xref: /openbmc/linux/mm/migrate.c (revision dea54fba)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44 #include <linux/ptrace.h>
45 
46 #include <asm/tlbflush.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/migrate.h>
50 
51 #include "internal.h"
52 
53 /*
54  * migrate_prep() needs to be called before we start compiling a list of pages
55  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
56  * undesirable, use migrate_prep_local()
57  */
58 int migrate_prep(void)
59 {
60 	/*
61 	 * Clear the LRU lists so pages can be isolated.
62 	 * Note that pages may be moved off the LRU after we have
63 	 * drained them. Those pages will fail to migrate like other
64 	 * pages that may be busy.
65 	 */
66 	lru_add_drain_all();
67 
68 	return 0;
69 }
70 
71 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
72 int migrate_prep_local(void)
73 {
74 	lru_add_drain();
75 
76 	return 0;
77 }
78 
79 int isolate_movable_page(struct page *page, isolate_mode_t mode)
80 {
81 	struct address_space *mapping;
82 
83 	/*
84 	 * Avoid burning cycles with pages that are yet under __free_pages(),
85 	 * or just got freed under us.
86 	 *
87 	 * In case we 'win' a race for a movable page being freed under us and
88 	 * raise its refcount preventing __free_pages() from doing its job
89 	 * the put_page() at the end of this block will take care of
90 	 * release this page, thus avoiding a nasty leakage.
91 	 */
92 	if (unlikely(!get_page_unless_zero(page)))
93 		goto out;
94 
95 	/*
96 	 * Check PageMovable before holding a PG_lock because page's owner
97 	 * assumes anybody doesn't touch PG_lock of newly allocated page
98 	 * so unconditionally grapping the lock ruins page's owner side.
99 	 */
100 	if (unlikely(!__PageMovable(page)))
101 		goto out_putpage;
102 	/*
103 	 * As movable pages are not isolated from LRU lists, concurrent
104 	 * compaction threads can race against page migration functions
105 	 * as well as race against the releasing a page.
106 	 *
107 	 * In order to avoid having an already isolated movable page
108 	 * being (wrongly) re-isolated while it is under migration,
109 	 * or to avoid attempting to isolate pages being released,
110 	 * lets be sure we have the page lock
111 	 * before proceeding with the movable page isolation steps.
112 	 */
113 	if (unlikely(!trylock_page(page)))
114 		goto out_putpage;
115 
116 	if (!PageMovable(page) || PageIsolated(page))
117 		goto out_no_isolated;
118 
119 	mapping = page_mapping(page);
120 	VM_BUG_ON_PAGE(!mapping, page);
121 
122 	if (!mapping->a_ops->isolate_page(page, mode))
123 		goto out_no_isolated;
124 
125 	/* Driver shouldn't use PG_isolated bit of page->flags */
126 	WARN_ON_ONCE(PageIsolated(page));
127 	__SetPageIsolated(page);
128 	unlock_page(page);
129 
130 	return 0;
131 
132 out_no_isolated:
133 	unlock_page(page);
134 out_putpage:
135 	put_page(page);
136 out:
137 	return -EBUSY;
138 }
139 
140 /* It should be called on page which is PG_movable */
141 void putback_movable_page(struct page *page)
142 {
143 	struct address_space *mapping;
144 
145 	VM_BUG_ON_PAGE(!PageLocked(page), page);
146 	VM_BUG_ON_PAGE(!PageMovable(page), page);
147 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
148 
149 	mapping = page_mapping(page);
150 	mapping->a_ops->putback_page(page);
151 	__ClearPageIsolated(page);
152 }
153 
154 /*
155  * Put previously isolated pages back onto the appropriate lists
156  * from where they were once taken off for compaction/migration.
157  *
158  * This function shall be used whenever the isolated pageset has been
159  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
160  * and isolate_huge_page().
161  */
162 void putback_movable_pages(struct list_head *l)
163 {
164 	struct page *page;
165 	struct page *page2;
166 
167 	list_for_each_entry_safe(page, page2, l, lru) {
168 		if (unlikely(PageHuge(page))) {
169 			putback_active_hugepage(page);
170 			continue;
171 		}
172 		list_del(&page->lru);
173 		/*
174 		 * We isolated non-lru movable page so here we can use
175 		 * __PageMovable because LRU page's mapping cannot have
176 		 * PAGE_MAPPING_MOVABLE.
177 		 */
178 		if (unlikely(__PageMovable(page))) {
179 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
180 			lock_page(page);
181 			if (PageMovable(page))
182 				putback_movable_page(page);
183 			else
184 				__ClearPageIsolated(page);
185 			unlock_page(page);
186 			put_page(page);
187 		} else {
188 			dec_node_page_state(page, NR_ISOLATED_ANON +
189 					page_is_file_cache(page));
190 			putback_lru_page(page);
191 		}
192 	}
193 }
194 
195 /*
196  * Restore a potential migration pte to a working pte entry
197  */
198 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
199 				 unsigned long addr, void *old)
200 {
201 	struct page_vma_mapped_walk pvmw = {
202 		.page = old,
203 		.vma = vma,
204 		.address = addr,
205 		.flags = PVMW_SYNC | PVMW_MIGRATION,
206 	};
207 	struct page *new;
208 	pte_t pte;
209 	swp_entry_t entry;
210 
211 	VM_BUG_ON_PAGE(PageTail(page), page);
212 	while (page_vma_mapped_walk(&pvmw)) {
213 		if (PageKsm(page))
214 			new = page;
215 		else
216 			new = page - pvmw.page->index +
217 				linear_page_index(vma, pvmw.address);
218 
219 		get_page(new);
220 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
221 		if (pte_swp_soft_dirty(*pvmw.pte))
222 			pte = pte_mksoft_dirty(pte);
223 
224 		/*
225 		 * Recheck VMA as permissions can change since migration started
226 		 */
227 		entry = pte_to_swp_entry(*pvmw.pte);
228 		if (is_write_migration_entry(entry))
229 			pte = maybe_mkwrite(pte, vma);
230 
231 		flush_dcache_page(new);
232 #ifdef CONFIG_HUGETLB_PAGE
233 		if (PageHuge(new)) {
234 			pte = pte_mkhuge(pte);
235 			pte = arch_make_huge_pte(pte, vma, new, 0);
236 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
237 			if (PageAnon(new))
238 				hugepage_add_anon_rmap(new, vma, pvmw.address);
239 			else
240 				page_dup_rmap(new, true);
241 		} else
242 #endif
243 		{
244 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
245 
246 			if (PageAnon(new))
247 				page_add_anon_rmap(new, vma, pvmw.address, false);
248 			else
249 				page_add_file_rmap(new, false);
250 		}
251 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
252 			mlock_vma_page(new);
253 
254 		/* No need to invalidate - it was non-present before */
255 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 	}
257 
258 	return true;
259 }
260 
261 /*
262  * Get rid of all migration entries and replace them by
263  * references to the indicated page.
264  */
265 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
266 {
267 	struct rmap_walk_control rwc = {
268 		.rmap_one = remove_migration_pte,
269 		.arg = old,
270 	};
271 
272 	if (locked)
273 		rmap_walk_locked(new, &rwc);
274 	else
275 		rmap_walk(new, &rwc);
276 }
277 
278 /*
279  * Something used the pte of a page under migration. We need to
280  * get to the page and wait until migration is finished.
281  * When we return from this function the fault will be retried.
282  */
283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284 				spinlock_t *ptl)
285 {
286 	pte_t pte;
287 	swp_entry_t entry;
288 	struct page *page;
289 
290 	spin_lock(ptl);
291 	pte = *ptep;
292 	if (!is_swap_pte(pte))
293 		goto out;
294 
295 	entry = pte_to_swp_entry(pte);
296 	if (!is_migration_entry(entry))
297 		goto out;
298 
299 	page = migration_entry_to_page(entry);
300 
301 	/*
302 	 * Once radix-tree replacement of page migration started, page_count
303 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
304 	 * against a page without get_page().
