xref: /openbmc/linux/mm/migrate.c (revision d435edca)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/page_owner.h>
42 
43 #include <asm/tlbflush.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47 
48 #include "internal.h"
49 
50 /*
51  * migrate_prep() needs to be called before we start compiling a list of pages
52  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53  * undesirable, use migrate_prep_local()
54  */
55 int migrate_prep(void)
56 {
57 	/*
58 	 * Clear the LRU lists so pages can be isolated.
59 	 * Note that pages may be moved off the LRU after we have
60 	 * drained them. Those pages will fail to migrate like other
61 	 * pages that may be busy.
62 	 */
63 	lru_add_drain_all();
64 
65 	return 0;
66 }
67 
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 	lru_add_drain();
72 
73 	return 0;
74 }
75 
76 /*
77  * Put previously isolated pages back onto the appropriate lists
78  * from where they were once taken off for compaction/migration.
79  *
80  * This function shall be used whenever the isolated pageset has been
81  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82  * and isolate_huge_page().
83  */
84 void putback_movable_pages(struct list_head *l)
85 {
86 	struct page *page;
87 	struct page *page2;
88 
89 	list_for_each_entry_safe(page, page2, l, lru) {
90 		if (unlikely(PageHuge(page))) {
91 			putback_active_hugepage(page);
92 			continue;
93 		}
94 		list_del(&page->lru);
95 		dec_zone_page_state(page, NR_ISOLATED_ANON +
96 				page_is_file_cache(page));
97 		if (unlikely(isolated_balloon_page(page)))
98 			balloon_page_putback(page);
99 		else
100 			putback_lru_page(page);
101 	}
102 }
103 
104 /*
105  * Restore a potential migration pte to a working pte entry
106  */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 				 unsigned long addr, void *old)
109 {
110 	struct mm_struct *mm = vma->vm_mm;
111 	swp_entry_t entry;
112  	pmd_t *pmd;
113 	pte_t *ptep, pte;
114  	spinlock_t *ptl;
115 
116 	if (unlikely(PageHuge(new))) {
117 		ptep = huge_pte_offset(mm, addr);
118 		if (!ptep)
119 			goto out;
120 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 	} else {
122 		pmd = mm_find_pmd(mm, addr);
123 		if (!pmd)
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 
152 	/* Recheck VMA as permissions can change since migration started  */
153 	if (is_write_migration_entry(entry))
154 		pte = maybe_mkwrite(pte, vma);
155 
156 #ifdef CONFIG_HUGETLB_PAGE
157 	if (PageHuge(new)) {
158 		pte = pte_mkhuge(pte);
159 		pte = arch_make_huge_pte(pte, vma, new, 0);
160 	}
161 #endif
162 	flush_dcache_page(new);
163 	set_pte_at(mm, addr, ptep, pte);
164 
165 	if (PageHuge(new)) {
166 		if (PageAnon(new))
167 			hugepage_add_anon_rmap(new, vma, addr);
168 		else
169 			page_dup_rmap(new, true);
170 	} else if (PageAnon(new))
171 		page_add_anon_rmap(new, vma, addr, false);
172 	else
173 		page_add_file_rmap(new);
174 
175 	if (vma->vm_flags & VM_LOCKED)
176 		mlock_vma_page(new);
177 
178 	/* No need to invalidate - it was non-present before */
179 	update_mmu_cache(vma, addr, ptep);
180 unlock:
181 	pte_unmap_unlock(ptep, ptl);
182 out:
183 	return SWAP_AGAIN;
184 }
185 
186 /*
187  * Get rid of all migration entries and replace them by
188  * references to the indicated page.
189  */
190 static void remove_migration_ptes(struct page *old, struct page *new)
191 {
192 	struct rmap_walk_control rwc = {
193 		.rmap_one = remove_migration_pte,
194 		.arg = old,
195 	};
196 
197 	rmap_walk(new, &rwc);
198 }
199 
200 /*
201  * Something used the pte of a page under migration. We need to
202  * get to the page and wait until migration is finished.
203  * When we return from this function the fault will be retried.
204  */
205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
206 				spinlock_t *ptl)
207 {
208 	pte_t pte;
209 	swp_entry_t entry;
210 	struct page *page;
211 
212 	spin_lock(ptl);
213 	pte = *ptep;
214 	if (!is_swap_pte(pte))
215 		goto out;
216 
217 	entry = pte_to_swp_entry(pte);
218 	if (!is_migration_entry(entry))
219 		goto out;
220 
221 	page = migration_entry_to_page(entry);
222 
223 	/*
224 	 * Once radix-tree replacement of page migration started, page_count
225 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
226 	 * against a page without get_page().
227 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 	 * will occur again.
