xref: /openbmc/linux/mm/migrate.c (revision d89775fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -hpage_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_zone_device_page(new))) {
250 			if (is_device_private_page(new)) {
251 				entry = make_device_private_entry(new, pte_write(pte));
252 				pte = swp_entry_to_pte(entry);
253 				if (pte_swp_uffd_wp(*pvmw.pte))
254 					pte = pte_mkuffd_wp(pte);
255 			}
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device public or private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += hpage_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		struct lruvec *old_lruvec, *new_lruvec;
494 		struct mem_cgroup *memcg;
495 
496 		memcg = page_memcg(page);
497 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499 
500 		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
503 			__dec_lruvec_state(old_lruvec, NR_SHMEM);
504 			__inc_lruvec_state(new_lruvec, NR_SHMEM);
505 		}
506 		if (dirty && mapping_cap_account_dirty(mapping)) {
507 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511 		}
512 	}
513 	local_irq_enable();
514 
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518 
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524 				   struct page *newpage, struct page *page)
525 {
526 	XA_STATE(xas, &mapping->i_pages, page_index(page));
527 	int expected_count;
528 
529 	xas_lock_irq(&xas);
530 	expected_count = 2 + page_has_private(page);
531 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 		xas_unlock_irq(&xas);
533 		return -EAGAIN;
534 	}
535 
536 	if (!page_ref_freeze(page, expected_count)) {
537 		xas_unlock_irq(&xas);
538 		return -EAGAIN;
539 	}
540 
541 	newpage->index = page->index;
542 	newpage->mapping = page->mapping;
543 
544 	get_page(newpage);
545 
546 	xas_store(&xas, newpage);
547 
548 	page_ref_unfreeze(page, expected_count - 1);
549 
550 	xas_unlock_irq(&xas);
551 
552 	return MIGRATEPAGE_SUCCESS;
553 }
554 
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 				int nr_pages)
562 {
563 	int i;
564 	struct page *dst_base = dst;
565 	struct page *src_base = src;
566 
567 	for (i = 0; i < nr_pages; ) {
568 		cond_resched();
569 		copy_highpage(dst, src);
570 
571 		i++;
572 		dst = mem_map_next(dst, dst_base, i);
573 		src = mem_map_next(src, src_base, i);
574 	}
575 }
576 
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 	int i;
580 	int nr_pages;
581 
582 	if (PageHuge(src)) {
583 		/* hugetlbfs page */
584 		struct hstate *h = page_hstate(src);
585 		nr_pages = pages_per_huge_page(h);
586 
587 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 			__copy_gigantic_page(dst, src, nr_pages);
589 			return;
590 		}
591 	} else {
592 		/* thp page */
593 		BUG_ON(!PageTransHuge(src));
594 		nr_pages = hpage_nr_pages(src);
595 	}
596 
597 	for (i = 0; i < nr_pages; i++) {
598 		cond_resched();
599 		copy_highpage(dst + i, src + i);
600 	}
601 }
602 
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608 	int cpupid;
609 
610 	if (PageError(page))
611 		SetPageError(newpage);
612 	if (PageReferenced(page))
613 		SetPageReferenced(newpage);
614 	if (PageUptodate(page))
615 		SetPageUptodate(newpage);
616 	if (TestClearPageActive(page)) {
617 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 		SetPageActive(newpage);
619 	} else if (TestClearPageUnevictable(page))
620 		SetPageUnevictable(newpage);
621 	if (PageWorkingset(page))
622 		SetPageWorkingset(newpage);
623 	if (PageChecked(page))
624 		SetPageChecked(newpage);
625 	if (PageMappedToDisk(page))
626 		SetPageMappedToDisk(newpage);
627 
628 	/* Move dirty on pages not done by migrate_page_move_mapping() */
629 	if (PageDirty(page))
630 		SetPageDirty(newpage);
631 
632 	if (page_is_young(page))
633 		set_page_young(newpage);
634 	if (page_is_idle(page))
635 		set_page_idle(newpage);
636 
637 	/*
638 	 * Copy NUMA information to the new page, to prevent over-eager
639 	 * future migrations of this same page.
640 	 */
641 	cpupid = page_cpupid_xchg_last(page, -1);
642 	page_cpupid_xchg_last(newpage, cpupid);
643 
644 	ksm_migrate_page(newpage, page);
645 	/*
646 	 * Please do not reorder this without considering how mm/ksm.c's
647 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 	 */
649 	if (PageSwapCache(page))
650 		ClearPageSwapCache(page);
651 	ClearPagePrivate(page);
652 	set_page_private(page, 0);
653 
654 	/*
655 	 * If any waiters have accumulated on the new page then
656 	 * wake them up.
657 	 */
658 	if (PageWriteback(newpage))
659 		end_page_writeback(newpage);
660 
661 	/*
662 	 * PG_readahead shares the same bit with PG_reclaim.  The above
663 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 	 * bit after that.
665 	 */
666 	if (PageReadahead(page))
667 		SetPageReadahead(newpage);
668 
669 	copy_page_owner(page, newpage);
670 
671 	mem_cgroup_migrate(page, newpage);
672 }
673 EXPORT_SYMBOL(migrate_page_states);
674 
675 void migrate_page_copy(struct page *newpage, struct page *page)
676 {
677 	if (PageHuge(page) || PageTransHuge(page))
678 		copy_huge_page(newpage, page);
679 	else
680 		copy_highpage(newpage, page);
681 
682 	migrate_page_states(newpage, page);
683 }
684 EXPORT_SYMBOL(migrate_page_copy);
685 
686 /************************************************************
687  *                    Migration functions
688  ***********************************************************/
689 
690 /*
691  * Common logic to directly migrate a single LRU page suitable for
692  * pages that do not use PagePrivate/PagePrivate2.
693  *
694  * Pages are locked upon entry and exit.
695  */
696 int migrate_page(struct address_space *mapping,
697 		struct page *newpage, struct page *page,
698 		enum migrate_mode mode)
699 {
700 	int rc;
701 
702 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
703 
704 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
705 
706 	if (rc != MIGRATEPAGE_SUCCESS)
707 		return rc;
708 
709 	if (mode != MIGRATE_SYNC_NO_COPY)
710 		migrate_page_copy(newpage, page);
711 	else
712 		migrate_page_states(newpage, page);
713 	return MIGRATEPAGE_SUCCESS;
714 }
715 EXPORT_SYMBOL(migrate_page);
716 
717 #ifdef CONFIG_BLOCK
718 /* Returns true if all buffers are successfully locked */
719 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720 							enum migrate_mode mode)
721 {
722 	struct buffer_head *bh = head;
723 
724 	/* Simple case, sync compaction */
725 	if (mode != MIGRATE_ASYNC) {
726 		do {
727 			lock_buffer(bh);
728 			bh = bh->b_this_page;
729 
730 		} while (bh != head);
731 
732 		return true;
733 	}
734 
735 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
736 	do {
737 		if (!trylock_buffer(bh)) {
738 			/*
739 			 * We failed to lock the buffer and cannot stall in
740 			 * async migration. Release the taken locks
741 			 */
742 			struct buffer_head *failed_bh = bh;
743 			bh = head;
744 			while (bh != failed_bh) {
745 				unlock_buffer(bh);
746 				bh = bh->b_this_page;
747 			}
748 			return false;
749 		}
750 
751 		bh = bh->b_this_page;
752 	} while (bh != head);
753 	return true;
754 }
755 
756 static int __buffer_migrate_page(struct address_space *mapping,
757 		struct page *newpage, struct page *page, enum migrate_mode mode,
758 		bool check_refs)
759 {
760 	struct buffer_head *bh, *head;
761 	int rc;
762 	int expected_count;
763 
764 	if (!page_has_buffers(page))
765 		return migrate_page(mapping, newpage, page, mode);
766 
767 	/* Check whether page does not have extra refs before we do more work */
768 	expected_count = expected_page_refs(mapping, page);
769 	if (page_count(page) != expected_count)
770 		return -EAGAIN;
771 
772 	head = page_buffers(page);
773 	if (!buffer_migrate_lock_buffers(head, mode))
774 		return -EAGAIN;
775 
776 	if (check_refs) {
777 		bool busy;
778 		bool invalidated = false;
779 
780 recheck_buffers:
781 		busy = false;
782 		spin_lock(&mapping->private_lock);
783 		bh = head;
784 		do {
785 			if (atomic_read(&bh->b_count)) {
786 				busy = true;
787 				break;
788 			}
789 			bh = bh->b_this_page;
790 		} while (bh != head);
791 		if (busy) {
792 			if (invalidated) {
793 				rc = -EAGAIN;
794 				goto unlock_buffers;
795 			}
796 			spin_unlock(&mapping->private_lock);
797 			invalidate_bh_lrus();
798 			invalidated = true;
799 			goto recheck_buffers;
800 		}
801 	}
802 
803 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
804 	if (rc != MIGRATEPAGE_SUCCESS)
805 		goto unlock_buffers;
806 
807 	attach_page_private(newpage, detach_page_private(page));
808 
809 	bh = head;
810 	do {
811 		set_bh_page(bh, newpage, bh_offset(bh));
812 		bh = bh->b_this_page;
813 
814 	} while (bh != head);
815 
816 	if (mode != MIGRATE_SYNC_NO_COPY)
817 		migrate_page_copy(newpage, page);
818 	else
819 		migrate_page_states(newpage, page);
820 
821 	rc = MIGRATEPAGE_SUCCESS;
822 unlock_buffers:
823 	if (check_refs)
824 		spin_unlock(&mapping->private_lock);
825 	bh = head;
826 	do {
827 		unlock_buffer(bh);
828 		bh = bh->b_this_page;
829 
830 	} while (bh != head);
831 
832 	return rc;
833 }
834 
835 /*
836  * Migration function for pages with buffers. This function can only be used
837  * if the underlying filesystem guarantees that no other references to "page"
838  * exist. For example attached buffer heads are accessed only under page lock.
839  */
840 int buffer_migrate_page(struct address_space *mapping,
841 		struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
844 }
845 EXPORT_SYMBOL(buffer_migrate_page);
846 
847 /*
848  * Same as above except that this variant is more careful and checks that there
849  * are also no buffer head references. This function is the right one for
850  * mappings where buffer heads are directly looked up and referenced (such as
851  * block device mappings).
