1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct address_space *mapping; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mapping = page_mapping(page); 101 VM_BUG_ON_PAGE(!mapping, page); 102 103 if (!mapping->a_ops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 struct address_space *mapping; 124 125 mapping = page_mapping(page); 126 mapping->a_ops->putback_page(page); 127 ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_huge_page(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct folio *folio, 175 struct vm_area_struct *vma, unsigned long addr, void *old) 176 { 177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 178 179 while (page_vma_mapped_walk(&pvmw)) { 180 rmap_t rmap_flags = RMAP_NONE; 181 pte_t pte; 182 swp_entry_t entry; 183 struct page *new; 184 unsigned long idx = 0; 185 186 /* pgoff is invalid for ksm pages, but they are never large */ 187 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 188 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 189 new = folio_page(folio, idx); 190 191 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 192 /* PMD-mapped THP migration entry */ 193 if (!pvmw.pte) { 194 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 195 !folio_test_pmd_mappable(folio), folio); 196 remove_migration_pmd(&pvmw, new); 197 continue; 198 } 199 #endif 200 201 folio_get(folio); 202 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 203 if (pte_swp_soft_dirty(*pvmw.pte)) 204 pte = pte_mksoft_dirty(pte); 205 206 /* 207 * Recheck VMA as permissions can change since migration started 208 */ 209 entry = pte_to_swp_entry(*pvmw.pte); 210 if (is_writable_migration_entry(entry)) 211 pte = maybe_mkwrite(pte, vma); 212 else if (pte_swp_uffd_wp(*pvmw.pte)) 213 pte = pte_mkuffd_wp(pte); 214 215 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 216 rmap_flags |= RMAP_EXCLUSIVE; 217 218 if (unlikely(is_device_private_page(new))) { 219 if (pte_write(pte)) 220 entry = make_writable_device_private_entry( 221 page_to_pfn(new)); 222 else 223 entry = make_readable_device_private_entry( 224 page_to_pfn(new)); 225 pte = swp_entry_to_pte(entry); 226 if (pte_swp_soft_dirty(*pvmw.pte)) 227 pte = pte_swp_mksoft_dirty(pte); 228 if (pte_swp_uffd_wp(*pvmw.pte)) 229 pte = pte_swp_mkuffd_wp(pte); 230 } 231 232 #ifdef CONFIG_HUGETLB_PAGE 233 if (folio_test_hugetlb(folio)) { 234 unsigned int shift = huge_page_shift(hstate_vma(vma)); 235 236 pte = pte_mkhuge(pte); 237 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 238 if (folio_test_anon(folio)) 239 hugepage_add_anon_rmap(new, vma, pvmw.address, 240 rmap_flags); 241 else 242 page_dup_file_rmap(new, true); 243 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 244 } else 245 #endif 246 { 247 if (folio_test_anon(folio)) 248 page_add_anon_rmap(new, vma, pvmw.address, 249 rmap_flags); 250 else 251 page_add_file_rmap(new, vma, false); 252 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 253 } 254 if (vma->vm_flags & VM_LOCKED) 255 mlock_page_drain_local(); 256 257 trace_remove_migration_pte(pvmw.address, pte_val(pte), 258 compound_order(new)); 259 260 /* No need to invalidate - it was non-present before */ 261 update_mmu_cache(vma, pvmw.address, pvmw.pte); 262 } 263 264 return true; 265 } 266 267 /* 268 * Get rid of all migration entries and replace them by 269 * references to the indicated page. 270 */ 271 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 272 { 273 struct rmap_walk_control rwc = { 274 .rmap_one = remove_migration_pte, 275 .arg = src, 276 }; 277 278 if (locked) 279 rmap_walk_locked(dst, &rwc); 280 else 281 rmap_walk(dst, &rwc); 282 } 283 284 /* 285 * Something used the pte of a page under migration. We need to 286 * get to the page and wait until migration is finished. 287 * When we return from this function the fault will be retried. 288 */ 289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 290 spinlock_t *ptl) 291 { 292 pte_t pte; 293 swp_entry_t entry; 294 295 spin_lock(ptl); 296 pte = *ptep; 297 if (!is_swap_pte(pte)) 298 goto out; 299 300 entry = pte_to_swp_entry(pte); 301 if (!is_migration_entry(entry)) 302 goto out; 303 304 migration_entry_wait_on_locked(entry, ptep, ptl); 305 return; 306 out: 307 pte_unmap_unlock(ptep, ptl); 308 } 309 310 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 311 unsigned long address) 312 { 313 spinlock_t *ptl = pte_lockptr(mm, pmd); 314 pte_t *ptep = pte_offset_map(pmd, address); 315 __migration_entry_wait(mm, ptep, ptl); 316 } 317 318 void migration_entry_wait_huge(struct vm_area_struct *vma, 319 struct mm_struct *mm, pte_t *pte) 320 { 321 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 322 __migration_entry_wait(mm, pte, ptl); 323 } 324 325 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 326 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 327 { 328 spinlock_t *ptl; 329 330 ptl = pmd_lock(mm, pmd); 331 if (!is_pmd_migration_entry(*pmd)) 332 goto unlock; 333 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 334 return; 335 unlock: 336 spin_unlock(ptl); 337 } 338 #endif 339 340 static int expected_page_refs(struct address_space *mapping, struct page *page) 341 { 342 int expected_count = 1; 343 344 if (mapping) 345 expected_count += compound_nr(page) + page_has_private(page); 346 return expected_count; 347 } 348 349 /* 350 * Replace the page in the mapping. 351 * 352 * The number of remaining references must be: 353 * 1 for anonymous pages without a mapping 354 * 2 for pages with a mapping 355 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 356 */ 357 int folio_migrate_mapping(struct address_space *mapping, 358 struct folio *newfolio, struct folio *folio, int extra_count) 359 { 360 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 361 struct zone *oldzone, *newzone; 362 int dirty; 363 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; 364 long nr = folio_nr_pages(folio); 365 366 if (!mapping) { 367 /* Anonymous page without mapping */ 368 if (folio_ref_count(folio) != expected_count) 369 return -EAGAIN; 370 371 /* No turning back from here */ 372 newfolio->index = folio->index; 373 newfolio->mapping = folio->mapping; 374 if (folio_test_swapbacked(folio)) 375 __folio_set_swapbacked(newfolio); 376 377 return MIGRATEPAGE_SUCCESS; 378 } 379 380 oldzone = folio_zone(folio); 381 newzone = folio_zone(newfolio); 382 383 xas_lock_irq(&xas); 384 if (!folio_ref_freeze(folio, expected_count)) { 385 xas_unlock_irq(&xas); 386 return -EAGAIN; 387 } 388 389 /* 390 * Now we know that no one else is looking at the folio: 391 * no turning back from here. 392 */ 393 newfolio->index = folio->index; 394 newfolio->mapping = folio->mapping; 395 folio_ref_add(newfolio, nr); /* add cache reference */ 396 if (folio_test_swapbacked(folio)) { 397 __folio_set_swapbacked(newfolio); 398 if (folio_test_swapcache(folio)) { 399 folio_set_swapcache(newfolio); 400 newfolio->private = folio_get_private(folio); 401 } 402 } else { 403 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 404 } 405 406 /* Move dirty while page refs frozen and newpage not yet exposed */ 407 dirty = folio_test_dirty(folio); 408 if (dirty) { 409 folio_clear_dirty(folio); 410 folio_set_dirty(newfolio); 411 } 412 413 xas_store(&xas, newfolio); 414 415 /* 416 * Drop cache reference from old page by unfreezing 417 * to one less reference. 418 * We know this isn't the last reference. 419 */ 420 folio_ref_unfreeze(folio, expected_count - nr); 421 422 xas_unlock(&xas); 423 /* Leave irq disabled to prevent preemption while updating stats */ 424 425 /* 426 * If moved to a different zone then also account 427 * the page for that zone. Other VM counters will be 428 * taken care of when we establish references to the 429 * new page and drop references to the old page. 430 * 431 * Note that anonymous pages are accounted for 432 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 433 * are mapped to swap space. 434 */ 435 if (newzone != oldzone) { 436 struct lruvec *old_lruvec, *new_lruvec; 437 struct mem_cgroup *memcg; 438 439 memcg = folio_memcg(folio); 440 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 441 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 442 443 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 444 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 445 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 446 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 447 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 448 } 449 #ifdef CONFIG_SWAP 450 if (folio_test_swapcache(folio)) { 451 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 452 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 453 } 454 #endif 455 if (dirty && mapping_can_writeback(mapping)) { 456 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 457 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 458 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 459 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 460 } 461 } 462 local_irq_enable(); 463 464 return MIGRATEPAGE_SUCCESS; 465 } 466 EXPORT_SYMBOL(folio_migrate_mapping); 467 468 /* 469 * The expected number of remaining references is the same as that 470 * of folio_migrate_mapping(). 