305 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
306 	 * will occur again.
307 	 */
308 	if (!get_page_unless_zero(page))
309 		goto out;
310 	pte_unmap_unlock(ptep, ptl);
311 	wait_on_page_locked(page);
312 	put_page(page);
313 	return;
314 out:
315 	pte_unmap_unlock(ptep, ptl);
316 }
317 
318 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
319 				unsigned long address)
320 {
321 	spinlock_t *ptl = pte_lockptr(mm, pmd);
322 	pte_t *ptep = pte_offset_map(pmd, address);
323 	__migration_entry_wait(mm, ptep, ptl);
324 }
325 
326 void migration_entry_wait_huge(struct vm_area_struct *vma,
327 		struct mm_struct *mm, pte_t *pte)
328 {
329 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
330 	__migration_entry_wait(mm, pte, ptl);
331 }
332 
333 #ifdef CONFIG_BLOCK
334 /* Returns true if all buffers are successfully locked */
335 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
336 							enum migrate_mode mode)
337 {
338 	struct buffer_head *bh = head;
339 
340 	/* Simple case, sync compaction */
341 	if (mode != MIGRATE_ASYNC) {
342 		do {
343 			get_bh(bh);
344 			lock_buffer(bh);
345 			bh = bh->b_this_page;
346 
347 		} while (bh != head);
348 
349 		return true;
350 	}
351 
352 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
353 	do {
354 		get_bh(bh);
355 		if (!trylock_buffer(bh)) {
356 			/*
357 			 * We failed to lock the buffer and cannot stall in
358 			 * async migration. Release the taken locks
359 			 */
360 			struct buffer_head *failed_bh = bh;
361 			put_bh(failed_bh);
362 			bh = head;
363 			while (bh != failed_bh) {
364 				unlock_buffer(bh);
365 				put_bh(bh);
366 				bh = bh->b_this_page;
367 			}
368 			return false;
369 		}
370 
371 		bh = bh->b_this_page;
372 	} while (bh != head);
373 	return true;
374 }
375 #else
376 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
377 							enum migrate_mode mode)
378 {
379 	return true;
380 }
381 #endif /* CONFIG_BLOCK */
382 
383 /*
384  * Replace the page in the mapping.
385  *
386  * The number of remaining references must be:
387  * 1 for anonymous pages without a mapping
388  * 2 for pages with a mapping
389  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
390  */
391 int migrate_page_move_mapping(struct address_space *mapping,
392 		struct page *newpage, struct page *page,
393 		struct buffer_head *head, enum migrate_mode mode,
394 		int extra_count)
395 {
396 	struct zone *oldzone, *newzone;
397 	int dirty;
398 	int expected_count = 1 + extra_count;
399 	void **pslot;
400 
401 	if (!mapping) {
402 		/* Anonymous page without mapping */
403 		if (page_count(page) != expected_count)
404 			return -EAGAIN;
405 
406 		/* No turning back from here */
407 		newpage->index = page->index;
408 		newpage->mapping = page->mapping;
409 		if (PageSwapBacked(page))
410 			__SetPageSwapBacked(newpage);
411 
412 		return MIGRATEPAGE_SUCCESS;
413 	}
414 
415 	oldzone = page_zone(page);
416 	newzone = page_zone(newpage);
417 
418 	spin_lock_irq(&mapping->tree_lock);
419 
420 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
421  					page_index(page));
422 
423 	expected_count += 1 + page_has_private(page);
424 	if (page_count(page) != expected_count ||
425 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
426 		spin_unlock_irq(&mapping->tree_lock);
427 		return -EAGAIN;
428 	}
429 
430 	if (!page_ref_freeze(page, expected_count)) {
431 		spin_unlock_irq(&mapping->tree_lock);
432 		return -EAGAIN;
433 	}
434 
435 	/*
436 	 * In the async migration case of moving a page with buffers, lock the
437 	 * buffers using trylock before the mapping is moved. If the mapping
438 	 * was moved, we later failed to lock the buffers and could not move
439 	 * the mapping back due to an elevated page count, we would have to
440 	 * block waiting on other references to be dropped.
441 	 */
442 	if (mode == MIGRATE_ASYNC && head &&
443 			!buffer_migrate_lock_buffers(head, mode)) {
444 		page_ref_unfreeze(page, expected_count);
445 		spin_unlock_irq(&mapping->tree_lock);
446 		return -EAGAIN;
447 	}
448 
449 	/*
450 	 * Now we know that no one else is looking at the page:
451 	 * no turning back from here.
452 	 */
453 	newpage->index = page->index;
454 	newpage->mapping = page->mapping;
455 	get_page(newpage);	/* add cache reference */
456 	if (PageSwapBacked(page)) {
457 		__SetPageSwapBacked(newpage);
458 		if (PageSwapCache(page)) {
459 			SetPageSwapCache(newpage);
460 			set_page_private(newpage, page_private(page));
461 		}
462 	} else {
463 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
464 	}
465 
466 	/* Move dirty while page refs frozen and newpage not yet exposed */
467 	dirty = PageDirty(page);
468 	if (dirty) {
469 		ClearPageDirty(page);
470 		SetPageDirty(newpage);
471 	}
472 
473 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
474 
475 	/*
476 	 * Drop cache reference from old page by unfreezing
477 	 * to one less reference.
478 	 * We know this isn't the last reference.
479 	 */
480 	page_ref_unfreeze(page, expected_count - 1);
481 
482 	spin_unlock(&mapping->tree_lock);
483 	/* Leave irq disabled to prevent preemption while updating stats */
484 
485 	/*
486 	 * If moved to a different zone then also account
487 	 * the page for that zone. Other VM counters will be
488 	 * taken care of when we establish references to the
489 	 * new page and drop references to the old page.
490 	 *
491 	 * Note that anonymous pages are accounted for
492 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
493 	 * are mapped to swap space.
494 	 */
495 	if (newzone != oldzone) {
496 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
497 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
498 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
499 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
500 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
501 		}
502 		if (dirty && mapping_cap_account_dirty(mapping)) {
503 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
504 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
505 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
506 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
507 		}
508 	}
509 	local_irq_enable();
510 
511 	return MIGRATEPAGE_SUCCESS;
512 }
513 EXPORT_SYMBOL(migrate_page_move_mapping);
514 
515 /*
516  * The expected number of remaining references is the same as that
517  * of migrate_page_move_mapping().
518  */
519 int migrate_huge_page_move_mapping(struct address_space *mapping,
520 				   struct page *newpage, struct page *page)
521 {
522 	int expected_count;
523 	void **pslot;
524 
525 	spin_lock_irq(&mapping->tree_lock);
526 
527 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
528 					page_index(page));
529 
530 	expected_count = 2 + page_has_private(page);
531 	if (page_count(page) != expected_count ||
532 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
533 		spin_unlock_irq(&mapping->tree_lock);
534 		return -EAGAIN;
535 	}
536 
537 	if (!page_ref_freeze(page, expected_count)) {
538 		spin_unlock_irq(&mapping->tree_lock);
539 		return -EAGAIN;
540 	}
541 
542 	newpage->index = page->index;
543 	newpage->mapping = page->mapping;
544 
545 	get_page(newpage);
546 
547 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
548 
549 	page_ref_unfreeze(page, expected_count - 1);
550 
551 	spin_unlock_irq(&mapping->tree_lock);
552 
553 	return MIGRATEPAGE_SUCCESS;
554 }
555 
556 /*
557  * Gigantic pages are so large that we do not guarantee that page++ pointer
558  * arithmetic will work across the entire page.  We need something more
559  * specialized.