852  */
853 int buffer_migrate_page_norefs(struct address_space *mapping,
854 		struct page *newpage, struct page *page, enum migrate_mode mode)
855 {
856 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
857 }
858 #endif
859 
860 /*
861  * Writeback a page to clean the dirty state
862  */
863 static int writeout(struct address_space *mapping, struct page *page)
864 {
865 	struct writeback_control wbc = {
866 		.sync_mode = WB_SYNC_NONE,
867 		.nr_to_write = 1,
868 		.range_start = 0,
869 		.range_end = LLONG_MAX,
870 		.for_reclaim = 1
871 	};
872 	int rc;
873 
874 	if (!mapping->a_ops->writepage)
875 		/* No write method for the address space */
876 		return -EINVAL;
877 
878 	if (!clear_page_dirty_for_io(page))
879 		/* Someone else already triggered a write */
880 		return -EAGAIN;
881 
882 	/*
883 	 * A dirty page may imply that the underlying filesystem has
884 	 * the page on some queue. So the page must be clean for
885 	 * migration. Writeout may mean we loose the lock and the
886 	 * page state is no longer what we checked for earlier.
887 	 * At this point we know that the migration attempt cannot
888 	 * be successful.
889 	 */
890 	remove_migration_ptes(page, page, false);
891 
892 	rc = mapping->a_ops->writepage(page, &wbc);
893 
894 	if (rc != AOP_WRITEPAGE_ACTIVATE)
895 		/* unlocked. Relock */
896 		lock_page(page);
897 
898 	return (rc < 0) ? -EIO : -EAGAIN;
899 }
900 
901 /*
902  * Default handling if a filesystem does not provide a migration function.
903  */
904 static int fallback_migrate_page(struct address_space *mapping,
905 	struct page *newpage, struct page *page, enum migrate_mode mode)
906 {
907 	if (PageDirty(page)) {
908 		/* Only writeback pages in full synchronous migration */
909 		switch (mode) {
910 		case MIGRATE_SYNC:
911 		case MIGRATE_SYNC_NO_COPY:
912 			break;
913 		default:
914 			return -EBUSY;
915 		}
916 		return writeout(mapping, page);
917 	}
918 
919 	/*
920 	 * Buffers may be managed in a filesystem specific way.
921 	 * We must have no buffers or drop them.
922 	 */
923 	if (page_has_private(page) &&
924 	    !try_to_release_page(page, GFP_KERNEL))
925 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
926 
927 	return migrate_page(mapping, newpage, page, mode);
928 }
929 
930 /*
931  * Move a page to a newly allocated page
932  * The page is locked and all ptes have been successfully removed.
933  *
934  * The new page will have replaced the old page if this function
935  * is successful.
936  *
937  * Return value:
938  *   < 0 - error code
939  *  MIGRATEPAGE_SUCCESS - success
940  */
941 static int move_to_new_page(struct page *newpage, struct page *page,
942 				enum migrate_mode mode)
943 {
944 	struct address_space *mapping;
945 	int rc = -EAGAIN;
946 	bool is_lru = !__PageMovable(page);
947 
948 	VM_BUG_ON_PAGE(!PageLocked(page), page);
949 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
950 
951 	mapping = page_mapping(page);
952 
953 	if (likely(is_lru)) {
954 		if (!mapping)
955 			rc = migrate_page(mapping, newpage, page, mode);
956 		else if (mapping->a_ops->migratepage)
957 			/*
958 			 * Most pages have a mapping and most filesystems
959 			 * provide a migratepage callback. Anonymous pages
960 			 * are part of swap space which also has its own
961 			 * migratepage callback. This is the most common path
962 			 * for page migration.
963 			 */
964 			rc = mapping->a_ops->migratepage(mapping, newpage,
965 							page, mode);
966 		else
967 			rc = fallback_migrate_page(mapping, newpage,
968 							page, mode);
969 	} else {
970 		/*
971 		 * In case of non-lru page, it could be released after
972 		 * isolation step. In that case, we shouldn't try migration.
973 		 */
974 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
975 		if (!PageMovable(page)) {
976 			rc = MIGRATEPAGE_SUCCESS;
977 			__ClearPageIsolated(page);
978 			goto out;
979 		}
980 
981 		rc = mapping->a_ops->migratepage(mapping, newpage,
982 						page, mode);
983 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984 			!PageIsolated(page));
985 	}
986 
987 	/*
988 	 * When successful, old pagecache page->mapping must be cleared before
989 	 * page is freed; but stats require that PageAnon be left as PageAnon.
990 	 */
991 	if (rc == MIGRATEPAGE_SUCCESS) {
992 		if (__PageMovable(page)) {
993 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
994 
995 			/*
996 			 * We clear PG_movable under page_lock so any compactor
997 			 * cannot try to migrate this page.
998 			 */
999 			__ClearPageIsolated(page);
1000 		}
1001 
1002 		/*
1003 		 * Anonymous and movable page->mapping will be cleared by
1004 		 * free_pages_prepare so don't reset it here for keeping
1005 		 * the type to work PageAnon, for example.
1006 		 */
1007 		if (!PageMappingFlags(page))
1008 			page->mapping = NULL;
1009 
1010 		if (likely(!is_zone_device_page(newpage)))
1011 			flush_dcache_page(newpage);
1012 
1013 	}
1014 out:
1015 	return rc;
1016 }
1017 
1018 static int __unmap_and_move(struct page *page, struct page *newpage,
1019 				int force, enum migrate_mode mode)
1020 {
1021 	int rc = -EAGAIN;
1022 	int page_was_mapped = 0;
1023 	struct anon_vma *anon_vma = NULL;
1024 	bool is_lru = !__PageMovable(page);
1025 
1026 	if (!trylock_page(page)) {
1027 		if (!force || mode == MIGRATE_ASYNC)
1028 			goto out;
1029 
1030 		/*
1031 		 * It's not safe for direct compaction to call lock_page.
1032 		 * For example, during page readahead pages are added locked
1033 		 * to the LRU. Later, when the IO completes the pages are
1034 		 * marked uptodate and unlocked. However, the queueing
1035 		 * could be merging multiple pages for one bio (e.g.
1036 		 * mpage_readahead). If an allocation happens for the
1037 		 * second or third page, the process can end up locking
1038 		 * the same page twice and deadlocking. Rather than
1039 		 * trying to be clever about what pages can be locked,
1040 		 * avoid the use of lock_page for direct compaction
1041 		 * altogether.
1042 		 */
1043 		if (current->flags & PF_MEMALLOC)
1044 			goto out;
1045 
1046 		lock_page(page);
1047 	}
1048 
1049 	if (PageWriteback(page)) {
1050 		/*
1051 		 * Only in the case of a full synchronous migration is it
1052 		 * necessary to wait for PageWriteback. In the async case,
1053 		 * the retry loop is too short and in the sync-light case,
1054 		 * the overhead of stalling is too much
1055 		 */
1056 		switch (mode) {
1057 		case MIGRATE_SYNC:
1058 		case MIGRATE_SYNC_NO_COPY:
1059 			break;
1060 		default:
1061 			rc = -EBUSY;
1062 			goto out_unlock;
1063 		}
1064 		if (!force)
1065 			goto out_unlock;
1066 		wait_on_page_writeback(page);
1067 	}
1068 
1069 	/*
1070 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071 	 * we cannot notice that anon_vma is freed while we migrates a page.
1072 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1073 	 * of migration. File cache pages are no problem because of page_lock()
1074 	 * File Caches may use write_page() or lock_page() in migration, then,
1075 	 * just care Anon page here.
1076 	 *
1077 	 * Only page_get_anon_vma() understands the subtleties of
1078 	 * getting a hold on an anon_vma from outside one of its mms.
1079 	 * But if we cannot get anon_vma, then we won't need it anyway,
1080 	 * because that implies that the anon page is no longer mapped
1081 	 * (and cannot be remapped so long as we hold the page lock).
1082 	 */
1083 	if (PageAnon(page) && !PageKsm(page))
1084 		anon_vma = page_get_anon_vma(page);
1085 
1086 	/*
1087 	 * Block others from accessing the new page when we get around to
1088 	 * establishing additional references. We are usually the only one
1089 	 * holding a reference to newpage at this point. We used to have a BUG
1090 	 * here if trylock_page(newpage) fails, but would like to allow for
1091 	 * cases where there might be a race with the previous use of newpage.
1092 	 * This is much like races on refcount of oldpage: just don't BUG().
1093 	 */
1094 	if (unlikely(!trylock_page(newpage)))
1095 		goto out_unlock;
1096 
1097 	if (unlikely(!is_lru)) {
1098 		rc = move_to_new_page(newpage, page, mode);
1099 		goto out_unlock_both;
1100 	}
1101 
1102 	/*
1103 	 * Corner case handling:
1104 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1105 	 * and treated as swapcache but it has no rmap yet.
1106 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1107 	 * trigger a BUG.  So handle it here.
1108 	 * 2. An orphaned page (see truncate_complete_page) might have
1109 	 * fs-private metadata. The page can be picked up due to memory
1110 	 * offlining.  Everywhere else except page reclaim, the page is
1111 	 * invisible to the vm, so the page can not be migrated.  So try to
1112 	 * free the metadata, so the page can be freed.
1113 	 */
1114 	if (!page->mapping) {
1115 		VM_BUG_ON_PAGE(PageAnon(page), page);
1116 		if (page_has_private(page)) {
1117 			try_to_free_buffers(page);
1118 			goto out_unlock_both;
1119 		}
1120 	} else if (page_mapped(page)) {
1121 		/* Establish migration ptes */
1122 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123 				page);
1124 		try_to_unmap(page,
1125 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126 		page_was_mapped = 1;
1127 	}
1128 
1129 	if (!page_mapped(page))
1130 		rc = move_to_new_page(newpage, page, mode);
1131 
1132 	if (page_was_mapped)
1133 		remove_migration_ptes(page,
1134 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135 
1136 out_unlock_both:
1137 	unlock_page(newpage);
1138 out_unlock:
1139 	/* Drop an anon_vma reference if we took one */
1140 	if (anon_vma)
1141 		put_anon_vma(anon_vma);
1142 	unlock_page(page);
1143 out:
1144 	/*
1145 	 * If migration is successful, decrease refcount of the newpage
1146 	 * which will not free the page because new page owner increased
1147 	 * refcounter. As well, if it is LRU page, add the page to LRU
1148 	 * list in here. Use the old state of the isolated source page to
1149 	 * determine if we migrated a LRU page. newpage was already unlocked
1150 	 * and possibly modified by its owner - don't rely on the page
1151 	 * state.
