1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 void migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 void migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 } 81 82 int isolate_movable_page(struct page *page, isolate_mode_t mode) 83 { 84 struct address_space *mapping; 85 86 /* 87 * Avoid burning cycles with pages that are yet under __free_pages(), 88 * or just got freed under us. 89 * 90 * In case we 'win' a race for a movable page being freed under us and 91 * raise its refcount preventing __free_pages() from doing its job 92 * the put_page() at the end of this block will take care of 93 * release this page, thus avoiding a nasty leakage. 94 */ 95 if (unlikely(!get_page_unless_zero(page))) 96 goto out; 97 98 /* 99 * Check PageMovable before holding a PG_lock because page's owner 100 * assumes anybody doesn't touch PG_lock of newly allocated page 101 * so unconditionally grabbing the lock ruins page's owner side. 102 */ 103 if (unlikely(!__PageMovable(page))) 104 goto out_putpage; 105 /* 106 * As movable pages are not isolated from LRU lists, concurrent 107 * compaction threads can race against page migration functions 108 * as well as race against the releasing a page. 109 * 110 * In order to avoid having an already isolated movable page 111 * being (wrongly) re-isolated while it is under migration, 112 * or to avoid attempting to isolate pages being released, 113 * lets be sure we have the page lock 114 * before proceeding with the movable page isolation steps. 115 */ 116 if (unlikely(!trylock_page(page))) 117 goto out_putpage; 118 119 if (!PageMovable(page) || PageIsolated(page)) 120 goto out_no_isolated; 121 122 mapping = page_mapping(page); 123 VM_BUG_ON_PAGE(!mapping, page); 124 125 if (!mapping->a_ops->isolate_page(page, mode)) 126 goto out_no_isolated; 127 128 /* Driver shouldn't use PG_isolated bit of page->flags */ 129 WARN_ON_ONCE(PageIsolated(page)); 130 __SetPageIsolated(page); 131 unlock_page(page); 132 133 return 0; 134 135 out_no_isolated: 136 unlock_page(page); 137 out_putpage: 138 put_page(page); 139 out: 140 return -EBUSY; 141 } 142 143 /* It should be called on page which is PG_movable */ 144 void putback_movable_page(struct page *page) 145 { 146 struct address_space *mapping; 147 148 VM_BUG_ON_PAGE(!PageLocked(page), page); 149 VM_BUG_ON_PAGE(!PageMovable(page), page); 150 VM_BUG_ON_PAGE(!PageIsolated(page), page); 151 152 mapping = page_mapping(page); 153 mapping->a_ops->putback_page(page); 154 __ClearPageIsolated(page); 155 } 156 157 /* 158 * Put previously isolated pages back onto the appropriate lists 159 * from where they were once taken off for compaction/migration. 160 * 161 * This function shall be used whenever the isolated pageset has been 162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 163 * and isolate_huge_page(). 164 */ 165 void putback_movable_pages(struct list_head *l) 166 { 167 struct page *page; 168 struct page *page2; 169 170 list_for_each_entry_safe(page, page2, l, lru) { 171 if (unlikely(PageHuge(page))) { 172 putback_active_hugepage(page); 173 continue; 174 } 175 list_del(&page->lru); 176 /* 177 * We isolated non-lru movable page so here we can use 178 * __PageMovable because LRU page's mapping cannot have 179 * PAGE_MAPPING_MOVABLE. 180 */ 181 if (unlikely(__PageMovable(page))) { 182 VM_BUG_ON_PAGE(!PageIsolated(page), page); 183 lock_page(page); 184 if (PageMovable(page)) 185 putback_movable_page(page); 186 else 187 __ClearPageIsolated(page); 188 unlock_page(page); 189 put_page(page); 190 } else { 191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 192 page_is_file_lru(page), -thp_nr_pages(page)); 193 putback_lru_page(page); 194 } 195 } 196 } 197 198 /* 199 * Restore a potential migration pte to a working pte entry 200 */ 201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 202 unsigned long addr, void *old) 203 { 204 struct page_vma_mapped_walk pvmw = { 205 .page = old, 206 .vma = vma, 207 .address = addr, 208 .flags = PVMW_SYNC | PVMW_MIGRATION, 209 }; 210 struct page *new; 211 pte_t pte; 212 swp_entry_t entry; 213 214 VM_BUG_ON_PAGE(PageTail(page), page); 215 while (page_vma_mapped_walk(&pvmw)) { 216 if (PageKsm(page)) 217 new = page; 218 else 219 new = page - pvmw.page->index + 220 linear_page_index(vma, pvmw.address); 221 222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 223 /* PMD-mapped THP migration entry */ 224 if (!pvmw.pte) { 225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 226 remove_migration_pmd(&pvmw, new); 227 continue; 228 } 229 #endif 230 231 get_page(new); 232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 233 if (pte_swp_soft_dirty(*pvmw.pte)) 234 pte = pte_mksoft_dirty(pte); 235 236 /* 237 * Recheck VMA as permissions can change since migration started 238 */ 239 entry = pte_to_swp_entry(*pvmw.pte); 240 if (is_write_migration_entry(entry)) 241 pte = maybe_mkwrite(pte, vma); 242 else if (pte_swp_uffd_wp(*pvmw.pte)) 243 pte = pte_mkuffd_wp(pte); 244 245 if (unlikely(is_device_private_page(new))) { 246 entry = make_device_private_entry(new, pte_write(pte)); 247 pte = swp_entry_to_pte(entry); 248 if (pte_swp_soft_dirty(*pvmw.pte)) 249 pte = pte_swp_mksoft_dirty(pte); 250 if (pte_swp_uffd_wp(*pvmw.pte)) 251 pte = pte_swp_mkuffd_wp(pte); 252 } 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 if (PageHuge(new)) { 256 pte = pte_mkhuge(pte); 257 pte = arch_make_huge_pte(pte, vma, new, 0); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 if (PageAnon(new)) 260 hugepage_add_anon_rmap(new, vma, pvmw.address); 261 else 262 page_dup_rmap(new, true); 263 } else 264 #endif 265 { 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 268 if (PageAnon(new)) 269 page_add_anon_rmap(new, vma, pvmw.address, false); 270 else 271 page_add_file_rmap(new, false); 272 } 273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 274 mlock_vma_page(new); 275 276 if (PageTransHuge(page) && PageMlocked(page)) 277 clear_page_mlock(page); 278 279 /* No need to invalidate - it was non-present before */ 280 update_mmu_cache(vma, pvmw.address, pvmw.pte); 281 } 282 283 return true; 284 } 285 286 /* 287 * Get rid of all migration entries and replace them by 288 * references to the indicated page. 289 */ 290 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 291 { 292 struct rmap_walk_control rwc = { 293 .rmap_one = remove_migration_pte, 294 .arg = old, 295 }; 296 297 if (locked) 298 rmap_walk_locked(new, &rwc); 299 else 300 rmap_walk(new, &rwc); 301 } 302 303 /* 304 * Something used the pte of a page under migration. We need to 305 * get to the page and wait until migration is finished. 306 * When we return from this function the fault will be retried. 307 */ 308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 309 spinlock_t *ptl) 310 { 311 pte_t pte; 312 swp_entry_t entry; 313 struct page *page; 314 315 spin_lock(ptl); 316 pte = *ptep; 317 if (!is_swap_pte(pte)) 318 goto out; 319 320 entry = pte_to_swp_entry(pte); 321 if (!is_migration_entry(entry)) 322 goto out; 323 324 page = migration_entry_to_page(entry); 325 326 /* 327 * Once page cache replacement of page migration started, page_count 328 * is zero; but we must not call put_and_wait_on_page_locked() without 329 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 330 */ 331 if (!get_page_unless_zero(page)) 332 goto out; 333 pte_unmap_unlock(ptep, ptl); 334 put_and_wait_on_page_locked(page); 335 return; 336 out: 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 341 unsigned long address) 342 { 343 spinlock_t *ptl = pte_lockptr(mm, pmd); 344 pte_t *ptep = pte_offset_map(pmd, address); 345 __migration_entry_wait(mm, ptep, ptl); 346 } 347 348 void migration_entry_wait_huge(struct vm_area_struct *vma, 349 struct mm_struct *mm, pte_t *pte) 350 { 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 352 __migration_entry_wait(mm, pte, ptl); 353 } 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 struct page *page; 360 361 ptl = pmd_lock(mm, pmd); 362 if (!is_pmd_migration_entry(*pmd)) 363 goto unlock; 364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 365 if (!get_page_unless_zero(page)) 366 goto unlock; 367 spin_unlock(ptl); 368 put_and_wait_on_page_locked(page); 369 return; 370 unlock: 371 spin_unlock(ptl); 372 } 373 #endif 374 375 static int expected_page_refs(struct address_space *mapping, struct page *page) 376 { 377 int expected_count = 1; 378 379 /* 380 * Device private pages have an extra refcount as they are 381 * ZONE_DEVICE pages. 382 */ 383 expected_count += is_device_private_page(page); 384 if (mapping) 385 expected_count += thp_nr_pages(page) + page_has_private(page); 386 387 return expected_count; 388 } 389 390 /* 391 * Replace the page in the mapping. 392 * 393 * The number of remaining references must be: 394 * 1 for anonymous pages without a mapping 395 * 2 for pages with a mapping 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 397 */ 398 int migrate_page_move_mapping(struct address_space *mapping, 399 struct page *newpage, struct page *page, int extra_count) 400 { 401 XA_STATE(xas, &mapping->i_pages, page_index(page)); 402 struct zone *oldzone, *newzone; 403 int dirty; 404 int expected_count = expected_page_refs(mapping, page) + extra_count; 405 int nr = thp_nr_pages(page); 406 407 if (!mapping) { 408 /* Anonymous page without mapping */ 409 if (page_count(page) != expected_count) 410 return -EAGAIN; 411 412 /* No turning back from here */ 413 newpage->index = page->index; 414 newpage->mapping = page->mapping; 415 if (PageSwapBacked(page)) 416 __SetPageSwapBacked(newpage); 417 418 return MIGRATEPAGE_SUCCESS; 419 } 420 421 oldzone = page_zone(page); 422 newzone = page_zone(newpage); 423 424 xas_lock_irq(&xas); 425 if (page_count(page) != expected_count || xas_load(&xas) != page) { 426 xas_unlock_irq(&xas); 427 return -EAGAIN; 428 } 429 430 if (!page_ref_freeze(page, expected_count)) { 431 xas_unlock_irq(&xas); 432 return -EAGAIN; 433 } 434 435 /* 436 * Now we know that no one else is looking at the page: 437 * no turning back from here. 438 */ 439 newpage->index = page->index; 440 newpage->mapping = page->mapping; 441 page_ref_add(newpage, nr); /* add cache reference */ 442 if (PageSwapBacked(page)) { 443 __SetPageSwapBacked(newpage); 444 if (PageSwapCache(page)) { 445 SetPageSwapCache(newpage); 446 set_page_private(newpage, page_private(page)); 447 } 448 } else { 449 VM_BUG_ON_PAGE(PageSwapCache(page), page); 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = PageDirty(page); 454 if (dirty) { 455 ClearPageDirty(page); 456 SetPageDirty(newpage); 457 } 458 459 xas_store(&xas, newpage); 460 if (PageTransHuge(page)) { 461 int i; 462 463 for (i = 1; i < nr; i++) { 464 xas_next(&xas); 465 xas_store(&xas, newpage); 466 } 467 } 468 469 /* 470 * Drop cache reference from old page by unfreezing 471 * to one less reference. 472 * We know this isn't the last reference. 473 */ 474 page_ref_unfreeze(page, expected_count - nr); 475 476 xas_unlock(&xas); 477 /* Leave irq disabled to prevent preemption while updating stats */ 478 479 /* 480 * If moved to a different zone then also account 481 * the page for that zone. Other VM counters will be 482 * taken care of when we establish references to the 483 * new page and drop references to the old page. 484 * 485 * Note that anonymous pages are accounted for 486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 487 * are mapped to swap space. 