1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 #include <linux/sched/mm.h> 44 #include <linux/ptrace.h> 45 46 #include <asm/tlbflush.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/migrate.h> 50 51 #include "internal.h" 52 53 /* 54 * migrate_prep() needs to be called before we start compiling a list of pages 55 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 56 * undesirable, use migrate_prep_local() 57 */ 58 int migrate_prep(void) 59 { 60 /* 61 * Clear the LRU lists so pages can be isolated. 62 * Note that pages may be moved off the LRU after we have 63 * drained them. Those pages will fail to migrate like other 64 * pages that may be busy. 65 */ 66 lru_add_drain_all(); 67 68 return 0; 69 } 70 71 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 72 int migrate_prep_local(void) 73 { 74 lru_add_drain(); 75 76 return 0; 77 } 78 79 int isolate_movable_page(struct page *page, isolate_mode_t mode) 80 { 81 struct address_space *mapping; 82 83 /* 84 * Avoid burning cycles with pages that are yet under __free_pages(), 85 * or just got freed under us. 86 * 87 * In case we 'win' a race for a movable page being freed under us and 88 * raise its refcount preventing __free_pages() from doing its job 89 * the put_page() at the end of this block will take care of 90 * release this page, thus avoiding a nasty leakage. 91 */ 92 if (unlikely(!get_page_unless_zero(page))) 93 goto out; 94 95 /* 96 * Check PageMovable before holding a PG_lock because page's owner 97 * assumes anybody doesn't touch PG_lock of newly allocated page 98 * so unconditionally grapping the lock ruins page's owner side. 99 */ 100 if (unlikely(!__PageMovable(page))) 101 goto out_putpage; 102 /* 103 * As movable pages are not isolated from LRU lists, concurrent 104 * compaction threads can race against page migration functions 105 * as well as race against the releasing a page. 106 * 107 * In order to avoid having an already isolated movable page 108 * being (wrongly) re-isolated while it is under migration, 109 * or to avoid attempting to isolate pages being released, 110 * lets be sure we have the page lock 111 * before proceeding with the movable page isolation steps. 112 */ 113 if (unlikely(!trylock_page(page))) 114 goto out_putpage; 115 116 if (!PageMovable(page) || PageIsolated(page)) 117 goto out_no_isolated; 118 119 mapping = page_mapping(page); 120 VM_BUG_ON_PAGE(!mapping, page); 121 122 if (!mapping->a_ops->isolate_page(page, mode)) 123 goto out_no_isolated; 124 125 /* Driver shouldn't use PG_isolated bit of page->flags */ 126 WARN_ON_ONCE(PageIsolated(page)); 127 __SetPageIsolated(page); 128 unlock_page(page); 129 130 return 0; 131 132 out_no_isolated: 133 unlock_page(page); 134 out_putpage: 135 put_page(page); 136 out: 137 return -EBUSY; 138 } 139 140 /* It should be called on page which is PG_movable */ 141 void putback_movable_page(struct page *page) 142 { 143 struct address_space *mapping; 144 145 VM_BUG_ON_PAGE(!PageLocked(page), page); 146 VM_BUG_ON_PAGE(!PageMovable(page), page); 147 VM_BUG_ON_PAGE(!PageIsolated(page), page); 148 149 mapping = page_mapping(page); 150 mapping->a_ops->putback_page(page); 151 __ClearPageIsolated(page); 152 } 153 154 /* 155 * Put previously isolated pages back onto the appropriate lists 156 * from where they were once taken off for compaction/migration. 157 * 158 * This function shall be used whenever the isolated pageset has been 159 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 160 * and isolate_huge_page(). 161 */ 162 void putback_movable_pages(struct list_head *l) 163 { 164 struct page *page; 165 struct page *page2; 166 167 list_for_each_entry_safe(page, page2, l, lru) { 168 if (unlikely(PageHuge(page))) { 169 putback_active_hugepage(page); 170 continue; 171 } 172 list_del(&page->lru); 173 /* 174 * We isolated non-lru movable page so here we can use 175 * __PageMovable because LRU page's mapping cannot have 176 * PAGE_MAPPING_MOVABLE. 177 */ 178 if (unlikely(__PageMovable(page))) { 179 VM_BUG_ON_PAGE(!PageIsolated(page), page); 180 lock_page(page); 181 if (PageMovable(page)) 182 putback_movable_page(page); 183 else 184 __ClearPageIsolated(page); 185 unlock_page(page); 186 put_page(page); 187 } else { 188 dec_node_page_state(page, NR_ISOLATED_ANON + 189 page_is_file_cache(page)); 190 putback_lru_page(page); 191 } 192 } 193 } 194 195 /* 196 * Restore a potential migration pte to a working pte entry 197 */ 198 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 199 unsigned long addr, void *old) 200 { 201 struct page_vma_mapped_walk pvmw = { 202 .page = old, 203 .vma = vma, 204 .address = addr, 205 .flags = PVMW_SYNC | PVMW_MIGRATION, 206 }; 207 struct page *new; 208 pte_t pte; 209 swp_entry_t entry; 210 211 VM_BUG_ON_PAGE(PageTail(page), page); 212 while (page_vma_mapped_walk(&pvmw)) { 213 if (PageKsm(page)) 214 new = page; 215 else 216 new = page - pvmw.page->index + 217 linear_page_index(vma, pvmw.address); 218 219 get_page(new); 220 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 221 if (pte_swp_soft_dirty(*pvmw.pte)) 222 pte = pte_mksoft_dirty(pte); 223 224 /* 225 * Recheck VMA as permissions can change since migration started 226 */ 227 entry = pte_to_swp_entry(*pvmw.pte); 228 if (is_write_migration_entry(entry)) 229 pte = maybe_mkwrite(pte, vma); 230 231 flush_dcache_page(new); 232 #ifdef CONFIG_HUGETLB_PAGE 233 if (PageHuge(new)) { 234 pte = pte_mkhuge(pte); 235 pte = arch_make_huge_pte(pte, vma, new, 0); 236 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 237 if (PageAnon(new)) 238 hugepage_add_anon_rmap(new, vma, pvmw.address); 239 else 240 page_dup_rmap(new, true); 241 } else 242 #endif 243 { 244 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 245 246 if (PageAnon(new)) 247 page_add_anon_rmap(new, vma, pvmw.address, false); 248 else 249 page_add_file_rmap(new, false); 250 } 251 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 252 mlock_vma_page(new); 253 254 /* No need to invalidate - it was non-present before */ 255 update_mmu_cache(vma, pvmw.address, pvmw.pte); 256 } 257 258 return true; 259 } 260 261 /* 262 * Get rid of all migration entries and replace them by 263 * references to the indicated page. 264 */ 265 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 266 { 267 struct rmap_walk_control rwc = { 268 .rmap_one = remove_migration_pte, 269 .arg = old, 270 }; 271 272 if (locked) 273 rmap_walk_locked(new, &rwc); 274 else 275 rmap_walk(new, &rwc); 276 } 277 278 /* 279 * Something used the pte of a page under migration. We need to 280 * get to the page and wait until migration is finished. 281 * When we return from this function the fault will be retried. 282 */ 283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 284 spinlock_t *ptl) 285 { 286 pte_t pte; 287 swp_entry_t entry; 288 struct page *page; 289 290 spin_lock(ptl); 291 pte = *ptep; 292 if (!is_swap_pte(pte)) 293 goto out; 294 295 entry = pte_to_swp_entry(pte); 296 if (!is_migration_entry(entry)) 297 goto out; 298 299 page = migration_entry_to_page(entry); 300 301 /* 302 * Once radix-tree replacement of page migration started, page_count 303 * *must* be zero. And, we don't want to call wait_on_page_locked() 304 * against a page without get_page(). 