1152 	 */
1153 	if (rc == MIGRATEPAGE_SUCCESS) {
1154 		if (unlikely(!is_lru))
1155 			put_page(newpage);
1156 		else
1157 			putback_lru_page(newpage);
1158 	}
1159 
1160 	return rc;
1161 }
1162 
1163 /*
1164  * Obtain the lock on page, remove all ptes and migrate the page
1165  * to the newly allocated page in newpage.
1166  */
1167 static int unmap_and_move(new_page_t get_new_page,
1168 				   free_page_t put_new_page,
1169 				   unsigned long private, struct page *page,
1170 				   int force, enum migrate_mode mode,
1171 				   enum migrate_reason reason)
1172 {
1173 	int rc = MIGRATEPAGE_SUCCESS;
1174 	struct page *newpage = NULL;
1175 
1176 	if (!thp_migration_supported() && PageTransHuge(page))
1177 		return -ENOMEM;
1178 
1179 	if (page_count(page) == 1) {
1180 		/* page was freed from under us. So we are done. */
1181 		ClearPageActive(page);
1182 		ClearPageUnevictable(page);
1183 		if (unlikely(__PageMovable(page))) {
1184 			lock_page(page);
1185 			if (!PageMovable(page))
1186 				__ClearPageIsolated(page);
1187 			unlock_page(page);
1188 		}
1189 		goto out;
1190 	}
1191 
1192 	newpage = get_new_page(page, private);
1193 	if (!newpage)
1194 		return -ENOMEM;
1195 
1196 	rc = __unmap_and_move(page, newpage, force, mode);
1197 	if (rc == MIGRATEPAGE_SUCCESS)
1198 		set_page_owner_migrate_reason(newpage, reason);
1199 
1200 out:
1201 	if (rc != -EAGAIN) {
1202 		/*
1203 		 * A page that has been migrated has all references
1204 		 * removed and will be freed. A page that has not been
1205 		 * migrated will have kept its references and be restored.
1206 		 */
1207 		list_del(&page->lru);
1208 
1209 		/*
1210 		 * Compaction can migrate also non-LRU pages which are
1211 		 * not accounted to NR_ISOLATED_*. They can be recognized
1212 		 * as __PageMovable
1213 		 */
1214 		if (likely(!__PageMovable(page)))
1215 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216 					page_is_file_lru(page), -hpage_nr_pages(page));
1217 	}
1218 
1219 	/*
1220 	 * If migration is successful, releases reference grabbed during
1221 	 * isolation. Otherwise, restore the page to right list unless
1222 	 * we want to retry.
1223 	 */
1224 	if (rc == MIGRATEPAGE_SUCCESS) {
1225 		put_page(page);
1226 		if (reason == MR_MEMORY_FAILURE) {
1227 			/*
1228 			 * Set PG_HWPoison on just freed page
1229 			 * intentionally. Although it's rather weird,
1230 			 * it's how HWPoison flag works at the moment.
1231 			 */
1232 			if (set_hwpoison_free_buddy_page(page))
1233 				num_poisoned_pages_inc();
1234 		}
1235 	} else {
1236 		if (rc != -EAGAIN) {
1237 			if (likely(!__PageMovable(page))) {
1238 				putback_lru_page(page);
1239 				goto put_new;
1240 			}
1241 
1242 			lock_page(page);
1243 			if (PageMovable(page))
1244 				putback_movable_page(page);
1245 			else
1246 				__ClearPageIsolated(page);
1247 			unlock_page(page);
1248 			put_page(page);
1249 		}
1250 put_new:
1251 		if (put_new_page)
1252 			put_new_page(newpage, private);
1253 		else
1254 			put_page(newpage);
1255 	}
1256 
1257 	return rc;
1258 }
1259 
1260 /*
1261  * Counterpart of unmap_and_move_page() for hugepage migration.
1262  *
1263  * This function doesn't wait the completion of hugepage I/O
1264  * because there is no race between I/O and migration for hugepage.
1265  * Note that currently hugepage I/O occurs only in direct I/O
1266  * where no lock is held and PG_writeback is irrelevant,
1267  * and writeback status of all subpages are counted in the reference
1268  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269  * under direct I/O, the reference of the head page is 512 and a bit more.)
1270  * This means that when we try to migrate hugepage whose subpages are
1271  * doing direct I/O, some references remain after try_to_unmap() and
1272  * hugepage migration fails without data corruption.
1273  *
1274  * There is also no race when direct I/O is issued on the page under migration,
1275  * because then pte is replaced with migration swap entry and direct I/O code
1276  * will wait in the page fault for migration to complete.
1277  */
1278 static int unmap_and_move_huge_page(new_page_t get_new_page,
1279 				free_page_t put_new_page, unsigned long private,
1280 				struct page *hpage, int force,
1281 				enum migrate_mode mode, int reason)
1282 {
1283 	int rc = -EAGAIN;
1284 	int page_was_mapped = 0;
1285 	struct page *new_hpage;
1286 	struct anon_vma *anon_vma = NULL;
1287 	struct address_space *mapping = NULL;
1288 
1289 	/*
1290 	 * Migratability of hugepages depends on architectures and their size.
1291 	 * This check is necessary because some callers of hugepage migration
1292 	 * like soft offline and memory hotremove don't walk through page
1293 	 * tables or check whether the hugepage is pmd-based or not before
1294 	 * kicking migration.
1295 	 */
1296 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 		putback_active_hugepage(hpage);
1298 		return -ENOSYS;
1299 	}
1300 
1301 	new_hpage = get_new_page(hpage, private);
1302 	if (!new_hpage)
1303 		return -ENOMEM;
1304 
1305 	if (!trylock_page(hpage)) {
1306 		if (!force)
1307 			goto out;
1308 		switch (mode) {
1309 		case MIGRATE_SYNC:
1310 		case MIGRATE_SYNC_NO_COPY:
1311 			break;
1312 		default:
1313 			goto out;
1314 		}
1315 		lock_page(hpage);
1316 	}
1317 
1318 	/*
1319 	 * Check for pages which are in the process of being freed.  Without
1320 	 * page_mapping() set, hugetlbfs specific move page routine will not
1321 	 * be called and we could leak usage counts for subpools.
1322 	 */
1323 	if (page_private(hpage) && !page_mapping(hpage)) {
1324 		rc = -EBUSY;
1325 		goto out_unlock;
1326 	}
1327 
1328 	if (PageAnon(hpage))
1329 		anon_vma = page_get_anon_vma(hpage);
1330 
1331 	if (unlikely(!trylock_page(new_hpage)))
1332 		goto put_anon;
1333 
1334 	if (page_mapped(hpage)) {
1335 		/*
1336 		 * try_to_unmap could potentially call huge_pmd_unshare.
1337 		 * Because of this, take semaphore in write mode here and
1338 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1339 		 * taken the lock.
1340 		 */
1341 		mapping = hugetlb_page_mapping_lock_write(hpage);
1342 		if (unlikely(!mapping))
1343 			goto unlock_put_anon;
1344 
1345 		try_to_unmap(hpage,
1346 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347 			TTU_RMAP_LOCKED);
1348 		page_was_mapped = 1;
1349 		/*
1350 		 * Leave mapping locked until after subsequent call to
1351 		 * remove_migration_ptes()
1352 		 */
1353 	}
1354 
1355 	if (!page_mapped(hpage))
1356 		rc = move_to_new_page(new_hpage, hpage, mode);
1357 
1358 	if (page_was_mapped) {
1359 		remove_migration_ptes(hpage,
1360 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361 		i_mmap_unlock_write(mapping);
1362 	}
1363 
1364 unlock_put_anon:
1365 	unlock_page(new_hpage);
1366 
1367 put_anon:
1368 	if (anon_vma)
1369 		put_anon_vma(anon_vma);
1370 
1371 	if (rc == MIGRATEPAGE_SUCCESS) {
1372 		move_hugetlb_state(hpage, new_hpage, reason);
1373 		put_new_page = NULL;
1374 	}
1375 
1376 out_unlock:
1377 	unlock_page(hpage);
1378 out:
1379 	if (rc != -EAGAIN)
1380 		putback_active_hugepage(hpage);
1381 
1382 	/*
1383 	 * If migration was not successful and there's a freeing callback, use
1384 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1385 	 * isolation.
1386 	 */
1387 	if (put_new_page)
1388 		put_new_page(new_hpage, private);
1389 	else
1390 		putback_active_hugepage(new_hpage);
1391 
1392 	return rc;
1393 }
1394 
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *		   supplied as the target for the page migration
1398  *
1399  * @from:		The list of pages to be migrated.
1400  * @get_new_page:	The function used to allocate free pages to be used
1401  *			as the target of the page migration.
1402  * @put_new_page:	The function used to free target pages if migration
1403  *			fails, or NULL if no special handling is necessary.
1404  * @private:		Private data to be passed on to get_new_page()
1405  * @mode:		The migration mode that specifies the constraints for
1406  *			page migration, if any.
1407  * @reason:		The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * The caller should call putback_movable_pages() to return pages to the LRU
1412  * or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 		free_page_t put_new_page, unsigned long private,
1418 		enum migrate_mode mode, int reason)
1419 {
1420 	int retry = 1;
1421 	int thp_retry = 1;
1422 	int nr_failed = 0;
1423 	int nr_succeeded = 0;
1424 	int nr_thp_succeeded = 0;
1425 	int nr_thp_failed = 0;
1426 	int nr_thp_split = 0;
1427 	int pass = 0;
1428 	bool is_thp = false;
1429 	struct page *page;
1430 	struct page *page2;
1431 	int swapwrite = current->flags & PF_SWAPWRITE;
1432 	int rc, nr_subpages;
1433 
1434 	if (!swapwrite)
1435 		current->flags |= PF_SWAPWRITE;
1436 
1437 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1438 		retry = 0;
1439 		thp_retry = 0;
1440 
1441 		list_for_each_entry_safe(page, page2, from, lru) {
1442 retry:
1443 			/*
1444 			 * THP statistics is based on the source huge page.