488 */ 489 if (newzone != oldzone) { 490 struct lruvec *old_lruvec, *new_lruvec; 491 struct mem_cgroup *memcg; 492 493 memcg = page_memcg(page); 494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 496 497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 499 if (PageSwapBacked(page) && !PageSwapCache(page)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 502 } 503 if (dirty && mapping_can_writeback(mapping)) { 504 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 505 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 506 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 507 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 508 } 509 } 510 local_irq_enable(); 511 512 return MIGRATEPAGE_SUCCESS; 513 } 514 EXPORT_SYMBOL(migrate_page_move_mapping); 515 516 /* 517 * The expected number of remaining references is the same as that 518 * of migrate_page_move_mapping(). 519 */ 520 int migrate_huge_page_move_mapping(struct address_space *mapping, 521 struct page *newpage, struct page *page) 522 { 523 XA_STATE(xas, &mapping->i_pages, page_index(page)); 524 int expected_count; 525 526 xas_lock_irq(&xas); 527 expected_count = 2 + page_has_private(page); 528 if (page_count(page) != expected_count || xas_load(&xas) != page) { 529 xas_unlock_irq(&xas); 530 return -EAGAIN; 531 } 532 533 if (!page_ref_freeze(page, expected_count)) { 534 xas_unlock_irq(&xas); 535 return -EAGAIN; 536 } 537 538 newpage->index = page->index; 539 newpage->mapping = page->mapping; 540 541 get_page(newpage); 542 543 xas_store(&xas, newpage); 544 545 page_ref_unfreeze(page, expected_count - 1); 546 547 xas_unlock_irq(&xas); 548 549 return MIGRATEPAGE_SUCCESS; 550 } 551 552 /* 553 * Gigantic pages are so large that we do not guarantee that page++ pointer 554 * arithmetic will work across the entire page. We need something more 555 * specialized. 556 */ 557 static void __copy_gigantic_page(struct page *dst, struct page *src, 558 int nr_pages) 559 { 560 int i; 561 struct page *dst_base = dst; 562 struct page *src_base = src; 563 564 for (i = 0; i < nr_pages; ) { 565 cond_resched(); 566 copy_highpage(dst, src); 567 568 i++; 569 dst = mem_map_next(dst, dst_base, i); 570 src = mem_map_next(src, src_base, i); 571 } 572 } 573 574 static void copy_huge_page(struct page *dst, struct page *src) 575 { 576 int i; 577 int nr_pages; 578 579 if (PageHuge(src)) { 580 /* hugetlbfs page */ 581 struct hstate *h = page_hstate(src); 582 nr_pages = pages_per_huge_page(h); 583 584 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 585 __copy_gigantic_page(dst, src, nr_pages); 586 return; 587 } 588 } else { 589 /* thp page */ 590 BUG_ON(!PageTransHuge(src)); 591 nr_pages = thp_nr_pages(src); 592 } 593 594 for (i = 0; i < nr_pages; i++) { 595 cond_resched(); 596 copy_highpage(dst + i, src + i); 597 } 598 } 599 600 /* 601 * Copy the page to its new location 602 */ 603 void migrate_page_states(struct page *newpage, struct page *page) 604 { 605 int cpupid; 606 607 if (PageError(page)) 608 SetPageError(newpage); 609 if (PageReferenced(page)) 610 SetPageReferenced(newpage); 611 if (PageUptodate(page)) 612 SetPageUptodate(newpage); 613 if (TestClearPageActive(page)) { 614 VM_BUG_ON_PAGE(PageUnevictable(page), page); 615 SetPageActive(newpage); 616 } else if (TestClearPageUnevictable(page)) 617 SetPageUnevictable(newpage); 618 if (PageWorkingset(page)) 619 SetPageWorkingset(newpage); 620 if (PageChecked(page)) 621 SetPageChecked(newpage); 622 if (PageMappedToDisk(page)) 623 SetPageMappedToDisk(newpage); 624 625 /* Move dirty on pages not done by migrate_page_move_mapping() */ 626 if (PageDirty(page)) 627 SetPageDirty(newpage); 628 629 if (page_is_young(page)) 630 set_page_young(newpage); 631 if (page_is_idle(page)) 632 set_page_idle(newpage); 633 634 /* 635 * Copy NUMA information to the new page, to prevent over-eager 636 * future migrations of this same page. 637 */ 638 cpupid = page_cpupid_xchg_last(page, -1); 639 page_cpupid_xchg_last(newpage, cpupid); 640 641 ksm_migrate_page(newpage, page); 642 /* 643 * Please do not reorder this without considering how mm/ksm.c's 644 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 645 */ 646 if (PageSwapCache(page)) 647 ClearPageSwapCache(page); 648 ClearPagePrivate(page); 649 set_page_private(page, 0); 650 651 /* 652 * If any waiters have accumulated on the new page then 653 * wake them up. 654 */ 655 if (PageWriteback(newpage)) 656 end_page_writeback(newpage); 657 658 /* 659 * PG_readahead shares the same bit with PG_reclaim. The above 660 * end_page_writeback() may clear PG_readahead mistakenly, so set the 661 * bit after that. 662 */ 663 if (PageReadahead(page)) 664 SetPageReadahead(newpage); 665 666 copy_page_owner(page, newpage); 667 668 if (!PageHuge(page)) 669 mem_cgroup_migrate(page, newpage); 670 } 671 EXPORT_SYMBOL(migrate_page_states); 672 673 void migrate_page_copy(struct page *newpage, struct page *page) 674 { 675 if (PageHuge(page) || PageTransHuge(page)) 676 copy_huge_page(newpage, page); 677 else 678 copy_highpage(newpage, page); 679 680 migrate_page_states(newpage, page); 681 } 682 EXPORT_SYMBOL(migrate_page_copy); 683 684 /************************************************************ 685 * Migration functions 686 ***********************************************************/ 687 688 /* 689 * Common logic to directly migrate a single LRU page suitable for 690 * pages that do not use PagePrivate/PagePrivate2. 691 * 692 * Pages are locked upon entry and exit. 693 */ 694 int migrate_page(struct address_space *mapping, 695 struct page *newpage, struct page *page, 696 enum migrate_mode mode) 697 { 698 int rc; 699 700 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 701 702 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 703 704 if (rc != MIGRATEPAGE_SUCCESS) 705 return rc; 706 707 if (mode != MIGRATE_SYNC_NO_COPY) 708 migrate_page_copy(newpage, page); 709 else 710 migrate_page_states(newpage, page); 711 return MIGRATEPAGE_SUCCESS; 712 } 713 EXPORT_SYMBOL(migrate_page); 714 715 #ifdef CONFIG_BLOCK 716 /* Returns true if all buffers are successfully locked */ 717 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 718 enum migrate_mode mode) 719 { 720 struct buffer_head *bh = head; 721 722 /* Simple case, sync compaction */ 723 if (mode != MIGRATE_ASYNC) { 724 do { 725 lock_buffer(bh); 726 bh = bh->b_this_page; 727 728 } while (bh != head); 729 730 return true; 731 } 732 733 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 734 do { 735 if (!trylock_buffer(bh)) { 736 /* 737 * We failed to lock the buffer and cannot stall in 738 * async migration. Release the taken locks 739 */ 740 struct buffer_head *failed_bh = bh; 741 bh = head; 742 while (bh != failed_bh) { 743 unlock_buffer(bh); 744 bh = bh->b_this_page; 745 } 746 return false; 747 } 748 749 bh = bh->b_this_page; 750 } while (bh != head); 751 return true; 752 } 753 754 static int __buffer_migrate_page(struct address_space *mapping, 755 struct page *newpage, struct page *page, enum migrate_mode mode, 756 bool check_refs) 757 { 758 struct buffer_head *bh, *head; 759 int rc; 760 int expected_count; 761 762 if (!page_has_buffers(page)) 763 return migrate_page(mapping, newpage, page, mode); 764 765 /* Check whether page does not have extra refs before we do more work */ 766 expected_count = expected_page_refs(mapping, page); 767 if (page_count(page) != expected_count) 768 return -EAGAIN; 769 770 head = page_buffers(page); 771 if (!buffer_migrate_lock_buffers(head, mode)) 772 return -EAGAIN; 773 774 if (check_refs) { 775 bool busy; 776 bool invalidated = false; 777 778 recheck_buffers: 779 busy = false; 780 spin_lock(&mapping->private_lock); 781 bh = head; 782 do { 783 if (atomic_read(&bh->b_count)) { 784 busy = true; 785 break; 786 } 787 bh = bh->b_this_page; 788 } while (bh != head); 789 if (busy) { 790 if (invalidated) { 791 rc = -EAGAIN; 792 goto unlock_buffers; 793 } 794 spin_unlock(&mapping->private_lock); 795 invalidate_bh_lrus(); 796 invalidated = true; 797 goto recheck_buffers; 798 } 799 } 800 801 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 802 if (rc != MIGRATEPAGE_SUCCESS) 803 goto unlock_buffers; 804 805 attach_page_private(newpage, detach_page_private(page)); 806 807 bh = head; 808 do { 809 set_bh_page(bh, newpage, bh_offset(bh)); 810 bh = bh->b_this_page; 811 812 } while (bh != head); 813 814 if (mode != MIGRATE_SYNC_NO_COPY) 815 migrate_page_copy(newpage, page); 816 else 817 migrate_page_states(newpage, page); 818 819 rc = MIGRATEPAGE_SUCCESS; 820 unlock_buffers: 821 if (check_refs) 822 spin_unlock(&mapping->private_lock); 823 bh = head; 824 do { 825 unlock_buffer(bh); 826 bh = bh->b_this_page; 827 828 } while (bh != head); 829 830 return rc; 831 } 832 833 /* 834 * Migration function for pages with buffers. This function can only be used 835 * if the underlying filesystem guarantees that no other references to "page" 836 * exist. For example attached buffer heads are accessed only under page lock. 837 */ 838 int buffer_migrate_page(struct address_space *mapping, 839 struct page *newpage, struct page *page, enum migrate_mode mode) 840 { 841 return __buffer_migrate_page(mapping, newpage, page, mode, false); 842 } 843 EXPORT_SYMBOL(buffer_migrate_page); 844 845 /* 846 * Same as above except that this variant is more careful and checks that there 847 * are also no buffer head references. This function is the right one for 848 * mappings where buffer heads are directly looked up and referenced (such as 849 * block device mappings). 850 */ 851 int buffer_migrate_page_norefs(struct address_space *mapping, 852 struct page *newpage, struct page *page, enum migrate_mode mode) 853 { 854 return __buffer_migrate_page(mapping, newpage, page, mode, true); 855 } 856 #endif 857 858 /* 859 * Writeback a page to clean the dirty state 860 */ 861 static int writeout(struct address_space *mapping, struct page *page) 862 { 863 struct writeback_control wbc = { 864 .sync_mode = WB_SYNC_NONE, 865 .nr_to_write = 1, 866 .range_start = 0, 867 .range_end = LLONG_MAX, 868 .for_reclaim = 1 869 }; 870 int rc; 871 872 if (!mapping->a_ops->writepage) 873 /* No write method for the address space */ 874 return -EINVAL; 875 876 if (!clear_page_dirty_for_io(page)) 877 /* Someone else already triggered a write */ 878 return -EAGAIN; 879 880 /* 881 * A dirty page may imply that the underlying filesystem has 882 * the page on some queue. So the page must be clean for 883 * migration. Writeout may mean we loose the lock and the 884 * page state is no longer what we checked for earlier. 885 * At this point we know that the migration attempt cannot 886 * be successful. 887 */ 888 remove_migration_ptes(page, page, false); 889 890 rc = mapping->a_ops->writepage(page, &wbc); 891 892 if (rc != AOP_WRITEPAGE_ACTIVATE) 893 /* unlocked. Relock */ 894 lock_page(page); 895 896 return (rc < 0) ? -EIO : -EAGAIN; 897 } 898 899 /* 900 * Default handling if a filesystem does not provide a migration function. 