471 */ 472 int migrate_huge_page_move_mapping(struct address_space *mapping, 473 struct page *newpage, struct page *page) 474 { 475 XA_STATE(xas, &mapping->i_pages, page_index(page)); 476 int expected_count; 477 478 xas_lock_irq(&xas); 479 expected_count = 2 + page_has_private(page); 480 if (!page_ref_freeze(page, expected_count)) { 481 xas_unlock_irq(&xas); 482 return -EAGAIN; 483 } 484 485 newpage->index = page->index; 486 newpage->mapping = page->mapping; 487 488 get_page(newpage); 489 490 xas_store(&xas, newpage); 491 492 page_ref_unfreeze(page, expected_count - 1); 493 494 xas_unlock_irq(&xas); 495 496 return MIGRATEPAGE_SUCCESS; 497 } 498 499 /* 500 * Copy the flags and some other ancillary information 501 */ 502 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 503 { 504 int cpupid; 505 506 if (folio_test_error(folio)) 507 folio_set_error(newfolio); 508 if (folio_test_referenced(folio)) 509 folio_set_referenced(newfolio); 510 if (folio_test_uptodate(folio)) 511 folio_mark_uptodate(newfolio); 512 if (folio_test_clear_active(folio)) { 513 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 514 folio_set_active(newfolio); 515 } else if (folio_test_clear_unevictable(folio)) 516 folio_set_unevictable(newfolio); 517 if (folio_test_workingset(folio)) 518 folio_set_workingset(newfolio); 519 if (folio_test_checked(folio)) 520 folio_set_checked(newfolio); 521 /* 522 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 523 * migration entries. We can still have PG_anon_exclusive set on an 524 * effectively unmapped and unreferenced first sub-pages of an 525 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 526 */ 527 if (folio_test_mappedtodisk(folio)) 528 folio_set_mappedtodisk(newfolio); 529 530 /* Move dirty on pages not done by folio_migrate_mapping() */ 531 if (folio_test_dirty(folio)) 532 folio_set_dirty(newfolio); 533 534 if (folio_test_young(folio)) 535 folio_set_young(newfolio); 536 if (folio_test_idle(folio)) 537 folio_set_idle(newfolio); 538 539 /* 540 * Copy NUMA information to the new page, to prevent over-eager 541 * future migrations of this same page. 542 */ 543 cpupid = page_cpupid_xchg_last(&folio->page, -1); 544 page_cpupid_xchg_last(&newfolio->page, cpupid); 545 546 folio_migrate_ksm(newfolio, folio); 547 /* 548 * Please do not reorder this without considering how mm/ksm.c's 549 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 550 */ 551 if (folio_test_swapcache(folio)) 552 folio_clear_swapcache(folio); 553 folio_clear_private(folio); 554 555 /* page->private contains hugetlb specific flags */ 556 if (!folio_test_hugetlb(folio)) 557 folio->private = NULL; 558 559 /* 560 * If any waiters have accumulated on the new page then 561 * wake them up. 562 */ 563 if (folio_test_writeback(newfolio)) 564 folio_end_writeback(newfolio); 565 566 /* 567 * PG_readahead shares the same bit with PG_reclaim. The above 568 * end_page_writeback() may clear PG_readahead mistakenly, so set the 569 * bit after that. 570 */ 571 if (folio_test_readahead(folio)) 572 folio_set_readahead(newfolio); 573 574 folio_copy_owner(newfolio, folio); 575 576 if (!folio_test_hugetlb(folio)) 577 mem_cgroup_migrate(folio, newfolio); 578 } 579 EXPORT_SYMBOL(folio_migrate_flags); 580 581 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 582 { 583 folio_copy(newfolio, folio); 584 folio_migrate_flags(newfolio, folio); 585 } 586 EXPORT_SYMBOL(folio_migrate_copy); 587 588 /************************************************************ 589 * Migration functions 590 ***********************************************************/ 591 592 /* 593 * Common logic to directly migrate a single LRU page suitable for 594 * pages that do not use PagePrivate/PagePrivate2. 595 * 596 * Pages are locked upon entry and exit. 597 */ 598 int migrate_page(struct address_space *mapping, 599 struct page *newpage, struct page *page, 600 enum migrate_mode mode) 601 { 602 struct folio *newfolio = page_folio(newpage); 603 struct folio *folio = page_folio(page); 604 int rc; 605 606 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ 607 608 rc = folio_migrate_mapping(mapping, newfolio, folio, 0); 609 610 if (rc != MIGRATEPAGE_SUCCESS) 611 return rc; 612 613 if (mode != MIGRATE_SYNC_NO_COPY) 614 folio_migrate_copy(newfolio, folio); 615 else 616 folio_migrate_flags(newfolio, folio); 617 return MIGRATEPAGE_SUCCESS; 618 } 619 EXPORT_SYMBOL(migrate_page); 620 621 #ifdef CONFIG_BLOCK 622 /* Returns true if all buffers are successfully locked */ 623 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 624 enum migrate_mode mode) 625 { 626 struct buffer_head *bh = head; 627 628 /* Simple case, sync compaction */ 629 if (mode != MIGRATE_ASYNC) { 630 do { 631 lock_buffer(bh); 632 bh = bh->b_this_page; 633 634 } while (bh != head); 635 636 return true; 637 } 638 639 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 640 do { 641 if (!trylock_buffer(bh)) { 642 /* 643 * We failed to lock the buffer and cannot stall in 644 * async migration. Release the taken locks 645 */ 646 struct buffer_head *failed_bh = bh; 647 bh = head; 648 while (bh != failed_bh) { 649 unlock_buffer(bh); 650 bh = bh->b_this_page; 651 } 652 return false; 653 } 654 655 bh = bh->b_this_page; 656 } while (bh != head); 657 return true; 658 } 659 660 static int __buffer_migrate_page(struct address_space *mapping, 661 struct page *newpage, struct page *page, enum migrate_mode mode, 662 bool check_refs) 663 { 664 struct buffer_head *bh, *head; 665 int rc; 666 int expected_count; 667 668 if (!page_has_buffers(page)) 669 return migrate_page(mapping, newpage, page, mode); 670 671 /* Check whether page does not have extra refs before we do more work */ 672 expected_count = expected_page_refs(mapping, page); 673 if (page_count(page) != expected_count) 674 return -EAGAIN; 675 676 head = page_buffers(page); 677 if (!buffer_migrate_lock_buffers(head, mode)) 678 return -EAGAIN; 679 680 if (check_refs) { 681 bool busy; 682 bool invalidated = false; 683 684 recheck_buffers: 685 busy = false; 686 spin_lock(&mapping->private_lock); 687 bh = head; 688 do { 689 if (atomic_read(&bh->b_count)) { 690 busy = true; 691 break; 692 } 693 bh = bh->b_this_page; 694 } while (bh != head); 695 if (busy) { 696 if (invalidated) { 697 rc = -EAGAIN; 698 goto unlock_buffers; 699 } 700 spin_unlock(&mapping->private_lock); 701 invalidate_bh_lrus(); 702 invalidated = true; 703 goto recheck_buffers; 704 } 705 } 706 707 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 708 if (rc != MIGRATEPAGE_SUCCESS) 709 goto unlock_buffers; 710 711 attach_page_private(newpage, detach_page_private(page)); 712 713 bh = head; 714 do { 715 set_bh_page(bh, newpage, bh_offset(bh)); 716 bh = bh->b_this_page; 717 718 } while (bh != head); 719 720 if (mode != MIGRATE_SYNC_NO_COPY) 721 migrate_page_copy(newpage, page); 722 else 723 migrate_page_states(newpage, page); 724 725 rc = MIGRATEPAGE_SUCCESS; 726 unlock_buffers: 727 if (check_refs) 728 spin_unlock(&mapping->private_lock); 729 bh = head; 730 do { 731 unlock_buffer(bh); 732 bh = bh->b_this_page; 733 734 } while (bh != head); 735 736 return rc; 737 } 738 739 /* 740 * Migration function for pages with buffers. This function can only be used 741 * if the underlying filesystem guarantees that no other references to "page" 742 * exist. For example attached buffer heads are accessed only under page lock. 743 */ 744 int buffer_migrate_page(struct address_space *mapping, 745 struct page *newpage, struct page *page, enum migrate_mode mode) 746 { 747 return __buffer_migrate_page(mapping, newpage, page, mode, false); 748 } 749 EXPORT_SYMBOL(buffer_migrate_page); 750 751 /* 752 * Same as above except that this variant is more careful and checks that there 753 * are also no buffer head references. This function is the right one for 754 * mappings where buffer heads are directly looked up and referenced (such as 755 * block device mappings). 756 */ 757 int buffer_migrate_page_norefs(struct address_space *mapping, 758 struct page *newpage, struct page *page, enum migrate_mode mode) 759 { 760 return __buffer_migrate_page(mapping, newpage, page, mode, true); 761 } 762 #endif 763 764 /* 765 * Writeback a page to clean the dirty state 766 */ 767 static int writeout(struct address_space *mapping, struct page *page) 768 { 769 struct folio *folio = page_folio(page); 770 struct writeback_control wbc = { 771 .sync_mode = WB_SYNC_NONE, 772 .nr_to_write = 1, 773 .range_start = 0, 774 .range_end = LLONG_MAX, 775 .for_reclaim = 1 776 }; 777 int rc; 778 779 if (!mapping->a_ops->writepage) 780 /* No write method for the address space */ 781 return -EINVAL; 782 783 if (!clear_page_dirty_for_io(page)) 784 /* Someone else already triggered a write */ 785 return -EAGAIN; 786 787 /* 788 * A dirty page may imply that the underlying filesystem has 789 * the page on some queue. So the page must be clean for 790 * migration. Writeout may mean we loose the lock and the 791 * page state is no longer what we checked for earlier. 