xref: /openbmc/linux/mm/migrate.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 #include <linux/memory-tiers.h>
54 
55 #include <asm/tlbflush.h>
56 
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	if (unlikely(PageSlab(page)))
78 		goto out_putpage;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__PageMovable(page)))
87 		goto out_putpage;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(PageSlab(page)))
91 		goto out_putpage;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!trylock_page(page)))
105 		goto out_putpage;
106 
107 	if (!PageMovable(page) || PageIsolated(page))
108 		goto out_no_isolated;
109 
110 	mops = page_movable_ops(page);
111 	VM_BUG_ON_PAGE(!mops, page);
112 
113 	if (!mops->isolate_page(page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(PageIsolated(page));
118 	SetPageIsolated(page);
119 	unlock_page(page);
120 
121 	return 0;
122 
123 out_no_isolated:
124 	unlock_page(page);
125 out_putpage:
126 	put_page(page);
127 out:
128 	return -EBUSY;
129 }
130 
131 static void putback_movable_page(struct page *page)
132 {
133 	const struct movable_operations *mops = page_movable_ops(page);
134 
135 	mops->putback_page(page);
136 	ClearPageIsolated(page);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct page *page;
150 	struct page *page2;
151 
152 	list_for_each_entry_safe(page, page2, l, lru) {
153 		if (unlikely(PageHuge(page))) {
154 			putback_active_hugepage(page);
155 			continue;
156 		}
157 		list_del(&page->lru);
158 		/*
159 		 * We isolated non-lru movable page so here we can use
160 		 * __PageMovable because LRU page's mapping cannot have
161 		 * PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__PageMovable(page))) {
164 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
165 			lock_page(page);
166 			if (PageMovable(page))
167 				putback_movable_page(page);
168 			else
169 				ClearPageIsolated(page);
170 			unlock_page(page);
171 			put_page(page);
172 		} else {
173 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
174 					page_is_file_lru(page), -thp_nr_pages(page));
175 			putback_lru_page(page);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t pte;
191 		swp_entry_t entry;
192 		struct page *new;
193 		unsigned long idx = 0;
194 
195 		/* pgoff is invalid for ksm pages, but they are never large */
196 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
197 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
198 		new = folio_page(folio, idx);
199 
200 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
201 		/* PMD-mapped THP migration entry */
202 		if (!pvmw.pte) {
203 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
204 					!folio_test_pmd_mappable(folio), folio);
205 			remove_migration_pmd(&pvmw, new);
206 			continue;
207 		}
208 #endif
209 
210 		folio_get(folio);
211 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
212 		if (pte_swp_soft_dirty(*pvmw.pte))
213 			pte = pte_mksoft_dirty(pte);
214 
215 		/*
216 		 * Recheck VMA as permissions can change since migration started
217 		 */
218 		entry = pte_to_swp_entry(*pvmw.pte);
219 		if (!is_migration_entry_young(entry))
220 			pte = pte_mkold(pte);
221 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
222 			pte = pte_mkdirty(pte);
223 		if (is_writable_migration_entry(entry))
224 			pte = maybe_mkwrite(pte, vma);
225 		else if (pte_swp_uffd_wp(*pvmw.pte))
226 			pte = pte_mkuffd_wp(pte);
227 		else
228 			pte = pte_wrprotect(pte);
229 
230 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
231 			rmap_flags |= RMAP_EXCLUSIVE;
232 
233 		if (unlikely(is_device_private_page(new))) {
234 			if (pte_write(pte))
235 				entry = make_writable_device_private_entry(
236 							page_to_pfn(new));
237 			else
238 				entry = make_readable_device_private_entry(
239 							page_to_pfn(new));
240 			pte = swp_entry_to_pte(entry);
241 			if (pte_swp_soft_dirty(*pvmw.pte))
242 				pte = pte_swp_mksoft_dirty(pte);
243 			if (pte_swp_uffd_wp(*pvmw.pte))
244 				pte = pte_swp_mkuffd_wp(pte);
245 		}
246 
247 #ifdef CONFIG_HUGETLB_PAGE
248 		if (folio_test_hugetlb(folio)) {
249 			unsigned int shift = huge_page_shift(hstate_vma(vma));
250 
251 			pte = pte_mkhuge(pte);
252 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
253 			if (folio_test_anon(folio))
254 				hugepage_add_anon_rmap(new, vma, pvmw.address,
255 						       rmap_flags);
256 			else
257 				page_dup_file_rmap(new, true);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 		} else
260 #endif
261 		{
262 			if (folio_test_anon(folio))
263 				page_add_anon_rmap(new, vma, pvmw.address,
264 						   rmap_flags);
265 			else
266 				page_add_file_rmap(new, vma, false);
267 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268 		}
269 		if (vma->vm_flags & VM_LOCKED)
270 			mlock_page_drain_local();
271 
272 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
273 					   compound_order(new));
274 
275 		/* No need to invalidate - it was non-present before */
276 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
277 	}
278 
279 	return true;
280 }
281 
282 /*
283  * Get rid of all migration entries and replace them by
284  * references to the indicated page.
285  */
286 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
287 {
288 	struct rmap_walk_control rwc = {
289 		.rmap_one = remove_migration_pte,
290 		.arg = src,
291 	};
292 
293 	if (locked)
294 		rmap_walk_locked(dst, &rwc);
295 	else
296 		rmap_walk(dst, &rwc);
297 }
298 
299 /*
300  * Something used the pte of a page under migration. We need to
301  * get to the page and wait until migration is finished.
302  * When we return from this function the fault will be retried.
303  */
304 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
305 				spinlock_t *ptl)
306 {
307 	pte_t pte;
308 	swp_entry_t entry;
309 
310 	spin_lock(ptl);
311 	pte = *ptep;
312 	if (!is_swap_pte(pte))
313 		goto out;
314 
315 	entry = pte_to_swp_entry(pte);
316 	if (!is_migration_entry(entry))
317 		goto out;
318 
319 	migration_entry_wait_on_locked(entry, ptep, ptl);
320 	return;
321 out:
322 	pte_unmap_unlock(ptep, ptl);
323 }
324 
325 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
326 				unsigned long address)
327 {
328 	spinlock_t *ptl = pte_lockptr(mm, pmd);
329 	pte_t *ptep = pte_offset_map(pmd, address);
330 	__migration_entry_wait(mm, ptep, ptl);
331 }
332 
333 #ifdef CONFIG_HUGETLB_PAGE
334 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
335 {
336 	pte_t pte;
337 
338 	spin_lock(ptl);
339 	pte = huge_ptep_get(ptep);
340 
341 	if (unlikely(!is_hugetlb_entry_migration(pte)))
342 		spin_unlock(ptl);
343 	else
344 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
345 }
346 
347 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
348 {
349 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
350 
351 	__migration_entry_wait_huge(pte, ptl);
352 }
353 #endif
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 
360 	ptl = pmd_lock(mm, pmd);
361 	if (!is_pmd_migration_entry(*pmd))
362 		goto unlock;
363 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
364 	return;
365 unlock:
366 	spin_unlock(ptl);
367 }
368 #endif
369 
370 static int folio_expected_refs(struct address_space *mapping,
371 		struct folio *folio)
372 {
373 	int refs = 1;
374 	if (!mapping)
375 		return refs;
376 
377 	refs += folio_nr_pages(folio);
378 	if (folio_test_private(folio))
379 		refs++;
380 
381 	return refs;
382 }
383 
384 /*
385  * Replace the page in the mapping.
386  *
387  * The number of remaining references must be:
388  * 1 for anonymous pages without a mapping
389  * 2 for pages with a mapping
390  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
391  */
392 int folio_migrate_mapping(struct address_space *mapping,
393 		struct folio *newfolio, struct folio *folio, int extra_count)
394 {
395 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
396 	struct zone *oldzone, *newzone;
397 	int dirty;
398 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
399 	long nr = folio_nr_pages(folio);
400 
401 	if (!mapping) {
402 		/* Anonymous page without mapping */
403 		if (folio_ref_count(folio) != expected_count)
404 			return -EAGAIN;
405 
406 		/* No turning back from here */
407 		newfolio->index = folio->index;
408 		newfolio->mapping = folio->mapping;
409 		if (folio_test_swapbacked(folio))
410 			__folio_set_swapbacked(newfolio);
411 
412 		return MIGRATEPAGE_SUCCESS;
413 	}
414 
415 	oldzone = folio_zone(folio);
416 	newzone = folio_zone(newfolio);
417 
418 	xas_lock_irq(&xas);
419 	if (!folio_ref_freeze(folio, expected_count)) {
420 		xas_unlock_irq(&xas);
421 		return -EAGAIN;
422 	}
423 
424 	/*
425 	 * Now we know that no one else is looking at the folio:
426 	 * no turning back from here.