229 	 */
230 	if (!get_page_unless_zero(page))
231 		goto out;
232 	pte_unmap_unlock(ptep, ptl);
233 	wait_on_page_locked(page);
234 	put_page(page);
235 	return;
236 out:
237 	pte_unmap_unlock(ptep, ptl);
238 }
239 
240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
241 				unsigned long address)
242 {
243 	spinlock_t *ptl = pte_lockptr(mm, pmd);
244 	pte_t *ptep = pte_offset_map(pmd, address);
245 	__migration_entry_wait(mm, ptep, ptl);
246 }
247 
248 void migration_entry_wait_huge(struct vm_area_struct *vma,
249 		struct mm_struct *mm, pte_t *pte)
250 {
251 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
252 	__migration_entry_wait(mm, pte, ptl);
253 }
254 
255 #ifdef CONFIG_BLOCK
256 /* Returns true if all buffers are successfully locked */
257 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
258 							enum migrate_mode mode)
259 {
260 	struct buffer_head *bh = head;
261 
262 	/* Simple case, sync compaction */
263 	if (mode != MIGRATE_ASYNC) {
264 		do {
265 			get_bh(bh);
266 			lock_buffer(bh);
267 			bh = bh->b_this_page;
268 
269 		} while (bh != head);
270 
271 		return true;
272 	}
273 
274 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
275 	do {
276 		get_bh(bh);
277 		if (!trylock_buffer(bh)) {
278 			/*
279 			 * We failed to lock the buffer and cannot stall in
280 			 * async migration. Release the taken locks
281 			 */
282 			struct buffer_head *failed_bh = bh;
283 			put_bh(failed_bh);
284 			bh = head;
285 			while (bh != failed_bh) {
286 				unlock_buffer(bh);
287 				put_bh(bh);
288 				bh = bh->b_this_page;
289 			}
290 			return false;
291 		}
292 
293 		bh = bh->b_this_page;
294 	} while (bh != head);
295 	return true;
296 }
297 #else
298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
299 							enum migrate_mode mode)
300 {
301 	return true;
302 }
303 #endif /* CONFIG_BLOCK */
304 
305 /*
306  * Replace the page in the mapping.
307  *
308  * The number of remaining references must be:
309  * 1 for anonymous pages without a mapping
310  * 2 for pages with a mapping
311  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312  */
313 int migrate_page_move_mapping(struct address_space *mapping,
314 		struct page *newpage, struct page *page,
315 		struct buffer_head *head, enum migrate_mode mode,
316 		int extra_count)
317 {
318 	struct zone *oldzone, *newzone;
319 	int dirty;
320 	int expected_count = 1 + extra_count;
321 	void **pslot;
322 
323 	if (!mapping) {
324 		/* Anonymous page without mapping */
325 		if (page_count(page) != expected_count)
326 			return -EAGAIN;
327 
328 		/* No turning back from here */
329 		set_page_memcg(newpage, page_memcg(page));
330 		newpage->index = page->index;
331 		newpage->mapping = page->mapping;
332 		if (PageSwapBacked(page))
333 			SetPageSwapBacked(newpage);
334 
335 		return MIGRATEPAGE_SUCCESS;
336 	}
337 
338 	oldzone = page_zone(page);
339 	newzone = page_zone(newpage);
340 
341 	spin_lock_irq(&mapping->tree_lock);
342 
343 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
344  					page_index(page));
345 
346 	expected_count += 1 + page_has_private(page);
347 	if (page_count(page) != expected_count ||
348 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
349 		spin_unlock_irq(&mapping->tree_lock);
350 		return -EAGAIN;
351 	}
352 
353 	if (!page_freeze_refs(page, expected_count)) {
354 		spin_unlock_irq(&mapping->tree_lock);
355 		return -EAGAIN;
356 	}
357 
358 	/*
359 	 * In the async migration case of moving a page with buffers, lock the
360 	 * buffers using trylock before the mapping is moved. If the mapping
361 	 * was moved, we later failed to lock the buffers and could not move
362 	 * the mapping back due to an elevated page count, we would have to
363 	 * block waiting on other references to be dropped.
364 	 */
365 	if (mode == MIGRATE_ASYNC && head &&
366 			!buffer_migrate_lock_buffers(head, mode)) {
367 		page_unfreeze_refs(page, expected_count);
368 		spin_unlock_irq(&mapping->tree_lock);
369 		return -EAGAIN;
370 	}
371 
372 	/*
373 	 * Now we know that no one else is looking at the page:
374 	 * no turning back from here.
375 	 */
376 	set_page_memcg(newpage, page_memcg(page));
377 	newpage->index = page->index;
378 	newpage->mapping = page->mapping;
379 	if (PageSwapBacked(page))
380 		SetPageSwapBacked(newpage);
381 
382 	get_page(newpage);	/* add cache reference */
383 	if (PageSwapCache(page)) {
384 		SetPageSwapCache(newpage);
385 		set_page_private(newpage, page_private(page));
386 	}
387 
388 	/* Move dirty while page refs frozen and newpage not yet exposed */
389 	dirty = PageDirty(page);
390 	if (dirty) {
391 		ClearPageDirty(page);
392 		SetPageDirty(newpage);
393 	}
394 
395 	radix_tree_replace_slot(pslot, newpage);
396 
397 	/*
398 	 * Drop cache reference from old page by unfreezing
399 	 * to one less reference.
400 	 * We know this isn't the last reference.
401 	 */
402 	page_unfreeze_refs(page, expected_count - 1);
403 
404 	spin_unlock(&mapping->tree_lock);
405 	/* Leave irq disabled to prevent preemption while updating stats */
406 
407 	/*
408 	 * If moved to a different zone then also account
409 	 * the page for that zone. Other VM counters will be
410 	 * taken care of when we establish references to the
411 	 * new page and drop references to the old page.
412 	 *
413 	 * Note that anonymous pages are accounted for
414 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
415 	 * are mapped to swap space.
416 	 */
417 	if (newzone != oldzone) {
418 		__dec_zone_state(oldzone, NR_FILE_PAGES);
419 		__inc_zone_state(newzone, NR_FILE_PAGES);
420 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
421 			__dec_zone_state(oldzone, NR_SHMEM);
422 			__inc_zone_state(newzone, NR_SHMEM);
423 		}
424 		if (dirty && mapping_cap_account_dirty(mapping)) {
425 			__dec_zone_state(oldzone, NR_FILE_DIRTY);
426 			__inc_zone_state(newzone, NR_FILE_DIRTY);
427 		}
428 	}
429 	local_irq_enable();
430 
431 	return MIGRATEPAGE_SUCCESS;
432 }
433 
434 /*
435  * The expected number of remaining references is the same as that
436  * of migrate_page_move_mapping().