305 * So, we use get_page_unless_zero(), here. Even failed, page fault 306 * will occur again. 307 */ 308 if (!get_page_unless_zero(page)) 309 goto out; 310 pte_unmap_unlock(ptep, ptl); 311 wait_on_page_locked(page); 312 put_page(page); 313 return; 314 out: 315 pte_unmap_unlock(ptep, ptl); 316 } 317 318 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 319 unsigned long address) 320 { 321 spinlock_t *ptl = pte_lockptr(mm, pmd); 322 pte_t *ptep = pte_offset_map(pmd, address); 323 __migration_entry_wait(mm, ptep, ptl); 324 } 325 326 void migration_entry_wait_huge(struct vm_area_struct *vma, 327 struct mm_struct *mm, pte_t *pte) 328 { 329 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 330 __migration_entry_wait(mm, pte, ptl); 331 } 332 333 #ifdef CONFIG_BLOCK 334 /* Returns true if all buffers are successfully locked */ 335 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 336 enum migrate_mode mode) 337 { 338 struct buffer_head *bh = head; 339 340 /* Simple case, sync compaction */ 341 if (mode != MIGRATE_ASYNC) { 342 do { 343 get_bh(bh); 344 lock_buffer(bh); 345 bh = bh->b_this_page; 346 347 } while (bh != head); 348 349 return true; 350 } 351 352 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 353 do { 354 get_bh(bh); 355 if (!trylock_buffer(bh)) { 356 /* 357 * We failed to lock the buffer and cannot stall in 358 * async migration. Release the taken locks 359 */ 360 struct buffer_head *failed_bh = bh; 361 put_bh(failed_bh); 362 bh = head; 363 while (bh != failed_bh) { 364 unlock_buffer(bh); 365 put_bh(bh); 366 bh = bh->b_this_page; 367 } 368 return false; 369 } 370 371 bh = bh->b_this_page; 372 } while (bh != head); 373 return true; 374 } 375 #else 376 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 377 enum migrate_mode mode) 378 { 379 return true; 380 } 381 #endif /* CONFIG_BLOCK */ 382 383 /* 384 * Replace the page in the mapping. 385 * 386 * The number of remaining references must be: 387 * 1 for anonymous pages without a mapping 388 * 2 for pages with a mapping 389 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 390 */ 391 int migrate_page_move_mapping(struct address_space *mapping, 392 struct page *newpage, struct page *page, 393 struct buffer_head *head, enum migrate_mode mode, 394 int extra_count) 395 { 396 struct zone *oldzone, *newzone; 397 int dirty; 398 int expected_count = 1 + extra_count; 399 void **pslot; 400 401 if (!mapping) { 402 /* Anonymous page without mapping */ 403 if (page_count(page) != expected_count) 404 return -EAGAIN; 405 406 /* No turning back from here */ 407 newpage->index = page->index; 408 newpage->mapping = page->mapping; 409 if (PageSwapBacked(page)) 410 __SetPageSwapBacked(newpage); 411 412 return MIGRATEPAGE_SUCCESS; 413 } 414 415 oldzone = page_zone(page); 416 newzone = page_zone(newpage); 417 418 spin_lock_irq(&mapping->tree_lock); 419 420 pslot = radix_tree_lookup_slot(&mapping->page_tree, 421 page_index(page)); 422 423 expected_count += 1 + page_has_private(page); 424 if (page_count(page) != expected_count || 425 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 426 spin_unlock_irq(&mapping->tree_lock); 427 return -EAGAIN; 428 } 429 430 if (!page_ref_freeze(page, expected_count)) { 431 spin_unlock_irq(&mapping->tree_lock); 432 return -EAGAIN; 433 } 434 435 /* 436 * In the async migration case of moving a page with buffers, lock the 437 * buffers using trylock before the mapping is moved. If the mapping 438 * was moved, we later failed to lock the buffers and could not move 439 * the mapping back due to an elevated page count, we would have to 440 * block waiting on other references to be dropped. 441 */ 442 if (mode == MIGRATE_ASYNC && head && 443 !buffer_migrate_lock_buffers(head, mode)) { 444 page_ref_unfreeze(page, expected_count); 445 spin_unlock_irq(&mapping->tree_lock); 446 return -EAGAIN; 447 } 448 449 /* 450 * Now we know that no one else is looking at the page: 451 * no turning back from here. 452 */ 453 newpage->index = page->index; 454 newpage->mapping = page->mapping; 455 get_page(newpage); /* add cache reference */ 456 if (PageSwapBacked(page)) { 457 __SetPageSwapBacked(newpage); 458 if (PageSwapCache(page)) { 459 SetPageSwapCache(newpage); 460 set_page_private(newpage, page_private(page)); 461 } 462 } else { 463 VM_BUG_ON_PAGE(PageSwapCache(page), page); 464 } 465 466 /* Move dirty while page refs frozen and newpage not yet exposed */ 467 dirty = PageDirty(page); 468 if (dirty) { 469 ClearPageDirty(page); 470 SetPageDirty(newpage); 471 } 472 473 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 474 475 /* 476 * Drop cache reference from old page by unfreezing 477 * to one less reference. 478 * We know this isn't the last reference. 479 */ 480 page_ref_unfreeze(page, expected_count - 1); 481 482 spin_unlock(&mapping->tree_lock); 483 /* Leave irq disabled to prevent preemption while updating stats */ 484 485 /* 486 * If moved to a different zone then also account 487 * the page for that zone. Other VM counters will be 488 * taken care of when we establish references to the 489 * new page and drop references to the old page. 490 * 491 * Note that anonymous pages are accounted for 492 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 493 * are mapped to swap space. 494 */ 495 if (newzone != oldzone) { 496 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 497 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 498 if (PageSwapBacked(page) && !PageSwapCache(page)) { 499 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 500 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 501 } 502 if (dirty && mapping_cap_account_dirty(mapping)) { 503 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 504 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 505 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 506 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 507 } 508 } 509 local_irq_enable(); 510 511 return MIGRATEPAGE_SUCCESS; 512 } 513 EXPORT_SYMBOL(migrate_page_move_mapping); 514 515 /* 516 * The expected number of remaining references is the same as that 517 * of migrate_page_move_mapping(). 518 */ 519 int migrate_huge_page_move_mapping(struct address_space *mapping, 520 struct page *newpage, struct page *page) 521 { 522 int expected_count; 523 void **pslot; 524 525 spin_lock_irq(&mapping->tree_lock); 526 527 pslot = radix_tree_lookup_slot(&mapping->page_tree, 528 page_index(page)); 529 530 expected_count = 2 + page_has_private(page); 531 if (page_count(page) != expected_count || 532 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 533 spin_unlock_irq(&mapping->tree_lock); 534 return -EAGAIN; 535 } 536 537 if (!page_ref_freeze(page, expected_count)) { 538 spin_unlock_irq(&mapping->tree_lock); 539 return -EAGAIN; 540 } 541 542 newpage->index = page->index; 543 newpage->mapping = page->mapping; 544 545 get_page(newpage); 546 547 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 548 549 page_ref_unfreeze(page, expected_count - 1); 550 551 spin_unlock_irq(&mapping->tree_lock); 552 553 return MIGRATEPAGE_SUCCESS; 554 } 555 556 /* 557 * Gigantic pages are so large that we do not guarantee that page++ pointer 558 * arithmetic will work across the entire page. We need something more 559 * specialized. 