427 	 */
428 	newfolio->index = folio->index;
429 	newfolio->mapping = folio->mapping;
430 	folio_ref_add(newfolio, nr); /* add cache reference */
431 	if (folio_test_swapbacked(folio)) {
432 		__folio_set_swapbacked(newfolio);
433 		if (folio_test_swapcache(folio)) {
434 			folio_set_swapcache(newfolio);
435 			newfolio->private = folio_get_private(folio);
436 		}
437 	} else {
438 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
439 	}
440 
441 	/* Move dirty while page refs frozen and newpage not yet exposed */
442 	dirty = folio_test_dirty(folio);
443 	if (dirty) {
444 		folio_clear_dirty(folio);
445 		folio_set_dirty(newfolio);
446 	}
447 
448 	xas_store(&xas, newfolio);
449 
450 	/*
451 	 * Drop cache reference from old page by unfreezing
452 	 * to one less reference.
453 	 * We know this isn't the last reference.
454 	 */
455 	folio_ref_unfreeze(folio, expected_count - nr);
456 
457 	xas_unlock(&xas);
458 	/* Leave irq disabled to prevent preemption while updating stats */
459 
460 	/*
461 	 * If moved to a different zone then also account
462 	 * the page for that zone. Other VM counters will be
463 	 * taken care of when we establish references to the
464 	 * new page and drop references to the old page.
465 	 *
466 	 * Note that anonymous pages are accounted for
467 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 	 * are mapped to swap space.
469 	 */
470 	if (newzone != oldzone) {
471 		struct lruvec *old_lruvec, *new_lruvec;
472 		struct mem_cgroup *memcg;
473 
474 		memcg = folio_memcg(folio);
475 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477 
478 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
481 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 		}
484 #ifdef CONFIG_SWAP
485 		if (folio_test_swapcache(folio)) {
486 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 		}
489 #endif
490 		if (dirty && mapping_can_writeback(mapping)) {
491 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 		}
496 	}
497 	local_irq_enable();
498 
499 	return MIGRATEPAGE_SUCCESS;
500 }
501 EXPORT_SYMBOL(folio_migrate_mapping);
502 
503 /*
504  * The expected number of remaining references is the same as that
505  * of folio_migrate_mapping().
506  */
507 int migrate_huge_page_move_mapping(struct address_space *mapping,
508 				   struct folio *dst, struct folio *src)
509 {
510 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
511 	int expected_count;
512 
513 	xas_lock_irq(&xas);
514 	expected_count = 2 + folio_has_private(src);
515 	if (!folio_ref_freeze(src, expected_count)) {
516 		xas_unlock_irq(&xas);
517 		return -EAGAIN;
518 	}
519 
520 	dst->index = src->index;
521 	dst->mapping = src->mapping;
522 
523 	folio_get(dst);
524 
525 	xas_store(&xas, dst);
526 
527 	folio_ref_unfreeze(src, expected_count - 1);
528 
529 	xas_unlock_irq(&xas);
530 
531 	return MIGRATEPAGE_SUCCESS;
532 }
533 
534 /*
535  * Copy the flags and some other ancillary information
536  */
537 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
538 {
539 	int cpupid;
540 
541 	if (folio_test_error(folio))
542 		folio_set_error(newfolio);
543 	if (folio_test_referenced(folio))
544 		folio_set_referenced(newfolio);
545 	if (folio_test_uptodate(folio))
546 		folio_mark_uptodate(newfolio);
547 	if (folio_test_clear_active(folio)) {
548 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
549 		folio_set_active(newfolio);
550 	} else if (folio_test_clear_unevictable(folio))
551 		folio_set_unevictable(newfolio);
552 	if (folio_test_workingset(folio))
553 		folio_set_workingset(newfolio);
554 	if (folio_test_checked(folio))
555 		folio_set_checked(newfolio);
556 	/*
557 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
558 	 * migration entries. We can still have PG_anon_exclusive set on an
559 	 * effectively unmapped and unreferenced first sub-pages of an
560 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
561 	 */
562 	if (folio_test_mappedtodisk(folio))
563 		folio_set_mappedtodisk(newfolio);
564 
565 	/* Move dirty on pages not done by folio_migrate_mapping() */
566 	if (folio_test_dirty(folio))
567 		folio_set_dirty(newfolio);
568 
569 	if (folio_test_young(folio))
570 		folio_set_young(newfolio);
571 	if (folio_test_idle(folio))
572 		folio_set_idle(newfolio);
573 
574 	/*
575 	 * Copy NUMA information to the new page, to prevent over-eager
576 	 * future migrations of this same page.
577 	 */
578 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
579 	/*
580 	 * For memory tiering mode, when migrate between slow and fast
581 	 * memory node, reset cpupid, because that is used to record
582 	 * page access time in slow memory node.
583 	 */
584 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
585 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
586 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
587 
588 		if (f_toptier != t_toptier)
589 			cpupid = -1;
590 	}
591 	page_cpupid_xchg_last(&newfolio->page, cpupid);
592 
593 	folio_migrate_ksm(newfolio, folio);
594 	/*
595 	 * Please do not reorder this without considering how mm/ksm.c's
596 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
597 	 */
598 	if (folio_test_swapcache(folio))
599 		folio_clear_swapcache(folio);
600 	folio_clear_private(folio);
601 
602 	/* page->private contains hugetlb specific flags */
603 	if (!folio_test_hugetlb(folio))
604 		folio->private = NULL;
605 
606 	/*
607 	 * If any waiters have accumulated on the new page then
608 	 * wake them up.
609 	 */
610 	if (folio_test_writeback(newfolio))
611 		folio_end_writeback(newfolio);
612 
613 	/*
614 	 * PG_readahead shares the same bit with PG_reclaim.  The above
615 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
616 	 * bit after that.
617 	 */
618 	if (folio_test_readahead(folio))
619 		folio_set_readahead(newfolio);
620 
621 	folio_copy_owner(newfolio, folio);
622 
623 	if (!folio_test_hugetlb(folio))
624 		mem_cgroup_migrate(folio, newfolio);
625 }
626 EXPORT_SYMBOL(folio_migrate_flags);
627 
628 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
629 {
630 	folio_copy(newfolio, folio);
631 	folio_migrate_flags(newfolio, folio);
632 }
633 EXPORT_SYMBOL(folio_migrate_copy);
634 
635 /************************************************************
636  *                    Migration functions
637  ***********************************************************/
638 
639 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
640 		struct folio *src, enum migrate_mode mode, int extra_count)
641 {
642 	int rc;
643 
644 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
645 
646 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
647 
648 	if (rc != MIGRATEPAGE_SUCCESS)
649 		return rc;
650 
651 	if (mode != MIGRATE_SYNC_NO_COPY)
652 		folio_migrate_copy(dst, src);
653 	else
654 		folio_migrate_flags(dst, src);
655 	return MIGRATEPAGE_SUCCESS;
656 }
657 
658 /**
659  * migrate_folio() - Simple folio migration.
660  * @mapping: The address_space containing the folio.
661  * @dst: The folio to migrate the data to.
662  * @src: The folio containing the current data.
663  * @mode: How to migrate the page.
664  *
665  * Common logic to directly migrate a single LRU folio suitable for
666  * folios that do not use PagePrivate/PagePrivate2.
667  *
668  * Folios are locked upon entry and exit.