1445 			 * Capture required information that might get lost
1446 			 * during migration.
1447 			 */
1448 			is_thp = PageTransHuge(page);
1449 			nr_subpages = hpage_nr_pages(page);
1450 			cond_resched();
1451 
1452 			if (PageHuge(page))
1453 				rc = unmap_and_move_huge_page(get_new_page,
1454 						put_new_page, private, page,
1455 						pass > 2, mode, reason);
1456 			else
1457 				rc = unmap_and_move(get_new_page, put_new_page,
1458 						private, page, pass > 2, mode,
1459 						reason);
1460 
1461 			switch(rc) {
1462 			case -ENOMEM:
1463 				/*
1464 				 * THP migration might be unsupported or the
1465 				 * allocation could've failed so we should
1466 				 * retry on the same page with the THP split
1467 				 * to base pages.
1468 				 *
1469 				 * Head page is retried immediately and tail
1470 				 * pages are added to the tail of the list so
1471 				 * we encounter them after the rest of the list
1472 				 * is processed.
1473 				 */
1474 				if (PageTransHuge(page) && !PageHuge(page)) {
1475 					lock_page(page);
1476 					rc = split_huge_page_to_list(page, from);
1477 					unlock_page(page);
1478 					if (!rc) {
1479 						list_safe_reset_next(page, page2, lru);
1480 						nr_thp_split++;
1481 						goto retry;
1482 					}
1483 				}
1484 				if (is_thp) {
1485 					nr_thp_failed++;
1486 					nr_failed += nr_subpages;
1487 					goto out;
1488 				}
1489 				nr_failed++;
1490 				goto out;
1491 			case -EAGAIN:
1492 				if (is_thp) {
1493 					thp_retry++;
1494 					break;
1495 				}
1496 				retry++;
1497 				break;
1498 			case MIGRATEPAGE_SUCCESS:
1499 				if (is_thp) {
1500 					nr_thp_succeeded++;
1501 					nr_succeeded += nr_subpages;
1502 					break;
1503 				}
1504 				nr_succeeded++;
1505 				break;
1506 			default:
1507 				/*
1508 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1509 				 * unlike -EAGAIN case, the failed page is
1510 				 * removed from migration page list and not
1511 				 * retried in the next outer loop.
1512 				 */
1513 				if (is_thp) {
1514 					nr_thp_failed++;
1515 					nr_failed += nr_subpages;
1516 					break;
1517 				}
1518 				nr_failed++;
1519 				break;
1520 			}
1521 		}
1522 	}
1523 	nr_failed += retry + thp_retry;
1524 	nr_thp_failed += thp_retry;
1525 	rc = nr_failed;
1526 out:
1527 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1528 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1529 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1530 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1531 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1532 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1533 			       nr_thp_failed, nr_thp_split, mode, reason);
1534 
1535 	if (!swapwrite)
1536 		current->flags &= ~PF_SWAPWRITE;
1537 
1538 	return rc;
1539 }
1540 
1541 #ifdef CONFIG_NUMA
1542 
1543 static int store_status(int __user *status, int start, int value, int nr)
1544 {
1545 	while (nr-- > 0) {
1546 		if (put_user(value, status + start))
1547 			return -EFAULT;
1548 		start++;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int do_move_pages_to_node(struct mm_struct *mm,
1555 		struct list_head *pagelist, int node)
1556 {
1557 	int err;
1558 
1559 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1560 			MIGRATE_SYNC, MR_SYSCALL);
1561 	if (err)
1562 		putback_movable_pages(pagelist);
1563 	return err;
1564 }
1565 
1566 /*
1567  * Resolves the given address to a struct page, isolates it from the LRU and
1568  * puts it to the given pagelist.
1569  * Returns:
1570  *     errno - if the page cannot be found/isolated
1571  *     0 - when it doesn't have to be migrated because it is already on the
1572  *         target node
1573  *     1 - when it has been queued
1574  */
1575 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1576 		int node, struct list_head *pagelist, bool migrate_all)
1577 {
1578 	struct vm_area_struct *vma;
1579 	struct page *page;
1580 	unsigned int follflags;
1581 	int err;
1582 
1583 	mmap_read_lock(mm);
1584 	err = -EFAULT;
1585 	vma = find_vma(mm, addr);
1586 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1587 		goto out;
1588 
1589 	/* FOLL_DUMP to ignore special (like zero) pages */
1590 	follflags = FOLL_GET | FOLL_DUMP;
1591 	page = follow_page(vma, addr, follflags);
1592 
1593 	err = PTR_ERR(page);
1594 	if (IS_ERR(page))
1595 		goto out;
1596 
1597 	err = -ENOENT;
1598 	if (!page)
1599 		goto out;
1600 
1601 	err = 0;
1602 	if (page_to_nid(page) == node)
1603 		goto out_putpage;
1604 
1605 	err = -EACCES;
1606 	if (page_mapcount(page) > 1 && !migrate_all)
1607 		goto out_putpage;
1608 
1609 	if (PageHuge(page)) {
1610 		if (PageHead(page)) {
1611 			isolate_huge_page(page, pagelist);
1612 			err = 1;
1613 		}
1614 	} else {
1615 		struct page *head;
1616 
1617 		head = compound_head(page);
1618 		err = isolate_lru_page(head);
1619 		if (err)
1620 			goto out_putpage;
1621 
1622 		err = 1;
1623 		list_add_tail(&head->lru, pagelist);
1624 		mod_node_page_state(page_pgdat(head),
1625 			NR_ISOLATED_ANON + page_is_file_lru(head),
1626 			hpage_nr_pages(head));
1627 	}
1628 out_putpage:
1629 	/*
1630 	 * Either remove the duplicate refcount from
1631 	 * isolate_lru_page() or drop the page ref if it was
1632 	 * not isolated.
1633 	 */
1634 	put_page(page);
1635 out:
1636 	mmap_read_unlock(mm);
1637 	return err;
1638 }
1639 
1640 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1641 		struct list_head *pagelist, int __user *status,
1642 		int start, int i, unsigned long nr_pages)
1643 {
1644 	int err;
1645 
1646 	if (list_empty(pagelist))
1647 		return 0;
1648 
1649 	err = do_move_pages_to_node(mm, pagelist, node);
1650 	if (err) {
1651 		/*
1652 		 * Positive err means the number of failed
1653 		 * pages to migrate.  Since we are going to
1654 		 * abort and return the number of non-migrated
1655 		 * pages, so need to incude the rest of the
1656 		 * nr_pages that have not been attempted as
1657 		 * well.
1658 		 */
1659 		if (err > 0)
1660 			err += nr_pages - i - 1;
1661 		return err;
1662 	}
1663 	return store_status(status, start, node, i - start);
1664 }
1665 
1666 /*
1667  * Migrate an array of page address onto an array of nodes and fill
1668  * the corresponding array of status.
1669  */
1670 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1671 			 unsigned long nr_pages,
1672 			 const void __user * __user *pages,
1673 			 const int __user *nodes,
1674 			 int __user *status, int flags)
1675 {
1676 	int current_node = NUMA_NO_NODE;
1677 	LIST_HEAD(pagelist);
1678 	int start, i;
1679 	int err = 0, err1;
1680 
1681 	migrate_prep();
1682 
1683 	for (i = start = 0; i < nr_pages; i++) {
1684 		const void __user *p;
1685 		unsigned long addr;
1686 		int node;
1687 
1688 		err = -EFAULT;
1689 		if (get_user(p, pages + i))
1690 			goto out_flush;
1691 		if (get_user(node, nodes + i))
1692 			goto out_flush;
1693 		addr = (unsigned long)untagged_addr(p);
1694 
1695 		err = -ENODEV;
1696 		if (node < 0 || node >= MAX_NUMNODES)
1697 			goto out_flush;
1698 		if (!node_state(node, N_MEMORY))
1699 			goto out_flush;
1700 
1701 		err = -EACCES;
1702 		if (!node_isset(node, task_nodes))
1703 			goto out_flush;
1704 
1705 		if (current_node == NUMA_NO_NODE) {
1706 			current_node = node;
1707 			start = i;
1708 		} else if (node != current_node) {
1709 			err = move_pages_and_store_status(mm, current_node,
1710 					&pagelist, status, start, i, nr_pages);
1711 			if (err)
1712 				goto out;
1713 			start = i;
1714 			current_node = node;
1715 		}
1716 
1717 		/*
1718 		 * Errors in the page lookup or isolation are not fatal and we simply
1719 		 * report them via status
1720 		 */
1721 		err = add_page_for_migration(mm, addr, current_node,
1722 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1723 
1724 		if (err > 0) {
1725 			/* The page is successfully queued for migration */
1726 			continue;
1727 		}
1728 
1729 		/*
1730 		 * If the page is already on the target node (!err), store the
1731 		 * node, otherwise, store the err.
1732 		 */
1733 		err = store_status(status, i, err ? : current_node, 1);
1734 		if (err)
1735 			goto out_flush;
1736 
1737 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1738 				status, start, i, nr_pages);
1739 		if (err)
1740 			goto out;
1741 		current_node = NUMA_NO_NODE;
1742 	}
1743 out_flush:
1744 	/* Make sure we do not overwrite the existing error */
1745 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1746 				status, start, i, nr_pages);
1747 	if (err >= 0)
1748 		err = err1;
1749 out:
1750 	return err;
1751 }
1752 
1753 /*
1754  * Determine the nodes of an array of pages and store it in an array of status.