792 * At this point we know that the migration attempt cannot 793 * be successful. 794 */ 795 remove_migration_ptes(folio, folio, false); 796 797 rc = mapping->a_ops->writepage(page, &wbc); 798 799 if (rc != AOP_WRITEPAGE_ACTIVATE) 800 /* unlocked. Relock */ 801 lock_page(page); 802 803 return (rc < 0) ? -EIO : -EAGAIN; 804 } 805 806 /* 807 * Default handling if a filesystem does not provide a migration function. 808 */ 809 static int fallback_migrate_page(struct address_space *mapping, 810 struct page *newpage, struct page *page, enum migrate_mode mode) 811 { 812 if (PageDirty(page)) { 813 /* Only writeback pages in full synchronous migration */ 814 switch (mode) { 815 case MIGRATE_SYNC: 816 case MIGRATE_SYNC_NO_COPY: 817 break; 818 default: 819 return -EBUSY; 820 } 821 return writeout(mapping, page); 822 } 823 824 /* 825 * Buffers may be managed in a filesystem specific way. 826 * We must have no buffers or drop them. 827 */ 828 if (page_has_private(page) && 829 !try_to_release_page(page, GFP_KERNEL)) 830 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 831 832 return migrate_page(mapping, newpage, page, mode); 833 } 834 835 /* 836 * Move a page to a newly allocated page 837 * The page is locked and all ptes have been successfully removed. 838 * 839 * The new page will have replaced the old page if this function 840 * is successful. 841 * 842 * Return value: 843 * < 0 - error code 844 * MIGRATEPAGE_SUCCESS - success 845 */ 846 static int move_to_new_folio(struct folio *dst, struct folio *src, 847 enum migrate_mode mode) 848 { 849 struct address_space *mapping; 850 int rc = -EAGAIN; 851 bool is_lru = !__PageMovable(&src->page); 852 853 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 854 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 855 856 mapping = folio_mapping(src); 857 858 if (likely(is_lru)) { 859 if (!mapping) 860 rc = migrate_page(mapping, &dst->page, &src->page, mode); 861 else if (mapping->a_ops->migratepage) 862 /* 863 * Most pages have a mapping and most filesystems 864 * provide a migratepage callback. Anonymous pages 865 * are part of swap space which also has its own 866 * migratepage callback. This is the most common path 867 * for page migration. 868 */ 869 rc = mapping->a_ops->migratepage(mapping, &dst->page, 870 &src->page, mode); 871 else 872 rc = fallback_migrate_page(mapping, &dst->page, 873 &src->page, mode); 874 } else { 875 /* 876 * In case of non-lru page, it could be released after 877 * isolation step. In that case, we shouldn't try migration. 878 */ 879 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 880 if (!folio_test_movable(src)) { 881 rc = MIGRATEPAGE_SUCCESS; 882 folio_clear_isolated(src); 883 goto out; 884 } 885 886 rc = mapping->a_ops->migratepage(mapping, &dst->page, 887 &src->page, mode); 888 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 889 !folio_test_isolated(src)); 890 } 891 892 /* 893 * When successful, old pagecache src->mapping must be cleared before 894 * src is freed; but stats require that PageAnon be left as PageAnon. 895 */ 896 if (rc == MIGRATEPAGE_SUCCESS) { 897 if (__PageMovable(&src->page)) { 898 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 899 900 /* 901 * We clear PG_movable under page_lock so any compactor 902 * cannot try to migrate this page. 903 */ 904 folio_clear_isolated(src); 905 } 906 907 /* 908 * Anonymous and movable src->mapping will be cleared by 909 * free_pages_prepare so don't reset it here for keeping 910 * the type to work PageAnon, for example. 911 */ 912 if (!folio_mapping_flags(src)) 913 src->mapping = NULL; 914 915 if (likely(!folio_is_zone_device(dst))) 916 flush_dcache_folio(dst); 917 } 918 out: 919 return rc; 920 } 921 922 static int __unmap_and_move(struct page *page, struct page *newpage, 923 int force, enum migrate_mode mode) 924 { 925 struct folio *folio = page_folio(page); 926 struct folio *dst = page_folio(newpage); 927 int rc = -EAGAIN; 928 bool page_was_mapped = false; 929 struct anon_vma *anon_vma = NULL; 930 bool is_lru = !__PageMovable(page); 931 932 if (!trylock_page(page)) { 933 if (!force || mode == MIGRATE_ASYNC) 934 goto out; 935 936 /* 937 * It's not safe for direct compaction to call lock_page. 938 * For example, during page readahead pages are added locked 939 * to the LRU. Later, when the IO completes the pages are 940 * marked uptodate and unlocked. However, the queueing 941 * could be merging multiple pages for one bio (e.g. 942 * mpage_readahead). If an allocation happens for the 943 * second or third page, the process can end up locking 944 * the same page twice and deadlocking. Rather than 945 * trying to be clever about what pages can be locked, 946 * avoid the use of lock_page for direct compaction 947 * altogether. 948 */ 949 if (current->flags & PF_MEMALLOC) 950 goto out; 951 952 lock_page(page); 953 } 954 955 if (PageWriteback(page)) { 956 /* 957 * Only in the case of a full synchronous migration is it 958 * necessary to wait for PageWriteback. In the async case, 959 * the retry loop is too short and in the sync-light case, 960 * the overhead of stalling is too much 961 */ 962 switch (mode) { 963 case MIGRATE_SYNC: 964 case MIGRATE_SYNC_NO_COPY: 965 break; 966 default: 967 rc = -EBUSY; 968 goto out_unlock; 969 } 970 if (!force) 971 goto out_unlock; 972 wait_on_page_writeback(page); 973 } 974 975 /* 976 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 977 * we cannot notice that anon_vma is freed while we migrates a page. 978 * This get_anon_vma() delays freeing anon_vma pointer until the end 979 * of migration. File cache pages are no problem because of page_lock() 980 * File Caches may use write_page() or lock_page() in migration, then, 981 * just care Anon page here. 982 * 983 * Only page_get_anon_vma() understands the subtleties of 984 * getting a hold on an anon_vma from outside one of its mms. 985 * But if we cannot get anon_vma, then we won't need it anyway, 986 * because that implies that the anon page is no longer mapped 987 * (and cannot be remapped so long as we hold the page lock). 988 */ 989 if (PageAnon(page) && !PageKsm(page)) 990 anon_vma = page_get_anon_vma(page); 991 992 /* 993 * Block others from accessing the new page when we get around to 994 * establishing additional references. We are usually the only one 995 * holding a reference to newpage at this point. We used to have a BUG 996 * here if trylock_page(newpage) fails, but would like to allow for 997 * cases where there might be a race with the previous use of newpage. 998 * This is much like races on refcount of oldpage: just don't BUG(). 999 */ 1000 if (unlikely(!trylock_page(newpage))) 1001 goto out_unlock; 1002 1003 if (unlikely(!is_lru)) { 1004 rc = move_to_new_folio(dst, folio, mode); 1005 goto out_unlock_both; 1006 } 1007 1008 /* 1009 * Corner case handling: 1010 * 1. When a new swap-cache page is read into, it is added to the LRU 1011 * and treated as swapcache but it has no rmap yet. 1012 * Calling try_to_unmap() against a page->mapping==NULL page will 1013 * trigger a BUG. So handle it here. 1014 * 2. An orphaned page (see truncate_cleanup_page) might have 1015 * fs-private metadata. The page can be picked up due to memory 1016 * offlining. Everywhere else except page reclaim, the page is 1017 * invisible to the vm, so the page can not be migrated. So try to 1018 * free the metadata, so the page can be freed. 1019 */ 1020 if (!page->mapping) { 1021 VM_BUG_ON_PAGE(PageAnon(page), page); 1022 if (page_has_private(page)) { 1023 try_to_free_buffers(folio); 1024 goto out_unlock_both; 1025 } 1026 } else if (page_mapped(page)) { 1027 /* Establish migration ptes */ 1028 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1029 page); 1030 try_to_migrate(folio, 0); 1031 page_was_mapped = true; 1032 } 1033 1034 if (!page_mapped(page)) 1035 rc = move_to_new_folio(dst, folio, mode); 1036 1037 /* 1038 * When successful, push newpage to LRU immediately: so that if it 1039 * turns out to be an mlocked page, remove_migration_ptes() will 1040 * automatically build up the correct newpage->mlock_count for it. 1041 * 1042 * We would like to do something similar for the old page, when 1043 * unsuccessful, and other cases when a page has been temporarily 1044 * isolated from the unevictable LRU: but this case is the easiest. 