669  */
670 int migrate_folio(struct address_space *mapping, struct folio *dst,
671 		struct folio *src, enum migrate_mode mode)
672 {
673 	return migrate_folio_extra(mapping, dst, src, mode, 0);
674 }
675 EXPORT_SYMBOL(migrate_folio);
676 
677 #ifdef CONFIG_BLOCK
678 /* Returns true if all buffers are successfully locked */
679 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
680 							enum migrate_mode mode)
681 {
682 	struct buffer_head *bh = head;
683 
684 	/* Simple case, sync compaction */
685 	if (mode != MIGRATE_ASYNC) {
686 		do {
687 			lock_buffer(bh);
688 			bh = bh->b_this_page;
689 
690 		} while (bh != head);
691 
692 		return true;
693 	}
694 
695 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
696 	do {
697 		if (!trylock_buffer(bh)) {
698 			/*
699 			 * We failed to lock the buffer and cannot stall in
700 			 * async migration. Release the taken locks
701 			 */
702 			struct buffer_head *failed_bh = bh;
703 			bh = head;
704 			while (bh != failed_bh) {
705 				unlock_buffer(bh);
706 				bh = bh->b_this_page;
707 			}
708 			return false;
709 		}
710 
711 		bh = bh->b_this_page;
712 	} while (bh != head);
713 	return true;
714 }
715 
716 static int __buffer_migrate_folio(struct address_space *mapping,
717 		struct folio *dst, struct folio *src, enum migrate_mode mode,
718 		bool check_refs)
719 {
720 	struct buffer_head *bh, *head;
721 	int rc;
722 	int expected_count;
723 
724 	head = folio_buffers(src);
725 	if (!head)
726 		return migrate_folio(mapping, dst, src, mode);
727 
728 	/* Check whether page does not have extra refs before we do more work */
729 	expected_count = folio_expected_refs(mapping, src);
730 	if (folio_ref_count(src) != expected_count)
731 		return -EAGAIN;
732 
733 	if (!buffer_migrate_lock_buffers(head, mode))
734 		return -EAGAIN;
735 
736 	if (check_refs) {
737 		bool busy;
738 		bool invalidated = false;
739 
740 recheck_buffers:
741 		busy = false;
742 		spin_lock(&mapping->private_lock);
743 		bh = head;
744 		do {
745 			if (atomic_read(&bh->b_count)) {
746 				busy = true;
747 				break;
748 			}
749 			bh = bh->b_this_page;
750 		} while (bh != head);
751 		if (busy) {
752 			if (invalidated) {
753 				rc = -EAGAIN;
754 				goto unlock_buffers;
755 			}
756 			spin_unlock(&mapping->private_lock);
757 			invalidate_bh_lrus();
758 			invalidated = true;
759 			goto recheck_buffers;
760 		}
761 	}
762 
763 	rc = folio_migrate_mapping(mapping, dst, src, 0);
764 	if (rc != MIGRATEPAGE_SUCCESS)
765 		goto unlock_buffers;
766 
767 	folio_attach_private(dst, folio_detach_private(src));
768 
769 	bh = head;
770 	do {
771 		set_bh_page(bh, &dst->page, bh_offset(bh));
772 		bh = bh->b_this_page;
773 	} while (bh != head);
774 
775 	if (mode != MIGRATE_SYNC_NO_COPY)
776 		folio_migrate_copy(dst, src);
777 	else
778 		folio_migrate_flags(dst, src);
779 
780 	rc = MIGRATEPAGE_SUCCESS;
781 unlock_buffers:
782 	if (check_refs)
783 		spin_unlock(&mapping->private_lock);
784 	bh = head;
785 	do {
786 		unlock_buffer(bh);
787 		bh = bh->b_this_page;
788 	} while (bh != head);
789 
790 	return rc;
791 }
792 
793 /**
794  * buffer_migrate_folio() - Migration function for folios with buffers.
795  * @mapping: The address space containing @src.
796  * @dst: The folio to migrate to.
797  * @src: The folio to migrate from.
798  * @mode: How to migrate the folio.
799  *
800  * This function can only be used if the underlying filesystem guarantees
801  * that no other references to @src exist. For example attached buffer
802  * heads are accessed only under the folio lock.  If your filesystem cannot
803  * provide this guarantee, buffer_migrate_folio_norefs() may be more
804  * appropriate.
805  *
806  * Return: 0 on success or a negative errno on failure.
807  */
808 int buffer_migrate_folio(struct address_space *mapping,
809 		struct folio *dst, struct folio *src, enum migrate_mode mode)
810 {
811 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
812 }
813 EXPORT_SYMBOL(buffer_migrate_folio);
814 
815 /**
816  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
817  * @mapping: The address space containing @src.
818  * @dst: The folio to migrate to.
819  * @src: The folio to migrate from.
820  * @mode: How to migrate the folio.
821  *
822  * Like buffer_migrate_folio() except that this variant is more careful
823  * and checks that there are also no buffer head references. This function
824  * is the right one for mappings where buffer heads are directly looked
825  * up and referenced (such as block device mappings).
826  *
827  * Return: 0 on success or a negative errno on failure.
828  */
829 int buffer_migrate_folio_norefs(struct address_space *mapping,
830 		struct folio *dst, struct folio *src, enum migrate_mode mode)
831 {
832 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
833 }
834 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
835 #endif
836 
837 int filemap_migrate_folio(struct address_space *mapping,
838 		struct folio *dst, struct folio *src, enum migrate_mode mode)
839 {
840 	int ret;
841 
842 	ret = folio_migrate_mapping(mapping, dst, src, 0);
843 	if (ret != MIGRATEPAGE_SUCCESS)
844 		return ret;
845 
846 	if (folio_get_private(src))
847 		folio_attach_private(dst, folio_detach_private(src));
848 
849 	if (mode != MIGRATE_SYNC_NO_COPY)
850 		folio_migrate_copy(dst, src);
851 	else
852 		folio_migrate_flags(dst, src);
853 	return MIGRATEPAGE_SUCCESS;
854 }
855 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
856 
857 /*
858  * Writeback a folio to clean the dirty state
859  */
860 static int writeout(struct address_space *mapping, struct folio *folio)
861 {
862 	struct writeback_control wbc = {
863 		.sync_mode = WB_SYNC_NONE,
864 		.nr_to_write = 1,
865 		.range_start = 0,
866 		.range_end = LLONG_MAX,
867 		.for_reclaim = 1
868 	};
869 	int rc;
870 
871 	if (!mapping->a_ops->writepage)
872 		/* No write method for the address space */
873 		return -EINVAL;
874 
875 	if (!folio_clear_dirty_for_io(folio))
876 		/* Someone else already triggered a write */
877 		return -EAGAIN;
878 
879 	/*
880 	 * A dirty folio may imply that the underlying filesystem has
881 	 * the folio on some queue. So the folio must be clean for
882 	 * migration. Writeout may mean we lose the lock and the
883 	 * folio state is no longer what we checked for earlier.
884 	 * At this point we know that the migration attempt cannot
885 	 * be successful.
886 	 */
887 	remove_migration_ptes(folio, folio, false);
888 
889 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
890 
891 	if (rc != AOP_WRITEPAGE_ACTIVATE)
892 		/* unlocked. Relock */
893 		folio_lock(folio);
894 
895 	return (rc < 0) ? -EIO : -EAGAIN;
896 }
897 
898 /*
899  * Default handling if a filesystem does not provide a migration function.
900  */
901 static int fallback_migrate_folio(struct address_space *mapping,
902 		struct folio *dst, struct folio *src, enum migrate_mode mode)
903 {
904 	if (folio_test_dirty(src)) {
905 		/* Only writeback folios in full synchronous migration */
906 		switch (mode) {
907 		case MIGRATE_SYNC:
908 		case MIGRATE_SYNC_NO_COPY:
909 			break;
910 		default:
911 			return -EBUSY;
912 		}
913 		return writeout(mapping, src);
914 	}
915 
916 	/*
917 	 * Buffers may be managed in a filesystem specific way.
918 	 * We must have no buffers or drop them.
919 	 */
920 	if (folio_test_private(src) &&
921 	    !filemap_release_folio(src, GFP_KERNEL))
922 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
923 
924 	return migrate_folio(mapping, dst, src, mode);
925 }
926 
927 /*
928  * Move a page to a newly allocated page
929  * The page is locked and all ptes have been successfully removed.
930  *
931  * The new page will have replaced the old page if this function
932  * is successful.
933  *
934  * Return value:
935  *   < 0 - error code
936  *  MIGRATEPAGE_SUCCESS - success
937  */
938 static int move_to_new_folio(struct folio *dst, struct folio *src,
939 				enum migrate_mode mode)
940 {
941 	int rc = -EAGAIN;
942 	bool is_lru = !__PageMovable(&src->page);
943 
944 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
945 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
946 
947 	if (likely(is_lru)) {
948 		struct address_space *mapping = folio_mapping(src);
949 
950 		if (!mapping)
951 			rc = migrate_folio(mapping, dst, src, mode);
952 		else if (mapping->a_ops->migrate_folio)
953 			/*
954 			 * Most folios have a mapping and most filesystems
955 			 * provide a migrate_folio callback. Anonymous folios
956 			 * are part of swap space which also has its own
957 			 * migrate_folio callback. This is the most common path
958 			 * for page migration.
959 			 */
960 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
961 								mode);
962 		else
963 			rc = fallback_migrate_folio(mapping, dst, src, mode);
964 	} else {
965 		const struct movable_operations *mops;
966 
967 		/*
968 		 * In case of non-lru page, it could be released after
969 		 * isolation step. In that case, we shouldn't try migration.