1755  */
1756 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1757 				const void __user **pages, int *status)
1758 {
1759 	unsigned long i;
1760 
1761 	mmap_read_lock(mm);
1762 
1763 	for (i = 0; i < nr_pages; i++) {
1764 		unsigned long addr = (unsigned long)(*pages);
1765 		struct vm_area_struct *vma;
1766 		struct page *page;
1767 		int err = -EFAULT;
1768 
1769 		vma = find_vma(mm, addr);
1770 		if (!vma || addr < vma->vm_start)
1771 			goto set_status;
1772 
1773 		/* FOLL_DUMP to ignore special (like zero) pages */
1774 		page = follow_page(vma, addr, FOLL_DUMP);
1775 
1776 		err = PTR_ERR(page);
1777 		if (IS_ERR(page))
1778 			goto set_status;
1779 
1780 		err = page ? page_to_nid(page) : -ENOENT;
1781 set_status:
1782 		*status = err;
1783 
1784 		pages++;
1785 		status++;
1786 	}
1787 
1788 	mmap_read_unlock(mm);
1789 }
1790 
1791 /*
1792  * Determine the nodes of a user array of pages and store it in
1793  * a user array of status.
1794  */
1795 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1796 			 const void __user * __user *pages,
1797 			 int __user *status)
1798 {
1799 #define DO_PAGES_STAT_CHUNK_NR 16
1800 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1801 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1802 
1803 	while (nr_pages) {
1804 		unsigned long chunk_nr;
1805 
1806 		chunk_nr = nr_pages;
1807 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1808 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1809 
1810 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1811 			break;
1812 
1813 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1814 
1815 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1816 			break;
1817 
1818 		pages += chunk_nr;
1819 		status += chunk_nr;
1820 		nr_pages -= chunk_nr;
1821 	}
1822 	return nr_pages ? -EFAULT : 0;
1823 }
1824 
1825 /*
1826  * Move a list of pages in the address space of the currently executing
1827  * process.
1828  */
1829 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1830 			     const void __user * __user *pages,
1831 			     const int __user *nodes,
1832 			     int __user *status, int flags)
1833 {
1834 	struct task_struct *task;
1835 	struct mm_struct *mm;
1836 	int err;
1837 	nodemask_t task_nodes;
1838 
1839 	/* Check flags */
1840 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1841 		return -EINVAL;
1842 
1843 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1844 		return -EPERM;
1845 
1846 	/* Find the mm_struct */
1847 	rcu_read_lock();
1848 	task = pid ? find_task_by_vpid(pid) : current;
1849 	if (!task) {
1850 		rcu_read_unlock();
1851 		return -ESRCH;
1852 	}
1853 	get_task_struct(task);
1854 
1855 	/*
1856 	 * Check if this process has the right to modify the specified
1857 	 * process. Use the regular "ptrace_may_access()" checks.
1858 	 */
1859 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1860 		rcu_read_unlock();
1861 		err = -EPERM;
1862 		goto out;
1863 	}
1864 	rcu_read_unlock();
1865 
1866  	err = security_task_movememory(task);
1867  	if (err)
1868 		goto out;
1869 
1870 	task_nodes = cpuset_mems_allowed(task);
1871 	mm = get_task_mm(task);
1872 	put_task_struct(task);
1873 
1874 	if (!mm)
1875 		return -EINVAL;
1876 
1877 	if (nodes)
1878 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1879 				    nodes, status, flags);
1880 	else
1881 		err = do_pages_stat(mm, nr_pages, pages, status);
1882 
1883 	mmput(mm);
1884 	return err;
1885 
1886 out:
1887 	put_task_struct(task);
1888 	return err;
1889 }
1890 
1891 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1892 		const void __user * __user *, pages,
1893 		const int __user *, nodes,
1894 		int __user *, status, int, flags)
1895 {
1896 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1897 }
1898 
1899 #ifdef CONFIG_COMPAT
1900 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1901 		       compat_uptr_t __user *, pages32,
1902 		       const int __user *, nodes,
1903 		       int __user *, status,
1904 		       int, flags)
1905 {
1906 	const void __user * __user *pages;
1907 	int i;
1908 
1909 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1910 	for (i = 0; i < nr_pages; i++) {
1911 		compat_uptr_t p;
1912 
1913 		if (get_user(p, pages32 + i) ||
1914 			put_user(compat_ptr(p), pages + i))
1915 			return -EFAULT;
1916 	}
1917 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1918 }
1919 #endif /* CONFIG_COMPAT */
1920 
1921 #ifdef CONFIG_NUMA_BALANCING
1922 /*
1923  * Returns true if this is a safe migration target node for misplaced NUMA
1924  * pages. Currently it only checks the watermarks which crude
1925  */
1926 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1927 				   unsigned long nr_migrate_pages)
1928 {
1929 	int z;
1930 
1931 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1932 		struct zone *zone = pgdat->node_zones + z;
1933 
1934 		if (!populated_zone(zone))
1935 			continue;
1936 
1937 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1938 		if (!zone_watermark_ok(zone, 0,
1939 				       high_wmark_pages(zone) +
1940 				       nr_migrate_pages,
1941 				       ZONE_MOVABLE, 0))
1942 			continue;
1943 		return true;
1944 	}
1945 	return false;
1946 }
1947 
1948 static struct page *alloc_misplaced_dst_page(struct page *page,
1949 					   unsigned long data)
1950 {
1951 	int nid = (int) data;
1952 	struct page *newpage;
1953 
1954 	newpage = __alloc_pages_node(nid,
1955 					 (GFP_HIGHUSER_MOVABLE |
1956 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1957 					  __GFP_NORETRY | __GFP_NOWARN) &
1958 					 ~__GFP_RECLAIM, 0);
1959 
1960 	return newpage;
1961 }
1962 
1963 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1964 {
1965 	int page_lru;
1966 
1967 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1968 
1969 	/* Avoid migrating to a node that is nearly full */
1970 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1971 		return 0;
1972 
1973 	if (isolate_lru_page(page))
1974 		return 0;
1975 
1976 	/*
1977 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1978 	 * check on page_count(), so we must do it here, now that the page
1979 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1980 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1981 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1982 	 */
1983 	if (PageTransHuge(page) && page_count(page) != 3) {
1984 		putback_lru_page(page);
1985 		return 0;
1986 	}
1987 
1988 	page_lru = page_is_file_lru(page);
1989 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1990 				hpage_nr_pages(page));
1991 
1992 	/*
1993 	 * Isolating the page has taken another reference, so the
1994 	 * caller's reference can be safely dropped without the page
1995 	 * disappearing underneath us during migration.
1996 	 */
1997 	put_page(page);
1998 	return 1;
1999 }
2000 
2001 bool pmd_trans_migrating(pmd_t pmd)
2002 {
2003 	struct page *page = pmd_page(pmd);
2004 	return PageLocked(page);
2005 }
2006 
2007 /*
2008  * Attempt to migrate a misplaced page to the specified destination
2009  * node. Caller is expected to have an elevated reference count on
2010  * the page that will be dropped by this function before returning.
2011  */
2012 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2013 			   int node)
2014 {
2015 	pg_data_t *pgdat = NODE_DATA(node);
2016 	int isolated;
2017 	int nr_remaining;
2018 	LIST_HEAD(migratepages);
2019 
2020 	/*
2021 	 * Don't migrate file pages that are mapped in multiple processes
2022 	 * with execute permissions as they are probably shared libraries.
2023 	 */
2024 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2025 	    (vma->vm_flags & VM_EXEC))
2026 		goto out;
2027 
2028 	/*
2029 	 * Also do not migrate dirty pages as not all filesystems can move
2030 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2031 	 */
2032 	if (page_is_file_lru(page) && PageDirty(page))
2033 		goto out;
2034 
2035 	isolated = numamigrate_isolate_page(pgdat, page);
2036 	if (!isolated)
2037 		goto out;
2038 
2039 	list_add(&page->lru, &migratepages);
2040 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2041 				     NULL, node, MIGRATE_ASYNC,
2042 				     MR_NUMA_MISPLACED);
2043 	if (nr_remaining) {
2044 		if (!list_empty(&migratepages)) {
2045 			list_del(&page->lru);
2046 			dec_node_page_state(page, NR_ISOLATED_ANON +
2047 					page_is_file_lru(page));
2048 			putback_lru_page(page);
2049 		}
2050 		isolated = 0;
2051 	} else
2052 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2053 	BUG_ON(!list_empty(&migratepages));
2054 	return isolated;
2055 
2056 out:
2057 	put_page(page);
2058 	return 0;
2059 }
2060 #endif /* CONFIG_NUMA_BALANCING */
2061 
2062 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2063 /*
2064  * Migrates a THP to a given target node. page must be locked and is unlocked
2065  * before returning.
2066  */
2067 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2068 				struct vm_area_struct *vma,
2069 				pmd_t *pmd, pmd_t entry,
2070 				unsigned long address,
2071 				struct page *page, int node)
2072 {
2073 	spinlock_t *ptl;
2074 	pg_data_t *pgdat = NODE_DATA(node);
2075 	int isolated = 0;
2076 	struct page *new_page = NULL;
2077 	int page_lru = page_is_file_lru(page);
2078 	unsigned long start = address & HPAGE_PMD_MASK;
2079 
2080 	new_page = alloc_pages_node(node,
2081 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2082 		HPAGE_PMD_ORDER);
2083 	if (!new_page)
2084 		goto out_fail;
2085 	prep_transhuge_page(new_page);
2086 
2087 	isolated = numamigrate_isolate_page(pgdat, page);
2088 	if (!isolated) {
2089 		put_page(new_page);
2090 		goto out_fail;
2091 	}
2092 
2093 	/* Prepare a page as a migration target */
2094 	__SetPageLocked(new_page);
2095 	if (PageSwapBacked(page))
2096 		__SetPageSwapBacked(new_page);
2097 
2098 	/* anon mapping, we can simply copy page->mapping to the new page: */
2099 	new_page->mapping = page->mapping;
2100 	new_page->index = page->index;
2101 	/* flush the cache before copying using the kernel virtual address */
2102 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2103 	migrate_page_copy(new_page, page);
2104 	WARN_ON(PageLRU(new_page));
2105 
2106 	/* Recheck the target PMD */
2107 	ptl = pmd_lock(mm, pmd);
2108 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2109 		spin_unlock(ptl);
2110 
2111 		/* Reverse changes made by migrate_page_copy() */
2112 		if (TestClearPageActive(new_page))
2113 			SetPageActive(page);
2114 		if (TestClearPageUnevictable(new_page))
2115 			SetPageUnevictable(page);
2116 
2117 		unlock_page(new_page);
2118 		put_page(new_page);		/* Free it */
2119 
2120 		/* Retake the callers reference and putback on LRU */
2121 		get_page(page);
2122 		putback_lru_page(page);
2123 		mod_node_page_state(page_pgdat(page),
2124 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2125 
2126 		goto out_unlock;
2127 	}
2128 
2129 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2130 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2131 
2132 	/*
2133 	 * Overwrite the old entry under pagetable lock and establish
2134 	 * the new PTE. Any parallel GUP will either observe the old
2135 	 * page blocking on the page lock, block on the page table
2136 	 * lock or observe the new page. The SetPageUptodate on the
2137 	 * new page and page_add_new_anon_rmap guarantee the copy is
2138 	 * visible before the pagetable update.