1045 */ 1046 if (rc == MIGRATEPAGE_SUCCESS) { 1047 lru_cache_add(newpage); 1048 if (page_was_mapped) 1049 lru_add_drain(); 1050 } 1051 1052 if (page_was_mapped) 1053 remove_migration_ptes(folio, 1054 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); 1055 1056 out_unlock_both: 1057 unlock_page(newpage); 1058 out_unlock: 1059 /* Drop an anon_vma reference if we took one */ 1060 if (anon_vma) 1061 put_anon_vma(anon_vma); 1062 unlock_page(page); 1063 out: 1064 /* 1065 * If migration is successful, decrease refcount of the newpage, 1066 * which will not free the page because new page owner increased 1067 * refcounter. 1068 */ 1069 if (rc == MIGRATEPAGE_SUCCESS) 1070 put_page(newpage); 1071 1072 return rc; 1073 } 1074 1075 /* 1076 * Obtain the lock on page, remove all ptes and migrate the page 1077 * to the newly allocated page in newpage. 1078 */ 1079 static int unmap_and_move(new_page_t get_new_page, 1080 free_page_t put_new_page, 1081 unsigned long private, struct page *page, 1082 int force, enum migrate_mode mode, 1083 enum migrate_reason reason, 1084 struct list_head *ret) 1085 { 1086 int rc = MIGRATEPAGE_SUCCESS; 1087 struct page *newpage = NULL; 1088 1089 if (!thp_migration_supported() && PageTransHuge(page)) 1090 return -ENOSYS; 1091 1092 if (page_count(page) == 1) { 1093 /* page was freed from under us. So we are done. */ 1094 ClearPageActive(page); 1095 ClearPageUnevictable(page); 1096 if (unlikely(__PageMovable(page))) { 1097 lock_page(page); 1098 if (!PageMovable(page)) 1099 ClearPageIsolated(page); 1100 unlock_page(page); 1101 } 1102 goto out; 1103 } 1104 1105 newpage = get_new_page(page, private); 1106 if (!newpage) 1107 return -ENOMEM; 1108 1109 newpage->private = 0; 1110 rc = __unmap_and_move(page, newpage, force, mode); 1111 if (rc == MIGRATEPAGE_SUCCESS) 1112 set_page_owner_migrate_reason(newpage, reason); 1113 1114 out: 1115 if (rc != -EAGAIN) { 1116 /* 1117 * A page that has been migrated has all references 1118 * removed and will be freed. A page that has not been 1119 * migrated will have kept its references and be restored. 1120 */ 1121 list_del(&page->lru); 1122 } 1123 1124 /* 1125 * If migration is successful, releases reference grabbed during 1126 * isolation. Otherwise, restore the page to right list unless 1127 * we want to retry. 1128 */ 1129 if (rc == MIGRATEPAGE_SUCCESS) { 1130 /* 1131 * Compaction can migrate also non-LRU pages which are 1132 * not accounted to NR_ISOLATED_*. They can be recognized 1133 * as __PageMovable 1134 */ 1135 if (likely(!__PageMovable(page))) 1136 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1137 page_is_file_lru(page), -thp_nr_pages(page)); 1138 1139 if (reason != MR_MEMORY_FAILURE) 1140 /* 1141 * We release the page in page_handle_poison. 1142 */ 1143 put_page(page); 1144 } else { 1145 if (rc != -EAGAIN) 1146 list_add_tail(&page->lru, ret); 1147 1148 if (put_new_page) 1149 put_new_page(newpage, private); 1150 else 1151 put_page(newpage); 1152 } 1153 1154 return rc; 1155 } 1156 1157 /* 1158 * Counterpart of unmap_and_move_page() for hugepage migration. 1159 * 1160 * This function doesn't wait the completion of hugepage I/O 1161 * because there is no race between I/O and migration for hugepage. 1162 * Note that currently hugepage I/O occurs only in direct I/O 1163 * where no lock is held and PG_writeback is irrelevant, 1164 * and writeback status of all subpages are counted in the reference 1165 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1166 * under direct I/O, the reference of the head page is 512 and a bit more.) 1167 * This means that when we try to migrate hugepage whose subpages are 1168 * doing direct I/O, some references remain after try_to_unmap() and 1169 * hugepage migration fails without data corruption. 1170 * 1171 * There is also no race when direct I/O is issued on the page under migration, 1172 * because then pte is replaced with migration swap entry and direct I/O code 1173 * will wait in the page fault for migration to complete. 1174 */ 1175 static int unmap_and_move_huge_page(new_page_t get_new_page, 1176 free_page_t put_new_page, unsigned long private, 1177 struct page *hpage, int force, 1178 enum migrate_mode mode, int reason, 1179 struct list_head *ret) 1180 { 1181 struct folio *dst, *src = page_folio(hpage); 1182 int rc = -EAGAIN; 1183 int page_was_mapped = 0; 1184 struct page *new_hpage; 1185 struct anon_vma *anon_vma = NULL; 1186 struct address_space *mapping = NULL; 1187 1188 /* 1189 * Migratability of hugepages depends on architectures and their size. 1190 * This check is necessary because some callers of hugepage migration 1191 * like soft offline and memory hotremove don't walk through page 1192 * tables or check whether the hugepage is pmd-based or not before 1193 * kicking migration. 1194 */ 1195 if (!hugepage_migration_supported(page_hstate(hpage))) { 1196 list_move_tail(&hpage->lru, ret); 1197 return -ENOSYS; 1198 } 1199 1200 if (page_count(hpage) == 1) { 1201 /* page was freed from under us. So we are done. */ 1202 putback_active_hugepage(hpage); 1203 return MIGRATEPAGE_SUCCESS; 1204 } 1205 1206 new_hpage = get_new_page(hpage, private); 1207 if (!new_hpage) 1208 return -ENOMEM; 1209 dst = page_folio(new_hpage); 1210 1211 if (!trylock_page(hpage)) { 1212 if (!force) 1213 goto out; 1214 switch (mode) { 1215 case MIGRATE_SYNC: 1216 case MIGRATE_SYNC_NO_COPY: 1217 break; 1218 default: 1219 goto out; 1220 } 1221 lock_page(hpage); 1222 } 1223 1224 /* 1225 * Check for pages which are in the process of being freed. Without 1226 * page_mapping() set, hugetlbfs specific move page routine will not 1227 * be called and we could leak usage counts for subpools. 1228 */ 1229 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1230 rc = -EBUSY; 1231 goto out_unlock; 1232 } 1233 1234 if (PageAnon(hpage)) 1235 anon_vma = page_get_anon_vma(hpage); 1236 1237 if (unlikely(!trylock_page(new_hpage))) 1238 goto put_anon; 1239 1240 if (page_mapped(hpage)) { 1241 enum ttu_flags ttu = 0; 1242 1243 if (!PageAnon(hpage)) { 1244 /* 1245 * In shared mappings, try_to_unmap could potentially 1246 * call huge_pmd_unshare. Because of this, take 1247 * semaphore in write mode here and set TTU_RMAP_LOCKED 1248 * to let lower levels know we have taken the lock. 1249 */ 1250 mapping = hugetlb_page_mapping_lock_write(hpage); 1251 if (unlikely(!mapping)) 1252 goto unlock_put_anon; 1253 1254 ttu = TTU_RMAP_LOCKED; 1255 } 1256 1257 try_to_migrate(src, ttu); 1258 page_was_mapped = 1; 1259 1260 if (ttu & TTU_RMAP_LOCKED) 1261 i_mmap_unlock_write(mapping); 1262 } 1263 1264 if (!page_mapped(hpage)) 1265 rc = move_to_new_folio(dst, src, mode); 1266 1267 if (page_was_mapped) 1268 remove_migration_ptes(src, 1269 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1270 1271 unlock_put_anon: 1272 unlock_page(new_hpage); 1273 1274 put_anon: 1275 if (anon_vma) 1276 put_anon_vma(anon_vma); 1277 1278 if (rc == MIGRATEPAGE_SUCCESS) { 1279 move_hugetlb_state(hpage, new_hpage, reason); 1280 put_new_page = NULL; 1281 } 1282 1283 out_unlock: 1284 unlock_page(hpage); 1285 out: 1286 if (rc == MIGRATEPAGE_SUCCESS) 1287 putback_active_hugepage(hpage); 1288 else if (rc != -EAGAIN) 1289 list_move_tail(&hpage->lru, ret); 1290 1291 /* 1292 * If migration was not successful and there's a freeing callback, use 1293 * it. Otherwise, put_page() will drop the reference grabbed during 1294 * isolation. 1295 */ 1296 if (put_new_page) 1297 put_new_page(new_hpage, private); 1298 else 1299 putback_active_hugepage(new_hpage); 1300 1301 return rc; 1302 } 1303 1304 static inline int try_split_thp(struct page *page, struct page **page2, 1305 struct list_head *from) 1306 { 1307 int rc = 0; 1308 1309 lock_page(page); 1310 rc = split_huge_page_to_list(page, from); 1311 unlock_page(page); 1312 if (!rc) 1313 list_safe_reset_next(page, *page2, lru); 1314 1315 return rc; 1316 } 1317 1318 /* 1319 * migrate_pages - migrate the pages specified in a list, to the free pages 1320 * supplied as the target for the page migration 1321 * 1322 * @from: The list of pages to be migrated. 1323 * @get_new_page: The function used to allocate free pages to be used 1324 * as the target of the page migration. 1325 * @put_new_page: The function used to free target pages if migration 1326 * fails, or NULL if no special handling is necessary. 1327 * @private: Private data to be passed on to get_new_page() 1328 * @mode: The migration mode that specifies the constraints for 1329 * page migration, if any. 1330 * @reason: The reason for page migration. 1331 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1332 * the caller passes a non-NULL pointer. 1333 * 1334 * The function returns after 10 attempts or if no pages are movable any more 1335 * because the list has become empty or no retryable pages exist any more. 1336 * It is caller's responsibility to call putback_movable_pages() to return pages 1337 * to the LRU or free list only if ret != 0. 