901 */ 902 static int fallback_migrate_page(struct address_space *mapping, 903 struct page *newpage, struct page *page, enum migrate_mode mode) 904 { 905 if (PageDirty(page)) { 906 /* Only writeback pages in full synchronous migration */ 907 switch (mode) { 908 case MIGRATE_SYNC: 909 case MIGRATE_SYNC_NO_COPY: 910 break; 911 default: 912 return -EBUSY; 913 } 914 return writeout(mapping, page); 915 } 916 917 /* 918 * Buffers may be managed in a filesystem specific way. 919 * We must have no buffers or drop them. 920 */ 921 if (page_has_private(page) && 922 !try_to_release_page(page, GFP_KERNEL)) 923 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 924 925 return migrate_page(mapping, newpage, page, mode); 926 } 927 928 /* 929 * Move a page to a newly allocated page 930 * The page is locked and all ptes have been successfully removed. 931 * 932 * The new page will have replaced the old page if this function 933 * is successful. 934 * 935 * Return value: 936 * < 0 - error code 937 * MIGRATEPAGE_SUCCESS - success 938 */ 939 static int move_to_new_page(struct page *newpage, struct page *page, 940 enum migrate_mode mode) 941 { 942 struct address_space *mapping; 943 int rc = -EAGAIN; 944 bool is_lru = !__PageMovable(page); 945 946 VM_BUG_ON_PAGE(!PageLocked(page), page); 947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 948 949 mapping = page_mapping(page); 950 951 if (likely(is_lru)) { 952 if (!mapping) 953 rc = migrate_page(mapping, newpage, page, mode); 954 else if (mapping->a_ops->migratepage) 955 /* 956 * Most pages have a mapping and most filesystems 957 * provide a migratepage callback. Anonymous pages 958 * are part of swap space which also has its own 959 * migratepage callback. This is the most common path 960 * for page migration. 961 */ 962 rc = mapping->a_ops->migratepage(mapping, newpage, 963 page, mode); 964 else 965 rc = fallback_migrate_page(mapping, newpage, 966 page, mode); 967 } else { 968 /* 969 * In case of non-lru page, it could be released after 970 * isolation step. In that case, we shouldn't try migration. 971 */ 972 VM_BUG_ON_PAGE(!PageIsolated(page), page); 973 if (!PageMovable(page)) { 974 rc = MIGRATEPAGE_SUCCESS; 975 __ClearPageIsolated(page); 976 goto out; 977 } 978 979 rc = mapping->a_ops->migratepage(mapping, newpage, 980 page, mode); 981 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 982 !PageIsolated(page)); 983 } 984 985 /* 986 * When successful, old pagecache page->mapping must be cleared before 987 * page is freed; but stats require that PageAnon be left as PageAnon. 988 */ 989 if (rc == MIGRATEPAGE_SUCCESS) { 990 if (__PageMovable(page)) { 991 VM_BUG_ON_PAGE(!PageIsolated(page), page); 992 993 /* 994 * We clear PG_movable under page_lock so any compactor 995 * cannot try to migrate this page. 996 */ 997 __ClearPageIsolated(page); 998 } 999 1000 /* 1001 * Anonymous and movable page->mapping will be cleared by 1002 * free_pages_prepare so don't reset it here for keeping 1003 * the type to work PageAnon, for example. 1004 */ 1005 if (!PageMappingFlags(page)) 1006 page->mapping = NULL; 1007 1008 if (likely(!is_zone_device_page(newpage))) 1009 flush_dcache_page(newpage); 1010 1011 } 1012 out: 1013 return rc; 1014 } 1015 1016 static int __unmap_and_move(struct page *page, struct page *newpage, 1017 int force, enum migrate_mode mode) 1018 { 1019 int rc = -EAGAIN; 1020 int page_was_mapped = 0; 1021 struct anon_vma *anon_vma = NULL; 1022 bool is_lru = !__PageMovable(page); 1023 1024 if (!trylock_page(page)) { 1025 if (!force || mode == MIGRATE_ASYNC) 1026 goto out; 1027 1028 /* 1029 * It's not safe for direct compaction to call lock_page. 1030 * For example, during page readahead pages are added locked 1031 * to the LRU. Later, when the IO completes the pages are 1032 * marked uptodate and unlocked. However, the queueing 1033 * could be merging multiple pages for one bio (e.g. 1034 * mpage_readahead). If an allocation happens for the 1035 * second or third page, the process can end up locking 1036 * the same page twice and deadlocking. Rather than 1037 * trying to be clever about what pages can be locked, 1038 * avoid the use of lock_page for direct compaction 1039 * altogether. 1040 */ 1041 if (current->flags & PF_MEMALLOC) 1042 goto out; 1043 1044 lock_page(page); 1045 } 1046 1047 if (PageWriteback(page)) { 1048 /* 1049 * Only in the case of a full synchronous migration is it 1050 * necessary to wait for PageWriteback. In the async case, 1051 * the retry loop is too short and in the sync-light case, 1052 * the overhead of stalling is too much 1053 */ 1054 switch (mode) { 1055 case MIGRATE_SYNC: 1056 case MIGRATE_SYNC_NO_COPY: 1057 break; 1058 default: 1059 rc = -EBUSY; 1060 goto out_unlock; 1061 } 1062 if (!force) 1063 goto out_unlock; 1064 wait_on_page_writeback(page); 1065 } 1066 1067 /* 1068 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1069 * we cannot notice that anon_vma is freed while we migrates a page. 1070 * This get_anon_vma() delays freeing anon_vma pointer until the end 1071 * of migration. File cache pages are no problem because of page_lock() 1072 * File Caches may use write_page() or lock_page() in migration, then, 1073 * just care Anon page here. 1074 * 1075 * Only page_get_anon_vma() understands the subtleties of 1076 * getting a hold on an anon_vma from outside one of its mms. 1077 * But if we cannot get anon_vma, then we won't need it anyway, 1078 * because that implies that the anon page is no longer mapped 1079 * (and cannot be remapped so long as we hold the page lock). 1080 */ 1081 if (PageAnon(page) && !PageKsm(page)) 1082 anon_vma = page_get_anon_vma(page); 1083 1084 /* 1085 * Block others from accessing the new page when we get around to 1086 * establishing additional references. We are usually the only one 1087 * holding a reference to newpage at this point. We used to have a BUG 1088 * here if trylock_page(newpage) fails, but would like to allow for 1089 * cases where there might be a race with the previous use of newpage. 1090 * This is much like races on refcount of oldpage: just don't BUG(). 1091 */ 1092 if (unlikely(!trylock_page(newpage))) 1093 goto out_unlock; 1094 1095 if (unlikely(!is_lru)) { 1096 rc = move_to_new_page(newpage, page, mode); 1097 goto out_unlock_both; 1098 } 1099 1100 /* 1101 * Corner case handling: 1102 * 1. When a new swap-cache page is read into, it is added to the LRU 1103 * and treated as swapcache but it has no rmap yet. 1104 * Calling try_to_unmap() against a page->mapping==NULL page will 1105 * trigger a BUG. So handle it here. 1106 * 2. An orphaned page (see truncate_cleanup_page) might have 1107 * fs-private metadata. The page can be picked up due to memory 1108 * offlining. Everywhere else except page reclaim, the page is 1109 * invisible to the vm, so the page can not be migrated. So try to 1110 * free the metadata, so the page can be freed. 1111 */ 1112 if (!page->mapping) { 1113 VM_BUG_ON_PAGE(PageAnon(page), page); 1114 if (page_has_private(page)) { 1115 try_to_free_buffers(page); 1116 goto out_unlock_both; 1117 } 1118 } else if (page_mapped(page)) { 1119 /* Establish migration ptes */ 1120 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1121 page); 1122 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK); 1123 page_was_mapped = 1; 1124 } 1125 1126 if (!page_mapped(page)) 1127 rc = move_to_new_page(newpage, page, mode); 1128 1129 if (page_was_mapped) 1130 remove_migration_ptes(page, 1131 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1132 1133 out_unlock_both: 1134 unlock_page(newpage); 1135 out_unlock: 1136 /* Drop an anon_vma reference if we took one */ 1137 if (anon_vma) 1138 put_anon_vma(anon_vma); 1139 unlock_page(page); 1140 out: 1141 /* 1142 * If migration is successful, decrease refcount of the newpage 1143 * which will not free the page because new page owner increased 1144 * refcounter. As well, if it is LRU page, add the page to LRU 1145 * list in here. Use the old state of the isolated source page to 1146 * determine if we migrated a LRU page. newpage was already unlocked 1147 * and possibly modified by its owner - don't rely on the page 1148 * state. 1149 */ 1150 if (rc == MIGRATEPAGE_SUCCESS) { 1151 if (unlikely(!is_lru)) 1152 put_page(newpage); 1153 else 1154 putback_lru_page(newpage); 1155 } 1156 1157 return rc; 1158 } 1159 1160 /* 1161 * Obtain the lock on page, remove all ptes and migrate the page 1162 * to the newly allocated page in newpage. 1163 */ 1164 static int unmap_and_move(new_page_t get_new_page, 1165 free_page_t put_new_page, 1166 unsigned long private, struct page *page, 1167 int force, enum migrate_mode mode, 1168 enum migrate_reason reason, 1169 struct list_head *ret) 1170 { 1171 int rc = MIGRATEPAGE_SUCCESS; 1172 struct page *newpage = NULL; 1173 1174 if (!thp_migration_supported() && PageTransHuge(page)) 1175 return -ENOSYS; 1176 1177 if (page_count(page) == 1) { 1178 /* page was freed from under us. So we are done. */ 1179 ClearPageActive(page); 1180 ClearPageUnevictable(page); 1181 if (unlikely(__PageMovable(page))) { 1182 lock_page(page); 1183 if (!PageMovable(page)) 1184 __ClearPageIsolated(page); 1185 unlock_page(page); 1186 } 1187 goto out; 1188 } 1189 1190 newpage = get_new_page(page, private); 1191 if (!newpage) 1192 return -ENOMEM; 1193 1194 rc = __unmap_and_move(page, newpage, force, mode); 1195 if (rc == MIGRATEPAGE_SUCCESS) 1196 set_page_owner_migrate_reason(newpage, reason); 1197 1198 out: 1199 if (rc != -EAGAIN) { 1200 /* 1201 * A page that has been migrated has all references 1202 * removed and will be freed. A page that has not been 1203 * migrated will have kept its references and be restored. 1204 */ 1205 list_del(&page->lru); 1206 } 1207 1208 /* 1209 * If migration is successful, releases reference grabbed during 1210 * isolation. Otherwise, restore the page to right list unless 1211 * we want to retry. 1212 */ 1213 if (rc == MIGRATEPAGE_SUCCESS) { 1214 /* 1215 * Compaction can migrate also non-LRU pages which are 1216 * not accounted to NR_ISOLATED_*. They can be recognized 1217 * as __PageMovable 1218 */ 1219 if (likely(!__PageMovable(page))) 1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1221 page_is_file_lru(page), -thp_nr_pages(page)); 1222 1223 if (reason != MR_MEMORY_FAILURE) 1224 /* 1225 * We release the page in page_handle_poison. 1226 */ 1227 put_page(page); 1228 } else { 1229 if (rc != -EAGAIN) 1230 list_add_tail(&page->lru, ret); 1231 1232 if (put_new_page) 1233 put_new_page(newpage, private); 1234 else 1235 put_page(newpage); 1236 } 1237 1238 return rc; 1239 } 1240 1241 /* 1242 * Counterpart of unmap_and_move_page() for hugepage migration. 1243 * 1244 * This function doesn't wait the completion of hugepage I/O 1245 * because there is no race between I/O and migration for hugepage. 1246 * Note that currently hugepage I/O occurs only in direct I/O 1247 * where no lock is held and PG_writeback is irrelevant, 1248 * and writeback status of all subpages are counted in the reference 1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1250 * under direct I/O, the reference of the head page is 512 and a bit more.) 1251 * This means that when we try to migrate hugepage whose subpages are 1252 * doing direct I/O, some references remain after try_to_unmap() and 1253 * hugepage migration fails without data corruption. 