560  */
561 static void __copy_gigantic_page(struct page *dst, struct page *src,
562 				int nr_pages)
563 {
564 	int i;
565 	struct page *dst_base = dst;
566 	struct page *src_base = src;
567 
568 	for (i = 0; i < nr_pages; ) {
569 		cond_resched();
570 		copy_highpage(dst, src);
571 
572 		i++;
573 		dst = mem_map_next(dst, dst_base, i);
574 		src = mem_map_next(src, src_base, i);
575 	}
576 }
577 
578 static void copy_huge_page(struct page *dst, struct page *src)
579 {
580 	int i;
581 	int nr_pages;
582 
583 	if (PageHuge(src)) {
584 		/* hugetlbfs page */
585 		struct hstate *h = page_hstate(src);
586 		nr_pages = pages_per_huge_page(h);
587 
588 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
589 			__copy_gigantic_page(dst, src, nr_pages);
590 			return;
591 		}
592 	} else {
593 		/* thp page */
594 		BUG_ON(!PageTransHuge(src));
595 		nr_pages = hpage_nr_pages(src);
596 	}
597 
598 	for (i = 0; i < nr_pages; i++) {
599 		cond_resched();
600 		copy_highpage(dst + i, src + i);
601 	}
602 }
603 
604 /*
605  * Copy the page to its new location
606  */
607 void migrate_page_copy(struct page *newpage, struct page *page)
608 {
609 	int cpupid;
610 
611 	if (PageHuge(page) || PageTransHuge(page))
612 		copy_huge_page(newpage, page);
613 	else
614 		copy_highpage(newpage, page);
615 
616 	if (PageError(page))
617 		SetPageError(newpage);
618 	if (PageReferenced(page))
619 		SetPageReferenced(newpage);
620 	if (PageUptodate(page))
621 		SetPageUptodate(newpage);
622 	if (TestClearPageActive(page)) {
623 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
624 		SetPageActive(newpage);
625 	} else if (TestClearPageUnevictable(page))
626 		SetPageUnevictable(newpage);
627 	if (PageChecked(page))
628 		SetPageChecked(newpage);
629 	if (PageMappedToDisk(page))
630 		SetPageMappedToDisk(newpage);
631 
632 	/* Move dirty on pages not done by migrate_page_move_mapping() */
633 	if (PageDirty(page))
634 		SetPageDirty(newpage);
635 
636 	if (page_is_young(page))
637 		set_page_young(newpage);
638 	if (page_is_idle(page))
639 		set_page_idle(newpage);
640 
641 	/*
642 	 * Copy NUMA information to the new page, to prevent over-eager
643 	 * future migrations of this same page.
644 	 */
645 	cpupid = page_cpupid_xchg_last(page, -1);
646 	page_cpupid_xchg_last(newpage, cpupid);
647 
648 	ksm_migrate_page(newpage, page);
649 	/*
650 	 * Please do not reorder this without considering how mm/ksm.c's
651 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
652 	 */
653 	if (PageSwapCache(page))
654 		ClearPageSwapCache(page);
655 	ClearPagePrivate(page);
656 	set_page_private(page, 0);
657 
658 	/*
659 	 * If any waiters have accumulated on the new page then
660 	 * wake them up.
661 	 */
662 	if (PageWriteback(newpage))
663 		end_page_writeback(newpage);
664 
665 	copy_page_owner(page, newpage);
666 
667 	mem_cgroup_migrate(page, newpage);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670 
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674 
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
681 int migrate_page(struct address_space *mapping,
682 		struct page *newpage, struct page *page,
683 		enum migrate_mode mode)
684 {
685 	int rc;
686 
687 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
688 
689 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
690 
691 	if (rc != MIGRATEPAGE_SUCCESS)
692 		return rc;
693 
694 	migrate_page_copy(newpage, page);
695 	return MIGRATEPAGE_SUCCESS;
696 }
697 EXPORT_SYMBOL(migrate_page);
698 
699 #ifdef CONFIG_BLOCK
700 /*
701  * Migration function for pages with buffers. This function can only be used
702  * if the underlying filesystem guarantees that no other references to "page"
703  * exist.
704  */
705 int buffer_migrate_page(struct address_space *mapping,
706 		struct page *newpage, struct page *page, enum migrate_mode mode)
707 {
708 	struct buffer_head *bh, *head;
709 	int rc;
710 
711 	if (!page_has_buffers(page))
712 		return migrate_page(mapping, newpage, page, mode);
713 
714 	head = page_buffers(page);
715 
716 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
717 
718 	if (rc != MIGRATEPAGE_SUCCESS)
719 		return rc;
720 
721 	/*
722 	 * In the async case, migrate_page_move_mapping locked the buffers
723 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
724 	 * need to be locked now
725 	 */
726 	if (mode != MIGRATE_ASYNC)
727 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
728 
729 	ClearPagePrivate(page);
730 	set_page_private(newpage, page_private(page));
731 	set_page_private(page, 0);
732 	put_page(page);
733 	get_page(newpage);
734 
735 	bh = head;
736 	do {
737 		set_bh_page(bh, newpage, bh_offset(bh));
738 		bh = bh->b_this_page;
739 
740 	} while (bh != head);
741 
742 	SetPagePrivate(newpage);
743 
744 	migrate_page_copy(newpage, page);
745 
746 	bh = head;
747 	do {
748 		unlock_buffer(bh);
749  		put_bh(bh);
750 		bh = bh->b_this_page;
751 
752 	} while (bh != head);
753 
754 	return MIGRATEPAGE_SUCCESS;
755 }
756 EXPORT_SYMBOL(buffer_migrate_page);
757 #endif
758 
759 /*
760  * Writeback a page to clean the dirty state
761  */
762 static int writeout(struct address_space *mapping, struct page *page)
763 {
764 	struct writeback_control wbc = {
765 		.sync_mode = WB_SYNC_NONE,
766 		.nr_to_write = 1,
767 		.range_start = 0,
768 		.range_end = LLONG_MAX,
769 		.for_reclaim = 1
770 	};
771 	int rc;
772 
773 	if (!mapping->a_ops->writepage)
774 		/* No write method for the address space */
775 		return -EINVAL;
776 
777 	if (!clear_page_dirty_for_io(page))
778 		/* Someone else already triggered a write */
779 		return -EAGAIN;
780 
781 	/*
782 	 * A dirty page may imply that the underlying filesystem has
783 	 * the page on some queue. So the page must be clean for
784 	 * migration. Writeout may mean we loose the lock and the
785 	 * page state is no longer what we checked for earlier.
786 	 * At this point we know that the migration attempt cannot
787 	 * be successful.
788 	 */
789 	remove_migration_ptes(page, page, false);
790 
791 	rc = mapping->a_ops->writepage(page, &wbc);
792 
793 	if (rc != AOP_WRITEPAGE_ACTIVATE)
794 		/* unlocked. Relock */
795 		lock_page(page);
796 
797 	return (rc < 0) ? -EIO : -EAGAIN;
798 }
799 
800 /*
801  * Default handling if a filesystem does not provide a migration function.
802  */
803 static int fallback_migrate_page(struct address_space *mapping,
804 	struct page *newpage, struct page *page, enum migrate_mode mode)
805 {
806 	if (PageDirty(page)) {
807 		/* Only writeback pages in full synchronous migration */
808 		if (mode != MIGRATE_SYNC)
809 			return -EBUSY;
810 		return writeout(mapping, page);
811 	}
812 
813 	/*
814 	 * Buffers may be managed in a filesystem specific way.
815 	 * We must have no buffers or drop them.
816 	 */
817 	if (page_has_private(page) &&
818 	    !try_to_release_page(page, GFP_KERNEL))
819 		return -EAGAIN;
820 
821 	return migrate_page(mapping, newpage, page, mode);
822 }
823 
824 /*
825  * Move a page to a newly allocated page
826  * The page is locked and all ptes have been successfully removed.