1338 * 1339 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1340 * an error code. The number of THP splits will be considered as the number of 1341 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1342 */ 1343 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1344 free_page_t put_new_page, unsigned long private, 1345 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1346 { 1347 int retry = 1; 1348 int thp_retry = 1; 1349 int nr_failed = 0; 1350 int nr_failed_pages = 0; 1351 int nr_succeeded = 0; 1352 int nr_thp_succeeded = 0; 1353 int nr_thp_failed = 0; 1354 int nr_thp_split = 0; 1355 int pass = 0; 1356 bool is_thp = false; 1357 struct page *page; 1358 struct page *page2; 1359 int rc, nr_subpages; 1360 LIST_HEAD(ret_pages); 1361 LIST_HEAD(thp_split_pages); 1362 bool nosplit = (reason == MR_NUMA_MISPLACED); 1363 bool no_subpage_counting = false; 1364 1365 trace_mm_migrate_pages_start(mode, reason); 1366 1367 thp_subpage_migration: 1368 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1369 retry = 0; 1370 thp_retry = 0; 1371 1372 list_for_each_entry_safe(page, page2, from, lru) { 1373 retry: 1374 /* 1375 * THP statistics is based on the source huge page. 1376 * Capture required information that might get lost 1377 * during migration. 1378 */ 1379 is_thp = PageTransHuge(page) && !PageHuge(page); 1380 nr_subpages = compound_nr(page); 1381 cond_resched(); 1382 1383 if (PageHuge(page)) 1384 rc = unmap_and_move_huge_page(get_new_page, 1385 put_new_page, private, page, 1386 pass > 2, mode, reason, 1387 &ret_pages); 1388 else 1389 rc = unmap_and_move(get_new_page, put_new_page, 1390 private, page, pass > 2, mode, 1391 reason, &ret_pages); 1392 /* 1393 * The rules are: 1394 * Success: non hugetlb page will be freed, hugetlb 1395 * page will be put back 1396 * -EAGAIN: stay on the from list 1397 * -ENOMEM: stay on the from list 1398 * Other errno: put on ret_pages list then splice to 1399 * from list 1400 */ 1401 switch(rc) { 1402 /* 1403 * THP migration might be unsupported or the 1404 * allocation could've failed so we should 1405 * retry on the same page with the THP split 1406 * to base pages. 1407 * 1408 * Head page is retried immediately and tail 1409 * pages are added to the tail of the list so 1410 * we encounter them after the rest of the list 1411 * is processed. 1412 */ 1413 case -ENOSYS: 1414 /* THP migration is unsupported */ 1415 if (is_thp) { 1416 nr_thp_failed++; 1417 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1418 nr_thp_split++; 1419 goto retry; 1420 } 1421 /* Hugetlb migration is unsupported */ 1422 } else if (!no_subpage_counting) { 1423 nr_failed++; 1424 } 1425 1426 nr_failed_pages += nr_subpages; 1427 break; 1428 case -ENOMEM: 1429 /* 1430 * When memory is low, don't bother to try to migrate 1431 * other pages, just exit. 1432 * THP NUMA faulting doesn't split THP to retry. 1433 */ 1434 if (is_thp && !nosplit) { 1435 nr_thp_failed++; 1436 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1437 nr_thp_split++; 1438 goto retry; 1439 } 1440 } else if (!no_subpage_counting) { 1441 nr_failed++; 1442 } 1443 1444 nr_failed_pages += nr_subpages; 1445 /* 1446 * There might be some subpages of fail-to-migrate THPs 1447 * left in thp_split_pages list. Move them back to migration 1448 * list so that they could be put back to the right list by 1449 * the caller otherwise the page refcnt will be leaked. 1450 */ 1451 list_splice_init(&thp_split_pages, from); 1452 nr_thp_failed += thp_retry; 1453 goto out; 1454 case -EAGAIN: 1455 if (is_thp) 1456 thp_retry++; 1457 else 1458 retry++; 1459 break; 1460 case MIGRATEPAGE_SUCCESS: 1461 nr_succeeded += nr_subpages; 1462 if (is_thp) 1463 nr_thp_succeeded++; 1464 break; 1465 default: 1466 /* 1467 * Permanent failure (-EBUSY, etc.): 1468 * unlike -EAGAIN case, the failed page is 1469 * removed from migration page list and not 1470 * retried in the next outer loop. 1471 */ 1472 if (is_thp) 1473 nr_thp_failed++; 1474 else if (!no_subpage_counting) 1475 nr_failed++; 1476 1477 nr_failed_pages += nr_subpages; 1478 break; 1479 } 1480 } 1481 } 1482 nr_failed += retry; 1483 nr_thp_failed += thp_retry; 1484 /* 1485 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1486 * counting in this round, since all subpages of a THP is counted 1487 * as 1 failure in the first round. 1488 */ 1489 if (!list_empty(&thp_split_pages)) { 1490 /* 1491 * Move non-migrated pages (after 10 retries) to ret_pages 1492 * to avoid migrating them again. 1493 */ 1494 list_splice_init(from, &ret_pages); 1495 list_splice_init(&thp_split_pages, from); 1496 no_subpage_counting = true; 1497 retry = 1; 1498 goto thp_subpage_migration; 1499 } 1500 1501 rc = nr_failed + nr_thp_failed; 1502 out: 1503 /* 1504 * Put the permanent failure page back to migration list, they 1505 * will be put back to the right list by the caller. 1506 */ 1507 list_splice(&ret_pages, from); 1508 1509 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1510 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1511 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1512 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1513 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1514 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1515 nr_thp_failed, nr_thp_split, mode, reason); 1516 1517 if (ret_succeeded) 1518 *ret_succeeded = nr_succeeded; 1519 1520 return rc; 1521 } 1522 1523 struct page *alloc_migration_target(struct page *page, unsigned long private) 1524 { 1525 struct folio *folio = page_folio(page); 1526 struct migration_target_control *mtc; 1527 gfp_t gfp_mask; 1528 unsigned int order = 0; 1529 struct folio *new_folio = NULL; 1530 int nid; 1531 int zidx; 1532 1533 mtc = (struct migration_target_control *)private; 1534 gfp_mask = mtc->gfp_mask; 1535 nid = mtc->nid; 1536 if (nid == NUMA_NO_NODE) 1537 nid = folio_nid(folio); 1538 1539 if (folio_test_hugetlb(folio)) { 1540 struct hstate *h = page_hstate(&folio->page); 1541 1542 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1543 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1544 } 1545 1546 if (folio_test_large(folio)) { 1547 /* 1548 * clear __GFP_RECLAIM to make the migration callback 1549 * consistent with regular THP allocations. 1550 */ 1551 gfp_mask &= ~__GFP_RECLAIM; 1552 gfp_mask |= GFP_TRANSHUGE; 1553 order = folio_order(folio); 1554 } 1555 zidx = zone_idx(folio_zone(folio)); 1556 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1557 gfp_mask |= __GFP_HIGHMEM; 1558 1559 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1560 1561 return &new_folio->page; 1562 } 1563 1564 #ifdef CONFIG_NUMA 1565 1566 static int store_status(int __user *status, int start, int value, int nr) 1567 { 1568 while (nr-- > 0) { 1569 if (put_user(value, status + start)) 1570 return -EFAULT; 1571 start++; 1572 } 1573 1574 return 0; 1575 } 1576 1577 static int do_move_pages_to_node(struct mm_struct *mm, 1578 struct list_head *pagelist, int node) 1579 { 1580 int err; 1581 struct migration_target_control mtc = { 1582 .nid = node, 1583 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1584 }; 1585 1586 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1587 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1588 if (err) 1589 putback_movable_pages(pagelist); 1590 return err; 1591 } 1592 1593 /* 1594 * Resolves the given address to a struct page, isolates it from the LRU and 1595 * puts it to the given pagelist. 1596 * Returns: 1597 * errno - if the page cannot be found/isolated 1598 * 0 - when it doesn't have to be migrated because it is already on the 1599 * target node 1600 * 1 - when it has been queued 1601 */ 1602 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1603 int node, struct list_head *pagelist, bool migrate_all) 1604 { 1605 struct vm_area_struct *vma; 1606 struct page *page; 1607 int err; 1608 1609 mmap_read_lock(mm); 1610 err = -EFAULT; 1611 vma = vma_lookup(mm, addr); 1612 if (!vma || !vma_migratable(vma)) 1613 goto out; 1614 1615 /* FOLL_DUMP to ignore special (like zero) pages */ 1616 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1617 1618 err = PTR_ERR(page); 1619 if (IS_ERR(page)) 1620 goto out; 1621 1622 err = -ENOENT; 1623 if (!page) 1624 goto out; 1625 1626 err = 0; 1627 if (page_to_nid(page) == node) 1628 goto out_putpage; 1629 1630 err = -EACCES; 1631 if (page_mapcount(page) > 1 && !migrate_all) 1632 goto out_putpage; 1633 1634 if (PageHuge(page)) { 1635 if (PageHead(page)) { 1636 isolate_huge_page(page, pagelist); 1637 err = 1; 1638 } 1639 } else { 1640 struct page *head; 1641 1642 head = compound_head(page); 1643 err = isolate_lru_page(head); 1644 if (err) 1645 goto out_putpage; 1646 1647 err = 1; 1648 list_add_tail(&head->lru, pagelist); 1649 mod_node_page_state(page_pgdat(head), 1650 NR_ISOLATED_ANON + page_is_file_lru(head), 1651 thp_nr_pages(head)); 1652 } 1653 out_putpage: 1654 /* 1655 * Either remove the duplicate refcount from 1656 * isolate_lru_page() or drop the page ref if it was 1657 * not isolated. 