1254 * 1255 * There is also no race when direct I/O is issued on the page under migration, 1256 * because then pte is replaced with migration swap entry and direct I/O code 1257 * will wait in the page fault for migration to complete. 1258 */ 1259 static int unmap_and_move_huge_page(new_page_t get_new_page, 1260 free_page_t put_new_page, unsigned long private, 1261 struct page *hpage, int force, 1262 enum migrate_mode mode, int reason, 1263 struct list_head *ret) 1264 { 1265 int rc = -EAGAIN; 1266 int page_was_mapped = 0; 1267 struct page *new_hpage; 1268 struct anon_vma *anon_vma = NULL; 1269 struct address_space *mapping = NULL; 1270 1271 /* 1272 * Migratability of hugepages depends on architectures and their size. 1273 * This check is necessary because some callers of hugepage migration 1274 * like soft offline and memory hotremove don't walk through page 1275 * tables or check whether the hugepage is pmd-based or not before 1276 * kicking migration. 1277 */ 1278 if (!hugepage_migration_supported(page_hstate(hpage))) { 1279 list_move_tail(&hpage->lru, ret); 1280 return -ENOSYS; 1281 } 1282 1283 if (page_count(hpage) == 1) { 1284 /* page was freed from under us. So we are done. */ 1285 putback_active_hugepage(hpage); 1286 return MIGRATEPAGE_SUCCESS; 1287 } 1288 1289 new_hpage = get_new_page(hpage, private); 1290 if (!new_hpage) 1291 return -ENOMEM; 1292 1293 if (!trylock_page(hpage)) { 1294 if (!force) 1295 goto out; 1296 switch (mode) { 1297 case MIGRATE_SYNC: 1298 case MIGRATE_SYNC_NO_COPY: 1299 break; 1300 default: 1301 goto out; 1302 } 1303 lock_page(hpage); 1304 } 1305 1306 /* 1307 * Check for pages which are in the process of being freed. Without 1308 * page_mapping() set, hugetlbfs specific move page routine will not 1309 * be called and we could leak usage counts for subpools. 1310 */ 1311 if (page_private(hpage) && !page_mapping(hpage)) { 1312 rc = -EBUSY; 1313 goto out_unlock; 1314 } 1315 1316 if (PageAnon(hpage)) 1317 anon_vma = page_get_anon_vma(hpage); 1318 1319 if (unlikely(!trylock_page(new_hpage))) 1320 goto put_anon; 1321 1322 if (page_mapped(hpage)) { 1323 bool mapping_locked = false; 1324 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK; 1325 1326 if (!PageAnon(hpage)) { 1327 /* 1328 * In shared mappings, try_to_unmap could potentially 1329 * call huge_pmd_unshare. Because of this, take 1330 * semaphore in write mode here and set TTU_RMAP_LOCKED 1331 * to let lower levels know we have taken the lock. 1332 */ 1333 mapping = hugetlb_page_mapping_lock_write(hpage); 1334 if (unlikely(!mapping)) 1335 goto unlock_put_anon; 1336 1337 mapping_locked = true; 1338 ttu |= TTU_RMAP_LOCKED; 1339 } 1340 1341 try_to_unmap(hpage, ttu); 1342 page_was_mapped = 1; 1343 1344 if (mapping_locked) 1345 i_mmap_unlock_write(mapping); 1346 } 1347 1348 if (!page_mapped(hpage)) 1349 rc = move_to_new_page(new_hpage, hpage, mode); 1350 1351 if (page_was_mapped) 1352 remove_migration_ptes(hpage, 1353 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1354 1355 unlock_put_anon: 1356 unlock_page(new_hpage); 1357 1358 put_anon: 1359 if (anon_vma) 1360 put_anon_vma(anon_vma); 1361 1362 if (rc == MIGRATEPAGE_SUCCESS) { 1363 move_hugetlb_state(hpage, new_hpage, reason); 1364 put_new_page = NULL; 1365 } 1366 1367 out_unlock: 1368 unlock_page(hpage); 1369 out: 1370 if (rc == MIGRATEPAGE_SUCCESS) 1371 putback_active_hugepage(hpage); 1372 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS) 1373 list_move_tail(&hpage->lru, ret); 1374 1375 /* 1376 * If migration was not successful and there's a freeing callback, use 1377 * it. Otherwise, put_page() will drop the reference grabbed during 1378 * isolation. 1379 */ 1380 if (put_new_page) 1381 put_new_page(new_hpage, private); 1382 else 1383 putback_active_hugepage(new_hpage); 1384 1385 return rc; 1386 } 1387 1388 static inline int try_split_thp(struct page *page, struct page **page2, 1389 struct list_head *from) 1390 { 1391 int rc = 0; 1392 1393 lock_page(page); 1394 rc = split_huge_page_to_list(page, from); 1395 unlock_page(page); 1396 if (!rc) 1397 list_safe_reset_next(page, *page2, lru); 1398 1399 return rc; 1400 } 1401 1402 /* 1403 * migrate_pages - migrate the pages specified in a list, to the free pages 1404 * supplied as the target for the page migration 1405 * 1406 * @from: The list of pages to be migrated. 1407 * @get_new_page: The function used to allocate free pages to be used 1408 * as the target of the page migration. 1409 * @put_new_page: The function used to free target pages if migration 1410 * fails, or NULL if no special handling is necessary. 1411 * @private: Private data to be passed on to get_new_page() 1412 * @mode: The migration mode that specifies the constraints for 1413 * page migration, if any. 1414 * @reason: The reason for page migration. 1415 * 1416 * The function returns after 10 attempts or if no pages are movable any more 1417 * because the list has become empty or no retryable pages exist any more. 1418 * It is caller's responsibility to call putback_movable_pages() to return pages 1419 * to the LRU or free list only if ret != 0. 1420 * 1421 * Returns the number of pages that were not migrated, or an error code. 1422 */ 1423 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1424 free_page_t put_new_page, unsigned long private, 1425 enum migrate_mode mode, int reason) 1426 { 1427 int retry = 1; 1428 int thp_retry = 1; 1429 int nr_failed = 0; 1430 int nr_succeeded = 0; 1431 int nr_thp_succeeded = 0; 1432 int nr_thp_failed = 0; 1433 int nr_thp_split = 0; 1434 int pass = 0; 1435 bool is_thp = false; 1436 struct page *page; 1437 struct page *page2; 1438 int swapwrite = current->flags & PF_SWAPWRITE; 1439 int rc, nr_subpages; 1440 LIST_HEAD(ret_pages); 1441 1442 if (!swapwrite) 1443 current->flags |= PF_SWAPWRITE; 1444 1445 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1446 retry = 0; 1447 thp_retry = 0; 1448 1449 list_for_each_entry_safe(page, page2, from, lru) { 1450 retry: 1451 /* 1452 * THP statistics is based on the source huge page. 1453 * Capture required information that might get lost 1454 * during migration. 1455 */ 1456 is_thp = PageTransHuge(page) && !PageHuge(page); 1457 nr_subpages = thp_nr_pages(page); 1458 cond_resched(); 1459 1460 if (PageHuge(page)) 1461 rc = unmap_and_move_huge_page(get_new_page, 1462 put_new_page, private, page, 1463 pass > 2, mode, reason, 1464 &ret_pages); 1465 else 1466 rc = unmap_and_move(get_new_page, put_new_page, 1467 private, page, pass > 2, mode, 1468 reason, &ret_pages); 1469 /* 1470 * The rules are: 1471 * Success: non hugetlb page will be freed, hugetlb 1472 * page will be put back 1473 * -EAGAIN: stay on the from list 1474 * -ENOMEM: stay on the from list 1475 * Other errno: put on ret_pages list then splice to 1476 * from list 1477 */ 1478 switch(rc) { 1479 /* 1480 * THP migration might be unsupported or the 1481 * allocation could've failed so we should 1482 * retry on the same page with the THP split 1483 * to base pages. 1484 * 1485 * Head page is retried immediately and tail 1486 * pages are added to the tail of the list so 1487 * we encounter them after the rest of the list 1488 * is processed. 1489 */ 1490 case -ENOSYS: 1491 /* THP migration is unsupported */ 1492 if (is_thp) { 1493 if (!try_split_thp(page, &page2, from)) { 1494 nr_thp_split++; 1495 goto retry; 1496 } 1497 1498 nr_thp_failed++; 1499 nr_failed += nr_subpages; 1500 break; 1501 } 1502 1503 /* Hugetlb migration is unsupported */ 1504 nr_failed++; 1505 break; 1506 case -ENOMEM: 1507 /* 1508 * When memory is low, don't bother to try to migrate 1509 * other pages, just exit. 1510 */ 1511 if (is_thp) { 1512 if (!try_split_thp(page, &page2, from)) { 1513 nr_thp_split++; 1514 goto retry; 1515 } 1516 1517 nr_thp_failed++; 1518 nr_failed += nr_subpages; 1519 goto out; 1520 } 1521 nr_failed++; 1522 goto out; 1523 case -EAGAIN: 1524 if (is_thp) { 1525 thp_retry++; 1526 break; 1527 } 1528 retry++; 1529 break; 1530 case MIGRATEPAGE_SUCCESS: 1531 if (is_thp) { 1532 nr_thp_succeeded++; 1533 nr_succeeded += nr_subpages; 1534 break; 1535 } 1536 nr_succeeded++; 1537 break; 1538 default: 1539 /* 1540 * Permanent failure (-EBUSY, etc.): 1541 * unlike -EAGAIN case, the failed page is 1542 * removed from migration page list and not 1543 * retried in the next outer loop. 1544 */ 1545 if (is_thp) { 1546 nr_thp_failed++; 1547 nr_failed += nr_subpages; 1548 break; 1549 } 1550 nr_failed++; 1551 break; 1552 } 1553 } 1554 } 1555 nr_failed += retry + thp_retry; 1556 nr_thp_failed += thp_retry; 1557 rc = nr_failed; 1558 out: 1559 /* 1560 * Put the permanent failure page back to migration list, they 1561 * will be put back to the right list by the caller. 1562 */ 1563 list_splice(&ret_pages, from); 1564 1565 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1566 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1567 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1568 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1569 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1570 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1571 nr_thp_failed, nr_thp_split, mode, reason); 1572 1573 if (!swapwrite) 1574 current->flags &= ~PF_SWAPWRITE; 1575 1576 return rc; 1577 } 1578 1579 struct page *alloc_migration_target(struct page *page, unsigned long private) 1580 { 1581 struct migration_target_control *mtc; 1582 gfp_t gfp_mask; 1583 unsigned int order = 0; 1584 struct page *new_page = NULL; 1585 int nid; 1586 int zidx; 1587 1588 mtc = (struct migration_target_control *)private; 1589 gfp_mask = mtc->gfp_mask; 1590 nid = mtc->nid; 1591 if (nid == NUMA_NO_NODE) 1592 nid = page_to_nid(page); 1593 1594 if (PageHuge(page)) { 1595 struct hstate *h = page_hstate(compound_head(page)); 1596 1597 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1598 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1599 } 1600 1601 if (PageTransHuge(page)) { 1602 /* 1603 * clear __GFP_RECLAIM to make the migration callback 1604 * consistent with regular THP allocations. 1605 */ 1606 gfp_mask &= ~__GFP_RECLAIM; 1607 gfp_mask |= GFP_TRANSHUGE; 1608 order = HPAGE_PMD_ORDER; 1609 } 1610 zidx = zone_idx(page_zone(page)); 1611 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1612 gfp_mask |= __GFP_HIGHMEM; 1613 1614 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1615 1616 if (new_page && PageTransHuge(new_page)) 1617 prep_transhuge_page(new_page); 1618 1619 return new_page; 1620 } 1621 1622 #ifdef CONFIG_NUMA 1623 1624 static int store_status(int __user *status, int start, int value, int nr) 1625 { 1626 while (nr-- > 0) { 1627 if (put_user(value, status + start)) 1628 return -EFAULT; 1629 start++; 1630 } 1631 1632 return 0; 1633 } 1634 1635 static int do_move_pages_to_node(struct mm_struct *mm, 1636 struct list_head *pagelist, int node) 1637 { 1638 int err; 1639 struct migration_target_control mtc = { 1640 .nid = node, 1641 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1642 }; 1643 1644 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1645 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1646 if (err) 1647 putback_movable_pages(pagelist); 1648 return err; 1649 } 1650 1651 /* 1652 * Resolves the given address to a struct page, isolates it from the LRU and 1653 * puts it to the given pagelist. 