2139 	 */
2140 	page_add_anon_rmap(new_page, vma, start, true);
2141 	/*
2142 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2143 	 * has already been flushed globally.  So no TLB can be currently
2144 	 * caching this non present pmd mapping.  There's no need to clear the
2145 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2146 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2147 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2148 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2149 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2150 	 * pmd.
2151 	 */
2152 	set_pmd_at(mm, start, pmd, entry);
2153 	update_mmu_cache_pmd(vma, address, &entry);
2154 
2155 	page_ref_unfreeze(page, 2);
2156 	mlock_migrate_page(new_page, page);
2157 	page_remove_rmap(page, true);
2158 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2159 
2160 	spin_unlock(ptl);
2161 
2162 	/* Take an "isolate" reference and put new page on the LRU. */
2163 	get_page(new_page);
2164 	putback_lru_page(new_page);
2165 
2166 	unlock_page(new_page);
2167 	unlock_page(page);
2168 	put_page(page);			/* Drop the rmap reference */
2169 	put_page(page);			/* Drop the LRU isolation reference */
2170 
2171 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2172 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2173 
2174 	mod_node_page_state(page_pgdat(page),
2175 			NR_ISOLATED_ANON + page_lru,
2176 			-HPAGE_PMD_NR);
2177 	return isolated;
2178 
2179 out_fail:
2180 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2181 	ptl = pmd_lock(mm, pmd);
2182 	if (pmd_same(*pmd, entry)) {
2183 		entry = pmd_modify(entry, vma->vm_page_prot);
2184 		set_pmd_at(mm, start, pmd, entry);
2185 		update_mmu_cache_pmd(vma, address, &entry);
2186 	}
2187 	spin_unlock(ptl);
2188 
2189 out_unlock:
2190 	unlock_page(page);
2191 	put_page(page);
2192 	return 0;
2193 }
2194 #endif /* CONFIG_NUMA_BALANCING */
2195 
2196 #endif /* CONFIG_NUMA */
2197 
2198 #ifdef CONFIG_DEVICE_PRIVATE
2199 static int migrate_vma_collect_hole(unsigned long start,
2200 				    unsigned long end,
2201 				    __always_unused int depth,
2202 				    struct mm_walk *walk)
2203 {
2204 	struct migrate_vma *migrate = walk->private;
2205 	unsigned long addr;
2206 
2207 	/* Only allow populating anonymous memory. */
2208 	if (!vma_is_anonymous(walk->vma)) {
2209 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2210 			migrate->src[migrate->npages] = 0;
2211 			migrate->dst[migrate->npages] = 0;
2212 			migrate->npages++;
2213 		}
2214 		return 0;
2215 	}
2216 
2217 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2218 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2219 		migrate->dst[migrate->npages] = 0;
2220 		migrate->npages++;
2221 		migrate->cpages++;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
2227 static int migrate_vma_collect_skip(unsigned long start,
2228 				    unsigned long end,
2229 				    struct mm_walk *walk)
2230 {
2231 	struct migrate_vma *migrate = walk->private;
2232 	unsigned long addr;
2233 
2234 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2235 		migrate->dst[migrate->npages] = 0;
2236 		migrate->src[migrate->npages++] = 0;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2243 				   unsigned long start,
2244 				   unsigned long end,
2245 				   struct mm_walk *walk)
2246 {
2247 	struct migrate_vma *migrate = walk->private;
2248 	struct vm_area_struct *vma = walk->vma;
2249 	struct mm_struct *mm = vma->vm_mm;
2250 	unsigned long addr = start, unmapped = 0;
2251 	spinlock_t *ptl;
2252 	pte_t *ptep;
2253 
2254 again:
2255 	if (pmd_none(*pmdp))
2256 		return migrate_vma_collect_hole(start, end, -1, walk);
2257 
2258 	if (pmd_trans_huge(*pmdp)) {
2259 		struct page *page;
2260 
2261 		ptl = pmd_lock(mm, pmdp);
2262 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2263 			spin_unlock(ptl);
2264 			goto again;
2265 		}
2266 
2267 		page = pmd_page(*pmdp);
2268 		if (is_huge_zero_page(page)) {
2269 			spin_unlock(ptl);
2270 			split_huge_pmd(vma, pmdp, addr);
2271 			if (pmd_trans_unstable(pmdp))
2272 				return migrate_vma_collect_skip(start, end,
2273 								walk);
2274 		} else {
2275 			int ret;
2276 
2277 			get_page(page);
2278 			spin_unlock(ptl);
2279 			if (unlikely(!trylock_page(page)))
2280 				return migrate_vma_collect_skip(start, end,
2281 								walk);
2282 			ret = split_huge_page(page);
2283 			unlock_page(page);
2284 			put_page(page);
2285 			if (ret)
2286 				return migrate_vma_collect_skip(start, end,
2287 								walk);
2288 			if (pmd_none(*pmdp))
2289 				return migrate_vma_collect_hole(start, end, -1,
2290 								walk);
2291 		}
2292 	}
2293 
2294 	if (unlikely(pmd_bad(*pmdp)))
2295 		return migrate_vma_collect_skip(start, end, walk);
2296 
2297 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2298 	arch_enter_lazy_mmu_mode();
2299 
2300 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2301 		unsigned long mpfn = 0, pfn;
2302 		struct page *page;
2303 		swp_entry_t entry;
2304 		pte_t pte;
2305 
2306 		pte = *ptep;
2307 
2308 		if (pte_none(pte)) {
2309 			if (vma_is_anonymous(vma)) {
2310 				mpfn = MIGRATE_PFN_MIGRATE;
2311 				migrate->cpages++;
2312 			}
2313 			goto next;
2314 		}
2315 
2316 		if (!pte_present(pte)) {
2317 			/*
2318 			 * Only care about unaddressable device page special
2319 			 * page table entry. Other special swap entries are not
2320 			 * migratable, and we ignore regular swapped page.
2321 			 */
2322 			entry = pte_to_swp_entry(pte);
2323 			if (!is_device_private_entry(entry))
2324 				goto next;
2325 
2326 			page = device_private_entry_to_page(entry);
2327 			if (!(migrate->flags &
2328 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2329 			    page->pgmap->owner != migrate->pgmap_owner)
2330 				goto next;
2331 
2332 			mpfn = migrate_pfn(page_to_pfn(page)) |
2333 					MIGRATE_PFN_MIGRATE;
2334 			if (is_write_device_private_entry(entry))
2335 				mpfn |= MIGRATE_PFN_WRITE;
2336 		} else {
2337 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2338 				goto next;
2339 			pfn = pte_pfn(pte);
2340 			if (is_zero_pfn(pfn)) {
2341 				mpfn = MIGRATE_PFN_MIGRATE;
2342 				migrate->cpages++;
2343 				goto next;
2344 			}
2345 			page = vm_normal_page(migrate->vma, addr, pte);
2346 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2347 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2348 		}
2349 
2350 		/* FIXME support THP */
2351 		if (!page || !page->mapping || PageTransCompound(page)) {
2352 			mpfn = 0;
2353 			goto next;
2354 		}
2355 
2356 		/*
2357 		 * By getting a reference on the page we pin it and that blocks
2358 		 * any kind of migration. Side effect is that it "freezes" the
2359 		 * pte.
2360 		 *
2361 		 * We drop this reference after isolating the page from the lru
2362 		 * for non device page (device page are not on the lru and thus
2363 		 * can't be dropped from it).
2364 		 */
2365 		get_page(page);
2366 		migrate->cpages++;
2367 
2368 		/*
2369 		 * Optimize for the common case where page is only mapped once
2370 		 * in one process. If we can lock the page, then we can safely
2371 		 * set up a special migration page table entry now.
2372 		 */
2373 		if (trylock_page(page)) {
2374 			pte_t swp_pte;
2375 
2376 			mpfn |= MIGRATE_PFN_LOCKED;
2377 			ptep_get_and_clear(mm, addr, ptep);
2378 
2379 			/* Setup special migration page table entry */
2380 			entry = make_migration_entry(page, mpfn &
2381 						     MIGRATE_PFN_WRITE);
2382 			swp_pte = swp_entry_to_pte(entry);
2383 			if (pte_soft_dirty(pte))
2384 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2385 			if (pte_uffd_wp(pte))
2386 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2387 			set_pte_at(mm, addr, ptep, swp_pte);
2388 
2389 			/*
2390 			 * This is like regular unmap: we remove the rmap and
2391 			 * drop page refcount. Page won't be freed, as we took
2392 			 * a reference just above.