560 */ 561 static void __copy_gigantic_page(struct page *dst, struct page *src, 562 int nr_pages) 563 { 564 int i; 565 struct page *dst_base = dst; 566 struct page *src_base = src; 567 568 for (i = 0; i < nr_pages; ) { 569 cond_resched(); 570 copy_highpage(dst, src); 571 572 i++; 573 dst = mem_map_next(dst, dst_base, i); 574 src = mem_map_next(src, src_base, i); 575 } 576 } 577 578 static void copy_huge_page(struct page *dst, struct page *src) 579 { 580 int i; 581 int nr_pages; 582 583 if (PageHuge(src)) { 584 /* hugetlbfs page */ 585 struct hstate *h = page_hstate(src); 586 nr_pages = pages_per_huge_page(h); 587 588 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 589 __copy_gigantic_page(dst, src, nr_pages); 590 return; 591 } 592 } else { 593 /* thp page */ 594 BUG_ON(!PageTransHuge(src)); 595 nr_pages = hpage_nr_pages(src); 596 } 597 598 for (i = 0; i < nr_pages; i++) { 599 cond_resched(); 600 copy_highpage(dst + i, src + i); 601 } 602 } 603 604 /* 605 * Copy the page to its new location 606 */ 607 void migrate_page_copy(struct page *newpage, struct page *page) 608 { 609 int cpupid; 610 611 if (PageHuge(page) || PageTransHuge(page)) 612 copy_huge_page(newpage, page); 613 else 614 copy_highpage(newpage, page); 615 616 if (PageError(page)) 617 SetPageError(newpage); 618 if (PageReferenced(page)) 619 SetPageReferenced(newpage); 620 if (PageUptodate(page)) 621 SetPageUptodate(newpage); 622 if (TestClearPageActive(page)) { 623 VM_BUG_ON_PAGE(PageUnevictable(page), page); 624 SetPageActive(newpage); 625 } else if (TestClearPageUnevictable(page)) 626 SetPageUnevictable(newpage); 627 if (PageChecked(page)) 628 SetPageChecked(newpage); 629 if (PageMappedToDisk(page)) 630 SetPageMappedToDisk(newpage); 631 632 /* Move dirty on pages not done by migrate_page_move_mapping() */ 633 if (PageDirty(page)) 634 SetPageDirty(newpage); 635 636 if (page_is_young(page)) 637 set_page_young(newpage); 638 if (page_is_idle(page)) 639 set_page_idle(newpage); 640 641 /* 642 * Copy NUMA information to the new page, to prevent over-eager 643 * future migrations of this same page. 644 */ 645 cpupid = page_cpupid_xchg_last(page, -1); 646 page_cpupid_xchg_last(newpage, cpupid); 647 648 ksm_migrate_page(newpage, page); 649 /* 650 * Please do not reorder this without considering how mm/ksm.c's 651 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 652 */ 653 if (PageSwapCache(page)) 654 ClearPageSwapCache(page); 655 ClearPagePrivate(page); 656 set_page_private(page, 0); 657 658 /* 659 * If any waiters have accumulated on the new page then 660 * wake them up. 661 */ 662 if (PageWriteback(newpage)) 663 end_page_writeback(newpage); 664 665 copy_page_owner(page, newpage); 666 667 mem_cgroup_migrate(page, newpage); 668 } 669 EXPORT_SYMBOL(migrate_page_copy); 670 671 /************************************************************ 672 * Migration functions 673 ***********************************************************/ 674 675 /* 676 * Common logic to directly migrate a single LRU page suitable for 677 * pages that do not use PagePrivate/PagePrivate2. 678 * 679 * Pages are locked upon entry and exit. 680 */ 681 int migrate_page(struct address_space *mapping, 682 struct page *newpage, struct page *page, 683 enum migrate_mode mode) 684 { 685 int rc; 686 687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 688 689 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 690 691 if (rc != MIGRATEPAGE_SUCCESS) 692 return rc; 693 694 migrate_page_copy(newpage, page); 695 return MIGRATEPAGE_SUCCESS; 696 } 697 EXPORT_SYMBOL(migrate_page); 698 699 #ifdef CONFIG_BLOCK 700 /* 701 * Migration function for pages with buffers. This function can only be used 702 * if the underlying filesystem guarantees that no other references to "page" 703 * exist. 704 */ 705 int buffer_migrate_page(struct address_space *mapping, 706 struct page *newpage, struct page *page, enum migrate_mode mode) 707 { 708 struct buffer_head *bh, *head; 709 int rc; 710 711 if (!page_has_buffers(page)) 712 return migrate_page(mapping, newpage, page, mode); 713 714 head = page_buffers(page); 715 716 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 717 718 if (rc != MIGRATEPAGE_SUCCESS) 719 return rc; 720 721 /* 722 * In the async case, migrate_page_move_mapping locked the buffers 723 * with an IRQ-safe spinlock held. In the sync case, the buffers 724 * need to be locked now 725 */ 726 if (mode != MIGRATE_ASYNC) 727 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 728 729 ClearPagePrivate(page); 730 set_page_private(newpage, page_private(page)); 731 set_page_private(page, 0); 732 put_page(page); 733 get_page(newpage); 734 735 bh = head; 736 do { 737 set_bh_page(bh, newpage, bh_offset(bh)); 738 bh = bh->b_this_page; 739 740 } while (bh != head); 741 742 SetPagePrivate(newpage); 743 744 migrate_page_copy(newpage, page); 745 746 bh = head; 747 do { 748 unlock_buffer(bh); 749 put_bh(bh); 750 bh = bh->b_this_page; 751 752 } while (bh != head); 753 754 return MIGRATEPAGE_SUCCESS; 755 } 756 EXPORT_SYMBOL(buffer_migrate_page); 757 #endif 758 759 /* 760 * Writeback a page to clean the dirty state 761 */ 762 static int writeout(struct address_space *mapping, struct page *page) 763 { 764 struct writeback_control wbc = { 765 .sync_mode = WB_SYNC_NONE, 766 .nr_to_write = 1, 767 .range_start = 0, 768 .range_end = LLONG_MAX, 769 .for_reclaim = 1 770 }; 771 int rc; 772 773 if (!mapping->a_ops->writepage) 774 /* No write method for the address space */ 775 return -EINVAL; 776 777 if (!clear_page_dirty_for_io(page)) 778 /* Someone else already triggered a write */ 779 return -EAGAIN; 780 781 /* 782 * A dirty page may imply that the underlying filesystem has 783 * the page on some queue. So the page must be clean for 784 * migration. Writeout may mean we loose the lock and the 785 * page state is no longer what we checked for earlier. 786 * At this point we know that the migration attempt cannot 787 * be successful. 788 */ 789 remove_migration_ptes(page, page, false); 790 791 rc = mapping->a_ops->writepage(page, &wbc); 792 793 if (rc != AOP_WRITEPAGE_ACTIVATE) 794 /* unlocked. Relock */ 795 lock_page(page); 796 797 return (rc < 0) ? -EIO : -EAGAIN; 798 } 799 800 /* 801 * Default handling if a filesystem does not provide a migration function. 802 */ 803 static int fallback_migrate_page(struct address_space *mapping, 804 struct page *newpage, struct page *page, enum migrate_mode mode) 805 { 806 if (PageDirty(page)) { 807 /* Only writeback pages in full synchronous migration */ 808 if (mode != MIGRATE_SYNC) 809 return -EBUSY; 810 return writeout(mapping, page); 811 } 812 813 /* 814 * Buffers may be managed in a filesystem specific way. 815 * We must have no buffers or drop them. 816 */ 817 if (page_has_private(page) && 818 !try_to_release_page(page, GFP_KERNEL)) 819 return -EAGAIN; 820 821 return migrate_page(mapping, newpage, page, mode); 822 } 823 824 /* 825 * Move a page to a newly allocated page 826 * The page is locked and all ptes have been successfully removed. 