437  */
438 int migrate_huge_page_move_mapping(struct address_space *mapping,
439 				   struct page *newpage, struct page *page)
440 {
441 	int expected_count;
442 	void **pslot;
443 
444 	spin_lock_irq(&mapping->tree_lock);
445 
446 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
447 					page_index(page));
448 
449 	expected_count = 2 + page_has_private(page);
450 	if (page_count(page) != expected_count ||
451 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
452 		spin_unlock_irq(&mapping->tree_lock);
453 		return -EAGAIN;
454 	}
455 
456 	if (!page_freeze_refs(page, expected_count)) {
457 		spin_unlock_irq(&mapping->tree_lock);
458 		return -EAGAIN;
459 	}
460 
461 	set_page_memcg(newpage, page_memcg(page));
462 	newpage->index = page->index;
463 	newpage->mapping = page->mapping;
464 	get_page(newpage);
465 
466 	radix_tree_replace_slot(pslot, newpage);
467 
468 	page_unfreeze_refs(page, expected_count - 1);
469 
470 	spin_unlock_irq(&mapping->tree_lock);
471 	return MIGRATEPAGE_SUCCESS;
472 }
473 
474 /*
475  * Gigantic pages are so large that we do not guarantee that page++ pointer
476  * arithmetic will work across the entire page.  We need something more
477  * specialized.
478  */
479 static void __copy_gigantic_page(struct page *dst, struct page *src,
480 				int nr_pages)
481 {
482 	int i;
483 	struct page *dst_base = dst;
484 	struct page *src_base = src;
485 
486 	for (i = 0; i < nr_pages; ) {
487 		cond_resched();
488 		copy_highpage(dst, src);
489 
490 		i++;
491 		dst = mem_map_next(dst, dst_base, i);
492 		src = mem_map_next(src, src_base, i);
493 	}
494 }
495 
496 static void copy_huge_page(struct page *dst, struct page *src)
497 {
498 	int i;
499 	int nr_pages;
500 
501 	if (PageHuge(src)) {
502 		/* hugetlbfs page */
503 		struct hstate *h = page_hstate(src);
504 		nr_pages = pages_per_huge_page(h);
505 
506 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
507 			__copy_gigantic_page(dst, src, nr_pages);
508 			return;
509 		}
510 	} else {
511 		/* thp page */
512 		BUG_ON(!PageTransHuge(src));
513 		nr_pages = hpage_nr_pages(src);
514 	}
515 
516 	for (i = 0; i < nr_pages; i++) {
517 		cond_resched();
518 		copy_highpage(dst + i, src + i);
519 	}
520 }
521 
522 /*
523  * Copy the page to its new location
524  */
525 void migrate_page_copy(struct page *newpage, struct page *page)
526 {
527 	int cpupid;
528 
529 	if (PageHuge(page) || PageTransHuge(page))
530 		copy_huge_page(newpage, page);
531 	else
532 		copy_highpage(newpage, page);
533 
534 	if (PageError(page))
535 		SetPageError(newpage);
536 	if (PageReferenced(page))
537 		SetPageReferenced(newpage);
538 	if (PageUptodate(page))
539 		SetPageUptodate(newpage);
540 	if (TestClearPageActive(page)) {
541 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
542 		SetPageActive(newpage);
543 	} else if (TestClearPageUnevictable(page))
544 		SetPageUnevictable(newpage);
545 	if (PageChecked(page))
546 		SetPageChecked(newpage);
547 	if (PageMappedToDisk(page))
548 		SetPageMappedToDisk(newpage);
549 
550 	/* Move dirty on pages not done by migrate_page_move_mapping() */
551 	if (PageDirty(page))
552 		SetPageDirty(newpage);
553 
554 	if (page_is_young(page))
555 		set_page_young(newpage);
556 	if (page_is_idle(page))
557 		set_page_idle(newpage);
558 
559 	/*
560 	 * Copy NUMA information to the new page, to prevent over-eager
561 	 * future migrations of this same page.
562 	 */
563 	cpupid = page_cpupid_xchg_last(page, -1);
564 	page_cpupid_xchg_last(newpage, cpupid);
565 
566 	ksm_migrate_page(newpage, page);
567 	/*
568 	 * Please do not reorder this without considering how mm/ksm.c's
569 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
570 	 */
571 	if (PageSwapCache(page))
572 		ClearPageSwapCache(page);
573 	ClearPagePrivate(page);
574 	set_page_private(page, 0);
575 
576 	/*
577 	 * If any waiters have accumulated on the new page then
578 	 * wake them up.
579 	 */
580 	if (PageWriteback(newpage))
581 		end_page_writeback(newpage);
582 
583 	copy_page_owner(page, newpage);
584 }
585 
586 /************************************************************
587  *                    Migration functions
588  ***********************************************************/
589 
590 /*
591  * Common logic to directly migrate a single page suitable for
592  * pages that do not use PagePrivate/PagePrivate2.
593  *
594  * Pages are locked upon entry and exit.
595  */
596 int migrate_page(struct address_space *mapping,
597 		struct page *newpage, struct page *page,
598 		enum migrate_mode mode)
599 {
600 	int rc;
601 
602 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
603 
604 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
605 
606 	if (rc != MIGRATEPAGE_SUCCESS)
607 		return rc;
608 
609 	migrate_page_copy(newpage, page);
610 	return MIGRATEPAGE_SUCCESS;
611 }
612 EXPORT_SYMBOL(migrate_page);
613 
614 #ifdef CONFIG_BLOCK
615 /*
616  * Migration function for pages with buffers. This function can only be used
617  * if the underlying filesystem guarantees that no other references to "page"
618  * exist.