1654 * Returns: 1655 * errno - if the page cannot be found/isolated 1656 * 0 - when it doesn't have to be migrated because it is already on the 1657 * target node 1658 * 1 - when it has been queued 1659 */ 1660 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1661 int node, struct list_head *pagelist, bool migrate_all) 1662 { 1663 struct vm_area_struct *vma; 1664 struct page *page; 1665 unsigned int follflags; 1666 int err; 1667 1668 mmap_read_lock(mm); 1669 err = -EFAULT; 1670 vma = find_vma(mm, addr); 1671 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1672 goto out; 1673 1674 /* FOLL_DUMP to ignore special (like zero) pages */ 1675 follflags = FOLL_GET | FOLL_DUMP; 1676 page = follow_page(vma, addr, follflags); 1677 1678 err = PTR_ERR(page); 1679 if (IS_ERR(page)) 1680 goto out; 1681 1682 err = -ENOENT; 1683 if (!page) 1684 goto out; 1685 1686 err = 0; 1687 if (page_to_nid(page) == node) 1688 goto out_putpage; 1689 1690 err = -EACCES; 1691 if (page_mapcount(page) > 1 && !migrate_all) 1692 goto out_putpage; 1693 1694 if (PageHuge(page)) { 1695 if (PageHead(page)) { 1696 isolate_huge_page(page, pagelist); 1697 err = 1; 1698 } 1699 } else { 1700 struct page *head; 1701 1702 head = compound_head(page); 1703 err = isolate_lru_page(head); 1704 if (err) 1705 goto out_putpage; 1706 1707 err = 1; 1708 list_add_tail(&head->lru, pagelist); 1709 mod_node_page_state(page_pgdat(head), 1710 NR_ISOLATED_ANON + page_is_file_lru(head), 1711 thp_nr_pages(head)); 1712 } 1713 out_putpage: 1714 /* 1715 * Either remove the duplicate refcount from 1716 * isolate_lru_page() or drop the page ref if it was 1717 * not isolated. 1718 */ 1719 put_page(page); 1720 out: 1721 mmap_read_unlock(mm); 1722 return err; 1723 } 1724 1725 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1726 struct list_head *pagelist, int __user *status, 1727 int start, int i, unsigned long nr_pages) 1728 { 1729 int err; 1730 1731 if (list_empty(pagelist)) 1732 return 0; 1733 1734 err = do_move_pages_to_node(mm, pagelist, node); 1735 if (err) { 1736 /* 1737 * Positive err means the number of failed 1738 * pages to migrate. Since we are going to 1739 * abort and return the number of non-migrated 1740 * pages, so need to include the rest of the 1741 * nr_pages that have not been attempted as 1742 * well. 1743 */ 1744 if (err > 0) 1745 err += nr_pages - i - 1; 1746 return err; 1747 } 1748 return store_status(status, start, node, i - start); 1749 } 1750 1751 /* 1752 * Migrate an array of page address onto an array of nodes and fill 1753 * the corresponding array of status. 1754 */ 1755 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1756 unsigned long nr_pages, 1757 const void __user * __user *pages, 1758 const int __user *nodes, 1759 int __user *status, int flags) 1760 { 1761 int current_node = NUMA_NO_NODE; 1762 LIST_HEAD(pagelist); 1763 int start, i; 1764 int err = 0, err1; 1765 1766 migrate_prep(); 1767 1768 for (i = start = 0; i < nr_pages; i++) { 1769 const void __user *p; 1770 unsigned long addr; 1771 int node; 1772 1773 err = -EFAULT; 1774 if (get_user(p, pages + i)) 1775 goto out_flush; 1776 if (get_user(node, nodes + i)) 1777 goto out_flush; 1778 addr = (unsigned long)untagged_addr(p); 1779 1780 err = -ENODEV; 1781 if (node < 0 || node >= MAX_NUMNODES) 1782 goto out_flush; 1783 if (!node_state(node, N_MEMORY)) 1784 goto out_flush; 1785 1786 err = -EACCES; 1787 if (!node_isset(node, task_nodes)) 1788 goto out_flush; 1789 1790 if (current_node == NUMA_NO_NODE) { 1791 current_node = node; 1792 start = i; 1793 } else if (node != current_node) { 1794 err = move_pages_and_store_status(mm, current_node, 1795 &pagelist, status, start, i, nr_pages); 1796 if (err) 1797 goto out; 1798 start = i; 1799 current_node = node; 1800 } 1801 1802 /* 1803 * Errors in the page lookup or isolation are not fatal and we simply 1804 * report them via status 1805 */ 1806 err = add_page_for_migration(mm, addr, current_node, 1807 &pagelist, flags & MPOL_MF_MOVE_ALL); 1808 1809 if (err > 0) { 1810 /* The page is successfully queued for migration */ 1811 continue; 1812 } 1813 1814 /* 1815 * If the page is already on the target node (!err), store the 1816 * node, otherwise, store the err. 1817 */ 1818 err = store_status(status, i, err ? : current_node, 1); 1819 if (err) 1820 goto out_flush; 1821 1822 err = move_pages_and_store_status(mm, current_node, &pagelist, 1823 status, start, i, nr_pages); 1824 if (err) 1825 goto out; 1826 current_node = NUMA_NO_NODE; 1827 } 1828 out_flush: 1829 /* Make sure we do not overwrite the existing error */ 1830 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1831 status, start, i, nr_pages); 1832 if (err >= 0) 1833 err = err1; 1834 out: 1835 return err; 1836 } 1837 1838 /* 1839 * Determine the nodes of an array of pages and store it in an array of status. 1840 */ 1841 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1842 const void __user **pages, int *status) 1843 { 1844 unsigned long i; 1845 1846 mmap_read_lock(mm); 1847 1848 for (i = 0; i < nr_pages; i++) { 1849 unsigned long addr = (unsigned long)(*pages); 1850 struct vm_area_struct *vma; 1851 struct page *page; 1852 int err = -EFAULT; 1853 1854 vma = find_vma(mm, addr); 1855 if (!vma || addr < vma->vm_start) 1856 goto set_status; 1857 1858 /* FOLL_DUMP to ignore special (like zero) pages */ 1859 page = follow_page(vma, addr, FOLL_DUMP); 1860 1861 err = PTR_ERR(page); 1862 if (IS_ERR(page)) 1863 goto set_status; 1864 1865 err = page ? page_to_nid(page) : -ENOENT; 1866 set_status: 1867 *status = err; 1868 1869 pages++; 1870 status++; 1871 } 1872 1873 mmap_read_unlock(mm); 1874 } 1875 1876 /* 1877 * Determine the nodes of a user array of pages and store it in 1878 * a user array of status. 1879 */ 1880 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1881 const void __user * __user *pages, 1882 int __user *status) 1883 { 1884 #define DO_PAGES_STAT_CHUNK_NR 16 1885 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1886 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1887 1888 while (nr_pages) { 1889 unsigned long chunk_nr; 1890 1891 chunk_nr = nr_pages; 1892 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1893 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1894 1895 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1896 break; 1897 1898 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1899 1900 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1901 break; 1902 1903 pages += chunk_nr; 1904 status += chunk_nr; 1905 nr_pages -= chunk_nr; 1906 } 1907 return nr_pages ? -EFAULT : 0; 1908 } 1909 1910 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1911 { 1912 struct task_struct *task; 1913 struct mm_struct *mm; 1914 1915 /* 1916 * There is no need to check if current process has the right to modify 1917 * the specified process when they are same. 1918 */ 1919 if (!pid) { 1920 mmget(current->mm); 1921 *mem_nodes = cpuset_mems_allowed(current); 1922 return current->mm; 1923 } 1924 1925 /* Find the mm_struct */ 1926 rcu_read_lock(); 1927 task = find_task_by_vpid(pid); 1928 if (!task) { 1929 rcu_read_unlock(); 1930 return ERR_PTR(-ESRCH); 1931 } 1932 get_task_struct(task); 1933 1934 /* 1935 * Check if this process has the right to modify the specified 1936 * process. Use the regular "ptrace_may_access()" checks. 1937 */ 1938 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1939 rcu_read_unlock(); 1940 mm = ERR_PTR(-EPERM); 1941 goto out; 1942 } 1943 rcu_read_unlock(); 1944 1945 mm = ERR_PTR(security_task_movememory(task)); 1946 if (IS_ERR(mm)) 1947 goto out; 1948 *mem_nodes = cpuset_mems_allowed(task); 1949 mm = get_task_mm(task); 1950 out: 1951 put_task_struct(task); 1952 if (!mm) 1953 mm = ERR_PTR(-EINVAL); 1954 return mm; 1955 } 1956 1957 /* 1958 * Move a list of pages in the address space of the currently executing 1959 * process. 1960 */ 1961 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1962 const void __user * __user *pages, 1963 const int __user *nodes, 1964 int __user *status, int flags) 1965 { 1966 struct mm_struct *mm; 1967 int err; 1968 nodemask_t task_nodes; 1969 1970 /* Check flags */ 1971 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1972 return -EINVAL; 1973 1974 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1975 return -EPERM; 1976 1977 mm = find_mm_struct(pid, &task_nodes); 1978 if (IS_ERR(mm)) 1979 return PTR_ERR(mm); 1980 1981 if (nodes) 1982 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1983 nodes, status, flags); 1984 else 1985 err = do_pages_stat(mm, nr_pages, pages, status); 1986 1987 mmput(mm); 1988 return err; 1989 } 1990 1991 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1992 const void __user * __user *, pages, 1993 const int __user *, nodes, 1994 int __user *, status, int, flags) 1995 { 1996 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1997 } 1998 1999 #ifdef CONFIG_COMPAT 2000 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 2001 compat_uptr_t __user *, pages32, 2002 const int __user *, nodes, 2003 int __user *, status, 2004 int, flags) 2005 { 2006 const void __user * __user *pages; 2007 int i; 2008 2009 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 2010 for (i = 0; i < nr_pages; i++) { 2011 compat_uptr_t p; 2012 2013 if (get_user(p, pages32 + i) || 2014 put_user(compat_ptr(p), pages + i)) 2015 return -EFAULT; 2016 } 2017 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2018 } 2019 #endif /* CONFIG_COMPAT */ 2020 2021 #ifdef CONFIG_NUMA_BALANCING 2022 /* 2023 * Returns true if this is a safe migration target node for misplaced NUMA 2024 * pages. Currently it only checks the watermarks which crude 2025 */ 2026 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2027 unsigned long nr_migrate_pages) 2028 { 2029 int z; 2030 2031 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2032 struct zone *zone = pgdat->node_zones + z; 2033 2034 if (!populated_zone(zone)) 2035 continue; 2036 2037 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2038 if (!zone_watermark_ok(zone, 0, 2039 high_wmark_pages(zone) + 2040 nr_migrate_pages, 2041 ZONE_MOVABLE, 0)) 2042 continue; 2043 return true; 2044 } 2045 return false; 2046 } 2047 2048 static struct page *alloc_misplaced_dst_page(struct page *page, 2049 unsigned long data) 2050 { 2051 int nid = (int) data; 2052 struct page *newpage; 2053 2054 newpage = __alloc_pages_node(nid, 2055 (GFP_HIGHUSER_MOVABLE | 2056 __GFP_THISNODE | __GFP_NOMEMALLOC | 2057 __GFP_NORETRY | __GFP_NOWARN) & 2058 ~__GFP_RECLAIM, 0); 2059 2060 return newpage; 2061 } 2062 2063 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2064 { 2065 int page_lru; 2066 2067 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2068 2069 /* Avoid migrating to a node that is nearly full */ 2070 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2071 return 0; 2072 2073 if (isolate_lru_page(page)) 2074 return 0; 2075 2076 /* 2077 * migrate_misplaced_transhuge_page() skips page migration's usual 2078 * check on page_count(), so we must do it here, now that the page 2079 * has been isolated: a GUP pin, or any other pin, prevents migration. 