827  *
828  * The new page will have replaced the old page if this function
829  * is successful.
830  *
831  * Return value:
832  *   < 0 - error code
833  *  MIGRATEPAGE_SUCCESS - success
834  */
835 static int move_to_new_page(struct page *newpage, struct page *page,
836 				enum migrate_mode mode)
837 {
838 	struct address_space *mapping;
839 	int rc = -EAGAIN;
840 	bool is_lru = !__PageMovable(page);
841 
842 	VM_BUG_ON_PAGE(!PageLocked(page), page);
843 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
844 
845 	mapping = page_mapping(page);
846 
847 	if (likely(is_lru)) {
848 		if (!mapping)
849 			rc = migrate_page(mapping, newpage, page, mode);
850 		else if (mapping->a_ops->migratepage)
851 			/*
852 			 * Most pages have a mapping and most filesystems
853 			 * provide a migratepage callback. Anonymous pages
854 			 * are part of swap space which also has its own
855 			 * migratepage callback. This is the most common path
856 			 * for page migration.
857 			 */
858 			rc = mapping->a_ops->migratepage(mapping, newpage,
859 							page, mode);
860 		else
861 			rc = fallback_migrate_page(mapping, newpage,
862 							page, mode);
863 	} else {
864 		/*
865 		 * In case of non-lru page, it could be released after
866 		 * isolation step. In that case, we shouldn't try migration.
867 		 */
868 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
869 		if (!PageMovable(page)) {
870 			rc = MIGRATEPAGE_SUCCESS;
871 			__ClearPageIsolated(page);
872 			goto out;
873 		}
874 
875 		rc = mapping->a_ops->migratepage(mapping, newpage,
876 						page, mode);
877 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
878 			!PageIsolated(page));
879 	}
880 
881 	/*
882 	 * When successful, old pagecache page->mapping must be cleared before
883 	 * page is freed; but stats require that PageAnon be left as PageAnon.
884 	 */
885 	if (rc == MIGRATEPAGE_SUCCESS) {
886 		if (__PageMovable(page)) {
887 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
888 
889 			/*
890 			 * We clear PG_movable under page_lock so any compactor
891 			 * cannot try to migrate this page.
892 			 */
893 			__ClearPageIsolated(page);
894 		}
895 
896 		/*
897 		 * Anonymous and movable page->mapping will be cleard by
898 		 * free_pages_prepare so don't reset it here for keeping
899 		 * the type to work PageAnon, for example.
900 		 */
901 		if (!PageMappingFlags(page))
902 			page->mapping = NULL;
903 	}
904 out:
905 	return rc;
906 }
907 
908 static int __unmap_and_move(struct page *page, struct page *newpage,
909 				int force, enum migrate_mode mode)
910 {
911 	int rc = -EAGAIN;
912 	int page_was_mapped = 0;
913 	struct anon_vma *anon_vma = NULL;
914 	bool is_lru = !__PageMovable(page);
915 
916 	if (!trylock_page(page)) {
917 		if (!force || mode == MIGRATE_ASYNC)
918 			goto out;
919 
920 		/*
921 		 * It's not safe for direct compaction to call lock_page.
922 		 * For example, during page readahead pages are added locked
923 		 * to the LRU. Later, when the IO completes the pages are
924 		 * marked uptodate and unlocked. However, the queueing
925 		 * could be merging multiple pages for one bio (e.g.
926 		 * mpage_readpages). If an allocation happens for the
927 		 * second or third page, the process can end up locking
928 		 * the same page twice and deadlocking. Rather than
929 		 * trying to be clever about what pages can be locked,
930 		 * avoid the use of lock_page for direct compaction
931 		 * altogether.
932 		 */
933 		if (current->flags & PF_MEMALLOC)
934 			goto out;
935 
936 		lock_page(page);
937 	}
938 
939 	if (PageWriteback(page)) {
940 		/*
941 		 * Only in the case of a full synchronous migration is it
942 		 * necessary to wait for PageWriteback. In the async case,
943 		 * the retry loop is too short and in the sync-light case,
944 		 * the overhead of stalling is too much
945 		 */
946 		if (mode != MIGRATE_SYNC) {
947 			rc = -EBUSY;
948 			goto out_unlock;
949 		}
950 		if (!force)
951 			goto out_unlock;
952 		wait_on_page_writeback(page);
953 	}
954 
955 	/*
956 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
957 	 * we cannot notice that anon_vma is freed while we migrates a page.
958 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
959 	 * of migration. File cache pages are no problem because of page_lock()
960 	 * File Caches may use write_page() or lock_page() in migration, then,
961 	 * just care Anon page here.
962 	 *
963 	 * Only page_get_anon_vma() understands the subtleties of
964 	 * getting a hold on an anon_vma from outside one of its mms.
965 	 * But if we cannot get anon_vma, then we won't need it anyway,
966 	 * because that implies that the anon page is no longer mapped
967 	 * (and cannot be remapped so long as we hold the page lock).
968 	 */
969 	if (PageAnon(page) && !PageKsm(page))
970 		anon_vma = page_get_anon_vma(page);
971 
972 	/*
973 	 * Block others from accessing the new page when we get around to
974 	 * establishing additional references. We are usually the only one
975 	 * holding a reference to newpage at this point. We used to have a BUG
976 	 * here if trylock_page(newpage) fails, but would like to allow for
977 	 * cases where there might be a race with the previous use of newpage.
978 	 * This is much like races on refcount of oldpage: just don't BUG().
979 	 */
980 	if (unlikely(!trylock_page(newpage)))
981 		goto out_unlock;
982 
983 	if (unlikely(!is_lru)) {
984 		rc = move_to_new_page(newpage, page, mode);
985 		goto out_unlock_both;
986 	}
987 
988 	/*
989 	 * Corner case handling:
990 	 * 1. When a new swap-cache page is read into, it is added to the LRU
991 	 * and treated as swapcache but it has no rmap yet.
992 	 * Calling try_to_unmap() against a page->mapping==NULL page will
993 	 * trigger a BUG.  So handle it here.
994 	 * 2. An orphaned page (see truncate_complete_page) might have
995 	 * fs-private metadata. The page can be picked up due to memory
996 	 * offlining.  Everywhere else except page reclaim, the page is
997 	 * invisible to the vm, so the page can not be migrated.  So try to
998 	 * free the metadata, so the page can be freed.
999 	 */
1000 	if (!page->mapping) {
1001 		VM_BUG_ON_PAGE(PageAnon(page), page);
1002 		if (page_has_private(page)) {
1003 			try_to_free_buffers(page);
1004 			goto out_unlock_both;
1005 		}
1006 	} else if (page_mapped(page)) {
1007 		/* Establish migration ptes */
1008 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1009 				page);
1010 		try_to_unmap(page,
1011 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1012 		page_was_mapped = 1;
1013 	}
1014 
1015 	if (!page_mapped(page))
1016 		rc = move_to_new_page(newpage, page, mode);
1017 
1018 	if (page_was_mapped)
1019 		remove_migration_ptes(page,
1020 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1021 
1022 out_unlock_both:
1023 	unlock_page(newpage);
1024 out_unlock:
1025 	/* Drop an anon_vma reference if we took one */
1026 	if (anon_vma)
1027 		put_anon_vma(anon_vma);
1028 	unlock_page(page);
1029 out:
1030 	/*
1031 	 * If migration is successful, decrease refcount of the newpage
1032 	 * which will not free the page because new page owner increased
1033 	 * refcounter. As well, if it is LRU page, add the page to LRU
1034 	 * list in here.
1035 	 */
1036 	if (rc == MIGRATEPAGE_SUCCESS) {
1037 		if (unlikely(__PageMovable(newpage)))
1038 			put_page(newpage);
1039 		else
1040 			putback_lru_page(newpage);
1041 	}
1042 
1043 	return rc;
1044 }
1045 
1046 /*
1047  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1048  * around it.
