976 
2977 	/* Lock and isolate page */
2978 	migrate_vma_prepare(&migrate);
2979 	if (!migrate.cpages)
2980 		return 0;
2981 
2982 	/* Unmap pages */
2983 	migrate_vma_unmap(&migrate);
2984 	if (!migrate.cpages)
2985 		return 0;
2986 
2987 	/*
2988 	 * At this point pages are locked and unmapped, and thus they have
2989 	 * stable content and can safely be copied to destination memory that
2990 	 * is allocated by the callback.
2991 	 *
2992 	 * Note that migration can fail in migrate_vma_struct_page() for each
2993 	 * individual page.
2994 	 */
2995 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2996 
2997 	/* This does the real migration of struct page */
2998 	migrate_vma_pages(&migrate);
2999 
3000 	ops->finalize_and_map(vma, src, dst, start, end, private);
3001 
3002 	/* Unlock and remap pages */
3003 	migrate_vma_finalize(&migrate);
3004 
3005 	return 0;
3006 }
3007 EXPORT_SYMBOL(migrate_vma);
3008 #endif /* defined(MIGRATE_VMA_HELPER) */
3009