619  */
620 int buffer_migrate_page(struct address_space *mapping,
621 		struct page *newpage, struct page *page, enum migrate_mode mode)
622 {
623 	struct buffer_head *bh, *head;
624 	int rc;
625 
626 	if (!page_has_buffers(page))
627 		return migrate_page(mapping, newpage, page, mode);
628 
629 	head = page_buffers(page);
630 
631 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
632 
633 	if (rc != MIGRATEPAGE_SUCCESS)
634 		return rc;
635 
636 	/*
637 	 * In the async case, migrate_page_move_mapping locked the buffers
638 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
639 	 * need to be locked now
640 	 */
641 	if (mode != MIGRATE_ASYNC)
642 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
643 
644 	ClearPagePrivate(page);
645 	set_page_private(newpage, page_private(page));
646 	set_page_private(page, 0);
647 	put_page(page);
648 	get_page(newpage);
649 
650 	bh = head;
651 	do {
652 		set_bh_page(bh, newpage, bh_offset(bh));
653 		bh = bh->b_this_page;
654 
655 	} while (bh != head);
656 
657 	SetPagePrivate(newpage);
658 
659 	migrate_page_copy(newpage, page);
660 
661 	bh = head;
662 	do {
663 		unlock_buffer(bh);
664  		put_bh(bh);
665 		bh = bh->b_this_page;
666 
667 	} while (bh != head);
668 
669 	return MIGRATEPAGE_SUCCESS;
670 }
671 EXPORT_SYMBOL(buffer_migrate_page);
672 #endif
673 
674 /*
675  * Writeback a page to clean the dirty state
676  */
677 static int writeout(struct address_space *mapping, struct page *page)
678 {
679 	struct writeback_control wbc = {
680 		.sync_mode = WB_SYNC_NONE,
681 		.nr_to_write = 1,
682 		.range_start = 0,
683 		.range_end = LLONG_MAX,
684 		.for_reclaim = 1
685 	};
686 	int rc;
687 
688 	if (!mapping->a_ops->writepage)
689 		/* No write method for the address space */
690 		return -EINVAL;
691 
692 	if (!clear_page_dirty_for_io(page))
693 		/* Someone else already triggered a write */
694 		return -EAGAIN;
695 
696 	/*
697 	 * A dirty page may imply that the underlying filesystem has
698 	 * the page on some queue. So the page must be clean for
699 	 * migration. Writeout may mean we loose the lock and the
700 	 * page state is no longer what we checked for earlier.
701 	 * At this point we know that the migration attempt cannot
702 	 * be successful.
703 	 */
704 	remove_migration_ptes(page, page);
705 
706 	rc = mapping->a_ops->writepage(page, &wbc);
707 
708 	if (rc != AOP_WRITEPAGE_ACTIVATE)
709 		/* unlocked. Relock */
710 		lock_page(page);
711 
712 	return (rc < 0) ? -EIO : -EAGAIN;
713 }
714 
715 /*
716  * Default handling if a filesystem does not provide a migration function.
717  */
718 static int fallback_migrate_page(struct address_space *mapping,
719 	struct page *newpage, struct page *page, enum migrate_mode mode)
720 {
721 	if (PageDirty(page)) {
722 		/* Only writeback pages in full synchronous migration */
723 		if (mode != MIGRATE_SYNC)
724 			return -EBUSY;
725 		return writeout(mapping, page);
726 	}
727 
728 	/*
729 	 * Buffers may be managed in a filesystem specific way.
730 	 * We must have no buffers or drop them.
731 	 */
732 	if (page_has_private(page) &&
733 	    !try_to_release_page(page, GFP_KERNEL))
734 		return -EAGAIN;
735 
736 	return migrate_page(mapping, newpage, page, mode);
737 }
738 
739 /*
740  * Move a page to a newly allocated page
741  * The page is locked and all ptes have been successfully removed.
742  *
743  * The new page will have replaced the old page if this function
744  * is successful.
745  *
746  * Return value:
747  *   < 0 - error code
748  *  MIGRATEPAGE_SUCCESS - success
749  */
750 static int move_to_new_page(struct page *newpage, struct page *page,
751 				enum migrate_mode mode)
752 {
753 	struct address_space *mapping;
754 	int rc;
755 
756 	VM_BUG_ON_PAGE(!PageLocked(page), page);
757 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
758 
759 	mapping = page_mapping(page);
760 	if (!mapping)
761 		rc = migrate_page(mapping, newpage, page, mode);
762 	else if (mapping->a_ops->migratepage)
763 		/*
764 		 * Most pages have a mapping and most filesystems provide a
765 		 * migratepage callback. Anonymous pages are part of swap
766 		 * space which also has its own migratepage callback. This
767 		 * is the most common path for page migration.
768 		 */
769 		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
770 	else
771 		rc = fallback_migrate_page(mapping, newpage, page, mode);
772 
773 	/*
774 	 * When successful, old pagecache page->mapping must be cleared before
775 	 * page is freed; but stats require that PageAnon be left as PageAnon.
776 	 */
777 	if (rc == MIGRATEPAGE_SUCCESS) {
778 		set_page_memcg(page, NULL);
779 		if (!PageAnon(page))
780 			page->mapping = NULL;
781 	}
782 	return rc;
783 }
784 
785 static int __unmap_and_move(struct page *page, struct page *newpage,
786 				int force, enum migrate_mode mode)
787 {
788 	int rc = -EAGAIN;
789 	int page_was_mapped = 0;
790 	struct anon_vma *anon_vma = NULL;
791 
792 	if (!trylock_page(page)) {
793 		if (!force || mode == MIGRATE_ASYNC)
794 			goto out;
795 
796 		/*
797 		 * It's not safe for direct compaction to call lock_page.