1049  */
1050 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1051 #define ICE_noinline noinline
1052 #else
1053 #define ICE_noinline
1054 #endif
1055 
1056 /*
1057  * Obtain the lock on page, remove all ptes and migrate the page
1058  * to the newly allocated page in newpage.
1059  */
1060 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1061 				   free_page_t put_new_page,
1062 				   unsigned long private, struct page *page,
1063 				   int force, enum migrate_mode mode,
1064 				   enum migrate_reason reason)
1065 {
1066 	int rc = MIGRATEPAGE_SUCCESS;
1067 	int *result = NULL;
1068 	struct page *newpage;
1069 
1070 	newpage = get_new_page(page, private, &result);
1071 	if (!newpage)
1072 		return -ENOMEM;
1073 
1074 	if (page_count(page) == 1) {
1075 		/* page was freed from under us. So we are done. */
1076 		ClearPageActive(page);
1077 		ClearPageUnevictable(page);
1078 		if (unlikely(__PageMovable(page))) {
1079 			lock_page(page);
1080 			if (!PageMovable(page))
1081 				__ClearPageIsolated(page);
1082 			unlock_page(page);
1083 		}
1084 		if (put_new_page)
1085 			put_new_page(newpage, private);
1086 		else
1087 			put_page(newpage);
1088 		goto out;
1089 	}
1090 
1091 	if (unlikely(PageTransHuge(page))) {
1092 		lock_page(page);
1093 		rc = split_huge_page(page);
1094 		unlock_page(page);
1095 		if (rc)
1096 			goto out;
1097 	}
1098 
1099 	rc = __unmap_and_move(page, newpage, force, mode);
1100 	if (rc == MIGRATEPAGE_SUCCESS)
1101 		set_page_owner_migrate_reason(newpage, reason);
1102 
1103 out:
1104 	if (rc != -EAGAIN) {
1105 		/*
1106 		 * A page that has been migrated has all references
1107 		 * removed and will be freed. A page that has not been
1108 		 * migrated will have kepts its references and be
1109 		 * restored.
1110 		 */
1111 		list_del(&page->lru);
1112 
1113 		/*
1114 		 * Compaction can migrate also non-LRU pages which are
1115 		 * not accounted to NR_ISOLATED_*. They can be recognized
1116 		 * as __PageMovable
1117 		 */
1118 		if (likely(!__PageMovable(page)))
1119 			dec_node_page_state(page, NR_ISOLATED_ANON +
1120 					page_is_file_cache(page));
1121 	}
1122 
1123 	/*
1124 	 * If migration is successful, releases reference grabbed during
1125 	 * isolation. Otherwise, restore the page to right list unless
1126 	 * we want to retry.
1127 	 */
1128 	if (rc == MIGRATEPAGE_SUCCESS) {
1129 		put_page(page);
1130 		if (reason == MR_MEMORY_FAILURE) {
1131 			/*
1132 			 * Set PG_HWPoison on just freed page
1133 			 * intentionally. Although it's rather weird,
1134 			 * it's how HWPoison flag works at the moment.
1135 			 */
1136 			if (!test_set_page_hwpoison(page))
1137 				num_poisoned_pages_inc();
1138 		}
1139 	} else {
1140 		if (rc != -EAGAIN) {
1141 			if (likely(!__PageMovable(page))) {
1142 				putback_lru_page(page);
1143 				goto put_new;
1144 			}
1145 
1146 			lock_page(page);
1147 			if (PageMovable(page))
1148 				putback_movable_page(page);
1149 			else
1150 				__ClearPageIsolated(page);
1151 			unlock_page(page);
1152 			put_page(page);
1153 		}
1154 put_new:
1155 		if (put_new_page)
1156 			put_new_page(newpage, private);
1157 		else
1158 			put_page(newpage);
1159 	}
1160 
1161 	if (result) {
1162 		if (rc)
1163 			*result = rc;
1164 		else
1165 			*result = page_to_nid(newpage);
1166 	}
1167 	return rc;
1168 }
1169 
1170 /*
1171  * Counterpart of unmap_and_move_page() for hugepage migration.
1172  *
1173  * This function doesn't wait the completion of hugepage I/O
1174  * because there is no race between I/O and migration for hugepage.
1175  * Note that currently hugepage I/O occurs only in direct I/O
1176  * where no lock is held and PG_writeback is irrelevant,
1177  * and writeback status of all subpages are counted in the reference
1178  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1179  * under direct I/O, the reference of the head page is 512 and a bit more.)
1180  * This means that when we try to migrate hugepage whose subpages are
1181  * doing direct I/O, some references remain after try_to_unmap() and
1182  * hugepage migration fails without data corruption.
1183  *
1184  * There is also no race when direct I/O is issued on the page under migration,
1185  * because then pte is replaced with migration swap entry and direct I/O code
1186  * will wait in the page fault for migration to complete.
1187  */
1188 static int unmap_and_move_huge_page(new_page_t get_new_page,
1189 				free_page_t put_new_page, unsigned long private,
1190 				struct page *hpage, int force,
1191 				enum migrate_mode mode, int reason)
1192 {
1193 	int rc = -EAGAIN;
1194 	int *result = NULL;
1195 	int page_was_mapped = 0;
1196 	struct page *new_hpage;
1197 	struct anon_vma *anon_vma = NULL;
1198 
1199 	/*
1200 	 * Movability of hugepages depends on architectures and hugepage size.
1201 	 * This check is necessary because some callers of hugepage migration
1202 	 * like soft offline and memory hotremove don't walk through page
1203 	 * tables or check whether the hugepage is pmd-based or not before
1204 	 * kicking migration.
1205 	 */
1206 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1207 		putback_active_hugepage(hpage);
1208 		return -ENOSYS;
1209 	}
1210 
1211 	new_hpage = get_new_page(hpage, private, &result);
1212 	if (!new_hpage)
1213 		return -ENOMEM;
1214 
1215 	if (!trylock_page(hpage)) {
1216 		if (!force || mode != MIGRATE_SYNC)
1217 			goto out;
1218 		lock_page(hpage);
1219 	}
1220 
1221 	if (PageAnon(hpage))
1222 		anon_vma = page_get_anon_vma(hpage);
1223 
1224 	if (unlikely(!trylock_page(new_hpage)))
1225 		goto put_anon;
1226 
1227 	if (page_mapped(hpage)) {
1228 		try_to_unmap(hpage,
1229 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1230 		page_was_mapped = 1;
1231 	}
1232 
1233 	if (!page_mapped(hpage))
1234 		rc = move_to_new_page(new_hpage, hpage, mode);
1235 
1236 	if (page_was_mapped)
1237 		remove_migration_ptes(hpage,
1238 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1239 
1240 	unlock_page(new_hpage);
1241 
1242 put_anon:
1243 	if (anon_vma)
1244 		put_anon_vma(anon_vma);
1245 
1246 	if (rc == MIGRATEPAGE_SUCCESS) {
1247 		hugetlb_cgroup_migrate(hpage, new_hpage);
1248 		put_new_page = NULL;
1249 		set_page_owner_migrate_reason(new_hpage, reason);
1250 	}
1251 
1252 	unlock_page(hpage);
1253 out:
1254 	if (rc != -EAGAIN)
1255 		putback_active_hugepage(hpage);
1256 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1257 		num_poisoned_pages_inc();
1258 
1259 	/*
1260 	 * If migration was not successful and there's a freeing callback, use
1261 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1262 	 * isolation.