827 * 828 * The new page will have replaced the old page if this function 829 * is successful. 830 * 831 * Return value: 832 * < 0 - error code 833 * MIGRATEPAGE_SUCCESS - success 834 */ 835 static int move_to_new_page(struct page *newpage, struct page *page, 836 enum migrate_mode mode) 837 { 838 struct address_space *mapping; 839 int rc = -EAGAIN; 840 bool is_lru = !__PageMovable(page); 841 842 VM_BUG_ON_PAGE(!PageLocked(page), page); 843 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 844 845 mapping = page_mapping(page); 846 847 if (likely(is_lru)) { 848 if (!mapping) 849 rc = migrate_page(mapping, newpage, page, mode); 850 else if (mapping->a_ops->migratepage) 851 /* 852 * Most pages have a mapping and most filesystems 853 * provide a migratepage callback. Anonymous pages 854 * are part of swap space which also has its own 855 * migratepage callback. This is the most common path 856 * for page migration. 857 */ 858 rc = mapping->a_ops->migratepage(mapping, newpage, 859 page, mode); 860 else 861 rc = fallback_migrate_page(mapping, newpage, 862 page, mode); 863 } else { 864 /* 865 * In case of non-lru page, it could be released after 866 * isolation step. In that case, we shouldn't try migration. 867 */ 868 VM_BUG_ON_PAGE(!PageIsolated(page), page); 869 if (!PageMovable(page)) { 870 rc = MIGRATEPAGE_SUCCESS; 871 __ClearPageIsolated(page); 872 goto out; 873 } 874 875 rc = mapping->a_ops->migratepage(mapping, newpage, 876 page, mode); 877 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 878 !PageIsolated(page)); 879 } 880 881 /* 882 * When successful, old pagecache page->mapping must be cleared before 883 * page is freed; but stats require that PageAnon be left as PageAnon. 884 */ 885 if (rc == MIGRATEPAGE_SUCCESS) { 886 if (__PageMovable(page)) { 887 VM_BUG_ON_PAGE(!PageIsolated(page), page); 888 889 /* 890 * We clear PG_movable under page_lock so any compactor 891 * cannot try to migrate this page. 892 */ 893 __ClearPageIsolated(page); 894 } 895 896 /* 897 * Anonymous and movable page->mapping will be cleard by 898 * free_pages_prepare so don't reset it here for keeping 899 * the type to work PageAnon, for example. 900 */ 901 if (!PageMappingFlags(page)) 902 page->mapping = NULL; 903 } 904 out: 905 return rc; 906 } 907 908 static int __unmap_and_move(struct page *page, struct page *newpage, 909 int force, enum migrate_mode mode) 910 { 911 int rc = -EAGAIN; 912 int page_was_mapped = 0; 913 struct anon_vma *anon_vma = NULL; 914 bool is_lru = !__PageMovable(page); 915 916 if (!trylock_page(page)) { 917 if (!force || mode == MIGRATE_ASYNC) 918 goto out; 919 920 /* 921 * It's not safe for direct compaction to call lock_page. 922 * For example, during page readahead pages are added locked 923 * to the LRU. Later, when the IO completes the pages are 924 * marked uptodate and unlocked. However, the queueing 925 * could be merging multiple pages for one bio (e.g. 926 * mpage_readpages). If an allocation happens for the 927 * second or third page, the process can end up locking 928 * the same page twice and deadlocking. Rather than 929 * trying to be clever about what pages can be locked, 930 * avoid the use of lock_page for direct compaction 931 * altogether. 932 */ 933 if (current->flags & PF_MEMALLOC) 934 goto out; 935 936 lock_page(page); 937 } 938 939 if (PageWriteback(page)) { 940 /* 941 * Only in the case of a full synchronous migration is it 942 * necessary to wait for PageWriteback. In the async case, 943 * the retry loop is too short and in the sync-light case, 944 * the overhead of stalling is too much 945 */ 946 if (mode != MIGRATE_SYNC) { 947 rc = -EBUSY; 948 goto out_unlock; 949 } 950 if (!force) 951 goto out_unlock; 952 wait_on_page_writeback(page); 953 } 954 955 /* 956 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 957 * we cannot notice that anon_vma is freed while we migrates a page. 958 * This get_anon_vma() delays freeing anon_vma pointer until the end 959 * of migration. File cache pages are no problem because of page_lock() 960 * File Caches may use write_page() or lock_page() in migration, then, 961 * just care Anon page here. 962 * 963 * Only page_get_anon_vma() understands the subtleties of 964 * getting a hold on an anon_vma from outside one of its mms. 965 * But if we cannot get anon_vma, then we won't need it anyway, 966 * because that implies that the anon page is no longer mapped 967 * (and cannot be remapped so long as we hold the page lock). 968 */ 969 if (PageAnon(page) && !PageKsm(page)) 970 anon_vma = page_get_anon_vma(page); 971 972 /* 973 * Block others from accessing the new page when we get around to 974 * establishing additional references. We are usually the only one 975 * holding a reference to newpage at this point. We used to have a BUG 976 * here if trylock_page(newpage) fails, but would like to allow for 977 * cases where there might be a race with the previous use of newpage. 978 * This is much like races on refcount of oldpage: just don't BUG(). 979 */ 980 if (unlikely(!trylock_page(newpage))) 981 goto out_unlock; 982 983 if (unlikely(!is_lru)) { 984 rc = move_to_new_page(newpage, page, mode); 985 goto out_unlock_both; 986 } 987 988 /* 989 * Corner case handling: 990 * 1. When a new swap-cache page is read into, it is added to the LRU 991 * and treated as swapcache but it has no rmap yet. 992 * Calling try_to_unmap() against a page->mapping==NULL page will 993 * trigger a BUG. So handle it here. 994 * 2. An orphaned page (see truncate_complete_page) might have 995 * fs-private metadata. The page can be picked up due to memory 996 * offlining. Everywhere else except page reclaim, the page is 997 * invisible to the vm, so the page can not be migrated. So try to 998 * free the metadata, so the page can be freed. 999 */ 1000 if (!page->mapping) { 1001 VM_BUG_ON_PAGE(PageAnon(page), page); 1002 if (page_has_private(page)) { 1003 try_to_free_buffers(page); 1004 goto out_unlock_both; 1005 } 1006 } else if (page_mapped(page)) { 1007 /* Establish migration ptes */ 1008 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1009 page); 1010 try_to_unmap(page, 1011 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1012 page_was_mapped = 1; 1013 } 1014 1015 if (!page_mapped(page)) 1016 rc = move_to_new_page(newpage, page, mode); 1017 1018 if (page_was_mapped) 1019 remove_migration_ptes(page, 1020 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1021 1022 out_unlock_both: 1023 unlock_page(newpage); 1024 out_unlock: 1025 /* Drop an anon_vma reference if we took one */ 1026 if (anon_vma) 1027 put_anon_vma(anon_vma); 1028 unlock_page(page); 1029 out: 1030 /* 1031 * If migration is successful, decrease refcount of the newpage 1032 * which will not free the page because new page owner increased 1033 * refcounter. As well, if it is LRU page, add the page to LRU 1034 * list in here. 1035 */ 1036 if (rc == MIGRATEPAGE_SUCCESS) { 1037 if (unlikely(__PageMovable(newpage))) 1038 put_page(newpage); 1039 else 1040 putback_lru_page(newpage); 1041 } 1042 1043 return rc; 1044 } 1045 1046 /* 1047 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1048 * around it. 1049 */ 1050 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1051 #define ICE_noinline noinline 1052 #else 1053 #define ICE_noinline 1054 #endif 1055 1056 /* 1057 * Obtain the lock on page, remove all ptes and migrate the page 1058 * to the newly allocated page in newpage. 