2393 			 */
2394 			page_remove_rmap(page, false);
2395 			put_page(page);
2396 
2397 			if (pte_present(pte))
2398 				unmapped++;
2399 		}
2400 
2401 next:
2402 		migrate->dst[migrate->npages] = 0;
2403 		migrate->src[migrate->npages++] = mpfn;
2404 	}
2405 	arch_leave_lazy_mmu_mode();
2406 	pte_unmap_unlock(ptep - 1, ptl);
2407 
2408 	/* Only flush the TLB if we actually modified any entries */
2409 	if (unmapped)
2410 		flush_tlb_range(walk->vma, start, end);
2411 
2412 	return 0;
2413 }
2414 
2415 static const struct mm_walk_ops migrate_vma_walk_ops = {
2416 	.pmd_entry		= migrate_vma_collect_pmd,
2417 	.pte_hole		= migrate_vma_collect_hole,
2418 };
2419 
2420 /*
2421  * migrate_vma_collect() - collect pages over a range of virtual addresses
2422  * @migrate: migrate struct containing all migration information
2423  *
2424  * This will walk the CPU page table. For each virtual address backed by a
2425  * valid page, it updates the src array and takes a reference on the page, in
2426  * order to pin the page until we lock it and unmap it.
2427  */
2428 static void migrate_vma_collect(struct migrate_vma *migrate)
2429 {
2430 	struct mmu_notifier_range range;
2431 
2432 	/*
2433 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2434 	 * that the registered device driver can skip invalidating device
2435 	 * private page mappings that won't be migrated.
2436 	 */
2437 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2438 		migrate->vma->vm_mm, migrate->start, migrate->end,
2439 		migrate->pgmap_owner);
2440 	mmu_notifier_invalidate_range_start(&range);
2441 
2442 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2443 			&migrate_vma_walk_ops, migrate);
2444 
2445 	mmu_notifier_invalidate_range_end(&range);
2446 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2447 }
2448 
2449 /*
2450  * migrate_vma_check_page() - check if page is pinned or not
2451  * @page: struct page to check
2452  *
2453  * Pinned pages cannot be migrated. This is the same test as in
2454  * migrate_page_move_mapping(), except that here we allow migration of a
2455  * ZONE_DEVICE page.
2456  */
2457 static bool migrate_vma_check_page(struct page *page)
2458 {
2459 	/*
2460 	 * One extra ref because caller holds an extra reference, either from
2461 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2462 	 * a device page.
2463 	 */
2464 	int extra = 1;
2465 
2466 	/*
2467 	 * FIXME support THP (transparent huge page), it is bit more complex to
2468 	 * check them than regular pages, because they can be mapped with a pmd
2469 	 * or with a pte (split pte mapping).
2470 	 */
2471 	if (PageCompound(page))
2472 		return false;
2473 
2474 	/* Page from ZONE_DEVICE have one extra reference */
2475 	if (is_zone_device_page(page)) {
2476 		/*
2477 		 * Private page can never be pin as they have no valid pte and
2478 		 * GUP will fail for those. Yet if there is a pending migration
2479 		 * a thread might try to wait on the pte migration entry and
2480 		 * will bump the page reference count. Sadly there is no way to
2481 		 * differentiate a regular pin from migration wait. Hence to
2482 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2483 		 * infinite loop (one stoping migration because the other is
2484 		 * waiting on pte migration entry). We always return true here.
2485 		 *
2486 		 * FIXME proper solution is to rework migration_entry_wait() so
2487 		 * it does not need to take a reference on page.
2488 		 */
2489 		return is_device_private_page(page);
2490 	}
2491 
2492 	/* For file back page */
2493 	if (page_mapping(page))
2494 		extra += 1 + page_has_private(page);
2495 
2496 	if ((page_count(page) - extra) > page_mapcount(page))
2497 		return false;
2498 
2499 	return true;
2500 }
2501 
2502 /*
2503  * migrate_vma_prepare() - lock pages and isolate them from the lru
2504  * @migrate: migrate struct containing all migration information
2505  *
2506  * This locks pages that have been collected by migrate_vma_collect(). Once each
2507  * page is locked it is isolated from the lru (for non-device pages). Finally,
2508  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2509  * migrated by concurrent kernel threads.
2510  */
2511 static void migrate_vma_prepare(struct migrate_vma *migrate)
2512 {
2513 	const unsigned long npages = migrate->npages;
2514 	const unsigned long start = migrate->start;
2515 	unsigned long addr, i, restore = 0;
2516 	bool allow_drain = true;
2517 
2518 	lru_add_drain();
2519 
2520 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2521 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2522 		bool remap = true;
2523 
2524 		if (!page)
2525 			continue;
2526 
2527 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2528 			/*
2529 			 * Because we are migrating several pages there can be
2530 			 * a deadlock between 2 concurrent migration where each
2531 			 * are waiting on each other page lock.
2532 			 *
2533 			 * Make migrate_vma() a best effort thing and backoff
2534 			 * for any page we can not lock right away.
2535 			 */
2536 			if (!trylock_page(page)) {
2537 				migrate->src[i] = 0;
2538 				migrate->cpages--;
2539 				put_page(page);
2540 				continue;
2541 			}
2542 			remap = false;
2543 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2544 		}
2545 
2546 		/* ZONE_DEVICE pages are not on LRU */
2547 		if (!is_zone_device_page(page)) {
2548 			if (!PageLRU(page) && allow_drain) {
2549 				/* Drain CPU's pagevec */
2550 				lru_add_drain_all();
2551 				allow_drain = false;
2552 			}
2553 
2554 			if (isolate_lru_page(page)) {
2555 				if (remap) {
2556 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557 					migrate->cpages--;
2558 					restore++;
2559 				} else {
2560 					migrate->src[i] = 0;
2561 					unlock_page(page);
2562 					migrate->cpages--;
2563 					put_page(page);
2564 				}
2565 				continue;
2566 			}
2567 
2568 			/* Drop the reference we took in collect */
2569 			put_page(page);
2570 		}
2571 
2572 		if (!migrate_vma_check_page(page)) {
2573 			if (remap) {
2574 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2575 				migrate->cpages--;
2576 				restore++;
2577 
2578 				if (!is_zone_device_page(page)) {
2579 					get_page(page);
2580 					putback_lru_page(page);
2581 				}
2582 			} else {
2583 				migrate->src[i] = 0;
2584 				unlock_page(page);
2585 				migrate->cpages--;
2586 
2587 				if (!is_zone_device_page(page))
2588 					putback_lru_page(page);
2589 				else
2590 					put_page(page);
2591 			}
2592 		}
2593 	}
2594 
2595 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2596 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2597 
2598 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2599 			continue;
2600 
2601 		remove_migration_pte(page, migrate->vma, addr, page);
2602 
2603 		migrate->src[i] = 0;
2604 		unlock_page(page);
2605 		put_page(page);
2606 		restore--;
2607 	}
2608 }
2609 
2610 /*
2611  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2612  * @migrate: migrate struct containing all migration information
2613  *
2614  * Replace page mapping (CPU page table pte) with a special migration pte entry
2615  * and check again if it has been pinned. Pinned pages are restored because we
2616  * cannot migrate them.
2617  *
2618  * This is the last step before we call the device driver callback to allocate
2619  * destination memory and copy contents of original page over to new page.
2620  */
2621 static void migrate_vma_unmap(struct migrate_vma *migrate)
2622 {
2623 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2624 	const unsigned long npages = migrate->npages;
2625 	const unsigned long start = migrate->start;
2626 	unsigned long addr, i, restore = 0;
2627 
2628 	for (i = 0; i < npages; i++) {
2629 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2630 
2631 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2632 			continue;
2633 
2634 		if (page_mapped(page)) {
2635 			try_to_unmap(page, flags);
2636 			if (page_mapped(page))
2637 				goto restore;
2638 		}
2639 
2640 		if (migrate_vma_check_page(page))
2641 			continue;
2642 
2643 restore:
2644 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2645 		migrate->cpages--;
2646 		restore++;
2647 	}
2648 
2649 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2650 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2651 
2652 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2653 			continue;
2654 
2655 		remove_migration_ptes(page, page, false);
2656 
2657 		migrate->src[i] = 0;
2658 		unlock_page(page);
2659 		restore--;
2660 
2661 		if (is_zone_device_page(page))
2662 			put_page(page);
2663 		else
2664 			putback_lru_page(page);
2665 	}
2666 }
2667 
2668 /**
2669  * migrate_vma_setup() - prepare to migrate a range of memory
2670  * @args: contains the vma, start, and pfns arrays for the migration
2671  *
2672  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2673  * without an error.
2674  *
2675  * Prepare to migrate a range of memory virtual address range by collecting all
2676  * the pages backing each virtual address in the range, saving them inside the
2677  * src array.  Then lock those pages and unmap them. Once the pages are locked
2678  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2679  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2680  * corresponding src array entry.  Then restores any pages that are pinned, by
2681  * remapping and unlocking those pages.
2682  *
2683  * The caller should then allocate destination memory and copy source memory to
2684  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2685  * flag set).  Once these are allocated and copied, the caller must update each
2686  * corresponding entry in the dst array with the pfn value of the destination
2687  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2688  * (destination pages must have their struct pages locked, via lock_page()).
2689  *
2690  * Note that the caller does not have to migrate all the pages that are marked
2691  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2692  * device memory to system memory.  If the caller cannot migrate a device page
2693  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2694  * consequences for the userspace process, so it must be avoided if at all
2695  * possible.
2696  *
2697  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2698  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2699  * allowing the caller to allocate device memory for those unback virtual
2700  * address.  For this the caller simply has to allocate device memory and
2701  * properly set the destination entry like for regular migration.  Note that
2702  * this can still fails and thus inside the device driver must check if the
2703  * migration was successful for those entries after calling migrate_vma_pages()
2704  * just like for regular migration.
2705  *
2706  * After that, the callers must call migrate_vma_pages() to go over each entry
2707  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2708  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2709  * then migrate_vma_pages() to migrate struct page information from the source
2710  * struct page to the destination struct page.  If it fails to migrate the
2711  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2712  * src array.
2713  *
2714  * At this point all successfully migrated pages have an entry in the src
2715  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2716  * array entry with MIGRATE_PFN_VALID flag set.
2717  *
2718  * Once migrate_vma_pages() returns the caller may inspect which pages were
2719  * successfully migrated, and which were not.  Successfully migrated pages will
2720  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2721  *
2722  * It is safe to update device page table after migrate_vma_pages() because
2723  * both destination and source page are still locked, and the mmap_lock is held
2724  * in read mode (hence no one can unmap the range being migrated).