1658 */ 1659 put_page(page); 1660 out: 1661 mmap_read_unlock(mm); 1662 return err; 1663 } 1664 1665 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1666 struct list_head *pagelist, int __user *status, 1667 int start, int i, unsigned long nr_pages) 1668 { 1669 int err; 1670 1671 if (list_empty(pagelist)) 1672 return 0; 1673 1674 err = do_move_pages_to_node(mm, pagelist, node); 1675 if (err) { 1676 /* 1677 * Positive err means the number of failed 1678 * pages to migrate. Since we are going to 1679 * abort and return the number of non-migrated 1680 * pages, so need to include the rest of the 1681 * nr_pages that have not been attempted as 1682 * well. 1683 */ 1684 if (err > 0) 1685 err += nr_pages - i - 1; 1686 return err; 1687 } 1688 return store_status(status, start, node, i - start); 1689 } 1690 1691 /* 1692 * Migrate an array of page address onto an array of nodes and fill 1693 * the corresponding array of status. 1694 */ 1695 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1696 unsigned long nr_pages, 1697 const void __user * __user *pages, 1698 const int __user *nodes, 1699 int __user *status, int flags) 1700 { 1701 int current_node = NUMA_NO_NODE; 1702 LIST_HEAD(pagelist); 1703 int start, i; 1704 int err = 0, err1; 1705 1706 lru_cache_disable(); 1707 1708 for (i = start = 0; i < nr_pages; i++) { 1709 const void __user *p; 1710 unsigned long addr; 1711 int node; 1712 1713 err = -EFAULT; 1714 if (get_user(p, pages + i)) 1715 goto out_flush; 1716 if (get_user(node, nodes + i)) 1717 goto out_flush; 1718 addr = (unsigned long)untagged_addr(p); 1719 1720 err = -ENODEV; 1721 if (node < 0 || node >= MAX_NUMNODES) 1722 goto out_flush; 1723 if (!node_state(node, N_MEMORY)) 1724 goto out_flush; 1725 1726 err = -EACCES; 1727 if (!node_isset(node, task_nodes)) 1728 goto out_flush; 1729 1730 if (current_node == NUMA_NO_NODE) { 1731 current_node = node; 1732 start = i; 1733 } else if (node != current_node) { 1734 err = move_pages_and_store_status(mm, current_node, 1735 &pagelist, status, start, i, nr_pages); 1736 if (err) 1737 goto out; 1738 start = i; 1739 current_node = node; 1740 } 1741 1742 /* 1743 * Errors in the page lookup or isolation are not fatal and we simply 1744 * report them via status 1745 */ 1746 err = add_page_for_migration(mm, addr, current_node, 1747 &pagelist, flags & MPOL_MF_MOVE_ALL); 1748 1749 if (err > 0) { 1750 /* The page is successfully queued for migration */ 1751 continue; 1752 } 1753 1754 /* 1755 * The move_pages() man page does not have an -EEXIST choice, so 1756 * use -EFAULT instead. 1757 */ 1758 if (err == -EEXIST) 1759 err = -EFAULT; 1760 1761 /* 1762 * If the page is already on the target node (!err), store the 1763 * node, otherwise, store the err. 1764 */ 1765 err = store_status(status, i, err ? : current_node, 1); 1766 if (err) 1767 goto out_flush; 1768 1769 err = move_pages_and_store_status(mm, current_node, &pagelist, 1770 status, start, i, nr_pages); 1771 if (err) 1772 goto out; 1773 current_node = NUMA_NO_NODE; 1774 } 1775 out_flush: 1776 /* Make sure we do not overwrite the existing error */ 1777 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1778 status, start, i, nr_pages); 1779 if (err >= 0) 1780 err = err1; 1781 out: 1782 lru_cache_enable(); 1783 return err; 1784 } 1785 1786 /* 1787 * Determine the nodes of an array of pages and store it in an array of status. 1788 */ 1789 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1790 const void __user **pages, int *status) 1791 { 1792 unsigned long i; 1793 1794 mmap_read_lock(mm); 1795 1796 for (i = 0; i < nr_pages; i++) { 1797 unsigned long addr = (unsigned long)(*pages); 1798 struct vm_area_struct *vma; 1799 struct page *page; 1800 int err = -EFAULT; 1801 1802 vma = vma_lookup(mm, addr); 1803 if (!vma) 1804 goto set_status; 1805 1806 /* FOLL_DUMP to ignore special (like zero) pages */ 1807 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1808 1809 err = PTR_ERR(page); 1810 if (IS_ERR(page)) 1811 goto set_status; 1812 1813 if (page) { 1814 err = page_to_nid(page); 1815 put_page(page); 1816 } else { 1817 err = -ENOENT; 1818 } 1819 set_status: 1820 *status = err; 1821 1822 pages++; 1823 status++; 1824 } 1825 1826 mmap_read_unlock(mm); 1827 } 1828 1829 static int get_compat_pages_array(const void __user *chunk_pages[], 1830 const void __user * __user *pages, 1831 unsigned long chunk_nr) 1832 { 1833 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1834 compat_uptr_t p; 1835 int i; 1836 1837 for (i = 0; i < chunk_nr; i++) { 1838 if (get_user(p, pages32 + i)) 1839 return -EFAULT; 1840 chunk_pages[i] = compat_ptr(p); 1841 } 1842 1843 return 0; 1844 } 1845 1846 /* 1847 * Determine the nodes of a user array of pages and store it in 1848 * a user array of status. 1849 */ 1850 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1851 const void __user * __user *pages, 1852 int __user *status) 1853 { 1854 #define DO_PAGES_STAT_CHUNK_NR 16UL 1855 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1856 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1857 1858 while (nr_pages) { 1859 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1860 1861 if (in_compat_syscall()) { 1862 if (get_compat_pages_array(chunk_pages, pages, 1863 chunk_nr)) 1864 break; 1865 } else { 1866 if (copy_from_user(chunk_pages, pages, 1867 chunk_nr * sizeof(*chunk_pages))) 1868 break; 1869 } 1870 1871 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1872 1873 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1874 break; 1875 1876 pages += chunk_nr; 1877 status += chunk_nr; 1878 nr_pages -= chunk_nr; 1879 } 1880 return nr_pages ? -EFAULT : 0; 1881 } 1882 1883 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1884 { 1885 struct task_struct *task; 1886 struct mm_struct *mm; 1887 1888 /* 1889 * There is no need to check if current process has the right to modify 1890 * the specified process when they are same. 1891 */ 1892 if (!pid) { 1893 mmget(current->mm); 1894 *mem_nodes = cpuset_mems_allowed(current); 1895 return current->mm; 1896 } 1897 1898 /* Find the mm_struct */ 1899 rcu_read_lock(); 1900 task = find_task_by_vpid(pid); 1901 if (!task) { 1902 rcu_read_unlock(); 1903 return ERR_PTR(-ESRCH); 1904 } 1905 get_task_struct(task); 1906 1907 /* 1908 * Check if this process has the right to modify the specified 1909 * process. Use the regular "ptrace_may_access()" checks. 1910 */ 1911 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1912 rcu_read_unlock(); 1913 mm = ERR_PTR(-EPERM); 1914 goto out; 1915 } 1916 rcu_read_unlock(); 1917 1918 mm = ERR_PTR(security_task_movememory(task)); 1919 if (IS_ERR(mm)) 1920 goto out; 1921 *mem_nodes = cpuset_mems_allowed(task); 1922 mm = get_task_mm(task); 1923 out: 1924 put_task_struct(task); 1925 if (!mm) 1926 mm = ERR_PTR(-EINVAL); 1927 return mm; 1928 } 1929 1930 /* 1931 * Move a list of pages in the address space of the currently executing 1932 * process. 1933 */ 1934 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1935 const void __user * __user *pages, 1936 const int __user *nodes, 1937 int __user *status, int flags) 1938 { 1939 struct mm_struct *mm; 1940 int err; 1941 nodemask_t task_nodes; 1942 1943 /* Check flags */ 1944 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1945 return -EINVAL; 1946 1947 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1948 return -EPERM; 1949 1950 mm = find_mm_struct(pid, &task_nodes); 1951 if (IS_ERR(mm)) 1952 return PTR_ERR(mm); 1953 1954 if (nodes) 1955 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1956 nodes, status, flags); 1957 else 1958 err = do_pages_stat(mm, nr_pages, pages, status); 1959 1960 mmput(mm); 1961 return err; 1962 } 1963 1964 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1965 const void __user * __user *, pages, 1966 const int __user *, nodes, 1967 int __user *, status, int, flags) 1968 { 1969 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1970 } 1971 1972 #ifdef CONFIG_NUMA_BALANCING 1973 /* 1974 * Returns true if this is a safe migration target node for misplaced NUMA 1975 * pages. Currently it only checks the watermarks which is crude. 