970 		 */
971 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
972 		if (!folio_test_movable(src)) {
973 			rc = MIGRATEPAGE_SUCCESS;
974 			folio_clear_isolated(src);
975 			goto out;
976 		}
977 
978 		mops = page_movable_ops(&src->page);
979 		rc = mops->migrate_page(&dst->page, &src->page, mode);
980 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981 				!folio_test_isolated(src));
982 	}
983 
984 	/*
985 	 * When successful, old pagecache src->mapping must be cleared before
986 	 * src is freed; but stats require that PageAnon be left as PageAnon.
987 	 */
988 	if (rc == MIGRATEPAGE_SUCCESS) {
989 		if (__PageMovable(&src->page)) {
990 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
991 
992 			/*
993 			 * We clear PG_movable under page_lock so any compactor
994 			 * cannot try to migrate this page.
995 			 */
996 			folio_clear_isolated(src);
997 		}
998 
999 		/*
1000 		 * Anonymous and movable src->mapping will be cleared by
1001 		 * free_pages_prepare so don't reset it here for keeping
1002 		 * the type to work PageAnon, for example.
1003 		 */
1004 		if (!folio_mapping_flags(src))
1005 			src->mapping = NULL;
1006 
1007 		if (likely(!folio_is_zone_device(dst)))
1008 			flush_dcache_folio(dst);
1009 	}
1010 out:
1011 	return rc;
1012 }
1013 
1014 static int __unmap_and_move(struct folio *src, struct folio *dst,
1015 				int force, enum migrate_mode mode)
1016 {
1017 	int rc = -EAGAIN;
1018 	bool page_was_mapped = false;
1019 	struct anon_vma *anon_vma = NULL;
1020 	bool is_lru = !__PageMovable(&src->page);
1021 
1022 	if (!folio_trylock(src)) {
1023 		if (!force || mode == MIGRATE_ASYNC)
1024 			goto out;
1025 
1026 		/*
1027 		 * It's not safe for direct compaction to call lock_page.
1028 		 * For example, during page readahead pages are added locked
1029 		 * to the LRU. Later, when the IO completes the pages are
1030 		 * marked uptodate and unlocked. However, the queueing
1031 		 * could be merging multiple pages for one bio (e.g.
1032 		 * mpage_readahead). If an allocation happens for the
1033 		 * second or third page, the process can end up locking
1034 		 * the same page twice and deadlocking. Rather than
1035 		 * trying to be clever about what pages can be locked,
1036 		 * avoid the use of lock_page for direct compaction
1037 		 * altogether.
1038 		 */
1039 		if (current->flags & PF_MEMALLOC)
1040 			goto out;
1041 
1042 		folio_lock(src);
1043 	}
1044 
1045 	if (folio_test_writeback(src)) {
1046 		/*
1047 		 * Only in the case of a full synchronous migration is it
1048 		 * necessary to wait for PageWriteback. In the async case,
1049 		 * the retry loop is too short and in the sync-light case,
1050 		 * the overhead of stalling is too much
1051 		 */
1052 		switch (mode) {
1053 		case MIGRATE_SYNC:
1054 		case MIGRATE_SYNC_NO_COPY:
1055 			break;
1056 		default:
1057 			rc = -EBUSY;
1058 			goto out_unlock;
1059 		}
1060 		if (!force)
1061 			goto out_unlock;
1062 		folio_wait_writeback(src);
1063 	}
1064 
1065 	/*
1066 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1067 	 * we cannot notice that anon_vma is freed while we migrate a page.
1068 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1069 	 * of migration. File cache pages are no problem because of page_lock()
1070 	 * File Caches may use write_page() or lock_page() in migration, then,
1071 	 * just care Anon page here.
1072 	 *
1073 	 * Only folio_get_anon_vma() understands the subtleties of
1074 	 * getting a hold on an anon_vma from outside one of its mms.
1075 	 * But if we cannot get anon_vma, then we won't need it anyway,
1076 	 * because that implies that the anon page is no longer mapped
1077 	 * (and cannot be remapped so long as we hold the page lock).
1078 	 */
1079 	if (folio_test_anon(src) && !folio_test_ksm(src))
1080 		anon_vma = folio_get_anon_vma(src);
1081 
1082 	/*
1083 	 * Block others from accessing the new page when we get around to
1084 	 * establishing additional references. We are usually the only one
1085 	 * holding a reference to dst at this point. We used to have a BUG
1086 	 * here if folio_trylock(dst) fails, but would like to allow for
1087 	 * cases where there might be a race with the previous use of dst.
1088 	 * This is much like races on refcount of oldpage: just don't BUG().
1089 	 */
1090 	if (unlikely(!folio_trylock(dst)))
1091 		goto out_unlock;
1092 
1093 	if (unlikely(!is_lru)) {
1094 		rc = move_to_new_folio(dst, src, mode);
1095 		goto out_unlock_both;
1096 	}
1097 
1098 	/*
1099 	 * Corner case handling:
1100 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1101 	 * and treated as swapcache but it has no rmap yet.
1102 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1103 	 * trigger a BUG.  So handle it here.
1104 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1105 	 * fs-private metadata. The page can be picked up due to memory
1106 	 * offlining.  Everywhere else except page reclaim, the page is
1107 	 * invisible to the vm, so the page can not be migrated.  So try to
1108 	 * free the metadata, so the page can be freed.
1109 	 */
1110 	if (!src->mapping) {
1111 		if (folio_test_private(src)) {
1112 			try_to_free_buffers(src);
1113 			goto out_unlock_both;
1114 		}
1115 	} else if (folio_mapped(src)) {
1116 		/* Establish migration ptes */
1117 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1118 			       !folio_test_ksm(src) && !anon_vma, src);
1119 		try_to_migrate(src, 0);
1120 		page_was_mapped = true;
1121 	}
1122 
1123 	if (!folio_mapped(src))
1124 		rc = move_to_new_folio(dst, src, mode);
1125 
1126 	/*
1127 	 * When successful, push dst to LRU immediately: so that if it
1128 	 * turns out to be an mlocked page, remove_migration_ptes() will
1129 	 * automatically build up the correct dst->mlock_count for it.
1130 	 *
1131 	 * We would like to do something similar for the old page, when
1132 	 * unsuccessful, and other cases when a page has been temporarily
1133 	 * isolated from the unevictable LRU: but this case is the easiest.
1134 	 */
1135 	if (rc == MIGRATEPAGE_SUCCESS) {
1136 		folio_add_lru(dst);
1137 		if (page_was_mapped)
1138 			lru_add_drain();
1139 	}
1140 
1141 	if (page_was_mapped)
1142 		remove_migration_ptes(src,
1143 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1144 
1145 out_unlock_both:
1146 	folio_unlock(dst);
1147 out_unlock:
1148 	/* Drop an anon_vma reference if we took one */
1149 	if (anon_vma)
1150 		put_anon_vma(anon_vma);
1151 	folio_unlock(src);
1152 out:
1153 	/*
1154 	 * If migration is successful, decrease refcount of dst,
1155 	 * which will not free the page because new page owner increased
1156 	 * refcounter.
1157 	 */
1158 	if (rc == MIGRATEPAGE_SUCCESS)
1159 		folio_put(dst);
1160 
1161 	return rc;
1162 }
1163 
1164 /*
1165  * Obtain the lock on folio, remove all ptes and migrate the folio
1166  * to the newly allocated folio in dst.
1167  */
1168 static int unmap_and_move(new_page_t get_new_page,
1169 				   free_page_t put_new_page,
1170 				   unsigned long private, struct folio *src,
1171 				   int force, enum migrate_mode mode,
1172 				   enum migrate_reason reason,
1173 				   struct list_head *ret)
1174 {
1175 	struct folio *dst;
1176 	int rc = MIGRATEPAGE_SUCCESS;
1177 	struct page *newpage = NULL;
1178 
1179 	if (!thp_migration_supported() && folio_test_transhuge(src))
1180 		return -ENOSYS;
1181 
1182 	if (folio_ref_count(src) == 1) {
1183 		/* Folio was freed from under us. So we are done. */
1184 		folio_clear_active(src);
1185 		folio_clear_unevictable(src);
1186 		/* free_pages_prepare() will clear PG_isolated. */
1187 		goto out;
1188 	}
1189 
1190 	newpage = get_new_page(&src->page, private);
1191 	if (!newpage)
1192 		return -ENOMEM;
1193 	dst = page_folio(newpage);
1194 
1195 	dst->private = NULL;
1196 	rc = __unmap_and_move(src, dst, force, mode);
1197 	if (rc == MIGRATEPAGE_SUCCESS)
1198 		set_page_owner_migrate_reason(&dst->page, reason);
1199 
1200 out:
1201 	if (rc != -EAGAIN) {
1202 		/*
1203 		 * A folio that has been migrated has all references
1204 		 * removed and will be freed. A folio that has not been
1205 		 * migrated will have kept its references and be restored.