1059 */ 1060 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1061 free_page_t put_new_page, 1062 unsigned long private, struct page *page, 1063 int force, enum migrate_mode mode, 1064 enum migrate_reason reason) 1065 { 1066 int rc = MIGRATEPAGE_SUCCESS; 1067 int *result = NULL; 1068 struct page *newpage; 1069 1070 newpage = get_new_page(page, private, &result); 1071 if (!newpage) 1072 return -ENOMEM; 1073 1074 if (page_count(page) == 1) { 1075 /* page was freed from under us. So we are done. */ 1076 ClearPageActive(page); 1077 ClearPageUnevictable(page); 1078 if (unlikely(__PageMovable(page))) { 1079 lock_page(page); 1080 if (!PageMovable(page)) 1081 __ClearPageIsolated(page); 1082 unlock_page(page); 1083 } 1084 if (put_new_page) 1085 put_new_page(newpage, private); 1086 else 1087 put_page(newpage); 1088 goto out; 1089 } 1090 1091 if (unlikely(PageTransHuge(page))) { 1092 lock_page(page); 1093 rc = split_huge_page(page); 1094 unlock_page(page); 1095 if (rc) 1096 goto out; 1097 } 1098 1099 rc = __unmap_and_move(page, newpage, force, mode); 1100 if (rc == MIGRATEPAGE_SUCCESS) 1101 set_page_owner_migrate_reason(newpage, reason); 1102 1103 out: 1104 if (rc != -EAGAIN) { 1105 /* 1106 * A page that has been migrated has all references 1107 * removed and will be freed. A page that has not been 1108 * migrated will have kepts its references and be 1109 * restored. 1110 */ 1111 list_del(&page->lru); 1112 1113 /* 1114 * Compaction can migrate also non-LRU pages which are 1115 * not accounted to NR_ISOLATED_*. They can be recognized 1116 * as __PageMovable 1117 */ 1118 if (likely(!__PageMovable(page))) 1119 dec_node_page_state(page, NR_ISOLATED_ANON + 1120 page_is_file_cache(page)); 1121 } 1122 1123 /* 1124 * If migration is successful, releases reference grabbed during 1125 * isolation. Otherwise, restore the page to right list unless 1126 * we want to retry. 1127 */ 1128 if (rc == MIGRATEPAGE_SUCCESS) { 1129 put_page(page); 1130 if (reason == MR_MEMORY_FAILURE) { 1131 /* 1132 * Set PG_HWPoison on just freed page 1133 * intentionally. Although it's rather weird, 1134 * it's how HWPoison flag works at the moment. 1135 */ 1136 if (!test_set_page_hwpoison(page)) 1137 num_poisoned_pages_inc(); 1138 } 1139 } else { 1140 if (rc != -EAGAIN) { 1141 if (likely(!__PageMovable(page))) { 1142 putback_lru_page(page); 1143 goto put_new; 1144 } 1145 1146 lock_page(page); 1147 if (PageMovable(page)) 1148 putback_movable_page(page); 1149 else 1150 __ClearPageIsolated(page); 1151 unlock_page(page); 1152 put_page(page); 1153 } 1154 put_new: 1155 if (put_new_page) 1156 put_new_page(newpage, private); 1157 else 1158 put_page(newpage); 1159 } 1160 1161 if (result) { 1162 if (rc) 1163 *result = rc; 1164 else 1165 *result = page_to_nid(newpage); 1166 } 1167 return rc; 1168 } 1169 1170 /* 1171 * Counterpart of unmap_and_move_page() for hugepage migration. 1172 * 1173 * This function doesn't wait the completion of hugepage I/O 1174 * because there is no race between I/O and migration for hugepage. 1175 * Note that currently hugepage I/O occurs only in direct I/O 1176 * where no lock is held and PG_writeback is irrelevant, 1177 * and writeback status of all subpages are counted in the reference 1178 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1179 * under direct I/O, the reference of the head page is 512 and a bit more.) 1180 * This means that when we try to migrate hugepage whose subpages are 1181 * doing direct I/O, some references remain after try_to_unmap() and 1182 * hugepage migration fails without data corruption. 1183 * 1184 * There is also no race when direct I/O is issued on the page under migration, 1185 * because then pte is replaced with migration swap entry and direct I/O code 1186 * will wait in the page fault for migration to complete. 1187 */ 1188 static int unmap_and_move_huge_page(new_page_t get_new_page, 1189 free_page_t put_new_page, unsigned long private, 1190 struct page *hpage, int force, 1191 enum migrate_mode mode, int reason) 1192 { 1193 int rc = -EAGAIN; 1194 int *result = NULL; 1195 int page_was_mapped = 0; 1196 struct page *new_hpage; 1197 struct anon_vma *anon_vma = NULL; 1198 1199 /* 1200 * Movability of hugepages depends on architectures and hugepage size. 1201 * This check is necessary because some callers of hugepage migration 1202 * like soft offline and memory hotremove don't walk through page 1203 * tables or check whether the hugepage is pmd-based or not before 1204 * kicking migration. 1205 */ 1206 if (!hugepage_migration_supported(page_hstate(hpage))) { 1207 putback_active_hugepage(hpage); 1208 return -ENOSYS; 1209 } 1210 1211 new_hpage = get_new_page(hpage, private, &result); 1212 if (!new_hpage) 1213 return -ENOMEM; 1214 1215 if (!trylock_page(hpage)) { 1216 if (!force || mode != MIGRATE_SYNC) 1217 goto out; 1218 lock_page(hpage); 1219 } 1220 1221 if (PageAnon(hpage)) 1222 anon_vma = page_get_anon_vma(hpage); 1223 1224 if (unlikely(!trylock_page(new_hpage))) 1225 goto put_anon; 1226 1227 if (page_mapped(hpage)) { 1228 try_to_unmap(hpage, 1229 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1230 page_was_mapped = 1; 1231 } 1232 1233 if (!page_mapped(hpage)) 1234 rc = move_to_new_page(new_hpage, hpage, mode); 1235 1236 if (page_was_mapped) 1237 remove_migration_ptes(hpage, 1238 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1239 1240 unlock_page(new_hpage); 1241 1242 put_anon: 1243 if (anon_vma) 1244 put_anon_vma(anon_vma); 1245 1246 if (rc == MIGRATEPAGE_SUCCESS) { 1247 hugetlb_cgroup_migrate(hpage, new_hpage); 1248 put_new_page = NULL; 1249 set_page_owner_migrate_reason(new_hpage, reason); 1250 } 1251 1252 unlock_page(hpage); 1253 out: 1254 if (rc != -EAGAIN) 1255 putback_active_hugepage(hpage); 1256 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage)) 1257 num_poisoned_pages_inc(); 1258 1259 /* 1260 * If migration was not successful and there's a freeing callback, use 1261 * it. Otherwise, put_page() will drop the reference grabbed during 1262 * isolation. 1263 */ 1264 if (put_new_page) 1265 put_new_page(new_hpage, private); 1266 else 1267 putback_active_hugepage(new_hpage); 1268 1269 if (result) { 1270 if (rc) 1271 *result = rc; 1272 else 1273 *result = page_to_nid(new_hpage); 1274 } 1275 return rc; 1276 } 1277 1278 /* 1279 * migrate_pages - migrate the pages specified in a list, to the free pages 1280 * supplied as the target for the page migration 1281 * 1282 * @from: The list of pages to be migrated. 