1976 */ 1977 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1978 unsigned long nr_migrate_pages) 1979 { 1980 int z; 1981 1982 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1983 struct zone *zone = pgdat->node_zones + z; 1984 1985 if (!managed_zone(zone)) 1986 continue; 1987 1988 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1989 if (!zone_watermark_ok(zone, 0, 1990 high_wmark_pages(zone) + 1991 nr_migrate_pages, 1992 ZONE_MOVABLE, 0)) 1993 continue; 1994 return true; 1995 } 1996 return false; 1997 } 1998 1999 static struct page *alloc_misplaced_dst_page(struct page *page, 2000 unsigned long data) 2001 { 2002 int nid = (int) data; 2003 int order = compound_order(page); 2004 gfp_t gfp = __GFP_THISNODE; 2005 struct folio *new; 2006 2007 if (order > 0) 2008 gfp |= GFP_TRANSHUGE_LIGHT; 2009 else { 2010 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2011 __GFP_NOWARN; 2012 gfp &= ~__GFP_RECLAIM; 2013 } 2014 new = __folio_alloc_node(gfp, order, nid); 2015 2016 return &new->page; 2017 } 2018 2019 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2020 { 2021 int nr_pages = thp_nr_pages(page); 2022 int order = compound_order(page); 2023 2024 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2025 2026 /* Do not migrate THP mapped by multiple processes */ 2027 if (PageTransHuge(page) && total_mapcount(page) > 1) 2028 return 0; 2029 2030 /* Avoid migrating to a node that is nearly full */ 2031 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2032 int z; 2033 2034 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2035 return 0; 2036 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2037 if (managed_zone(pgdat->node_zones + z)) 2038 break; 2039 } 2040 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2041 return 0; 2042 } 2043 2044 if (isolate_lru_page(page)) 2045 return 0; 2046 2047 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2048 nr_pages); 2049 2050 /* 2051 * Isolating the page has taken another reference, so the 2052 * caller's reference can be safely dropped without the page 2053 * disappearing underneath us during migration. 2054 */ 2055 put_page(page); 2056 return 1; 2057 } 2058 2059 /* 2060 * Attempt to migrate a misplaced page to the specified destination 2061 * node. Caller is expected to have an elevated reference count on 2062 * the page that will be dropped by this function before returning. 2063 */ 2064 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2065 int node) 2066 { 2067 pg_data_t *pgdat = NODE_DATA(node); 2068 int isolated; 2069 int nr_remaining; 2070 unsigned int nr_succeeded; 2071 LIST_HEAD(migratepages); 2072 int nr_pages = thp_nr_pages(page); 2073 2074 /* 2075 * Don't migrate file pages that are mapped in multiple processes 2076 * with execute permissions as they are probably shared libraries. 2077 */ 2078 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2079 (vma->vm_flags & VM_EXEC)) 2080 goto out; 2081 2082 /* 2083 * Also do not migrate dirty pages as not all filesystems can move 2084 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2085 */ 2086 if (page_is_file_lru(page) && PageDirty(page)) 2087 goto out; 2088 2089 isolated = numamigrate_isolate_page(pgdat, page); 2090 if (!isolated) 2091 goto out; 2092 2093 list_add(&page->lru, &migratepages); 2094 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2095 NULL, node, MIGRATE_ASYNC, 2096 MR_NUMA_MISPLACED, &nr_succeeded); 2097 if (nr_remaining) { 2098 if (!list_empty(&migratepages)) { 2099 list_del(&page->lru); 2100 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2101 page_is_file_lru(page), -nr_pages); 2102 putback_lru_page(page); 2103 } 2104 isolated = 0; 2105 } 2106 if (nr_succeeded) { 2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2108 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2109 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2110 nr_succeeded); 2111 } 2112 BUG_ON(!list_empty(&migratepages)); 2113 return isolated; 2114 2115 out: 2116 put_page(page); 2117 return 0; 2118 } 2119 #endif /* CONFIG_NUMA_BALANCING */ 2120 2121 /* 2122 * node_demotion[] example: 2123 * 2124 * Consider a system with two sockets. Each socket has 2125 * three classes of memory attached: fast, medium and slow. 2126 * Each memory class is placed in its own NUMA node. The 2127 * CPUs are placed in the node with the "fast" memory. The 2128 * 6 NUMA nodes (0-5) might be split among the sockets like 2129 * this: 2130 * 2131 * Socket A: 0, 1, 2 2132 * Socket B: 3, 4, 5 2133 * 2134 * When Node 0 fills up, its memory should be migrated to 2135 * Node 1. When Node 1 fills up, it should be migrated to 2136 * Node 2. The migration path start on the nodes with the 2137 * processors (since allocations default to this node) and 2138 * fast memory, progress through medium and end with the 2139 * slow memory: 2140 * 2141 * 0 -> 1 -> 2 -> stop 2142 * 3 -> 4 -> 5 -> stop 2143 * 2144 * This is represented in the node_demotion[] like this: 2145 * 2146 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 2147 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 2148 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate 2149 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 2150 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 2151 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate 2152 * 2153 * Moreover some systems may have multiple slow memory nodes. 2154 * Suppose a system has one socket with 3 memory nodes, node 0 2155 * is fast memory type, and node 1/2 both are slow memory 2156 * type, and the distance between fast memory node and slow 2157 * memory node is same. So the migration path should be: 2158 * 2159 * 0 -> 1/2 -> stop 2160 * 2161 * This is represented in the node_demotion[] like this: 2162 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 2163 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate 2164 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate 2165 */ 2166 2167 /* 2168 * Writes to this array occur without locking. Cycles are 2169 * not allowed: Node X demotes to Y which demotes to X... 2170 * 2171 * If multiple reads are performed, a single rcu_read_lock() 2172 * must be held over all reads to ensure that no cycles are 2173 * observed. 2174 */ 2175 #define DEFAULT_DEMOTION_TARGET_NODES 15 2176 2177 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES 2178 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) 2179 #else 2180 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES 2181 #endif 2182 2183 struct demotion_nodes { 2184 unsigned short nr; 2185 short nodes[DEMOTION_TARGET_NODES]; 2186 }; 2187 2188 static struct demotion_nodes *node_demotion __read_mostly; 2189 2190 /** 2191 * next_demotion_node() - Get the next node in the demotion path 2192 * @node: The starting node to lookup the next node 2193 * 2194 * Return: node id for next memory node in the demotion path hierarchy 2195 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 2196 * @node online or guarantee that it *continues* to be the next demotion 2197 * target. 2198 */ 2199 int next_demotion_node(int node) 2200 { 2201 struct demotion_nodes *nd; 2202 unsigned short target_nr, index; 2203 int target; 2204 2205 if (!node_demotion) 2206 return NUMA_NO_NODE; 2207 2208 nd = &node_demotion[node]; 2209 2210 /* 2211 * node_demotion[] is updated without excluding this 2212 * function from running. RCU doesn't provide any 2213 * compiler barriers, so the READ_ONCE() is required 2214 * to avoid compiler reordering or read merging. 2215 * 2216 * Make sure to use RCU over entire code blocks if 2217 * node_demotion[] reads need to be consistent. 2218 */ 2219 rcu_read_lock(); 2220 target_nr = READ_ONCE(nd->nr); 2221 2222 switch (target_nr) { 2223 case 0: 2224 target = NUMA_NO_NODE; 2225 goto out; 2226 case 1: 2227 index = 0; 2228 break; 2229 default: 2230 /* 2231 * If there are multiple target nodes, just select one 2232 * target node randomly. 2233 * 2234 * In addition, we can also use round-robin to select 2235 * target node, but we should introduce another variable 2236 * for node_demotion[] to record last selected target node, 2237 * that may cause cache ping-pong due to the changing of 2238 * last target node. Or introducing per-cpu data to avoid 2239 * caching issue, which seems more complicated. So selecting 2240 * target node randomly seems better until now. 2241 */ 2242 index = get_random_int() % target_nr; 2243 break; 2244 } 2245 2246 target = READ_ONCE(nd->nodes[index]); 2247 2248 out: 2249 rcu_read_unlock(); 2250 return target; 2251 } 2252 2253 /* Disable reclaim-based migration. */ 2254 static void __disable_all_migrate_targets(void) 2255 { 2256 int node, i; 2257 2258 if (!node_demotion) 2259 return; 2260 2261 for_each_online_node(node) { 2262 node_demotion[node].nr = 0; 2263 for (i = 0; i < DEMOTION_TARGET_NODES; i++) 2264 node_demotion[node].nodes[i] = NUMA_NO_NODE; 2265 } 2266 } 2267 2268 static void disable_all_migrate_targets(void) 2269 { 2270 __disable_all_migrate_targets(); 2271 2272 /* 2273 * Ensure that the "disable" is visible across the system. 2274 * Readers will see either a combination of before+disable 2275 * state or disable+after. They will never see before and 2276 * after state together. 