1206 		 */
1207 		list_del(&src->lru);
1208 	}
1209 
1210 	/*
1211 	 * If migration is successful, releases reference grabbed during
1212 	 * isolation. Otherwise, restore the folio to right list unless
1213 	 * we want to retry.
1214 	 */
1215 	if (rc == MIGRATEPAGE_SUCCESS) {
1216 		/*
1217 		 * Compaction can migrate also non-LRU folios which are
1218 		 * not accounted to NR_ISOLATED_*. They can be recognized
1219 		 * as __folio_test_movable
1220 		 */
1221 		if (likely(!__folio_test_movable(src)))
1222 			mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1223 					folio_is_file_lru(src), -folio_nr_pages(src));
1224 
1225 		if (reason != MR_MEMORY_FAILURE)
1226 			/*
1227 			 * We release the folio in page_handle_poison.
1228 			 */
1229 			folio_put(src);
1230 	} else {
1231 		if (rc != -EAGAIN)
1232 			list_add_tail(&src->lru, ret);
1233 
1234 		if (put_new_page)
1235 			put_new_page(&dst->page, private);
1236 		else
1237 			folio_put(dst);
1238 	}
1239 
1240 	return rc;
1241 }
1242 
1243 /*
1244  * Counterpart of unmap_and_move_page() for hugepage migration.
1245  *
1246  * This function doesn't wait the completion of hugepage I/O
1247  * because there is no race between I/O and migration for hugepage.
1248  * Note that currently hugepage I/O occurs only in direct I/O
1249  * where no lock is held and PG_writeback is irrelevant,
1250  * and writeback status of all subpages are counted in the reference
1251  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252  * under direct I/O, the reference of the head page is 512 and a bit more.)
1253  * This means that when we try to migrate hugepage whose subpages are
1254  * doing direct I/O, some references remain after try_to_unmap() and
1255  * hugepage migration fails without data corruption.
1256  *
1257  * There is also no race when direct I/O is issued on the page under migration,
1258  * because then pte is replaced with migration swap entry and direct I/O code
1259  * will wait in the page fault for migration to complete.
1260  */
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 				free_page_t put_new_page, unsigned long private,
1263 				struct page *hpage, int force,
1264 				enum migrate_mode mode, int reason,
1265 				struct list_head *ret)
1266 {
1267 	struct folio *dst, *src = page_folio(hpage);
1268 	int rc = -EAGAIN;
1269 	int page_was_mapped = 0;
1270 	struct page *new_hpage;
1271 	struct anon_vma *anon_vma = NULL;
1272 	struct address_space *mapping = NULL;
1273 
1274 	/*
1275 	 * Migratability of hugepages depends on architectures and their size.
1276 	 * This check is necessary because some callers of hugepage migration
1277 	 * like soft offline and memory hotremove don't walk through page
1278 	 * tables or check whether the hugepage is pmd-based or not before
1279 	 * kicking migration.
1280 	 */
1281 	if (!hugepage_migration_supported(page_hstate(hpage)))
1282 		return -ENOSYS;
1283 
1284 	if (folio_ref_count(src) == 1) {
1285 		/* page was freed from under us. So we are done. */
1286 		putback_active_hugepage(hpage);
1287 		return MIGRATEPAGE_SUCCESS;
1288 	}
1289 
1290 	new_hpage = get_new_page(hpage, private);
1291 	if (!new_hpage)
1292 		return -ENOMEM;
1293 	dst = page_folio(new_hpage);
1294 
1295 	if (!folio_trylock(src)) {
1296 		if (!force)
1297 			goto out;
1298 		switch (mode) {
1299 		case MIGRATE_SYNC:
1300 		case MIGRATE_SYNC_NO_COPY:
1301 			break;
1302 		default:
1303 			goto out;
1304 		}
1305 		folio_lock(src);
1306 	}
1307 
1308 	/*
1309 	 * Check for pages which are in the process of being freed.  Without
1310 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1311 	 * be called and we could leak usage counts for subpools.
1312 	 */
1313 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1314 		rc = -EBUSY;
1315 		goto out_unlock;
1316 	}
1317 
1318 	if (folio_test_anon(src))
1319 		anon_vma = folio_get_anon_vma(src);
1320 
1321 	if (unlikely(!folio_trylock(dst)))
1322 		goto put_anon;
1323 
1324 	if (folio_mapped(src)) {
1325 		enum ttu_flags ttu = 0;
1326 
1327 		if (!folio_test_anon(src)) {
1328 			/*
1329 			 * In shared mappings, try_to_unmap could potentially
1330 			 * call huge_pmd_unshare.  Because of this, take
1331 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1332 			 * to let lower levels know we have taken the lock.
1333 			 */
1334 			mapping = hugetlb_page_mapping_lock_write(hpage);
1335 			if (unlikely(!mapping))
1336 				goto unlock_put_anon;
1337 
1338 			ttu = TTU_RMAP_LOCKED;
1339 		}
1340 
1341 		try_to_migrate(src, ttu);
1342 		page_was_mapped = 1;
1343 
1344 		if (ttu & TTU_RMAP_LOCKED)
1345 			i_mmap_unlock_write(mapping);
1346 	}
1347 
1348 	if (!folio_mapped(src))
1349 		rc = move_to_new_folio(dst, src, mode);
1350 
1351 	if (page_was_mapped)
1352 		remove_migration_ptes(src,
1353 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1354 
1355 unlock_put_anon:
1356 	folio_unlock(dst);
1357 
1358 put_anon:
1359 	if (anon_vma)
1360 		put_anon_vma(anon_vma);
1361 
1362 	if (rc == MIGRATEPAGE_SUCCESS) {
1363 		move_hugetlb_state(src, dst, reason);
1364 		put_new_page = NULL;
1365 	}
1366 
1367 out_unlock:
1368 	folio_unlock(src);
1369 out:
1370 	if (rc == MIGRATEPAGE_SUCCESS)
1371 		putback_active_hugepage(hpage);
1372 	else if (rc != -EAGAIN)
1373 		list_move_tail(&src->lru, ret);
1374 
1375 	/*
1376 	 * If migration was not successful and there's a freeing callback, use
1377 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1378 	 * isolation.
1379 	 */
1380 	if (put_new_page)
1381 		put_new_page(new_hpage, private);
1382 	else
1383 		putback_active_hugepage(new_hpage);
1384 
1385 	return rc;
1386 }
1387 
1388 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1389 {
1390 	int rc;
1391 
1392 	folio_lock(folio);
1393 	rc = split_folio_to_list(folio, split_folios);
1394 	folio_unlock(folio);
1395 	if (!rc)
1396 		list_move_tail(&folio->lru, split_folios);
1397 
1398 	return rc;
1399 }
1400 
1401 /*
1402  * migrate_pages - migrate the folios specified in a list, to the free folios
1403  *		   supplied as the target for the page migration
1404  *
1405  * @from:		The list of folios to be migrated.
1406  * @get_new_page:	The function used to allocate free folios to be used
1407  *			as the target of the folio migration.
1408  * @put_new_page:	The function used to free target folios if migration
1409  *			fails, or NULL if no special handling is necessary.
1410  * @private:		Private data to be passed on to get_new_page()
1411  * @mode:		The migration mode that specifies the constraints for
1412  *			folio migration, if any.
1413  * @reason:		The reason for folio migration.
1414  * @ret_succeeded:	Set to the number of folios migrated successfully if
1415  *			the caller passes a non-NULL pointer.
1416  *
1417  * The function returns after 10 attempts or if no folios are movable any more
1418  * because the list has become empty or no retryable folios exist any more.
1419  * It is caller's responsibility to call putback_movable_pages() to return folios
1420  * to the LRU or free list only if ret != 0.
1421  *
1422  * Returns the number of {normal folio, large folio, hugetlb} that were not
1423  * migrated, or an error code. The number of large folio splits will be
1424  * considered as the number of non-migrated large folio, no matter how many
1425  * split folios of the large folio are migrated successfully.