798 		 * For example, during page readahead pages are added locked
799 		 * to the LRU. Later, when the IO completes the pages are
800 		 * marked uptodate and unlocked. However, the queueing
801 		 * could be merging multiple pages for one bio (e.g.
802 		 * mpage_readpages). If an allocation happens for the
803 		 * second or third page, the process can end up locking
804 		 * the same page twice and deadlocking. Rather than
805 		 * trying to be clever about what pages can be locked,
806 		 * avoid the use of lock_page for direct compaction
807 		 * altogether.
808 		 */
809 		if (current->flags & PF_MEMALLOC)
810 			goto out;
811 
812 		lock_page(page);
813 	}
814 
815 	if (PageWriteback(page)) {
816 		/*
817 		 * Only in the case of a full synchronous migration is it
818 		 * necessary to wait for PageWriteback. In the async case,
819 		 * the retry loop is too short and in the sync-light case,
820 		 * the overhead of stalling is too much
821 		 */
822 		if (mode != MIGRATE_SYNC) {
823 			rc = -EBUSY;
824 			goto out_unlock;
825 		}
826 		if (!force)
827 			goto out_unlock;
828 		wait_on_page_writeback(page);
829 	}
830 
831 	/*
832 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 	 * we cannot notice that anon_vma is freed while we migrates a page.
834 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 	 * of migration. File cache pages are no problem because of page_lock()
836 	 * File Caches may use write_page() or lock_page() in migration, then,
837 	 * just care Anon page here.
838 	 *
839 	 * Only page_get_anon_vma() understands the subtleties of
840 	 * getting a hold on an anon_vma from outside one of its mms.
841 	 * But if we cannot get anon_vma, then we won't need it anyway,
842 	 * because that implies that the anon page is no longer mapped
843 	 * (and cannot be remapped so long as we hold the page lock).
844 	 */
845 	if (PageAnon(page) && !PageKsm(page))
846 		anon_vma = page_get_anon_vma(page);
847 
848 	/*
849 	 * Block others from accessing the new page when we get around to
850 	 * establishing additional references. We are usually the only one
851 	 * holding a reference to newpage at this point. We used to have a BUG
852 	 * here if trylock_page(newpage) fails, but would like to allow for
853 	 * cases where there might be a race with the previous use of newpage.
854 	 * This is much like races on refcount of oldpage: just don't BUG().
855 	 */
856 	if (unlikely(!trylock_page(newpage)))
857 		goto out_unlock;
858 
859 	if (unlikely(isolated_balloon_page(page))) {
860 		/*
861 		 * A ballooned page does not need any special attention from
862 		 * physical to virtual reverse mapping procedures.
863 		 * Skip any attempt to unmap PTEs or to remap swap cache,
864 		 * in order to avoid burning cycles at rmap level, and perform
865 		 * the page migration right away (proteced by page lock).
866 		 */
867 		rc = balloon_page_migrate(newpage, page, mode);
868 		goto out_unlock_both;
869 	}
870 
871 	/*
872 	 * Corner case handling:
873 	 * 1. When a new swap-cache page is read into, it is added to the LRU
874 	 * and treated as swapcache but it has no rmap yet.
875 	 * Calling try_to_unmap() against a page->mapping==NULL page will
876 	 * trigger a BUG.  So handle it here.
877 	 * 2. An orphaned page (see truncate_complete_page) might have
878 	 * fs-private metadata. The page can be picked up due to memory
879 	 * offlining.  Everywhere else except page reclaim, the page is
880 	 * invisible to the vm, so the page can not be migrated.  So try to
881 	 * free the metadata, so the page can be freed.
882 	 */
883 	if (!page->mapping) {
884 		VM_BUG_ON_PAGE(PageAnon(page), page);
885 		if (page_has_private(page)) {
886 			try_to_free_buffers(page);
887 			goto out_unlock_both;
888 		}
889 	} else if (page_mapped(page)) {
890 		/* Establish migration ptes */
891 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
892 				page);
893 		try_to_unmap(page,
894 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
895 		page_was_mapped = 1;
896 	}
897 
898 	if (!page_mapped(page))
899 		rc = move_to_new_page(newpage, page, mode);
900 
901 	if (page_was_mapped)
902 		remove_migration_ptes(page,
903 			rc == MIGRATEPAGE_SUCCESS ? newpage : page);
904 
905 out_unlock_both:
906 	unlock_page(newpage);
907 out_unlock:
908 	/* Drop an anon_vma reference if we took one */
909 	if (anon_vma)
910 		put_anon_vma(anon_vma);
911 	unlock_page(page);
912 out:
913 	return rc;
914 }
915 
916 /*
917  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
918  * around it.
919  */
920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
921 #define ICE_noinline noinline
922 #else
923 #define ICE_noinline
924 #endif
925 
926 /*
927  * Obtain the lock on page, remove all ptes and migrate the page
928  * to the newly allocated page in newpage.