1283 * @get_new_page: The function used to allocate free pages to be used 1284 * as the target of the page migration. 1285 * @put_new_page: The function used to free target pages if migration 1286 * fails, or NULL if no special handling is necessary. 1287 * @private: Private data to be passed on to get_new_page() 1288 * @mode: The migration mode that specifies the constraints for 1289 * page migration, if any. 1290 * @reason: The reason for page migration. 1291 * 1292 * The function returns after 10 attempts or if no pages are movable any more 1293 * because the list has become empty or no retryable pages exist any more. 1294 * The caller should call putback_movable_pages() to return pages to the LRU 1295 * or free list only if ret != 0. 1296 * 1297 * Returns the number of pages that were not migrated, or an error code. 1298 */ 1299 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1300 free_page_t put_new_page, unsigned long private, 1301 enum migrate_mode mode, int reason) 1302 { 1303 int retry = 1; 1304 int nr_failed = 0; 1305 int nr_succeeded = 0; 1306 int pass = 0; 1307 struct page *page; 1308 struct page *page2; 1309 int swapwrite = current->flags & PF_SWAPWRITE; 1310 int rc; 1311 1312 if (!swapwrite) 1313 current->flags |= PF_SWAPWRITE; 1314 1315 for(pass = 0; pass < 10 && retry; pass++) { 1316 retry = 0; 1317 1318 list_for_each_entry_safe(page, page2, from, lru) { 1319 cond_resched(); 1320 1321 if (PageHuge(page)) 1322 rc = unmap_and_move_huge_page(get_new_page, 1323 put_new_page, private, page, 1324 pass > 2, mode, reason); 1325 else 1326 rc = unmap_and_move(get_new_page, put_new_page, 1327 private, page, pass > 2, mode, 1328 reason); 1329 1330 switch(rc) { 1331 case -ENOMEM: 1332 nr_failed++; 1333 goto out; 1334 case -EAGAIN: 1335 retry++; 1336 break; 1337 case MIGRATEPAGE_SUCCESS: 1338 nr_succeeded++; 1339 break; 1340 default: 1341 /* 1342 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1343 * unlike -EAGAIN case, the failed page is 1344 * removed from migration page list and not 1345 * retried in the next outer loop. 1346 */ 1347 nr_failed++; 1348 break; 1349 } 1350 } 1351 } 1352 nr_failed += retry; 1353 rc = nr_failed; 1354 out: 1355 if (nr_succeeded) 1356 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1357 if (nr_failed) 1358 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1359 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1360 1361 if (!swapwrite) 1362 current->flags &= ~PF_SWAPWRITE; 1363 1364 return rc; 1365 } 1366 1367 #ifdef CONFIG_NUMA 1368 /* 1369 * Move a list of individual pages 1370 */ 1371 struct page_to_node { 1372 unsigned long addr; 1373 struct page *page; 1374 int node; 1375 int status; 1376 }; 1377 1378 static struct page *new_page_node(struct page *p, unsigned long private, 1379 int **result) 1380 { 1381 struct page_to_node *pm = (struct page_to_node *)private; 1382 1383 while (pm->node != MAX_NUMNODES && pm->page != p) 1384 pm++; 1385 1386 if (pm->node == MAX_NUMNODES) 1387 return NULL; 1388 1389 *result = &pm->status; 1390 1391 if (PageHuge(p)) 1392 return alloc_huge_page_node(page_hstate(compound_head(p)), 1393 pm->node); 1394 else 1395 return __alloc_pages_node(pm->node, 1396 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1397 } 1398 1399 /* 1400 * Move a set of pages as indicated in the pm array. The addr 1401 * field must be set to the virtual address of the page to be moved 1402 * and the node number must contain a valid target node. 1403 * The pm array ends with node = MAX_NUMNODES. 1404 */ 1405 static int do_move_page_to_node_array(struct mm_struct *mm, 1406 struct page_to_node *pm, 1407 int migrate_all) 1408 { 1409 int err; 1410 struct page_to_node *pp; 1411 LIST_HEAD(pagelist); 1412 1413 down_read(&mm->mmap_sem); 1414 1415 /* 1416 * Build a list of pages to migrate 1417 */ 1418 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1419 struct vm_area_struct *vma; 1420 struct page *page; 1421 1422 err = -EFAULT; 1423 vma = find_vma(mm, pp->addr); 1424 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1425 goto set_status; 1426 1427 /* FOLL_DUMP to ignore special (like zero) pages */ 1428 page = follow_page(vma, pp->addr, 1429 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1430 1431 err = PTR_ERR(page); 1432 if (IS_ERR(page)) 1433 goto set_status; 1434 1435 err = -ENOENT; 1436 if (!page) 1437 goto set_status; 1438 1439 pp->page = page; 1440 err = page_to_nid(page); 1441 1442 if (err == pp->node) 1443 /* 1444 * Node already in the right place 1445 */ 1446 goto put_and_set; 1447 1448 err = -EACCES; 1449 if (page_mapcount(page) > 1 && 1450 !migrate_all) 1451 goto put_and_set; 1452 1453 if (PageHuge(page)) { 1454 if (PageHead(page)) 1455 isolate_huge_page(page, &pagelist); 1456 goto put_and_set; 1457 } 1458 1459 err = isolate_lru_page(page); 1460 if (!err) { 1461 list_add_tail(&page->lru, &pagelist); 1462 inc_node_page_state(page, NR_ISOLATED_ANON + 1463 page_is_file_cache(page)); 1464 } 1465 put_and_set: 1466 /* 1467 * Either remove the duplicate refcount from 1468 * isolate_lru_page() or drop the page ref if it was 1469 * not isolated. 1470 */ 1471 put_page(page); 1472 set_status: 1473 pp->status = err; 1474 } 1475 1476 err = 0; 1477 if (!list_empty(&pagelist)) { 1478 err = migrate_pages(&pagelist, new_page_node, NULL, 1479 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1480 if (err) 1481 putback_movable_pages(&pagelist); 1482 } 1483 1484 up_read(&mm->mmap_sem); 1485 return err; 1486 } 1487 1488 /* 1489 * Migrate an array of page address onto an array of nodes and fill 1490 * the corresponding array of status. 1491 */ 1492 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1493 unsigned long nr_pages, 1494 const void __user * __user *pages, 1495 const int __user *nodes, 1496 int __user *status, int flags) 1497 { 1498 struct page_to_node *pm; 1499 unsigned long chunk_nr_pages; 1500 unsigned long chunk_start; 1501 int err; 1502 1503 err = -ENOMEM; 1504 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1505 if (!pm) 1506 goto out; 1507 1508 migrate_prep(); 1509 1510 /* 1511 * Store a chunk of page_to_node array in a page, 1512 * but keep the last one as a marker 1513 */ 1514 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1515 1516 for (chunk_start = 0; 1517 chunk_start < nr_pages; 1518 chunk_start += chunk_nr_pages) { 1519 int j; 1520 1521 if (chunk_start + chunk_nr_pages > nr_pages) 1522 chunk_nr_pages = nr_pages - chunk_start; 1523 1524 /* fill the chunk pm with addrs and nodes from user-space */ 1525 for (j = 0; j < chunk_nr_pages; j++) { 1526 const void __user *p; 1527 int node; 1528 1529 err = -EFAULT; 1530 if (get_user(p, pages + j + chunk_start)) 1531 goto out_pm; 1532 pm[j].addr = (unsigned long) p; 1533 1534 if (get_user(node, nodes + j + chunk_start)) 1535 goto out_pm; 1536 1537 err = -ENODEV; 1538 if (node < 0 || node >= MAX_NUMNODES) 1539 goto out_pm; 1540 1541 if (!node_state(node, N_MEMORY)) 1542 goto out_pm; 1543 1544 err = -EACCES; 1545 if (!node_isset(node, task_nodes)) 1546 goto out_pm; 1547 1548 pm[j].node = node; 1549 } 1550 1551 /* End marker for this chunk */ 1552 pm[chunk_nr_pages].node = MAX_NUMNODES; 1553 1554 /* Migrate this chunk */ 1555 err = do_move_page_to_node_array(mm, pm, 1556 flags & MPOL_MF_MOVE_ALL); 1557 if (err < 0) 1558 goto out_pm; 1559 1560 /* Return status information */ 1561 for (j = 0; j < chunk_nr_pages; j++) 1562 if (put_user(pm[j].status, status + j + chunk_start)) { 1563 err = -EFAULT; 1564 goto out_pm; 1565 } 1566 } 1567 err = 0; 1568 1569 out_pm: 1570 free_page((unsigned long)pm); 1571 out: 1572 return err; 1573 } 1574 1575 /* 1576 * Determine the nodes of an array of pages and store it in an array of status. 