1426  */
1427 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1428 		free_page_t put_new_page, unsigned long private,
1429 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1430 {
1431 	int retry = 1;
1432 	int large_retry = 1;
1433 	int thp_retry = 1;
1434 	int nr_failed = 0;
1435 	int nr_failed_pages = 0;
1436 	int nr_retry_pages = 0;
1437 	int nr_succeeded = 0;
1438 	int nr_thp_succeeded = 0;
1439 	int nr_large_failed = 0;
1440 	int nr_thp_failed = 0;
1441 	int nr_thp_split = 0;
1442 	int pass = 0;
1443 	bool is_large = false;
1444 	bool is_thp = false;
1445 	struct folio *folio, *folio2;
1446 	int rc, nr_pages;
1447 	LIST_HEAD(ret_folios);
1448 	LIST_HEAD(split_folios);
1449 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1450 	bool no_split_folio_counting = false;
1451 
1452 	trace_mm_migrate_pages_start(mode, reason);
1453 
1454 split_folio_migration:
1455 	for (pass = 0; pass < 10 && (retry || large_retry); pass++) {
1456 		retry = 0;
1457 		large_retry = 0;
1458 		thp_retry = 0;
1459 		nr_retry_pages = 0;
1460 
1461 		list_for_each_entry_safe(folio, folio2, from, lru) {
1462 			/*
1463 			 * Large folio statistics is based on the source large
1464 			 * folio. Capture required information that might get
1465 			 * lost during migration.
1466 			 */
1467 			is_large = folio_test_large(folio) && !folio_test_hugetlb(folio);
1468 			is_thp = is_large && folio_test_pmd_mappable(folio);
1469 			nr_pages = folio_nr_pages(folio);
1470 			cond_resched();
1471 
1472 			if (folio_test_hugetlb(folio))
1473 				rc = unmap_and_move_huge_page(get_new_page,
1474 						put_new_page, private,
1475 						&folio->page, pass > 2, mode,
1476 						reason,
1477 						&ret_folios);
1478 			else
1479 				rc = unmap_and_move(get_new_page, put_new_page,
1480 						private, folio, pass > 2, mode,
1481 						reason, &ret_folios);
1482 			/*
1483 			 * The rules are:
1484 			 *	Success: non hugetlb folio will be freed, hugetlb
1485 			 *		 folio will be put back
1486 			 *	-EAGAIN: stay on the from list
1487 			 *	-ENOMEM: stay on the from list
1488 			 *	-ENOSYS: stay on the from list
1489 			 *	Other errno: put on ret_folios list then splice to
1490 			 *		     from list
1491 			 */
1492 			switch(rc) {
1493 			/*
1494 			 * Large folio migration might be unsupported or
1495 			 * the allocation could've failed so we should retry
1496 			 * on the same folio with the large folio split
1497 			 * to normal folios.
1498 			 *
1499 			 * Split folios are put in split_folios, and
1500 			 * we will migrate them after the rest of the
1501 			 * list is processed.
1502 			 */
1503 			case -ENOSYS:
1504 				/* Large folio migration is unsupported */
1505 				if (is_large) {
1506 					nr_large_failed++;
1507 					nr_thp_failed += is_thp;
1508 					if (!try_split_folio(folio, &split_folios)) {
1509 						nr_thp_split += is_thp;
1510 						break;
1511 					}
1512 				/* Hugetlb migration is unsupported */
1513 				} else if (!no_split_folio_counting) {
1514 					nr_failed++;
1515 				}
1516 
1517 				nr_failed_pages += nr_pages;
1518 				list_move_tail(&folio->lru, &ret_folios);
1519 				break;
1520 			case -ENOMEM:
1521 				/*
1522 				 * When memory is low, don't bother to try to migrate
1523 				 * other folios, just exit.
1524 				 */
1525 				if (is_large) {
1526 					nr_large_failed++;
1527 					nr_thp_failed += is_thp;
1528 					/* Large folio NUMA faulting doesn't split to retry. */
1529 					if (!nosplit) {
1530 						int ret = try_split_folio(folio, &split_folios);
1531 
1532 						if (!ret) {
1533 							nr_thp_split += is_thp;
1534 							break;
1535 						} else if (reason == MR_LONGTERM_PIN &&
1536 							   ret == -EAGAIN) {
1537 							/*
1538 							 * Try again to split large folio to
1539 							 * mitigate the failure of longterm pinning.
1540 							 */
1541 							large_retry++;
1542 							thp_retry += is_thp;
1543 							nr_retry_pages += nr_pages;
1544 							break;
1545 						}
1546 					}
1547 				} else if (!no_split_folio_counting) {
1548 					nr_failed++;
1549 				}
1550 
1551 				nr_failed_pages += nr_pages + nr_retry_pages;
1552 				/*
1553 				 * There might be some split folios of fail-to-migrate large
1554 				 * folios left in split_folios list. Move them back to migration
1555 				 * list so that they could be put back to the right list by
1556 				 * the caller otherwise the folio refcnt will be leaked.
1557 				 */
1558 				list_splice_init(&split_folios, from);
1559 				/* nr_failed isn't updated for not used */
1560 				nr_large_failed += large_retry;
1561 				nr_thp_failed += thp_retry;
1562 				goto out;
1563 			case -EAGAIN:
1564 				if (is_large) {
1565 					large_retry++;
1566 					thp_retry += is_thp;
1567 				} else if (!no_split_folio_counting) {
1568 					retry++;
1569 				}
1570 				nr_retry_pages += nr_pages;
1571 				break;
1572 			case MIGRATEPAGE_SUCCESS:
1573 				nr_succeeded += nr_pages;
1574 				nr_thp_succeeded += is_thp;
1575 				break;
1576 			default:
1577 				/*
1578 				 * Permanent failure (-EBUSY, etc.):
1579 				 * unlike -EAGAIN case, the failed folio is
1580 				 * removed from migration folio list and not
1581 				 * retried in the next outer loop.
1582 				 */
1583 				if (is_large) {
1584 					nr_large_failed++;
1585 					nr_thp_failed += is_thp;
1586 				} else if (!no_split_folio_counting) {
1587 					nr_failed++;
1588 				}
1589 
1590 				nr_failed_pages += nr_pages;
1591 				break;
1592 			}
1593 		}
1594 	}
1595 	nr_failed += retry;
1596 	nr_large_failed += large_retry;
1597 	nr_thp_failed += thp_retry;
1598 	nr_failed_pages += nr_retry_pages;
1599 	/*
1600 	 * Try to migrate split folios of fail-to-migrate large folios, no
1601 	 * nr_failed counting in this round, since all split folios of a
1602 	 * large folio is counted as 1 failure in the first round.
1603 	 */
1604 	if (!list_empty(&split_folios)) {
1605 		/*
1606 		 * Move non-migrated folios (after 10 retries) to ret_folios
1607 		 * to avoid migrating them again.
1608 		 */
1609 		list_splice_init(from, &ret_folios);
1610 		list_splice_init(&split_folios, from);
1611 		no_split_folio_counting = true;
1612 		retry = 1;
1613 		goto split_folio_migration;
1614 	}
1615 
1616 	rc = nr_failed + nr_large_failed;
1617 out:
1618 	/*
1619 	 * Put the permanent failure folio back to migration list, they
1620 	 * will be put back to the right list by the caller.
1621 	 */
1622 	list_splice(&ret_folios, from);
1623 
1624 	/*
1625 	 * Return 0 in case all split folios of fail-to-migrate large folios
1626 	 * are migrated successfully.
1627 	 */
1628 	if (list_empty(from))
1629 		rc = 0;
1630 
1631 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1632 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1633 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1634 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1635 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1636 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1637 			       nr_thp_failed, nr_thp_split, mode, reason);
1638 
1639 	if (ret_succeeded)
1640 		*ret_succeeded = nr_succeeded;
1641 
1642 	return rc;
1643 }
1644 
1645 struct page *alloc_migration_target(struct page *page, unsigned long private)
1646 {
1647 	struct folio *folio = page_folio(page);
1648 	struct migration_target_control *mtc;
1649 	gfp_t gfp_mask;
1650 	unsigned int order = 0;
1651 	struct folio *new_folio = NULL;
1652 	int nid;
1653 	int zidx;
1654 
1655 	mtc = (struct migration_target_control *)private;
1656 	gfp_mask = mtc->gfp_mask;
1657 	nid = mtc->nid;
1658 	if (nid == NUMA_NO_NODE)
1659 		nid = folio_nid(folio);
1660 
1661 	if (folio_test_hugetlb(folio)) {
1662 		struct hstate *h = folio_hstate(folio);
1663 
1664 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1665 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1666 	}
1667 
1668 	if (folio_test_large(folio)) {
1669 		/*
1670 		 * clear __GFP_RECLAIM to make the migration callback
1671 		 * consistent with regular THP allocations.