2277 * 2278 * The before+after state together might have cycles and 2279 * could cause readers to do things like loop until this 2280 * function finishes. This ensures they can only see a 2281 * single "bad" read and would, for instance, only loop 2282 * once. 2283 */ 2284 synchronize_rcu(); 2285 } 2286 2287 /* 2288 * Find an automatic demotion target for 'node'. 2289 * Failing here is OK. It might just indicate 2290 * being at the end of a chain. 2291 */ 2292 static int establish_migrate_target(int node, nodemask_t *used, 2293 int best_distance) 2294 { 2295 int migration_target, index, val; 2296 struct demotion_nodes *nd; 2297 2298 if (!node_demotion) 2299 return NUMA_NO_NODE; 2300 2301 nd = &node_demotion[node]; 2302 2303 migration_target = find_next_best_node(node, used); 2304 if (migration_target == NUMA_NO_NODE) 2305 return NUMA_NO_NODE; 2306 2307 /* 2308 * If the node has been set a migration target node before, 2309 * which means it's the best distance between them. Still 2310 * check if this node can be demoted to other target nodes 2311 * if they have a same best distance. 2312 */ 2313 if (best_distance != -1) { 2314 val = node_distance(node, migration_target); 2315 if (val > best_distance) 2316 goto out_clear; 2317 } 2318 2319 index = nd->nr; 2320 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, 2321 "Exceeds maximum demotion target nodes\n")) 2322 goto out_clear; 2323 2324 nd->nodes[index] = migration_target; 2325 nd->nr++; 2326 2327 return migration_target; 2328 out_clear: 2329 node_clear(migration_target, *used); 2330 return NUMA_NO_NODE; 2331 } 2332 2333 /* 2334 * When memory fills up on a node, memory contents can be 2335 * automatically migrated to another node instead of 2336 * discarded at reclaim. 2337 * 2338 * Establish a "migration path" which will start at nodes 2339 * with CPUs and will follow the priorities used to build the 2340 * page allocator zonelists. 2341 * 2342 * The difference here is that cycles must be avoided. If 2343 * node0 migrates to node1, then neither node1, nor anything 2344 * node1 migrates to can migrate to node0. Also one node can 2345 * be migrated to multiple nodes if the target nodes all have 2346 * a same best-distance against the source node. 2347 * 2348 * This function can run simultaneously with readers of 2349 * node_demotion[]. However, it can not run simultaneously 2350 * with itself. Exclusion is provided by memory hotplug events 2351 * being single-threaded. 2352 */ 2353 static void __set_migration_target_nodes(void) 2354 { 2355 nodemask_t next_pass; 2356 nodemask_t this_pass; 2357 nodemask_t used_targets = NODE_MASK_NONE; 2358 int node, best_distance; 2359 2360 /* 2361 * Avoid any oddities like cycles that could occur 2362 * from changes in the topology. This will leave 2363 * a momentary gap when migration is disabled. 2364 */ 2365 disable_all_migrate_targets(); 2366 2367 /* 2368 * Allocations go close to CPUs, first. Assume that 2369 * the migration path starts at the nodes with CPUs. 2370 */ 2371 next_pass = node_states[N_CPU]; 2372 again: 2373 this_pass = next_pass; 2374 next_pass = NODE_MASK_NONE; 2375 /* 2376 * To avoid cycles in the migration "graph", ensure 2377 * that migration sources are not future targets by 2378 * setting them in 'used_targets'. Do this only 2379 * once per pass so that multiple source nodes can 2380 * share a target node. 2381 * 2382 * 'used_targets' will become unavailable in future 2383 * passes. This limits some opportunities for 2384 * multiple source nodes to share a destination. 2385 */ 2386 nodes_or(used_targets, used_targets, this_pass); 2387 2388 for_each_node_mask(node, this_pass) { 2389 best_distance = -1; 2390 2391 /* 2392 * Try to set up the migration path for the node, and the target 2393 * migration nodes can be multiple, so doing a loop to find all 2394 * the target nodes if they all have a best node distance. 2395 */ 2396 do { 2397 int target_node = 2398 establish_migrate_target(node, &used_targets, 2399 best_distance); 2400 2401 if (target_node == NUMA_NO_NODE) 2402 break; 2403 2404 if (best_distance == -1) 2405 best_distance = node_distance(node, target_node); 2406 2407 /* 2408 * Visit targets from this pass in the next pass. 2409 * Eventually, every node will have been part of 2410 * a pass, and will become set in 'used_targets'. 2411 */ 2412 node_set(target_node, next_pass); 2413 } while (1); 2414 } 2415 /* 2416 * 'next_pass' contains nodes which became migration 2417 * targets in this pass. Make additional passes until 2418 * no more migrations targets are available. 2419 */ 2420 if (!nodes_empty(next_pass)) 2421 goto again; 2422 } 2423 2424 /* 2425 * For callers that do not hold get_online_mems() already. 2426 */ 2427 void set_migration_target_nodes(void) 2428 { 2429 get_online_mems(); 2430 __set_migration_target_nodes(); 2431 put_online_mems(); 2432 } 2433 2434 /* 2435 * This leaves migrate-on-reclaim transiently disabled between 2436 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 2437 * whether reclaim-based migration is enabled or not, which 2438 * ensures that the user can turn reclaim-based migration at 2439 * any time without needing to recalculate migration targets. 2440 * 2441 * These callbacks already hold get_online_mems(). That is why 2442 * __set_migration_target_nodes() can be used as opposed to 2443 * set_migration_target_nodes(). 2444 */ 2445 #ifdef CONFIG_MEMORY_HOTPLUG 2446 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 2447 unsigned long action, void *_arg) 2448 { 2449 struct memory_notify *arg = _arg; 2450 2451 /* 2452 * Only update the node migration order when a node is 2453 * changing status, like online->offline. This avoids 2454 * the overhead of synchronize_rcu() in most cases. 2455 */ 2456 if (arg->status_change_nid < 0) 2457 return notifier_from_errno(0); 2458 2459 switch (action) { 2460 case MEM_GOING_OFFLINE: 2461 /* 2462 * Make sure there are not transient states where 2463 * an offline node is a migration target. This 2464 * will leave migration disabled until the offline 2465 * completes and the MEM_OFFLINE case below runs. 2466 */ 2467 disable_all_migrate_targets(); 2468 break; 2469 case MEM_OFFLINE: 2470 case MEM_ONLINE: 2471 /* 2472 * Recalculate the target nodes once the node 2473 * reaches its final state (online or offline). 2474 */ 2475 __set_migration_target_nodes(); 2476 break; 2477 case MEM_CANCEL_OFFLINE: 2478 /* 2479 * MEM_GOING_OFFLINE disabled all the migration 2480 * targets. Reenable them. 2481 */ 2482 __set_migration_target_nodes(); 2483 break; 2484 case MEM_GOING_ONLINE: 2485 case MEM_CANCEL_ONLINE: 2486 break; 2487 } 2488 2489 return notifier_from_errno(0); 2490 } 2491 #endif 2492 2493 void __init migrate_on_reclaim_init(void) 2494 { 2495 node_demotion = kcalloc(nr_node_ids, 2496 sizeof(struct demotion_nodes), 2497 GFP_KERNEL); 2498 WARN_ON(!node_demotion); 2499 #ifdef CONFIG_MEMORY_HOTPLUG 2500 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 2501 #endif 2502 /* 2503 * At this point, all numa nodes with memory/CPus have their state 2504 * properly set, so we can build the demotion order now. 2505 * Let us hold the cpu_hotplug lock just, as we could possibily have 2506 * CPU hotplug events during boot. 2507 */ 2508 cpus_read_lock(); 2509 set_migration_target_nodes(); 2510 cpus_read_unlock(); 2511 } 2512 2513 bool numa_demotion_enabled = false; 2514 2515 #ifdef CONFIG_SYSFS 2516 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 2517 struct kobj_attribute *attr, char *buf) 2518 { 2519 return sysfs_emit(buf, "%s\n", 2520 numa_demotion_enabled ? "true" : "false"); 2521 } 2522 2523 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 2524 struct kobj_attribute *attr, 2525 const char *buf, size_t count) 2526 { 2527 ssize_t ret; 2528 2529 ret = kstrtobool(buf, &numa_demotion_enabled); 2530 if (ret) 2531 return ret; 2532 2533 return count; 2534 } 2535 2536 static struct kobj_attribute numa_demotion_enabled_attr = 2537 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 2538 numa_demotion_enabled_store); 2539 2540 static struct attribute *numa_attrs[] = { 2541 &numa_demotion_enabled_attr.attr, 2542 NULL, 2543 }; 2544 2545 static const struct attribute_group numa_attr_group = { 2546 .attrs = numa_attrs, 2547 }; 2548 2549 static int __init numa_init_sysfs(void) 2550 { 2551 int err; 2552 struct kobject *numa_kobj; 2553 2554 numa_kobj = kobject_create_and_add("numa", mm_kobj); 2555 if (!numa_kobj) { 2556 pr_err("failed to create numa kobject\n"); 2557 return -ENOMEM; 2558 } 2559 err = sysfs_create_group(numa_kobj, &numa_attr_group); 2560 if (err) { 2561 pr_err("failed to register numa group\n"); 2562 goto delete_obj; 2563 } 2564 return 0; 2565 2566 delete_obj: 2567 kobject_put(numa_kobj); 2568 return err; 2569 } 2570 subsys_initcall(numa_init_sysfs); 2571 #endif /* CONFIG_SYSFS */ 2572 #endif /* CONFIG_NUMA */ 2573