1263 	 */
1264 	if (put_new_page)
1265 		put_new_page(new_hpage, private);
1266 	else
1267 		putback_active_hugepage(new_hpage);
1268 
1269 	if (result) {
1270 		if (rc)
1271 			*result = rc;
1272 		else
1273 			*result = page_to_nid(new_hpage);
1274 	}
1275 	return rc;
1276 }
1277 
1278 /*
1279  * migrate_pages - migrate the pages specified in a list, to the free pages
1280  *		   supplied as the target for the page migration
1281  *
1282  * @from:		The list of pages to be migrated.
1283  * @get_new_page:	The function used to allocate free pages to be used
1284  *			as the target of the page migration.
1285  * @put_new_page:	The function used to free target pages if migration
1286  *			fails, or NULL if no special handling is necessary.
1287  * @private:		Private data to be passed on to get_new_page()
1288  * @mode:		The migration mode that specifies the constraints for
1289  *			page migration, if any.
1290  * @reason:		The reason for page migration.
1291  *
1292  * The function returns after 10 attempts or if no pages are movable any more
1293  * because the list has become empty or no retryable pages exist any more.
1294  * The caller should call putback_movable_pages() to return pages to the LRU
1295  * or free list only if ret != 0.
1296  *
1297  * Returns the number of pages that were not migrated, or an error code.
1298  */
1299 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1300 		free_page_t put_new_page, unsigned long private,
1301 		enum migrate_mode mode, int reason)
1302 {
1303 	int retry = 1;
1304 	int nr_failed = 0;
1305 	int nr_succeeded = 0;
1306 	int pass = 0;
1307 	struct page *page;
1308 	struct page *page2;
1309 	int swapwrite = current->flags & PF_SWAPWRITE;
1310 	int rc;
1311 
1312 	if (!swapwrite)
1313 		current->flags |= PF_SWAPWRITE;
1314 
1315 	for(pass = 0; pass < 10 && retry; pass++) {
1316 		retry = 0;
1317 
1318 		list_for_each_entry_safe(page, page2, from, lru) {
1319 			cond_resched();
1320 
1321 			if (PageHuge(page))
1322 				rc = unmap_and_move_huge_page(get_new_page,
1323 						put_new_page, private, page,
1324 						pass > 2, mode, reason);
1325 			else
1326 				rc = unmap_and_move(get_new_page, put_new_page,
1327 						private, page, pass > 2, mode,
1328 						reason);
1329 
1330 			switch(rc) {
1331 			case -ENOMEM:
1332 				nr_failed++;
1333 				goto out;
1334 			case -EAGAIN:
1335 				retry++;
1336 				break;
1337 			case MIGRATEPAGE_SUCCESS:
1338 				nr_succeeded++;
1339 				break;
1340 			default:
1341 				/*
1342 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1343 				 * unlike -EAGAIN case, the failed page is
1344 				 * removed from migration page list and not
1345 				 * retried in the next outer loop.
1346 				 */
1347 				nr_failed++;
1348 				break;
1349 			}
1350 		}
1351 	}
1352 	nr_failed += retry;
1353 	rc = nr_failed;
1354 out:
1355 	if (nr_succeeded)
1356 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1357 	if (nr_failed)
1358 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1359 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1360 
1361 	if (!swapwrite)
1362 		current->flags &= ~PF_SWAPWRITE;
1363 
1364 	return rc;
1365 }
1366 
1367 #ifdef CONFIG_NUMA
1368 /*
1369  * Move a list of individual pages
1370  */
1371 struct page_to_node {
1372 	unsigned long addr;
1373 	struct page *page;
1374 	int node;
1375 	int status;
1376 };
1377 
1378 static struct page *new_page_node(struct page *p, unsigned long private,
1379 		int **result)
1380 {
1381 	struct page_to_node *pm = (struct page_to_node *)private;
1382 
1383 	while (pm->node != MAX_NUMNODES && pm->page != p)
1384 		pm++;
1385 
1386 	if (pm->node == MAX_NUMNODES)
1387 		return NULL;
1388 
1389 	*result = &pm->status;
1390 
1391 	if (PageHuge(p))
1392 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1393 					pm->node);
1394 	else
1395 		return __alloc_pages_node(pm->node,
1396 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1397 }
1398 
1399 /*
1400  * Move a set of pages as indicated in the pm array. The addr
1401  * field must be set to the virtual address of the page to be moved
1402  * and the node number must contain a valid target node.
1403  * The pm array ends with node = MAX_NUMNODES.
1404  */
1405 static int do_move_page_to_node_array(struct mm_struct *mm,
1406 				      struct page_to_node *pm,
1407 				      int migrate_all)
1408 {
1409 	int err;
1410 	struct page_to_node *pp;
1411 	LIST_HEAD(pagelist);
1412 
1413 	down_read(&mm->mmap_sem);
1414 
1415 	/*
1416 	 * Build a list of pages to migrate
1417 	 */
1418 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1419 		struct vm_area_struct *vma;
1420 		struct page *page;
1421 
1422 		err = -EFAULT;
1423 		vma = find_vma(mm, pp->addr);
1424 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1425 			goto set_status;
1426 
1427 		/* FOLL_DUMP to ignore special (like zero) pages */
1428 		page = follow_page(vma, pp->addr,
1429 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1430 
1431 		err = PTR_ERR(page);
1432 		if (IS_ERR(page))
1433 			goto set_status;
1434 
1435 		err = -ENOENT;
1436 		if (!page)
1437 			goto set_status;
1438 
1439 		pp->page = page;
1440 		err = page_to_nid(page);
1441 
1442 		if (err == pp->node)
1443 			/*
1444 			 * Node already in the right place
1445 			 */
1446 			goto put_and_set;
1447 
1448 		err = -EACCES;
1449 		if (page_mapcount(page) > 1 &&
1450 				!migrate_all)
1451 			goto put_and_set;
1452 
1453 		if (PageHuge(page)) {
1454 			if (PageHead(page))
1455 				isolate_huge_page(page, &pagelist);
1456 			goto put_and_set;
1457 		}
1458 
1459 		err = isolate_lru_page(page);
1460 		if (!err) {
1461 			list_add_tail(&page->lru, &pagelist);
1462 			inc_node_page_state(page, NR_ISOLATED_ANON +
1463 					    page_is_file_cache(page));
1464 		}
1465 put_and_set:
1466 		/*
1467 		 * Either remove the duplicate refcount from
1468 		 * isolate_lru_page() or drop the page ref if it was
1469 		 * not isolated.
1470 		 */
1471 		put_page(page);
1472 set_status:
1473 		pp->status = err;
1474 	}
1475 
1476 	err = 0;
1477 	if (!list_empty(&pagelist)) {
1478 		err = migrate_pages(&pagelist, new_page_node, NULL,
1479 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1480 		if (err)
1481 			putback_movable_pages(&pagelist);
1482 	}
1483 
1484 	up_read(&mm->mmap_sem);
1485 	return err;
1486 }
1487 
1488 /*
1489  * Migrate an array of page address onto an array of nodes and fill
1490  * the corresponding array of status.