1672 		 */
1673 		gfp_mask &= ~__GFP_RECLAIM;
1674 		gfp_mask |= GFP_TRANSHUGE;
1675 		order = folio_order(folio);
1676 	}
1677 	zidx = zone_idx(folio_zone(folio));
1678 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1679 		gfp_mask |= __GFP_HIGHMEM;
1680 
1681 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1682 
1683 	return &new_folio->page;
1684 }
1685 
1686 #ifdef CONFIG_NUMA
1687 
1688 static int store_status(int __user *status, int start, int value, int nr)
1689 {
1690 	while (nr-- > 0) {
1691 		if (put_user(value, status + start))
1692 			return -EFAULT;
1693 		start++;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static int do_move_pages_to_node(struct mm_struct *mm,
1700 		struct list_head *pagelist, int node)
1701 {
1702 	int err;
1703 	struct migration_target_control mtc = {
1704 		.nid = node,
1705 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1706 	};
1707 
1708 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1709 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1710 	if (err)
1711 		putback_movable_pages(pagelist);
1712 	return err;
1713 }
1714 
1715 /*
1716  * Resolves the given address to a struct page, isolates it from the LRU and
1717  * puts it to the given pagelist.
1718  * Returns:
1719  *     errno - if the page cannot be found/isolated
1720  *     0 - when it doesn't have to be migrated because it is already on the
1721  *         target node
1722  *     1 - when it has been queued
1723  */
1724 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1725 		int node, struct list_head *pagelist, bool migrate_all)
1726 {
1727 	struct vm_area_struct *vma;
1728 	struct page *page;
1729 	int err;
1730 
1731 	mmap_read_lock(mm);
1732 	err = -EFAULT;
1733 	vma = vma_lookup(mm, addr);
1734 	if (!vma || !vma_migratable(vma))
1735 		goto out;
1736 
1737 	/* FOLL_DUMP to ignore special (like zero) pages */
1738 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1739 
1740 	err = PTR_ERR(page);
1741 	if (IS_ERR(page))
1742 		goto out;
1743 
1744 	err = -ENOENT;
1745 	if (!page)
1746 		goto out;
1747 
1748 	if (is_zone_device_page(page))
1749 		goto out_putpage;
1750 
1751 	err = 0;
1752 	if (page_to_nid(page) == node)
1753 		goto out_putpage;
1754 
1755 	err = -EACCES;
1756 	if (page_mapcount(page) > 1 && !migrate_all)
1757 		goto out_putpage;
1758 
1759 	if (PageHuge(page)) {
1760 		if (PageHead(page)) {
1761 			err = isolate_hugetlb(page, pagelist);
1762 			if (!err)
1763 				err = 1;
1764 		}
1765 	} else {
1766 		struct page *head;
1767 
1768 		head = compound_head(page);
1769 		err = isolate_lru_page(head);
1770 		if (err)
1771 			goto out_putpage;
1772 
1773 		err = 1;
1774 		list_add_tail(&head->lru, pagelist);
1775 		mod_node_page_state(page_pgdat(head),
1776 			NR_ISOLATED_ANON + page_is_file_lru(head),
1777 			thp_nr_pages(head));
1778 	}
1779 out_putpage:
1780 	/*
1781 	 * Either remove the duplicate refcount from
1782 	 * isolate_lru_page() or drop the page ref if it was
1783 	 * not isolated.
1784 	 */
1785 	put_page(page);
1786 out:
1787 	mmap_read_unlock(mm);
1788 	return err;
1789 }
1790 
1791 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1792 		struct list_head *pagelist, int __user *status,
1793 		int start, int i, unsigned long nr_pages)
1794 {
1795 	int err;
1796 
1797 	if (list_empty(pagelist))
1798 		return 0;
1799 
1800 	err = do_move_pages_to_node(mm, pagelist, node);
1801 	if (err) {
1802 		/*
1803 		 * Positive err means the number of failed
1804 		 * pages to migrate.  Since we are going to
1805 		 * abort and return the number of non-migrated
1806 		 * pages, so need to include the rest of the
1807 		 * nr_pages that have not been attempted as
1808 		 * well.
1809 		 */
1810 		if (err > 0)
1811 			err += nr_pages - i;
1812 		return err;
1813 	}
1814 	return store_status(status, start, node, i - start);
1815 }
1816 
1817 /*
1818  * Migrate an array of page address onto an array of nodes and fill
1819  * the corresponding array of status.
1820  */
1821 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1822 			 unsigned long nr_pages,
1823 			 const void __user * __user *pages,
1824 			 const int __user *nodes,
1825 			 int __user *status, int flags)
1826 {
1827 	int current_node = NUMA_NO_NODE;
1828 	LIST_HEAD(pagelist);
1829 	int start, i;
1830 	int err = 0, err1;
1831 
1832 	lru_cache_disable();
1833 
1834 	for (i = start = 0; i < nr_pages; i++) {
1835 		const void __user *p;
1836 		unsigned long addr;
1837 		int node;
1838 
1839 		err = -EFAULT;
1840 		if (get_user(p, pages + i))
1841 			goto out_flush;
1842 		if (get_user(node, nodes + i))
1843 			goto out_flush;
1844 		addr = (unsigned long)untagged_addr(p);
1845 
1846 		err = -ENODEV;
1847 		if (node < 0 || node >= MAX_NUMNODES)
1848 			goto out_flush;
1849 		if (!node_state(node, N_MEMORY))
1850 			goto out_flush;
1851 
1852 		err = -EACCES;
1853 		if (!node_isset(node, task_nodes))
1854 			goto out_flush;
1855 
1856 		if (current_node == NUMA_NO_NODE) {
1857 			current_node = node;
1858 			start = i;
1859 		} else if (node != current_node) {
1860 			err = move_pages_and_store_status(mm, current_node,
1861 					&pagelist, status, start, i, nr_pages);
1862 			if (err)
1863 				goto out;
1864 			start = i;
1865 			current_node = node;
1866 		}
1867 
1868 		/*
1869 		 * Errors in the page lookup or isolation are not fatal and we simply
1870 		 * report them via status
1871 		 */
1872 		err = add_page_for_migration(mm, addr, current_node,
1873 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1874 
1875 		if (err > 0) {
1876 			/* The page is successfully queued for migration */
1877 			continue;
1878 		}
1879 
1880 		/*
1881 		 * The move_pages() man page does not have an -EEXIST choice, so
1882 		 * use -EFAULT instead.
1883 		 */
1884 		if (err == -EEXIST)
1885 			err = -EFAULT;
1886 
1887 		/*
1888 		 * If the page is already on the target node (!err), store the
1889 		 * node, otherwise, store the err.
1890 		 */
1891 		err = store_status(status, i, err ? : current_node, 1);
1892 		if (err)
1893 			goto out_flush;
1894 
1895 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1896 				status, start, i, nr_pages);
1897 		if (err) {
1898 			/* We have accounted for page i */
1899 			if (err > 0)
1900 				err--;
1901 			goto out;
1902 		}
1903 		current_node = NUMA_NO_NODE;
1904 	}
1905 out_flush:
1906 	/* Make sure we do not overwrite the existing error */
1907 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1908 				status, start, i, nr_pages);
1909 	if (err >= 0)
1910 		err = err1;
1911 out:
1912 	lru_cache_enable();
1913 	return err;
1914 }
1915 
1916 /*
1917  * Determine the nodes of an array of pages and store it in an array of status.
1918  */
1919 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1920 				const void __user **pages, int *status)
1921 {
1922 	unsigned long i;
1923 
1924 	mmap_read_lock(mm);
1925 
1926 	for (i = 0; i < nr_pages; i++) {
1927 		unsigned long addr = (unsigned long)(*pages);
1928 		struct vm_area_struct *vma;
1929 		struct page *page;
1930 		int err = -EFAULT;
1931 
1932 		vma = vma_lookup(mm, addr);
1933 		if (!vma)
1934 			goto set_status;
1935 
1936 		/* FOLL_DUMP to ignore special (like zero) pages */
1937 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1938 
1939 		err = PTR_ERR(page);
1940 		if (IS_ERR(page))
1941 			goto set_status;
1942 
1943 		err = -ENOENT;
1944 		if (!page)
1945 			goto set_status;
1946 
1947 		if (!is_zone_device_page(page))
1948 			err = page_to_nid(page);
1949 
1950 		put_page(page);
1951 set_status:
1952 		*status = err;
1953 
1954 		pages++;
1955 		status++;
1956 	}
1957 
1958 	mmap_read_unlock(mm);
1959 }
1960 
1961 static int get_compat_pages_array(const void __user *chunk_pages[],
1962 				  const void __user * __user *pages,
1963 				  unsigned long chunk_nr)
1964 {
1965 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1966 	compat_uptr_t p;
1967 	int i;
1968 
1969 	for (i = 0; i < chunk_nr; i++) {
1970 		if (get_user(p, pages32 + i))
1971 			return -EFAULT;
1972 		chunk_pages[i] = compat_ptr(p);
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 /*
1979  * Determine the nodes of a user array of pages and store it in
1980  * a user array of status.