1577 */ 1578 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1579 const void __user **pages, int *status) 1580 { 1581 unsigned long i; 1582 1583 down_read(&mm->mmap_sem); 1584 1585 for (i = 0; i < nr_pages; i++) { 1586 unsigned long addr = (unsigned long)(*pages); 1587 struct vm_area_struct *vma; 1588 struct page *page; 1589 int err = -EFAULT; 1590 1591 vma = find_vma(mm, addr); 1592 if (!vma || addr < vma->vm_start) 1593 goto set_status; 1594 1595 /* FOLL_DUMP to ignore special (like zero) pages */ 1596 page = follow_page(vma, addr, FOLL_DUMP); 1597 1598 err = PTR_ERR(page); 1599 if (IS_ERR(page)) 1600 goto set_status; 1601 1602 err = page ? page_to_nid(page) : -ENOENT; 1603 set_status: 1604 *status = err; 1605 1606 pages++; 1607 status++; 1608 } 1609 1610 up_read(&mm->mmap_sem); 1611 } 1612 1613 /* 1614 * Determine the nodes of a user array of pages and store it in 1615 * a user array of status. 1616 */ 1617 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1618 const void __user * __user *pages, 1619 int __user *status) 1620 { 1621 #define DO_PAGES_STAT_CHUNK_NR 16 1622 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1623 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1624 1625 while (nr_pages) { 1626 unsigned long chunk_nr; 1627 1628 chunk_nr = nr_pages; 1629 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1630 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1631 1632 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1633 break; 1634 1635 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1636 1637 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1638 break; 1639 1640 pages += chunk_nr; 1641 status += chunk_nr; 1642 nr_pages -= chunk_nr; 1643 } 1644 return nr_pages ? -EFAULT : 0; 1645 } 1646 1647 /* 1648 * Move a list of pages in the address space of the currently executing 1649 * process. 1650 */ 1651 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1652 const void __user * __user *, pages, 1653 const int __user *, nodes, 1654 int __user *, status, int, flags) 1655 { 1656 struct task_struct *task; 1657 struct mm_struct *mm; 1658 int err; 1659 nodemask_t task_nodes; 1660 1661 /* Check flags */ 1662 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1663 return -EINVAL; 1664 1665 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1666 return -EPERM; 1667 1668 /* Find the mm_struct */ 1669 rcu_read_lock(); 1670 task = pid ? find_task_by_vpid(pid) : current; 1671 if (!task) { 1672 rcu_read_unlock(); 1673 return -ESRCH; 1674 } 1675 get_task_struct(task); 1676 1677 /* 1678 * Check if this process has the right to modify the specified 1679 * process. Use the regular "ptrace_may_access()" checks. 1680 */ 1681 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1682 rcu_read_unlock(); 1683 err = -EPERM; 1684 goto out; 1685 } 1686 rcu_read_unlock(); 1687 1688 err = security_task_movememory(task); 1689 if (err) 1690 goto out; 1691 1692 task_nodes = cpuset_mems_allowed(task); 1693 mm = get_task_mm(task); 1694 put_task_struct(task); 1695 1696 if (!mm) 1697 return -EINVAL; 1698 1699 if (nodes) 1700 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1701 nodes, status, flags); 1702 else 1703 err = do_pages_stat(mm, nr_pages, pages, status); 1704 1705 mmput(mm); 1706 return err; 1707 1708 out: 1709 put_task_struct(task); 1710 return err; 1711 } 1712 1713 #ifdef CONFIG_NUMA_BALANCING 1714 /* 1715 * Returns true if this is a safe migration target node for misplaced NUMA 1716 * pages. Currently it only checks the watermarks which crude 1717 */ 1718 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1719 unsigned long nr_migrate_pages) 1720 { 1721 int z; 1722 1723 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1724 struct zone *zone = pgdat->node_zones + z; 1725 1726 if (!populated_zone(zone)) 1727 continue; 1728 1729 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1730 if (!zone_watermark_ok(zone, 0, 1731 high_wmark_pages(zone) + 1732 nr_migrate_pages, 1733 0, 0)) 1734 continue; 1735 return true; 1736 } 1737 return false; 1738 } 1739 1740 static struct page *alloc_misplaced_dst_page(struct page *page, 1741 unsigned long data, 1742 int **result) 1743 { 1744 int nid = (int) data; 1745 struct page *newpage; 1746 1747 newpage = __alloc_pages_node(nid, 1748 (GFP_HIGHUSER_MOVABLE | 1749 __GFP_THISNODE | __GFP_NOMEMALLOC | 1750 __GFP_NORETRY | __GFP_NOWARN) & 1751 ~__GFP_RECLAIM, 0); 1752 1753 return newpage; 1754 } 1755 1756 /* 1757 * page migration rate limiting control. 1758 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1759 * window of time. Default here says do not migrate more than 1280M per second. 1760 */ 1761 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1762 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1763 1764 /* Returns true if the node is migrate rate-limited after the update */ 1765 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1766 unsigned long nr_pages) 1767 { 1768 /* 1769 * Rate-limit the amount of data that is being migrated to a node. 1770 * Optimal placement is no good if the memory bus is saturated and 1771 * all the time is being spent migrating! 1772 */ 1773 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1774 spin_lock(&pgdat->numabalancing_migrate_lock); 1775 pgdat->numabalancing_migrate_nr_pages = 0; 1776 pgdat->numabalancing_migrate_next_window = jiffies + 1777 msecs_to_jiffies(migrate_interval_millisecs); 1778 spin_unlock(&pgdat->numabalancing_migrate_lock); 1779 } 1780 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1781 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1782 nr_pages); 1783 return true; 1784 } 1785 1786 /* 1787 * This is an unlocked non-atomic update so errors are possible. 1788 * The consequences are failing to migrate when we potentiall should 1789 * have which is not severe enough to warrant locking. If it is ever 1790 * a problem, it can be converted to a per-cpu counter. 1791 */ 1792 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1793 return false; 1794 } 1795 1796 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1797 { 1798 int page_lru; 1799 1800 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1801 1802 /* Avoid migrating to a node that is nearly full */ 1803 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1804 return 0; 1805 1806 if (isolate_lru_page(page)) 1807 return 0; 1808 1809 /* 1810 * migrate_misplaced_transhuge_page() skips page migration's usual 1811 * check on page_count(), so we must do it here, now that the page 1812 * has been isolated: a GUP pin, or any other pin, prevents migration. 