1491  */
1492 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1493 			 unsigned long nr_pages,
1494 			 const void __user * __user *pages,
1495 			 const int __user *nodes,
1496 			 int __user *status, int flags)
1497 {
1498 	struct page_to_node *pm;
1499 	unsigned long chunk_nr_pages;
1500 	unsigned long chunk_start;
1501 	int err;
1502 
1503 	err = -ENOMEM;
1504 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1505 	if (!pm)
1506 		goto out;
1507 
1508 	migrate_prep();
1509 
1510 	/*
1511 	 * Store a chunk of page_to_node array in a page,
1512 	 * but keep the last one as a marker
1513 	 */
1514 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1515 
1516 	for (chunk_start = 0;
1517 	     chunk_start < nr_pages;
1518 	     chunk_start += chunk_nr_pages) {
1519 		int j;
1520 
1521 		if (chunk_start + chunk_nr_pages > nr_pages)
1522 			chunk_nr_pages = nr_pages - chunk_start;
1523 
1524 		/* fill the chunk pm with addrs and nodes from user-space */
1525 		for (j = 0; j < chunk_nr_pages; j++) {
1526 			const void __user *p;
1527 			int node;
1528 
1529 			err = -EFAULT;
1530 			if (get_user(p, pages + j + chunk_start))
1531 				goto out_pm;
1532 			pm[j].addr = (unsigned long) p;
1533 
1534 			if (get_user(node, nodes + j + chunk_start))
1535 				goto out_pm;
1536 
1537 			err = -ENODEV;
1538 			if (node < 0 || node >= MAX_NUMNODES)
1539 				goto out_pm;
1540 
1541 			if (!node_state(node, N_MEMORY))
1542 				goto out_pm;
1543 
1544 			err = -EACCES;
1545 			if (!node_isset(node, task_nodes))
1546 				goto out_pm;
1547 
1548 			pm[j].node = node;
1549 		}
1550 
1551 		/* End marker for this chunk */
1552 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1553 
1554 		/* Migrate this chunk */
1555 		err = do_move_page_to_node_array(mm, pm,
1556 						 flags & MPOL_MF_MOVE_ALL);
1557 		if (err < 0)
1558 			goto out_pm;
1559 
1560 		/* Return status information */
1561 		for (j = 0; j < chunk_nr_pages; j++)
1562 			if (put_user(pm[j].status, status + j + chunk_start)) {
1563 				err = -EFAULT;
1564 				goto out_pm;
1565 			}
1566 	}
1567 	err = 0;
1568 
1569 out_pm:
1570 	free_page((unsigned long)pm);
1571 out:
1572 	return err;
1573 }
1574 
1575 /*
1576  * Determine the nodes of an array of pages and store it in an array of status.
1577  */
1578 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1579 				const void __user **pages, int *status)
1580 {
1581 	unsigned long i;
1582 
1583 	down_read(&mm->mmap_sem);
1584 
1585 	for (i = 0; i < nr_pages; i++) {
1586 		unsigned long addr = (unsigned long)(*pages);
1587 		struct vm_area_struct *vma;
1588 		struct page *page;
1589 		int err = -EFAULT;
1590 
1591 		vma = find_vma(mm, addr);
1592 		if (!vma || addr < vma->vm_start)
1593 			goto set_status;
1594 
1595 		/* FOLL_DUMP to ignore special (like zero) pages */
1596 		page = follow_page(vma, addr, FOLL_DUMP);
1597 
1598 		err = PTR_ERR(page);
1599 		if (IS_ERR(page))
1600 			goto set_status;
1601 
1602 		err = page ? page_to_nid(page) : -ENOENT;
1603 set_status:
1604 		*status = err;
1605 
1606 		pages++;
1607 		status++;
1608 	}
1609 
1610 	up_read(&mm->mmap_sem);
1611 }
1612 
1613 /*
1614  * Determine the nodes of a user array of pages and store it in
1615  * a user array of status.
1616  */
1617 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1618 			 const void __user * __user *pages,
1619 			 int __user *status)
1620 {
1621 #define DO_PAGES_STAT_CHUNK_NR 16
1622 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1623 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1624 
1625 	while (nr_pages) {
1626 		unsigned long chunk_nr;
1627 
1628 		chunk_nr = nr_pages;
1629 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1630 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1631 
1632 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1633 			break;
1634 
1635 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1636 
1637 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1638 			break;
1639 
1640 		pages += chunk_nr;
1641 		status += chunk_nr;
1642 		nr_pages -= chunk_nr;
1643 	}
1644 	return nr_pages ? -EFAULT : 0;
1645 }
1646 
1647 /*
1648  * Move a list of pages in the address space of the currently executing
1649  * process.
1650  */
1651 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1652 		const void __user * __user *, pages,
1653 		const int __user *, nodes,
1654 		int __user *, status, int, flags)
1655 {
1656 	struct task_struct *task;
1657 	struct mm_struct *mm;
1658 	int err;
1659 	nodemask_t task_nodes;
1660 
1661 	/* Check flags */
1662 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1663 		return -EINVAL;
1664 
1665 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1666 		return -EPERM;
1667 
1668 	/* Find the mm_struct */
1669 	rcu_read_lock();
1670 	task = pid ? find_task_by_vpid(pid) : current;
1671 	if (!task) {
1672 		rcu_read_unlock();
1673 		return -ESRCH;
1674 	}
1675 	get_task_struct(task);
1676 
1677 	/*
1678 	 * Check if this process has the right to modify the specified
1679 	 * process. Use the regular "ptrace_may_access()" checks.
1680 	 */
1681 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1682 		rcu_read_unlock();
1683 		err = -EPERM;
1684 		goto out;
1685 	}
1686 	rcu_read_unlock();
1687 
1688  	err = security_task_movememory(task);
1689  	if (err)
1690 		goto out;
1691 
1692 	task_nodes = cpuset_mems_allowed(task);
1693 	mm = get_task_mm(task);
1694 	put_task_struct(task);
1695 
1696 	if (!mm)
1697 		return -EINVAL;
1698 
1699 	if (nodes)
1700 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1701 				    nodes, status, flags);
1702 	else
1703 		err = do_pages_stat(mm, nr_pages, pages, status);
1704 
1705 	mmput(mm);
1706 	return err;
1707 
1708 out:
1709 	put_task_struct(task);
1710 	return err;
1711 }
1712 
1713 #ifdef CONFIG_NUMA_BALANCING
1714 /*
1715  * Returns true if this is a safe migration target node for misplaced NUMA
1716  * pages. Currently it only checks the watermarks which crude
1717  */
1718 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1719 				   unsigned long nr_migrate_pages)
1720 {
1721 	int z;
1722 
1723 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1724 		struct zone *zone = pgdat->node_zones + z;
1725 
1726 		if (!populated_zone(zone))
1727 			continue;
1728 
1729 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1730 		if (!zone_watermark_ok(zone, 0,
1731 				       high_wmark_pages(zone) +
1732 				       nr_migrate_pages,
1733 				       0, 0))
1734 			continue;
1735 		return true;
1736 	}
1737 	return false;
1738 }
1739 
1740 static struct page *alloc_misplaced_dst_page(struct page *page,
1741 					   unsigned long data,
1742 					   int **result)
1743 {
1744 	int nid = (int) data;
1745 	struct page *newpage;
1746 
1747 	newpage = __alloc_pages_node(nid,
1748 					 (GFP_HIGHUSER_MOVABLE |
1749 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1750 					  __GFP_NORETRY | __GFP_NOWARN) &
1751 					 ~__GFP_RECLAIM, 0);
1752 
1753 	return newpage;
1754 }
1755 
1756 /*
1757  * page migration rate limiting control.
1758  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1759  * window of time. Default here says do not migrate more than 1280M per second.
1760  */
1761 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1762 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1763 
1764 /* Returns true if the node is migrate rate-limited after the update */
1765 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1766 					unsigned long nr_pages)
1767 {
1768 	/*
1769 	 * Rate-limit the amount of data that is being migrated to a node.
1770 	 * Optimal placement is no good if the memory bus is saturated and
1771 	 * all the time is being spent migrating!
1772 	 */
1773 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1774 		spin_lock(&pgdat->numabalancing_migrate_lock);
1775 		pgdat->numabalancing_migrate_nr_pages = 0;
1776 		pgdat->numabalancing_migrate_next_window = jiffies +
1777 			msecs_to_jiffies(migrate_interval_millisecs);
1778 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1779 	}
1780 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1781 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1782 								nr_pages);
1783 		return true;
1784 	}
1785 
1786 	/*
1787 	 * This is an unlocked non-atomic update so errors are possible.
1788 	 * The consequences are failing to migrate when we potentiall should
1789 	 * have which is not severe enough to warrant locking. If it is ever
1790 	 * a problem, it can be converted to a per-cpu counter.