1981  */
1982 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1983 			 const void __user * __user *pages,
1984 			 int __user *status)
1985 {
1986 #define DO_PAGES_STAT_CHUNK_NR 16UL
1987 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1988 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1989 
1990 	while (nr_pages) {
1991 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1992 
1993 		if (in_compat_syscall()) {
1994 			if (get_compat_pages_array(chunk_pages, pages,
1995 						   chunk_nr))
1996 				break;
1997 		} else {
1998 			if (copy_from_user(chunk_pages, pages,
1999 				      chunk_nr * sizeof(*chunk_pages)))
2000 				break;
2001 		}
2002 
2003 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2004 
2005 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2006 			break;
2007 
2008 		pages += chunk_nr;
2009 		status += chunk_nr;
2010 		nr_pages -= chunk_nr;
2011 	}
2012 	return nr_pages ? -EFAULT : 0;
2013 }
2014 
2015 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2016 {
2017 	struct task_struct *task;
2018 	struct mm_struct *mm;
2019 
2020 	/*
2021 	 * There is no need to check if current process has the right to modify
2022 	 * the specified process when they are same.
2023 	 */
2024 	if (!pid) {
2025 		mmget(current->mm);
2026 		*mem_nodes = cpuset_mems_allowed(current);
2027 		return current->mm;
2028 	}
2029 
2030 	/* Find the mm_struct */
2031 	rcu_read_lock();
2032 	task = find_task_by_vpid(pid);
2033 	if (!task) {
2034 		rcu_read_unlock();
2035 		return ERR_PTR(-ESRCH);
2036 	}
2037 	get_task_struct(task);
2038 
2039 	/*
2040 	 * Check if this process has the right to modify the specified
2041 	 * process. Use the regular "ptrace_may_access()" checks.
2042 	 */
2043 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2044 		rcu_read_unlock();
2045 		mm = ERR_PTR(-EPERM);
2046 		goto out;
2047 	}
2048 	rcu_read_unlock();
2049 
2050 	mm = ERR_PTR(security_task_movememory(task));
2051 	if (IS_ERR(mm))
2052 		goto out;
2053 	*mem_nodes = cpuset_mems_allowed(task);
2054 	mm = get_task_mm(task);
2055 out:
2056 	put_task_struct(task);
2057 	if (!mm)
2058 		mm = ERR_PTR(-EINVAL);
2059 	return mm;
2060 }
2061 
2062 /*
2063  * Move a list of pages in the address space of the currently executing
2064  * process.
2065  */
2066 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2067 			     const void __user * __user *pages,
2068 			     const int __user *nodes,
2069 			     int __user *status, int flags)
2070 {
2071 	struct mm_struct *mm;
2072 	int err;
2073 	nodemask_t task_nodes;
2074 
2075 	/* Check flags */
2076 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2077 		return -EINVAL;
2078 
2079 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2080 		return -EPERM;
2081 
2082 	mm = find_mm_struct(pid, &task_nodes);
2083 	if (IS_ERR(mm))
2084 		return PTR_ERR(mm);
2085 
2086 	if (nodes)
2087 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2088 				    nodes, status, flags);
2089 	else
2090 		err = do_pages_stat(mm, nr_pages, pages, status);
2091 
2092 	mmput(mm);
2093 	return err;
2094 }
2095 
2096 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2097 		const void __user * __user *, pages,
2098 		const int __user *, nodes,
2099 		int __user *, status, int, flags)
2100 {
2101 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2102 }
2103 
2104 #ifdef CONFIG_NUMA_BALANCING
2105 /*
2106  * Returns true if this is a safe migration target node for misplaced NUMA
2107  * pages. Currently it only checks the watermarks which is crude.
2108  */
2109 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2110 				   unsigned long nr_migrate_pages)
2111 {
2112 	int z;
2113 
2114 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2115 		struct zone *zone = pgdat->node_zones + z;
2116 
2117 		if (!managed_zone(zone))
2118 			continue;
2119 
2120 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2121 		if (!zone_watermark_ok(zone, 0,
2122 				       high_wmark_pages(zone) +
2123 				       nr_migrate_pages,
2124 				       ZONE_MOVABLE, 0))
2125 			continue;
2126 		return true;
2127 	}
2128 	return false;
2129 }
2130 
2131 static struct page *alloc_misplaced_dst_page(struct page *page,
2132 					   unsigned long data)
2133 {
2134 	int nid = (int) data;
2135 	int order = compound_order(page);
2136 	gfp_t gfp = __GFP_THISNODE;
2137 	struct folio *new;
2138 
2139 	if (order > 0)
2140 		gfp |= GFP_TRANSHUGE_LIGHT;
2141 	else {
2142 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2143 			__GFP_NOWARN;
2144 		gfp &= ~__GFP_RECLAIM;
2145 	}
2146 	new = __folio_alloc_node(gfp, order, nid);
2147 
2148 	return &new->page;
2149 }
2150 
2151 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2152 {
2153 	int nr_pages = thp_nr_pages(page);
2154 	int order = compound_order(page);
2155 
2156 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2157 
2158 	/* Do not migrate THP mapped by multiple processes */
2159 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2160 		return 0;
2161 
2162 	/* Avoid migrating to a node that is nearly full */
2163 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2164 		int z;
2165 
2166 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2167 			return 0;
2168 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2169 			if (managed_zone(pgdat->node_zones + z))
2170 				break;
2171 		}
2172 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2173 		return 0;
2174 	}
2175 
2176 	if (isolate_lru_page(page))
2177 		return 0;
2178 
2179 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2180 			    nr_pages);
2181 
2182 	/*
2183 	 * Isolating the page has taken another reference, so the
2184 	 * caller's reference can be safely dropped without the page
2185 	 * disappearing underneath us during migration.
2186 	 */
2187 	put_page(page);
2188 	return 1;
2189 }
2190 
2191 /*
2192  * Attempt to migrate a misplaced page to the specified destination
2193  * node. Caller is expected to have an elevated reference count on
2194  * the page that will be dropped by this function before returning.
2195  */
2196 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2197 			   int node)
2198 {
2199 	pg_data_t *pgdat = NODE_DATA(node);
2200 	int isolated;
2201 	int nr_remaining;
2202 	unsigned int nr_succeeded;
2203 	LIST_HEAD(migratepages);
2204 	int nr_pages = thp_nr_pages(page);
2205 
2206 	/*
2207 	 * Don't migrate file pages that are mapped in multiple processes
2208 	 * with execute permissions as they are probably shared libraries.
2209 	 */
2210 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2211 	    (vma->vm_flags & VM_EXEC))
2212 		goto out;
2213 
2214 	/*
2215 	 * Also do not migrate dirty pages as not all filesystems can move
2216 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2217 	 */
2218 	if (page_is_file_lru(page) && PageDirty(page))
2219 		goto out;
2220 
2221 	isolated = numamigrate_isolate_page(pgdat, page);
2222 	if (!isolated)
2223 		goto out;
2224 
2225 	list_add(&page->lru, &migratepages);
2226 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2227 				     NULL, node, MIGRATE_ASYNC,
2228 				     MR_NUMA_MISPLACED, &nr_succeeded);
2229 	if (nr_remaining) {
2230 		if (!list_empty(&migratepages)) {
2231 			list_del(&page->lru);
2232 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2233 					page_is_file_lru(page), -nr_pages);
2234 			putback_lru_page(page);
2235 		}
2236 		isolated = 0;
2237 	}
2238 	if (nr_succeeded) {
2239 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2240 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2241 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2242 					    nr_succeeded);
2243 	}
2244 	BUG_ON(!list_empty(&migratepages));
2245 	return isolated;
2246 
2247 out:
2248 	put_page(page);
2249 	return 0;
2250 }
2251 #endif /* CONFIG_NUMA_BALANCING */
2252 #endif /* CONFIG_NUMA */
2253