2725  *
2726  * Once the caller is done cleaning up things and updating its page table (if it
2727  * chose to do so, this is not an obligation) it finally calls
2728  * migrate_vma_finalize() to update the CPU page table to point to new pages
2729  * for successfully migrated pages or otherwise restore the CPU page table to
2730  * point to the original source pages.
2731  */
2732 int migrate_vma_setup(struct migrate_vma *args)
2733 {
2734 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2735 
2736 	args->start &= PAGE_MASK;
2737 	args->end &= PAGE_MASK;
2738 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2739 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2740 		return -EINVAL;
2741 	if (nr_pages <= 0)
2742 		return -EINVAL;
2743 	if (args->start < args->vma->vm_start ||
2744 	    args->start >= args->vma->vm_end)
2745 		return -EINVAL;
2746 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2747 		return -EINVAL;
2748 	if (!args->src || !args->dst)
2749 		return -EINVAL;
2750 
2751 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2752 	args->cpages = 0;
2753 	args->npages = 0;
2754 
2755 	migrate_vma_collect(args);
2756 
2757 	if (args->cpages)
2758 		migrate_vma_prepare(args);
2759 	if (args->cpages)
2760 		migrate_vma_unmap(args);
2761 
2762 	/*
2763 	 * At this point pages are locked and unmapped, and thus they have
2764 	 * stable content and can safely be copied to destination memory that
2765 	 * is allocated by the drivers.
2766 	 */
2767 	return 0;
2768 
2769 }
2770 EXPORT_SYMBOL(migrate_vma_setup);
2771 
2772 /*
2773  * This code closely matches the code in:
2774  *   __handle_mm_fault()
2775  *     handle_pte_fault()
2776  *       do_anonymous_page()
2777  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2778  * private page.
2779  */
2780 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2781 				    unsigned long addr,
2782 				    struct page *page,
2783 				    unsigned long *src,
2784 				    unsigned long *dst)
2785 {
2786 	struct vm_area_struct *vma = migrate->vma;
2787 	struct mm_struct *mm = vma->vm_mm;
2788 	bool flush = false;
2789 	spinlock_t *ptl;
2790 	pte_t entry;
2791 	pgd_t *pgdp;
2792 	p4d_t *p4dp;
2793 	pud_t *pudp;
2794 	pmd_t *pmdp;
2795 	pte_t *ptep;
2796 
2797 	/* Only allow populating anonymous memory */
2798 	if (!vma_is_anonymous(vma))
2799 		goto abort;
2800 
2801 	pgdp = pgd_offset(mm, addr);
2802 	p4dp = p4d_alloc(mm, pgdp, addr);
2803 	if (!p4dp)
2804 		goto abort;
2805 	pudp = pud_alloc(mm, p4dp, addr);
2806 	if (!pudp)
2807 		goto abort;
2808 	pmdp = pmd_alloc(mm, pudp, addr);
2809 	if (!pmdp)
2810 		goto abort;
2811 
2812 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2813 		goto abort;
2814 
2815 	/*
2816 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2817 	 * pte_offset_map() on pmds where a huge pmd might be created
2818 	 * from a different thread.
2819 	 *
2820 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2821 	 * parallel threads are excluded by other means.
2822 	 *
2823 	 * Here we only have mmap_read_lock(mm).
2824 	 */
2825 	if (pte_alloc(mm, pmdp))
2826 		goto abort;
2827 
2828 	/* See the comment in pte_alloc_one_map() */
2829 	if (unlikely(pmd_trans_unstable(pmdp)))
2830 		goto abort;
2831 
2832 	if (unlikely(anon_vma_prepare(vma)))
2833 		goto abort;
2834 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2835 		goto abort;
2836 
2837 	/*
2838 	 * The memory barrier inside __SetPageUptodate makes sure that
2839 	 * preceding stores to the page contents become visible before
2840 	 * the set_pte_at() write.
2841 	 */
2842 	__SetPageUptodate(page);
2843 
2844 	if (is_zone_device_page(page)) {
2845 		if (is_device_private_page(page)) {
2846 			swp_entry_t swp_entry;
2847 
2848 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2849 			entry = swp_entry_to_pte(swp_entry);
2850 		}
2851 	} else {
2852 		entry = mk_pte(page, vma->vm_page_prot);
2853 		if (vma->vm_flags & VM_WRITE)
2854 			entry = pte_mkwrite(pte_mkdirty(entry));
2855 	}
2856 
2857 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2858 
2859 	if (check_stable_address_space(mm))
2860 		goto unlock_abort;
2861 
2862 	if (pte_present(*ptep)) {
2863 		unsigned long pfn = pte_pfn(*ptep);
2864 
2865 		if (!is_zero_pfn(pfn))
2866 			goto unlock_abort;
2867 		flush = true;
2868 	} else if (!pte_none(*ptep))
2869 		goto unlock_abort;
2870 
2871 	/*
2872 	 * Check for userfaultfd but do not deliver the fault. Instead,
2873 	 * just back off.
2874 	 */
2875 	if (userfaultfd_missing(vma))
2876 		goto unlock_abort;
2877 
2878 	inc_mm_counter(mm, MM_ANONPAGES);
2879 	page_add_new_anon_rmap(page, vma, addr, false);
2880 	if (!is_zone_device_page(page))
2881 		lru_cache_add_inactive_or_unevictable(page, vma);
2882 	get_page(page);
2883 
2884 	if (flush) {
2885 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2886 		ptep_clear_flush_notify(vma, addr, ptep);
2887 		set_pte_at_notify(mm, addr, ptep, entry);
2888 		update_mmu_cache(vma, addr, ptep);
2889 	} else {
2890 		/* No need to invalidate - it was non-present before */
2891 		set_pte_at(mm, addr, ptep, entry);
2892 		update_mmu_cache(vma, addr, ptep);
2893 	}
2894 
2895 	pte_unmap_unlock(ptep, ptl);
2896 	*src = MIGRATE_PFN_MIGRATE;
2897 	return;
2898 
2899 unlock_abort:
2900 	pte_unmap_unlock(ptep, ptl);
2901 abort:
2902 	*src &= ~MIGRATE_PFN_MIGRATE;
2903 }
2904 
2905 /**
2906  * migrate_vma_pages() - migrate meta-data from src page to dst page
2907  * @migrate: migrate struct containing all migration information
2908  *
2909  * This migrates struct page meta-data from source struct page to destination
2910  * struct page. This effectively finishes the migration from source page to the
2911  * destination page.
2912  */
2913 void migrate_vma_pages(struct migrate_vma *migrate)
2914 {
2915 	const unsigned long npages = migrate->npages;
2916 	const unsigned long start = migrate->start;
2917 	struct mmu_notifier_range range;
2918 	unsigned long addr, i;
2919 	bool notified = false;
2920 
2921 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2922 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2923 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2924 		struct address_space *mapping;
2925 		int r;
2926 
2927 		if (!newpage) {
2928 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2929 			continue;
2930 		}
2931 
2932 		if (!page) {
2933 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2934 				continue;
2935 			if (!notified) {
2936 				notified = true;
2937 
2938 				mmu_notifier_range_init(&range,
2939 							MMU_NOTIFY_CLEAR, 0,
2940 							NULL,
2941 							migrate->vma->vm_mm,
2942 							addr, migrate->end);
2943 				mmu_notifier_invalidate_range_start(&range);
2944 			}
2945 			migrate_vma_insert_page(migrate, addr, newpage,
2946 						&migrate->src[i],
2947 						&migrate->dst[i]);
2948 			continue;
2949 		}
2950 
2951 		mapping = page_mapping(page);
2952 
2953 		if (is_zone_device_page(newpage)) {
2954 			if (is_device_private_page(newpage)) {
2955 				/*
2956 				 * For now only support private anonymous when
2957 				 * migrating to un-addressable device memory.
2958 				 */
2959 				if (mapping) {
2960 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2961 					continue;
2962 				}
2963 			} else {
2964 				/*
2965 				 * Other types of ZONE_DEVICE page are not
2966 				 * supported.
2967 				 */
2968 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2969 				continue;
2970 			}
2971 		}
2972 
2973 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2974 		if (r != MIGRATEPAGE_SUCCESS)
2975 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2976 	}
2977 
2978 	/*
2979 	 * No need to double call mmu_notifier->invalidate_range() callback as
2980 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2981 	 * did already call it.
2982 	 */
2983 	if (notified)
2984 		mmu_notifier_invalidate_range_only_end(&range);
2985 }
2986 EXPORT_SYMBOL(migrate_vma_pages);
2987 
2988 /**
2989  * migrate_vma_finalize() - restore CPU page table entry
2990  * @migrate: migrate struct containing all migration information
2991  *
2992  * This replaces the special migration pte entry with either a mapping to the
2993  * new page if migration was successful for that page, or to the original page
2994  * otherwise.
2995  *
2996  * This also unlocks the pages and puts them back on the lru, or drops the extra
2997  * refcount, for device pages.
2998  */
2999 void migrate_vma_finalize(struct migrate_vma *migrate)
3000 {
3001 	const unsigned long npages = migrate->npages;
3002 	unsigned long i;
3003 
3004 	for (i = 0; i < npages; i++) {
3005 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3006 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3007 
3008 		if (!page) {
3009 			if (newpage) {
3010 				unlock_page(newpage);
3011 				put_page(newpage);
3012 			}
3013 			continue;
3014 		}
3015 
3016 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3017 			if (newpage) {
3018 				unlock_page(newpage);
3019 				put_page(newpage);
3020 			}
3021 			newpage = page;
3022 		}
3023 
3024 		remove_migration_ptes(page, newpage, false);
3025 		unlock_page(page);
3026 		migrate->cpages--;
3027 
3028 		if (is_zone_device_page(page))
3029 			put_page(page);
3030 		else
3031 			putback_lru_page(page);
3032 
3033 		if (newpage != page) {
3034 			unlock_page(newpage);
3035 			if (is_zone_device_page(newpage))
3036 				put_page(newpage);
3037 			else
3038 				putback_lru_page(newpage);
3039 		}
3040 	}
3041 }
3042 EXPORT_SYMBOL(migrate_vma_finalize);
3043 #endif /* CONFIG_DEVICE_PRIVATE */
3044