929  */
930 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
931 				   free_page_t put_new_page,
932 				   unsigned long private, struct page *page,
933 				   int force, enum migrate_mode mode,
934 				   enum migrate_reason reason)
935 {
936 	int rc = MIGRATEPAGE_SUCCESS;
937 	int *result = NULL;
938 	struct page *newpage;
939 
940 	newpage = get_new_page(page, private, &result);
941 	if (!newpage)
942 		return -ENOMEM;
943 
944 	if (page_count(page) == 1) {
945 		/* page was freed from under us. So we are done. */
946 		goto out;
947 	}
948 
949 	if (unlikely(PageTransHuge(page))) {
950 		lock_page(page);
951 		rc = split_huge_page(page);
952 		unlock_page(page);
953 		if (rc)
954 			goto out;
955 	}
956 
957 	rc = __unmap_and_move(page, newpage, force, mode);
958 	if (rc == MIGRATEPAGE_SUCCESS)
959 		put_new_page = NULL;
960 
961 out:
962 	if (rc != -EAGAIN) {
963 		/*
964 		 * A page that has been migrated has all references
965 		 * removed and will be freed. A page that has not been
966 		 * migrated will have kepts its references and be
967 		 * restored.
968 		 */
969 		list_del(&page->lru);
970 		dec_zone_page_state(page, NR_ISOLATED_ANON +
971 				page_is_file_cache(page));
972 		/* Soft-offlined page shouldn't go through lru cache list */
973 		if (reason == MR_MEMORY_FAILURE) {
974 			put_page(page);
975 			if (!test_set_page_hwpoison(page))
976 				num_poisoned_pages_inc();
977 		} else
978 			putback_lru_page(page);
979 	}
980 
981 	/*
982 	 * If migration was not successful and there's a freeing callback, use
983 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
984 	 * during isolation.
985 	 */
986 	if (put_new_page)
987 		put_new_page(newpage, private);
988 	else if (unlikely(__is_movable_balloon_page(newpage))) {
989 		/* drop our reference, page already in the balloon */
990 		put_page(newpage);
991 	} else
992 		putback_lru_page(newpage);
993 
994 	if (result) {
995 		if (rc)
996 			*result = rc;
997 		else
998 			*result = page_to_nid(newpage);
999 	}
1000 	return rc;
1001 }
1002 
1003 /*
1004  * Counterpart of unmap_and_move_page() for hugepage migration.
1005  *
1006  * This function doesn't wait the completion of hugepage I/O
1007  * because there is no race between I/O and migration for hugepage.
1008  * Note that currently hugepage I/O occurs only in direct I/O
1009  * where no lock is held and PG_writeback is irrelevant,
1010  * and writeback status of all subpages are counted in the reference
1011  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1012  * under direct I/O, the reference of the head page is 512 and a bit more.)
1013  * This means that when we try to migrate hugepage whose subpages are
1014  * doing direct I/O, some references remain after try_to_unmap() and
1015  * hugepage migration fails without data corruption.
1016  *
1017  * There is also no race when direct I/O is issued on the page under migration,
1018  * because then pte is replaced with migration swap entry and direct I/O code
1019  * will wait in the page fault for migration to complete.
1020  */
1021 static int unmap_and_move_huge_page(new_page_t get_new_page,
1022 				free_page_t put_new_page, unsigned long private,
1023 				struct page *hpage, int force,
1024 				enum migrate_mode mode)
1025 {
1026 	int rc = -EAGAIN;
1027 	int *result = NULL;
1028 	int page_was_mapped = 0;
1029 	struct page *new_hpage;
1030 	struct anon_vma *anon_vma = NULL;
1031 
1032 	/*
1033 	 * Movability of hugepages depends on architectures and hugepage size.
1034 	 * This check is necessary because some callers of hugepage migration
1035 	 * like soft offline and memory hotremove don't walk through page
1036 	 * tables or check whether the hugepage is pmd-based or not before
1037 	 * kicking migration.
1038 	 */
1039 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1040 		putback_active_hugepage(hpage);
1041 		return -ENOSYS;
1042 	}
1043 
1044 	new_hpage = get_new_page(hpage, private, &result);
1045 	if (!new_hpage)
1046 		return -ENOMEM;
1047 
1048 	if (!trylock_page(hpage)) {
1049 		if (!force || mode != MIGRATE_SYNC)
1050 			goto out;
1051 		lock_page(hpage);
1052 	}
1053 
1054 	if (PageAnon(hpage))
1055 		anon_vma = page_get_anon_vma(hpage);
1056 
1057 	if (unlikely(!trylock_page(new_hpage)))
1058 		goto put_anon;
1059 
1060 	if (page_mapped(hpage)) {
1061 		try_to_unmap(hpage,
1062 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1063 		page_was_mapped = 1;
1064 	}
1065 
1066 	if (!page_mapped(hpage))
1067 		rc = move_to_new_page(new_hpage, hpage, mode);
1068 
1069 	if (page_was_mapped)
1070 		remove_migration_ptes(hpage,
1071 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1072 
1073 	unlock_page(new_hpage);
1074 
1075 put_anon:
1076 	if (anon_vma)
1077 		put_anon_vma(anon_vma);
1078 
1079 	if (rc == MIGRATEPAGE_SUCCESS) {
1080 		hugetlb_cgroup_migrate(hpage, new_hpage);
1081 		put_new_page = NULL;
1082 	}
1083 
1084 	unlock_page(hpage);
1085 out:
1086 	if (rc != -EAGAIN)
1087 		putback_active_hugepage(hpage);
1088 
1089 	/*
1090 	 * If migration was not successful and there's a freeing callback, use
1091 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1092 	 * isolation.
1093 	 */
1094 	if (put_new_page)
1095 		put_new_page(new_hpage, private);
1096 	else
1097 		putback_active_hugepage(new_hpage);
1098 
1099 	if (result) {
1100 		if (rc)
1101 			*result = rc;
1102 		else
1103 			*result = page_to_nid(new_hpage);
1104 	}
1105 	return rc;
1106 }
1107 
1108 /*
1109  * migrate_pages - migrate the pages specified in a list, to the free pages
1110  *		   supplied as the target for the page migration
1111  *
1112  * @from:		The list of pages to be migrated.