2080 * The expected page count is 3: 1 for page's mapcount and 1 for the 2081 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2082 */ 2083 if (PageTransHuge(page) && page_count(page) != 3) { 2084 putback_lru_page(page); 2085 return 0; 2086 } 2087 2088 page_lru = page_is_file_lru(page); 2089 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2090 thp_nr_pages(page)); 2091 2092 /* 2093 * Isolating the page has taken another reference, so the 2094 * caller's reference can be safely dropped without the page 2095 * disappearing underneath us during migration. 2096 */ 2097 put_page(page); 2098 return 1; 2099 } 2100 2101 bool pmd_trans_migrating(pmd_t pmd) 2102 { 2103 struct page *page = pmd_page(pmd); 2104 return PageLocked(page); 2105 } 2106 2107 static inline bool is_shared_exec_page(struct vm_area_struct *vma, 2108 struct page *page) 2109 { 2110 if (page_mapcount(page) != 1 && 2111 (page_is_file_lru(page) || vma_is_shmem(vma)) && 2112 (vma->vm_flags & VM_EXEC)) 2113 return true; 2114 2115 return false; 2116 } 2117 2118 /* 2119 * Attempt to migrate a misplaced page to the specified destination 2120 * node. Caller is expected to have an elevated reference count on 2121 * the page that will be dropped by this function before returning. 2122 */ 2123 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2124 int node) 2125 { 2126 pg_data_t *pgdat = NODE_DATA(node); 2127 int isolated; 2128 int nr_remaining; 2129 LIST_HEAD(migratepages); 2130 2131 /* 2132 * Don't migrate file pages that are mapped in multiple processes 2133 * with execute permissions as they are probably shared libraries. 2134 */ 2135 if (is_shared_exec_page(vma, page)) 2136 goto out; 2137 2138 /* 2139 * Also do not migrate dirty pages as not all filesystems can move 2140 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2141 */ 2142 if (page_is_file_lru(page) && PageDirty(page)) 2143 goto out; 2144 2145 isolated = numamigrate_isolate_page(pgdat, page); 2146 if (!isolated) 2147 goto out; 2148 2149 list_add(&page->lru, &migratepages); 2150 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2151 NULL, node, MIGRATE_ASYNC, 2152 MR_NUMA_MISPLACED); 2153 if (nr_remaining) { 2154 if (!list_empty(&migratepages)) { 2155 list_del(&page->lru); 2156 dec_node_page_state(page, NR_ISOLATED_ANON + 2157 page_is_file_lru(page)); 2158 putback_lru_page(page); 2159 } 2160 isolated = 0; 2161 } else 2162 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2163 BUG_ON(!list_empty(&migratepages)); 2164 return isolated; 2165 2166 out: 2167 put_page(page); 2168 return 0; 2169 } 2170 #endif /* CONFIG_NUMA_BALANCING */ 2171 2172 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2173 /* 2174 * Migrates a THP to a given target node. page must be locked and is unlocked 2175 * before returning. 2176 */ 2177 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2178 struct vm_area_struct *vma, 2179 pmd_t *pmd, pmd_t entry, 2180 unsigned long address, 2181 struct page *page, int node) 2182 { 2183 spinlock_t *ptl; 2184 pg_data_t *pgdat = NODE_DATA(node); 2185 int isolated = 0; 2186 struct page *new_page = NULL; 2187 int page_lru = page_is_file_lru(page); 2188 unsigned long start = address & HPAGE_PMD_MASK; 2189 2190 if (is_shared_exec_page(vma, page)) 2191 goto out; 2192 2193 new_page = alloc_pages_node(node, 2194 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2195 HPAGE_PMD_ORDER); 2196 if (!new_page) 2197 goto out_fail; 2198 prep_transhuge_page(new_page); 2199 2200 isolated = numamigrate_isolate_page(pgdat, page); 2201 if (!isolated) { 2202 put_page(new_page); 2203 goto out_fail; 2204 } 2205 2206 /* Prepare a page as a migration target */ 2207 __SetPageLocked(new_page); 2208 if (PageSwapBacked(page)) 2209 __SetPageSwapBacked(new_page); 2210 2211 /* anon mapping, we can simply copy page->mapping to the new page: */ 2212 new_page->mapping = page->mapping; 2213 new_page->index = page->index; 2214 /* flush the cache before copying using the kernel virtual address */ 2215 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2216 migrate_page_copy(new_page, page); 2217 WARN_ON(PageLRU(new_page)); 2218 2219 /* Recheck the target PMD */ 2220 ptl = pmd_lock(mm, pmd); 2221 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2222 spin_unlock(ptl); 2223 2224 /* Reverse changes made by migrate_page_copy() */ 2225 if (TestClearPageActive(new_page)) 2226 SetPageActive(page); 2227 if (TestClearPageUnevictable(new_page)) 2228 SetPageUnevictable(page); 2229 2230 unlock_page(new_page); 2231 put_page(new_page); /* Free it */ 2232 2233 /* Retake the callers reference and putback on LRU */ 2234 get_page(page); 2235 putback_lru_page(page); 2236 mod_node_page_state(page_pgdat(page), 2237 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2238 2239 goto out_unlock; 2240 } 2241 2242 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2244 2245 /* 2246 * Overwrite the old entry under pagetable lock and establish 2247 * the new PTE. Any parallel GUP will either observe the old 2248 * page blocking on the page lock, block on the page table 2249 * lock or observe the new page. The SetPageUptodate on the 2250 * new page and page_add_new_anon_rmap guarantee the copy is 2251 * visible before the pagetable update. 2252 */ 2253 page_add_anon_rmap(new_page, vma, start, true); 2254 /* 2255 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2256 * has already been flushed globally. So no TLB can be currently 2257 * caching this non present pmd mapping. There's no need to clear the 2258 * pmd before doing set_pmd_at(), nor to flush the TLB after 2259 * set_pmd_at(). Clearing the pmd here would introduce a race 2260 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2261 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2262 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2263 * pmd. 2264 */ 2265 set_pmd_at(mm, start, pmd, entry); 2266 update_mmu_cache_pmd(vma, address, &entry); 2267 2268 page_ref_unfreeze(page, 2); 2269 mlock_migrate_page(new_page, page); 2270 page_remove_rmap(page, true); 2271 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2272 2273 spin_unlock(ptl); 2274 2275 /* Take an "isolate" reference and put new page on the LRU. */ 2276 get_page(new_page); 2277 putback_lru_page(new_page); 2278 2279 unlock_page(new_page); 2280 unlock_page(page); 2281 put_page(page); /* Drop the rmap reference */ 2282 put_page(page); /* Drop the LRU isolation reference */ 2283 2284 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2285 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2286 2287 mod_node_page_state(page_pgdat(page), 2288 NR_ISOLATED_ANON + page_lru, 2289 -HPAGE_PMD_NR); 2290 return isolated; 2291 2292 out_fail: 2293 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2294 ptl = pmd_lock(mm, pmd); 2295 if (pmd_same(*pmd, entry)) { 2296 entry = pmd_modify(entry, vma->vm_page_prot); 2297 set_pmd_at(mm, start, pmd, entry); 2298 update_mmu_cache_pmd(vma, address, &entry); 2299 } 2300 spin_unlock(ptl); 2301 2302 out_unlock: 2303 unlock_page(page); 2304 out: 2305 put_page(page); 2306 return 0; 2307 } 2308 #endif /* CONFIG_NUMA_BALANCING */ 2309 2310 #endif /* CONFIG_NUMA */ 2311 2312 #ifdef CONFIG_DEVICE_PRIVATE 2313 static int migrate_vma_collect_hole(unsigned long start, 2314 unsigned long end, 2315 __always_unused int depth, 2316 struct mm_walk *walk) 2317 { 2318 struct migrate_vma *migrate = walk->private; 2319 unsigned long addr; 2320 2321 /* Only allow populating anonymous memory. */ 2322 if (!vma_is_anonymous(walk->vma)) { 2323 for (addr = start; addr < end; addr += PAGE_SIZE) { 2324 migrate->src[migrate->npages] = 0; 2325 migrate->dst[migrate->npages] = 0; 2326 migrate->npages++; 2327 } 2328 return 0; 2329 } 2330 2331 for (addr = start; addr < end; addr += PAGE_SIZE) { 2332 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2333 migrate->dst[migrate->npages] = 0; 2334 migrate->npages++; 2335 migrate->cpages++; 2336 } 2337 2338 return 0; 2339 } 2340 2341 static int migrate_vma_collect_skip(unsigned long start, 2342 unsigned long end, 2343 struct mm_walk *walk) 2344 { 2345 struct migrate_vma *migrate = walk->private; 2346 unsigned long addr; 2347 2348 for (addr = start; addr < end; addr += PAGE_SIZE) { 2349 migrate->dst[migrate->npages] = 0; 2350 migrate->src[migrate->npages++] = 0; 2351 } 2352 2353 return 0; 2354 } 2355 2356 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2357 unsigned long start, 2358 unsigned long end, 2359 struct mm_walk *walk) 2360 { 2361 struct migrate_vma *migrate = walk->private; 2362 struct vm_area_struct *vma = walk->vma; 2363 struct mm_struct *mm = vma->vm_mm; 2364 unsigned long addr = start, unmapped = 0; 2365 spinlock_t *ptl; 2366 pte_t *ptep; 2367 2368 again: 2369 if (pmd_none(*pmdp)) 2370 return migrate_vma_collect_hole(start, end, -1, walk); 2371 2372 if (pmd_trans_huge(*pmdp)) { 2373 struct page *page; 2374 2375 ptl = pmd_lock(mm, pmdp); 2376 if (unlikely(!pmd_trans_huge(*pmdp))) { 2377 spin_unlock(ptl); 2378 goto again; 2379 } 2380 2381 page = pmd_page(*pmdp); 2382 if (is_huge_zero_page(page)) { 2383 spin_unlock(ptl); 2384 split_huge_pmd(vma, pmdp, addr); 2385 if (pmd_trans_unstable(pmdp)) 2386 return migrate_vma_collect_skip(start, end, 2387 walk); 2388 } else { 2389 int ret; 2390 2391 get_page(page); 2392 spin_unlock(ptl); 2393 if (unlikely(!trylock_page(page))) 2394 return migrate_vma_collect_skip(start, end, 2395 walk); 2396 ret = split_huge_page(page); 2397 unlock_page(page); 2398 put_page(page); 2399 if (ret) 2400 return migrate_vma_collect_skip(start, end, 2401 walk); 2402 if (pmd_none(*pmdp)) 2403 return migrate_vma_collect_hole(start, end, -1, 2404 walk); 2405 } 2406 } 2407 2408 if (unlikely(pmd_bad(*pmdp))) 2409 return migrate_vma_collect_skip(start, end, walk); 2410 2411 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2412 arch_enter_lazy_mmu_mode(); 2413 2414 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2415 unsigned long mpfn = 0, pfn; 2416 struct page *page; 2417 swp_entry_t entry; 2418 pte_t pte; 2419 2420 pte = *ptep; 2421 2422 if (pte_none(pte)) { 2423 if (vma_is_anonymous(vma)) { 2424 mpfn = MIGRATE_PFN_MIGRATE; 2425 migrate->cpages++; 2426 } 2427 goto next; 2428 } 2429 2430 if (!pte_present(pte)) { 2431 /* 2432 * Only care about unaddressable device page special 2433 * page table entry. Other special swap entries are not 2434 * migratable, and we ignore regular swapped page. 2435 */ 2436 entry = pte_to_swp_entry(pte); 2437 if (!is_device_private_entry(entry)) 2438 goto next; 2439 2440 page = device_private_entry_to_page(entry); 2441 if (!