1791 	 */
1792 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1793 	return false;
1794 }
1795 
1796 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1797 {
1798 	int page_lru;
1799 
1800 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1801 
1802 	/* Avoid migrating to a node that is nearly full */
1803 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1804 		return 0;
1805 
1806 	if (isolate_lru_page(page))
1807 		return 0;
1808 
1809 	/*
1810 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1811 	 * check on page_count(), so we must do it here, now that the page
1812 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1813 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1814 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1815 	 */
1816 	if (PageTransHuge(page) && page_count(page) != 3) {
1817 		putback_lru_page(page);
1818 		return 0;
1819 	}
1820 
1821 	page_lru = page_is_file_cache(page);
1822 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1823 				hpage_nr_pages(page));
1824 
1825 	/*
1826 	 * Isolating the page has taken another reference, so the
1827 	 * caller's reference can be safely dropped without the page
1828 	 * disappearing underneath us during migration.
1829 	 */
1830 	put_page(page);
1831 	return 1;
1832 }
1833 
1834 bool pmd_trans_migrating(pmd_t pmd)
1835 {
1836 	struct page *page = pmd_page(pmd);
1837 	return PageLocked(page);
1838 }
1839 
1840 /*
1841  * Attempt to migrate a misplaced page to the specified destination
1842  * node. Caller is expected to have an elevated reference count on
1843  * the page that will be dropped by this function before returning.
1844  */
1845 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1846 			   int node)
1847 {
1848 	pg_data_t *pgdat = NODE_DATA(node);
1849 	int isolated;
1850 	int nr_remaining;
1851 	LIST_HEAD(migratepages);
1852 
1853 	/*
1854 	 * Don't migrate file pages that are mapped in multiple processes
1855 	 * with execute permissions as they are probably shared libraries.
1856 	 */
1857 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1858 	    (vma->vm_flags & VM_EXEC))
1859 		goto out;
1860 
1861 	/*
1862 	 * Rate-limit the amount of data that is being migrated to a node.
1863 	 * Optimal placement is no good if the memory bus is saturated and
1864 	 * all the time is being spent migrating!
1865 	 */
1866 	if (numamigrate_update_ratelimit(pgdat, 1))
1867 		goto out;
1868 
1869 	isolated = numamigrate_isolate_page(pgdat, page);
1870 	if (!isolated)
1871 		goto out;
1872 
1873 	list_add(&page->lru, &migratepages);
1874 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1875 				     NULL, node, MIGRATE_ASYNC,
1876 				     MR_NUMA_MISPLACED);
1877 	if (nr_remaining) {
1878 		if (!list_empty(&migratepages)) {
1879 			list_del(&page->lru);
1880 			dec_node_page_state(page, NR_ISOLATED_ANON +
1881 					page_is_file_cache(page));
1882 			putback_lru_page(page);
1883 		}
1884 		isolated = 0;
1885 	} else
1886 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1887 	BUG_ON(!list_empty(&migratepages));
1888 	return isolated;
1889 
1890 out:
1891 	put_page(page);
1892 	return 0;
1893 }
1894 #endif /* CONFIG_NUMA_BALANCING */
1895 
1896 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1897 /*
1898  * Migrates a THP to a given target node. page must be locked and is unlocked
1899  * before returning.
1900  */
1901 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1902 				struct vm_area_struct *vma,
1903 				pmd_t *pmd, pmd_t entry,
1904 				unsigned long address,
1905 				struct page *page, int node)
1906 {
1907 	spinlock_t *ptl;
1908 	pg_data_t *pgdat = NODE_DATA(node);
1909 	int isolated = 0;
1910 	struct page *new_page = NULL;
1911 	int page_lru = page_is_file_cache(page);
1912 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1913 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1914 
1915 	/*
1916 	 * Rate-limit the amount of data that is being migrated to a node.
1917 	 * Optimal placement is no good if the memory bus is saturated and
1918 	 * all the time is being spent migrating!
1919 	 */
1920 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1921 		goto out_dropref;
1922 
1923 	new_page = alloc_pages_node(node,
1924 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1925 		HPAGE_PMD_ORDER);
1926 	if (!new_page)
1927 		goto out_fail;
1928 	prep_transhuge_page(new_page);
1929 
1930 	isolated = numamigrate_isolate_page(pgdat, page);
1931 	if (!isolated) {
1932 		put_page(new_page);
1933 		goto out_fail;
1934 	}
1935 
1936 	/* Prepare a page as a migration target */
1937 	__SetPageLocked(new_page);
1938 	if (PageSwapBacked(page))
1939 		__SetPageSwapBacked(new_page);
1940 
1941 	/* anon mapping, we can simply copy page->mapping to the new page: */
1942 	new_page->mapping = page->mapping;
1943 	new_page->index = page->index;
1944 	migrate_page_copy(new_page, page);
1945 	WARN_ON(PageLRU(new_page));
1946 
1947 	/* Recheck the target PMD */
1948 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1949 	ptl = pmd_lock(mm, pmd);
1950 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1951 		spin_unlock(ptl);
1952 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1953 
1954 		/* Reverse changes made by migrate_page_copy() */
1955 		if (TestClearPageActive(new_page))
1956 			SetPageActive(page);
1957 		if (TestClearPageUnevictable(new_page))
1958 			SetPageUnevictable(page);
1959 
1960 		unlock_page(new_page);
1961 		put_page(new_page);		/* Free it */
1962 
1963 		/* Retake the callers reference and putback on LRU */
1964 		get_page(page);
1965 		putback_lru_page(page);
1966 		mod_node_page_state(page_pgdat(page),
1967 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1968 
1969 		goto out_unlock;
1970 	}
1971 
1972 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1973 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1974 
1975 	/*
1976 	 * Clear the old entry under pagetable lock and establish the new PTE.
1977 	 * Any parallel GUP will either observe the old page blocking on the
1978 	 * page lock, block on the page table lock or observe the new page.
1979 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1980 	 * guarantee the copy is visible before the pagetable update.
1981 	 */
1982 	flush_cache_range(vma, mmun_start, mmun_end);
1983 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1984 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1985 	set_pmd_at(mm, mmun_start, pmd, entry);
1986 	update_mmu_cache_pmd(vma, address, &entry);
1987 
1988 	page_ref_unfreeze(page, 2);
1989 	mlock_migrate_page(new_page, page);
1990 	page_remove_rmap(page, true);
1991 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1992 
1993 	spin_unlock(ptl);
1994 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1995 
1996 	/* Take an "isolate" reference and put new page on the LRU. */
1997 	get_page(new_page);
1998 	putback_lru_page(new_page);
1999 
2000 	unlock_page(new_page);
2001 	unlock_page(page);
2002 	put_page(page);			/* Drop the rmap reference */
2003 	put_page(page);			/* Drop the LRU isolation reference */
2004 
2005 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2006 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2007 
2008 	mod_node_page_state(page_pgdat(page),
2009 			NR_ISOLATED_ANON + page_lru,
2010 			-HPAGE_PMD_NR);
2011 	return isolated;
2012 
2013 out_fail:
2014 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2015 out_dropref:
2016 	ptl = pmd_lock(mm, pmd);
2017 	if (pmd_same(*pmd, entry)) {
2018 		entry = pmd_modify(entry, vma->vm_page_prot);
2019 		set_pmd_at(mm, mmun_start, pmd, entry);
2020 		update_mmu_cache_pmd(vma, address, &entry);
2021 	}
2022 	spin_unlock(ptl);
2023 
2024 out_unlock:
2025 	unlock_page(page);
2026 	put_page(page);
2027 	return 0;
2028 }
2029 #endif /* CONFIG_NUMA_BALANCING */
2030 
2031 #endif /* CONFIG_NUMA */
2032