1113  * @get_new_page:	The function used to allocate free pages to be used
1114  *			as the target of the page migration.
1115  * @put_new_page:	The function used to free target pages if migration
1116  *			fails, or NULL if no special handling is necessary.
1117  * @private:		Private data to be passed on to get_new_page()
1118  * @mode:		The migration mode that specifies the constraints for
1119  *			page migration, if any.
1120  * @reason:		The reason for page migration.
1121  *
1122  * The function returns after 10 attempts or if no pages are movable any more
1123  * because the list has become empty or no retryable pages exist any more.
1124  * The caller should call putback_movable_pages() to return pages to the LRU
1125  * or free list only if ret != 0.
1126  *
1127  * Returns the number of pages that were not migrated, or an error code.
1128  */
1129 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1130 		free_page_t put_new_page, unsigned long private,
1131 		enum migrate_mode mode, int reason)
1132 {
1133 	int retry = 1;
1134 	int nr_failed = 0;
1135 	int nr_succeeded = 0;
1136 	int pass = 0;
1137 	struct page *page;
1138 	struct page *page2;
1139 	int swapwrite = current->flags & PF_SWAPWRITE;
1140 	int rc;
1141 
1142 	if (!swapwrite)
1143 		current->flags |= PF_SWAPWRITE;
1144 
1145 	for(pass = 0; pass < 10 && retry; pass++) {
1146 		retry = 0;
1147 
1148 		list_for_each_entry_safe(page, page2, from, lru) {
1149 			cond_resched();
1150 
1151 			if (PageHuge(page))
1152 				rc = unmap_and_move_huge_page(get_new_page,
1153 						put_new_page, private, page,
1154 						pass > 2, mode);
1155 			else
1156 				rc = unmap_and_move(get_new_page, put_new_page,
1157 						private, page, pass > 2, mode,
1158 						reason);
1159 
1160 			switch(rc) {
1161 			case -ENOMEM:
1162 				goto out;
1163 			case -EAGAIN:
1164 				retry++;
1165 				break;
1166 			case MIGRATEPAGE_SUCCESS:
1167 				nr_succeeded++;
1168 				break;
1169 			default:
1170 				/*
1171 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1172 				 * unlike -EAGAIN case, the failed page is
1173 				 * removed from migration page list and not
1174 				 * retried in the next outer loop.
1175 				 */
1176 				nr_failed++;
1177 				break;
1178 			}
1179 		}
1180 	}
1181 	nr_failed += retry;
1182 	rc = nr_failed;
1183 out:
1184 	if (nr_succeeded)
1185 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1186 	if (nr_failed)
1187 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1188 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1189 
1190 	if (!swapwrite)
1191 		current->flags &= ~PF_SWAPWRITE;
1192 
1193 	return rc;
1194 }
1195 
1196 #ifdef CONFIG_NUMA
1197 /*
1198  * Move a list of individual pages
1199  */
1200 struct page_to_node {
1201 	unsigned long addr;
1202 	struct page *page;
1203 	int node;
1204 	int status;
1205 };
1206 
1207 static struct page *new_page_node(struct page *p, unsigned long private,
1208 		int **result)
1209 {
1210 	struct page_to_node *pm = (struct page_to_node *)private;
1211 
1212 	while (pm->node != MAX_NUMNODES && pm->page != p)
1213 		pm++;
1214 
1215 	if (pm->node == MAX_NUMNODES)
1216 		return NULL;
1217 
1218 	*result = &pm->status;
1219 
1220 	if (PageHuge(p))
1221 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1222 					pm->node);
1223 	else
1224 		return __alloc_pages_node(pm->node,
1225 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1226 }
1227 
1228 /*
1229  * Move a set of pages as indicated in the pm array. The addr
1230  * field must be set to the virtual address of the page to be moved
1231  * and the node number must contain a valid target node.
1232  * The pm array ends with node = MAX_NUMNODES.
1233  */
1234 static int do_move_page_to_node_array(struct mm_struct *mm,
1235 				      struct page_to_node *pm,
1236 				      int migrate_all)
1237 {
1238 	int err;
1239 	struct page_to_node *pp;
1240 	LIST_HEAD(pagelist);
1241 
1242 	down_read(&mm->mmap_sem);
1243 
1244 	/*
1245 	 * Build a list of pages to migrate
1246 	 */
1247 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1248 		struct vm_area_struct *vma;
1249 		struct page *page;
1250 
1251 		err = -EFAULT;
1252 		vma = find_vma(mm, pp->addr);
1253 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1254 			goto set_status;
1255 
1256 		/* FOLL_DUMP to ignore special (like zero) pages */
1257 		page = follow_page(vma, pp->addr,
1258 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1259 
1260 		err = PTR_ERR(page);
1261 		if (IS_ERR(page))
1262 			goto set_status;
1263 
1264 		err = -ENOENT;
1265 		if (!page)
1266 			goto set_status;
1267 
1268 		pp->page = page;
1269 		err = page_to_nid(page);
1270 
1271 		if (err == pp->node)
1272 			/*
1273 			 * Node already in the right place
1274 			 */
1275 			goto put_and_set;
1276 
1277 		err = -EACCES;
1278 		if (page_mapcount(page) > 1 &&
1279 				!migrate_all)
1280 			goto put_and_set;
1281 
1282 		if (PageHuge(page)) {
1283 			if (PageHead(page))
1284 				isolate_huge_page(page, &pagelist);
1285 			goto put_and_set;
1286 		}
1287 
1288 		err = isolate_lru_page(page);
1289 		if (!err) {
1290 			list_add_tail(&page->lru, &pagelist);
1291 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1292 					    page_is_file_cache(page));
1293 		}
1294 put_and_set:
1295 		/*
1296 		 * Either remove the duplicate refcount from
1297 		 * isolate_lru_page() or drop the page ref if it was
1298 		 * not isolated.