(migrate->flags & 2442 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2443 page->pgmap->owner != migrate->pgmap_owner) 2444 goto next; 2445 2446 mpfn = migrate_pfn(page_to_pfn(page)) | 2447 MIGRATE_PFN_MIGRATE; 2448 if (is_write_device_private_entry(entry)) 2449 mpfn |= MIGRATE_PFN_WRITE; 2450 } else { 2451 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2452 goto next; 2453 pfn = pte_pfn(pte); 2454 if (is_zero_pfn(pfn)) { 2455 mpfn = MIGRATE_PFN_MIGRATE; 2456 migrate->cpages++; 2457 goto next; 2458 } 2459 page = vm_normal_page(migrate->vma, addr, pte); 2460 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2461 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2462 } 2463 2464 /* FIXME support THP */ 2465 if (!page || !page->mapping || PageTransCompound(page)) { 2466 mpfn = 0; 2467 goto next; 2468 } 2469 2470 /* 2471 * By getting a reference on the page we pin it and that blocks 2472 * any kind of migration. Side effect is that it "freezes" the 2473 * pte. 2474 * 2475 * We drop this reference after isolating the page from the lru 2476 * for non device page (device page are not on the lru and thus 2477 * can't be dropped from it). 2478 */ 2479 get_page(page); 2480 migrate->cpages++; 2481 2482 /* 2483 * Optimize for the common case where page is only mapped once 2484 * in one process. If we can lock the page, then we can safely 2485 * set up a special migration page table entry now. 2486 */ 2487 if (trylock_page(page)) { 2488 pte_t swp_pte; 2489 2490 mpfn |= MIGRATE_PFN_LOCKED; 2491 ptep_get_and_clear(mm, addr, ptep); 2492 2493 /* Setup special migration page table entry */ 2494 entry = make_migration_entry(page, mpfn & 2495 MIGRATE_PFN_WRITE); 2496 swp_pte = swp_entry_to_pte(entry); 2497 if (pte_present(pte)) { 2498 if (pte_soft_dirty(pte)) 2499 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2500 if (pte_uffd_wp(pte)) 2501 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2502 } else { 2503 if (pte_swp_soft_dirty(pte)) 2504 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2505 if (pte_swp_uffd_wp(pte)) 2506 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2507 } 2508 set_pte_at(mm, addr, ptep, swp_pte); 2509 2510 /* 2511 * This is like regular unmap: we remove the rmap and 2512 * drop page refcount. Page won't be freed, as we took 2513 * a reference just above. 2514 */ 2515 page_remove_rmap(page, false); 2516 put_page(page); 2517 2518 if (pte_present(pte)) 2519 unmapped++; 2520 } 2521 2522 next: 2523 migrate->dst[migrate->npages] = 0; 2524 migrate->src[migrate->npages++] = mpfn; 2525 } 2526 arch_leave_lazy_mmu_mode(); 2527 pte_unmap_unlock(ptep - 1, ptl); 2528 2529 /* Only flush the TLB if we actually modified any entries */ 2530 if (unmapped) 2531 flush_tlb_range(walk->vma, start, end); 2532 2533 return 0; 2534 } 2535 2536 static const struct mm_walk_ops migrate_vma_walk_ops = { 2537 .pmd_entry = migrate_vma_collect_pmd, 2538 .pte_hole = migrate_vma_collect_hole, 2539 }; 2540 2541 /* 2542 * migrate_vma_collect() - collect pages over a range of virtual addresses 2543 * @migrate: migrate struct containing all migration information 2544 * 2545 * This will walk the CPU page table. For each virtual address backed by a 2546 * valid page, it updates the src array and takes a reference on the page, in 2547 * order to pin the page until we lock it and unmap it. 2548 */ 2549 static void migrate_vma_collect(struct migrate_vma *migrate) 2550 { 2551 struct mmu_notifier_range range; 2552 2553 /* 2554 * Note that the pgmap_owner is passed to the mmu notifier callback so 2555 * that the registered device driver can skip invalidating device 2556 * private page mappings that won't be migrated. 2557 */ 2558 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2559 migrate->vma->vm_mm, migrate->start, migrate->end, 2560 migrate->pgmap_owner); 2561 mmu_notifier_invalidate_range_start(&range); 2562 2563 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2564 &migrate_vma_walk_ops, migrate); 2565 2566 mmu_notifier_invalidate_range_end(&range); 2567 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2568 } 2569 2570 /* 2571 * migrate_vma_check_page() - check if page is pinned or not 2572 * @page: struct page to check 2573 * 2574 * Pinned pages cannot be migrated. This is the same test as in 2575 * migrate_page_move_mapping(), except that here we allow migration of a 2576 * ZONE_DEVICE page. 2577 */ 2578 static bool migrate_vma_check_page(struct page *page) 2579 { 2580 /* 2581 * One extra ref because caller holds an extra reference, either from 2582 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2583 * a device page. 2584 */ 2585 int extra = 1; 2586 2587 /* 2588 * FIXME support THP (transparent huge page), it is bit more complex to 2589 * check them than regular pages, because they can be mapped with a pmd 2590 * or with a pte (split pte mapping). 2591 */ 2592 if (PageCompound(page)) 2593 return false; 2594 2595 /* Page from ZONE_DEVICE have one extra reference */ 2596 if (is_zone_device_page(page)) { 2597 /* 2598 * Private page can never be pin as they have no valid pte and 2599 * GUP will fail for those. Yet if there is a pending migration 2600 * a thread might try to wait on the pte migration entry and 2601 * will bump the page reference count. Sadly there is no way to 2602 * differentiate a regular pin from migration wait. Hence to 2603 * avoid 2 racing thread trying to migrate back to CPU to enter 2604 * infinite loop (one stopping migration because the other is 2605 * waiting on pte migration entry). We always return true here. 2606 * 2607 * FIXME proper solution is to rework migration_entry_wait() so 2608 * it does not need to take a reference on page. 2609 */ 2610 return is_device_private_page(page); 2611 } 2612 2613 /* For file back page */ 2614 if (page_mapping(page)) 2615 extra += 1 + page_has_private(page); 2616 2617 if ((page_count(page) - extra) > page_mapcount(page)) 2618 return false; 2619 2620 return true; 2621 } 2622 2623 /* 2624 * migrate_vma_prepare() - lock pages and isolate them from the lru 2625 * @migrate: migrate struct containing all migration information 2626 * 2627 * This locks pages that have been collected by migrate_vma_collect(). Once each 2628 * page is locked it is isolated from the lru (for non-device pages). Finally, 2629 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2630 * migrated by concurrent kernel threads. 2631 */ 2632 static void migrate_vma_prepare(struct migrate_vma *migrate) 2633 { 2634 const unsigned long npages = migrate->npages; 2635 const unsigned long start = migrate->start; 2636 unsigned long addr, i, restore = 0; 2637 bool allow_drain = true; 2638 2639 lru_add_drain(); 2640 2641 for (i = 0; (i < npages) && migrate->cpages; i++) { 2642 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2643 bool remap = true; 2644 2645 if (!page) 2646 continue; 2647 2648 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2649 /* 2650 * Because we are migrating several pages there can be 2651 * a deadlock between 2 concurrent migration where each 2652 * are waiting on each other page lock. 2653 * 2654 * Make migrate_vma() a best effort thing and backoff 2655 * for any page we can not lock right away. 2656 */ 2657 if (!trylock_page(page)) { 2658 migrate->src[i] = 0; 2659 migrate->cpages--; 2660 put_page(page); 2661 continue; 2662 } 2663 remap = false; 2664 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2665 } 2666 2667 /* ZONE_DEVICE pages are not on LRU */ 2668 if (!is_zone_device_page(page)) { 2669 if (!PageLRU(page) && allow_drain) { 2670 /* Drain CPU's pagevec */ 2671 lru_add_drain_all(); 2672 allow_drain = false; 2673 } 2674 2675 if (isolate_lru_page(page)) { 2676 if (remap) { 2677 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2678 migrate->cpages--; 2679 restore++; 2680 } else { 2681 migrate->src[i] = 0; 2682 unlock_page(page); 2683 migrate->cpages--; 2684 put_page(page); 2685 } 2686 continue; 2687 } 2688 2689 /* Drop the reference we took in collect */ 2690 put_page(page); 2691 } 2692 2693 if (!migrate_vma_check_page(page)) { 2694 if (remap) { 2695 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2696 migrate->cpages--; 2697 restore++; 2698 2699 if (!is_zone_device_page(page)) { 2700 get_page(page); 2701 putback_lru_page(page); 2702 } 2703 } else { 2704 migrate->src[i] = 0; 2705 unlock_page(page); 2706 migrate->cpages--; 2707 2708 if (!is_zone_device_page(page)) 2709 putback_lru_page(page); 2710 else 2711 put_page(page); 2712 } 2713 } 2714 } 2715 2716 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2717 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2718 2719 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2720 continue; 2721 2722 remove_migration_pte(page, migrate->vma, addr, page); 2723 2724 migrate->src[i] = 0; 2725 unlock_page(page); 2726 put_page(page); 2727 restore--; 2728 } 2729 } 2730 2731 /* 2732 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2733 * @migrate: migrate struct containing all migration information 2734 * 2735 * Replace page mapping (CPU page table pte) with a special migration pte entry 2736 * and check again if it has been pinned. Pinned pages are restored because we 2737 * cannot migrate them. 2738 * 2739 * This is the last step before we call the device driver callback to allocate 2740 * destination memory and copy contents of original page over to new page. 2741 */ 2742 static void migrate_vma_unmap(struct migrate_vma *migrate) 2743 { 2744 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK; 2745 const unsigned long npages = migrate->npages; 2746 const unsigned long start = migrate->start; 2747 unsigned long addr, i, restore = 0; 2748 2749 for (i = 0; i < npages; i++) { 2750 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2751 2752 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2753 continue; 2754 2755 if (page_mapped(page)) { 2756 try_to_unmap(page, flags); 2757 if (page_mapped(page)) 2758 goto restore; 2759 } 2760 2761 if (migrate_vma_check_page(page)) 2762 continue; 2763 2764 restore: 2765 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2766 migrate->cpages--; 2767 restore++; 2768 } 2769 2770 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2771 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2772 2773 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2774 continue; 2775 2776 remove_migration_ptes(page, page, false); 2777 2778 migrate->src[i] = 0; 2779 unlock_page(page); 2780 restore--; 2781 2782 if (is_zone_device_page(page)) 2783 put_page(page); 2784 else 2785 putback_lru_page(page); 2786 } 2787 } 2788 2789 /** 2790 * migrate_vma_setup() - prepare to migrate a range of memory 2791 * @args: contains the vma, start, and pfns arrays for the migration 2792 * 2793 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2794 * without an error. 2795 * 2796 * Prepare to migrate a range of memory virtual address range by collecting all 2797 * the pages backing each virtual address in the range, saving them inside the 2798 * src array. Then lock those pages and unmap them. Once the pages are locked 2799 * and unmapped, check whether each page is pinned or not. Pages that aren't 2800 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2801 * corresponding src array entry. Then restores any pages that are pinned, by 2802 * remapping and unlocking those pages. 2803 * 2804 * The caller should then allocate destination memory and copy source memory to 2805 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2806 * flag set). Once these are allocated and copied, the caller must update each 2807 * corresponding entry in the dst array with the pfn value of the destination 2808 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2809 * (destination pages must have their struct pages locked, via lock_page()). 