1813 * The expected page count is 3: 1 for page's mapcount and 1 for the 1814 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1815 */ 1816 if (PageTransHuge(page) && page_count(page) != 3) { 1817 putback_lru_page(page); 1818 return 0; 1819 } 1820 1821 page_lru = page_is_file_cache(page); 1822 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1823 hpage_nr_pages(page)); 1824 1825 /* 1826 * Isolating the page has taken another reference, so the 1827 * caller's reference can be safely dropped without the page 1828 * disappearing underneath us during migration. 1829 */ 1830 put_page(page); 1831 return 1; 1832 } 1833 1834 bool pmd_trans_migrating(pmd_t pmd) 1835 { 1836 struct page *page = pmd_page(pmd); 1837 return PageLocked(page); 1838 } 1839 1840 /* 1841 * Attempt to migrate a misplaced page to the specified destination 1842 * node. Caller is expected to have an elevated reference count on 1843 * the page that will be dropped by this function before returning. 1844 */ 1845 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1846 int node) 1847 { 1848 pg_data_t *pgdat = NODE_DATA(node); 1849 int isolated; 1850 int nr_remaining; 1851 LIST_HEAD(migratepages); 1852 1853 /* 1854 * Don't migrate file pages that are mapped in multiple processes 1855 * with execute permissions as they are probably shared libraries. 1856 */ 1857 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1858 (vma->vm_flags & VM_EXEC)) 1859 goto out; 1860 1861 /* 1862 * Rate-limit the amount of data that is being migrated to a node. 1863 * Optimal placement is no good if the memory bus is saturated and 1864 * all the time is being spent migrating! 1865 */ 1866 if (numamigrate_update_ratelimit(pgdat, 1)) 1867 goto out; 1868 1869 isolated = numamigrate_isolate_page(pgdat, page); 1870 if (!isolated) 1871 goto out; 1872 1873 list_add(&page->lru, &migratepages); 1874 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1875 NULL, node, MIGRATE_ASYNC, 1876 MR_NUMA_MISPLACED); 1877 if (nr_remaining) { 1878 if (!list_empty(&migratepages)) { 1879 list_del(&page->lru); 1880 dec_node_page_state(page, NR_ISOLATED_ANON + 1881 page_is_file_cache(page)); 1882 putback_lru_page(page); 1883 } 1884 isolated = 0; 1885 } else 1886 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1887 BUG_ON(!list_empty(&migratepages)); 1888 return isolated; 1889 1890 out: 1891 put_page(page); 1892 return 0; 1893 } 1894 #endif /* CONFIG_NUMA_BALANCING */ 1895 1896 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1897 /* 1898 * Migrates a THP to a given target node. page must be locked and is unlocked 1899 * before returning. 1900 */ 1901 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1902 struct vm_area_struct *vma, 1903 pmd_t *pmd, pmd_t entry, 1904 unsigned long address, 1905 struct page *page, int node) 1906 { 1907 spinlock_t *ptl; 1908 pg_data_t *pgdat = NODE_DATA(node); 1909 int isolated = 0; 1910 struct page *new_page = NULL; 1911 int page_lru = page_is_file_cache(page); 1912 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1913 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1914 1915 /* 1916 * Rate-limit the amount of data that is being migrated to a node. 1917 * Optimal placement is no good if the memory bus is saturated and 1918 * all the time is being spent migrating! 1919 */ 1920 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1921 goto out_dropref; 1922 1923 new_page = alloc_pages_node(node, 1924 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1925 HPAGE_PMD_ORDER); 1926 if (!new_page) 1927 goto out_fail; 1928 prep_transhuge_page(new_page); 1929 1930 isolated = numamigrate_isolate_page(pgdat, page); 1931 if (!isolated) { 1932 put_page(new_page); 1933 goto out_fail; 1934 } 1935 1936 /* Prepare a page as a migration target */ 1937 __SetPageLocked(new_page); 1938 if (PageSwapBacked(page)) 1939 __SetPageSwapBacked(new_page); 1940 1941 /* anon mapping, we can simply copy page->mapping to the new page: */ 1942 new_page->mapping = page->mapping; 1943 new_page->index = page->index; 1944 migrate_page_copy(new_page, page); 1945 WARN_ON(PageLRU(new_page)); 1946 1947 /* Recheck the target PMD */ 1948 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1949 ptl = pmd_lock(mm, pmd); 1950 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 1951 spin_unlock(ptl); 1952 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1953 1954 /* Reverse changes made by migrate_page_copy() */ 1955 if (TestClearPageActive(new_page)) 1956 SetPageActive(page); 1957 if (TestClearPageUnevictable(new_page)) 1958 SetPageUnevictable(page); 1959 1960 unlock_page(new_page); 1961 put_page(new_page); /* Free it */ 1962 1963 /* Retake the callers reference and putback on LRU */ 1964 get_page(page); 1965 putback_lru_page(page); 1966 mod_node_page_state(page_pgdat(page), 1967 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1968 1969 goto out_unlock; 1970 } 1971 1972 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1973 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1974 1975 /* 1976 * Clear the old entry under pagetable lock and establish the new PTE. 1977 * Any parallel GUP will either observe the old page blocking on the 1978 * page lock, block on the page table lock or observe the new page. 1979 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1980 * guarantee the copy is visible before the pagetable update. 1981 */ 1982 flush_cache_range(vma, mmun_start, mmun_end); 1983 page_add_anon_rmap(new_page, vma, mmun_start, true); 1984 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1985 set_pmd_at(mm, mmun_start, pmd, entry); 1986 update_mmu_cache_pmd(vma, address, &entry); 1987 1988 page_ref_unfreeze(page, 2); 1989 mlock_migrate_page(new_page, page); 1990 page_remove_rmap(page, true); 1991 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 1992 1993 spin_unlock(ptl); 1994 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1995 1996 /* Take an "isolate" reference and put new page on the LRU. */ 1997 get_page(new_page); 1998 putback_lru_page(new_page); 1999 2000 unlock_page(new_page); 2001 unlock_page(page); 2002 put_page(page); /* Drop the rmap reference */ 2003 put_page(page); /* Drop the LRU isolation reference */ 2004 2005 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2006 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2007 2008 mod_node_page_state(page_pgdat(page), 2009 NR_ISOLATED_ANON + page_lru, 2010 -HPAGE_PMD_NR); 2011 return isolated; 2012 2013 out_fail: 2014 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2015 out_dropref: 2016 ptl = pmd_lock(mm, pmd); 2017 if (pmd_same(*pmd, entry)) { 2018 entry = pmd_modify(entry, vma->vm_page_prot); 2019 set_pmd_at(mm, mmun_start, pmd, entry); 2020 update_mmu_cache_pmd(vma, address, &entry); 2021 } 2022 spin_unlock(ptl); 2023 2024 out_unlock: 2025 unlock_page(page); 2026 put_page(page); 2027 return 0; 2028 } 2029 #endif /* CONFIG_NUMA_BALANCING */ 2030 2031 #endif /* CONFIG_NUMA */ 2032