2810 * 2811 * Note that the caller does not have to migrate all the pages that are marked 2812 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2813 * device memory to system memory. If the caller cannot migrate a device page 2814 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2815 * consequences for the userspace process, so it must be avoided if at all 2816 * possible. 2817 * 2818 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2819 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2820 * allowing the caller to allocate device memory for those unback virtual 2821 * address. For this the caller simply has to allocate device memory and 2822 * properly set the destination entry like for regular migration. Note that 2823 * this can still fails and thus inside the device driver must check if the 2824 * migration was successful for those entries after calling migrate_vma_pages() 2825 * just like for regular migration. 2826 * 2827 * After that, the callers must call migrate_vma_pages() to go over each entry 2828 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2829 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2830 * then migrate_vma_pages() to migrate struct page information from the source 2831 * struct page to the destination struct page. If it fails to migrate the 2832 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2833 * src array. 2834 * 2835 * At this point all successfully migrated pages have an entry in the src 2836 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2837 * array entry with MIGRATE_PFN_VALID flag set. 2838 * 2839 * Once migrate_vma_pages() returns the caller may inspect which pages were 2840 * successfully migrated, and which were not. Successfully migrated pages will 2841 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2842 * 2843 * It is safe to update device page table after migrate_vma_pages() because 2844 * both destination and source page are still locked, and the mmap_lock is held 2845 * in read mode (hence no one can unmap the range being migrated). 2846 * 2847 * Once the caller is done cleaning up things and updating its page table (if it 2848 * chose to do so, this is not an obligation) it finally calls 2849 * migrate_vma_finalize() to update the CPU page table to point to new pages 2850 * for successfully migrated pages or otherwise restore the CPU page table to 2851 * point to the original source pages. 2852 */ 2853 int migrate_vma_setup(struct migrate_vma *args) 2854 { 2855 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2856 2857 args->start &= PAGE_MASK; 2858 args->end &= PAGE_MASK; 2859 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2860 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2861 return -EINVAL; 2862 if (nr_pages <= 0) 2863 return -EINVAL; 2864 if (args->start < args->vma->vm_start || 2865 args->start >= args->vma->vm_end) 2866 return -EINVAL; 2867 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2868 return -EINVAL; 2869 if (!args->src || !args->dst) 2870 return -EINVAL; 2871 2872 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2873 args->cpages = 0; 2874 args->npages = 0; 2875 2876 migrate_vma_collect(args); 2877 2878 if (args->cpages) 2879 migrate_vma_prepare(args); 2880 if (args->cpages) 2881 migrate_vma_unmap(args); 2882 2883 /* 2884 * At this point pages are locked and unmapped, and thus they have 2885 * stable content and can safely be copied to destination memory that 2886 * is allocated by the drivers. 2887 */ 2888 return 0; 2889 2890 } 2891 EXPORT_SYMBOL(migrate_vma_setup); 2892 2893 /* 2894 * This code closely matches the code in: 2895 * __handle_mm_fault() 2896 * handle_pte_fault() 2897 * do_anonymous_page() 2898 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2899 * private page. 2900 */ 2901 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2902 unsigned long addr, 2903 struct page *page, 2904 unsigned long *src) 2905 { 2906 struct vm_area_struct *vma = migrate->vma; 2907 struct mm_struct *mm = vma->vm_mm; 2908 bool flush = false; 2909 spinlock_t *ptl; 2910 pte_t entry; 2911 pgd_t *pgdp; 2912 p4d_t *p4dp; 2913 pud_t *pudp; 2914 pmd_t *pmdp; 2915 pte_t *ptep; 2916 2917 /* Only allow populating anonymous memory */ 2918 if (!vma_is_anonymous(vma)) 2919 goto abort; 2920 2921 pgdp = pgd_offset(mm, addr); 2922 p4dp = p4d_alloc(mm, pgdp, addr); 2923 if (!p4dp) 2924 goto abort; 2925 pudp = pud_alloc(mm, p4dp, addr); 2926 if (!pudp) 2927 goto abort; 2928 pmdp = pmd_alloc(mm, pudp, addr); 2929 if (!pmdp) 2930 goto abort; 2931 2932 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2933 goto abort; 2934 2935 /* 2936 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2937 * pte_offset_map() on pmds where a huge pmd might be created 2938 * from a different thread. 2939 * 2940 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2941 * parallel threads are excluded by other means. 2942 * 2943 * Here we only have mmap_read_lock(mm). 2944 */ 2945 if (pte_alloc(mm, pmdp)) 2946 goto abort; 2947 2948 /* See the comment in pte_alloc_one_map() */ 2949 if (unlikely(pmd_trans_unstable(pmdp))) 2950 goto abort; 2951 2952 if (unlikely(anon_vma_prepare(vma))) 2953 goto abort; 2954 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2955 goto abort; 2956 2957 /* 2958 * The memory barrier inside __SetPageUptodate makes sure that 2959 * preceding stores to the page contents become visible before 2960 * the set_pte_at() write. 2961 */ 2962 __SetPageUptodate(page); 2963 2964 if (is_zone_device_page(page)) { 2965 if (is_device_private_page(page)) { 2966 swp_entry_t swp_entry; 2967 2968 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2969 entry = swp_entry_to_pte(swp_entry); 2970 } 2971 } else { 2972 entry = mk_pte(page, vma->vm_page_prot); 2973 if (vma->vm_flags & VM_WRITE) 2974 entry = pte_mkwrite(pte_mkdirty(entry)); 2975 } 2976 2977 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2978 2979 if (check_stable_address_space(mm)) 2980 goto unlock_abort; 2981 2982 if (pte_present(*ptep)) { 2983 unsigned long pfn = pte_pfn(*ptep); 2984 2985 if (!is_zero_pfn(pfn)) 2986 goto unlock_abort; 2987 flush = true; 2988 } else if (!pte_none(*ptep)) 2989 goto unlock_abort; 2990 2991 /* 2992 * Check for userfaultfd but do not deliver the fault. Instead, 2993 * just back off. 2994 */ 2995 if (userfaultfd_missing(vma)) 2996 goto unlock_abort; 2997 2998 inc_mm_counter(mm, MM_ANONPAGES); 2999 page_add_new_anon_rmap(page, vma, addr, false); 3000 if (!is_zone_device_page(page)) 3001 lru_cache_add_inactive_or_unevictable(page, vma); 3002 get_page(page); 3003 3004 if (flush) { 3005 flush_cache_page(vma, addr, pte_pfn(*ptep)); 3006 ptep_clear_flush_notify(vma, addr, ptep); 3007 set_pte_at_notify(mm, addr, ptep, entry); 3008 update_mmu_cache(vma, addr, ptep); 3009 } else { 3010 /* No need to invalidate - it was non-present before */ 3011 set_pte_at(mm, addr, ptep, entry); 3012 update_mmu_cache(vma, addr, ptep); 3013 } 3014 3015 pte_unmap_unlock(ptep, ptl); 3016 *src = MIGRATE_PFN_MIGRATE; 3017 return; 3018 3019 unlock_abort: 3020 pte_unmap_unlock(ptep, ptl); 3021 abort: 3022 *src &= ~MIGRATE_PFN_MIGRATE; 3023 } 3024 3025 /** 3026 * migrate_vma_pages() - migrate meta-data from src page to dst page 3027 * @migrate: migrate struct containing all migration information 3028 * 3029 * This migrates struct page meta-data from source struct page to destination 3030 * struct page. This effectively finishes the migration from source page to the 3031 * destination page. 3032 */ 3033 void migrate_vma_pages(struct migrate_vma *migrate) 3034 { 3035 const unsigned long npages = migrate->npages; 3036 const unsigned long start = migrate->start; 3037 struct mmu_notifier_range range; 3038 unsigned long addr, i; 3039 bool notified = false; 3040 3041 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 3042 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3043 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3044 struct address_space *mapping; 3045 int r; 3046 3047 if (!newpage) { 3048 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3049 continue; 3050 } 3051 3052 if (!page) { 3053 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3054 continue; 3055 if (!notified) { 3056 notified = true; 3057 3058 mmu_notifier_range_init_migrate(&range, 0, 3059 migrate->vma, migrate->vma->vm_mm, 3060 addr, migrate->end, 3061 migrate->pgmap_owner); 3062 mmu_notifier_invalidate_range_start(&range); 3063 } 3064 migrate_vma_insert_page(migrate, addr, newpage, 3065 &migrate->src[i]); 3066 continue; 3067 } 3068 3069 mapping = page_mapping(page); 3070 3071 if (is_zone_device_page(newpage)) { 3072 if (is_device_private_page(newpage)) { 3073 /* 3074 * For now only support private anonymous when 3075 * migrating to un-addressable device memory. 3076 */ 3077 if (mapping) { 3078 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3079 continue; 3080 } 3081 } else { 3082 /* 3083 * Other types of ZONE_DEVICE page are not 3084 * supported. 3085 */ 3086 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3087 continue; 3088 } 3089 } 3090 3091 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3092 if (r != MIGRATEPAGE_SUCCESS) 3093 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3094 } 3095 3096 /* 3097 * No need to double call mmu_notifier->invalidate_range() callback as 3098 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3099 * did already call it. 3100 */ 3101 if (notified) 3102 mmu_notifier_invalidate_range_only_end(&range); 3103 } 3104 EXPORT_SYMBOL(migrate_vma_pages); 3105 3106 /** 3107 * migrate_vma_finalize() - restore CPU page table entry 3108 * @migrate: migrate struct containing all migration information 3109 * 3110 * This replaces the special migration pte entry with either a mapping to the 3111 * new page if migration was successful for that page, or to the original page 3112 * otherwise. 3113 * 3114 * This also unlocks the pages and puts them back on the lru, or drops the extra 3115 * refcount, for device pages. 3116 */ 3117 void migrate_vma_finalize(struct migrate_vma *migrate) 3118 { 3119 const unsigned long npages = migrate->npages; 3120 unsigned long i; 3121 3122 for (i = 0; i < npages; i++) { 3123 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3124 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3125 3126 if (!page) { 3127 if (newpage) { 3128 unlock_page(newpage); 3129 put_page(newpage); 3130 } 3131 continue; 3132 } 3133 3134 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3135 if (newpage) { 3136 unlock_page(newpage); 3137 put_page(newpage); 3138 } 3139 newpage = page; 3140 } 3141 3142 remove_migration_ptes(page, newpage, false); 3143 unlock_page(page); 3144 3145 if (is_zone_device_page(page)) 3146 put_page(page); 3147 else 3148 putback_lru_page(page); 3149 3150 if (newpage != page) { 3151 unlock_page(newpage); 3152 if (is_zone_device_page(newpage)) 3153 put_page(newpage); 3154 else 3155 putback_lru_page(newpage); 3156 } 3157 } 3158 } 3159 EXPORT_SYMBOL(migrate_vma_finalize); 3160 #endif /* CONFIG_DEVICE_PRIVATE */ 3161