1299 		 */
1300 		put_page(page);
1301 set_status:
1302 		pp->status = err;
1303 	}
1304 
1305 	err = 0;
1306 	if (!list_empty(&pagelist)) {
1307 		err = migrate_pages(&pagelist, new_page_node, NULL,
1308 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1309 		if (err)
1310 			putback_movable_pages(&pagelist);
1311 	}
1312 
1313 	up_read(&mm->mmap_sem);
1314 	return err;
1315 }
1316 
1317 /*
1318  * Migrate an array of page address onto an array of nodes and fill
1319  * the corresponding array of status.
1320  */
1321 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1322 			 unsigned long nr_pages,
1323 			 const void __user * __user *pages,
1324 			 const int __user *nodes,
1325 			 int __user *status, int flags)
1326 {
1327 	struct page_to_node *pm;
1328 	unsigned long chunk_nr_pages;
1329 	unsigned long chunk_start;
1330 	int err;
1331 
1332 	err = -ENOMEM;
1333 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1334 	if (!pm)
1335 		goto out;
1336 
1337 	migrate_prep();
1338 
1339 	/*
1340 	 * Store a chunk of page_to_node array in a page,
1341 	 * but keep the last one as a marker
1342 	 */
1343 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1344 
1345 	for (chunk_start = 0;
1346 	     chunk_start < nr_pages;
1347 	     chunk_start += chunk_nr_pages) {
1348 		int j;
1349 
1350 		if (chunk_start + chunk_nr_pages > nr_pages)
1351 			chunk_nr_pages = nr_pages - chunk_start;
1352 
1353 		/* fill the chunk pm with addrs and nodes from user-space */
1354 		for (j = 0; j < chunk_nr_pages; j++) {
1355 			const void __user *p;
1356 			int node;
1357 
1358 			err = -EFAULT;
1359 			if (get_user(p, pages + j + chunk_start))
1360 				goto out_pm;
1361 			pm[j].addr = (unsigned long) p;
1362 
1363 			if (get_user(node, nodes + j + chunk_start))
1364 				goto out_pm;
1365 
1366 			err = -ENODEV;
1367 			if (node < 0 || node >= MAX_NUMNODES)
1368 				goto out_pm;
1369 
1370 			if (!node_state(node, N_MEMORY))
1371 				goto out_pm;
1372 
1373 			err = -EACCES;
1374 			if (!node_isset(node, task_nodes))
1375 				goto out_pm;
1376 
1377 			pm[j].node = node;
1378 		}
1379 
1380 		/* End marker for this chunk */
1381 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1382 
1383 		/* Migrate this chunk */
1384 		err = do_move_page_to_node_array(mm, pm,
1385 						 flags & MPOL_MF_MOVE_ALL);
1386 		if (err < 0)
1387 			goto out_pm;
1388 
1389 		/* Return status information */
1390 		for (j = 0; j < chunk_nr_pages; j++)
1391 			if (put_user(pm[j].status, status + j + chunk_start)) {
1392 				err = -EFAULT;
1393 				goto out_pm;
1394 			}
1395 	}
1396 	err = 0;
1397 
1398 out_pm:
1399 	free_page((unsigned long)pm);
1400 out:
1401 	return err;
1402 }
1403 
1404 /*
1405  * Determine the nodes of an array of pages and store it in an array of status.
1406  */
1407 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1408 				const void __user **pages, int *status)
1409 {
1410 	unsigned long i;
1411 
1412 	down_read(&mm->mmap_sem);
1413 
1414 	for (i = 0; i < nr_pages; i++) {
1415 		unsigned long addr = (unsigned long)(*pages);
1416 		struct vm_area_struct *vma;
1417 		struct page *page;
1418 		int err = -EFAULT;
1419 
1420 		vma = find_vma(mm, addr);
1421 		if (!vma || addr < vma->vm_start)
1422 			goto set_status;
1423 
1424 		/* FOLL_DUMP to ignore special (like zero) pages */
1425 		page = follow_page(vma, addr, FOLL_DUMP);
1426 
1427 		err = PTR_ERR(page);
1428 		if (IS_ERR(page))
1429 			goto set_status;
1430 
1431 		err = page ? page_to_nid(page) : -ENOENT;
1432 set_status:
1433 		*status = err;
1434 
1435 		pages++;
1436 		status++;
1437 	}
1438 
1439 	up_read(&mm->mmap_sem);
1440 }
1441 
1442 /*
1443  * Determine the nodes of a user array of pages and store it in
1444  * a user array of status.
1445  */
1446 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1447 			 const void __user * __user *pages,
1448 			 int __user *status)
1449 {
1450 #define DO_PAGES_STAT_CHUNK_NR 16
1451 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1452 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1453 
1454 	while (nr_pages) {
1455 		unsigned long chunk_nr;
1456 
1457 		chunk_nr = nr_pages;
1458 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1459 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1460 
1461 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1462 			break;
1463 
1464 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1465 
1466 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1467 			break;
1468 
1469 		pages += chunk_nr;
1470 		status += chunk_nr;
1471 		nr_pages -= chunk_nr;
1472 	}
1473 	return nr_pages ? -EFAULT : 0;
1474 }
1475 
1476 /*
1477  * Move a list of pages in the address space of the currently executing
1478  * process.
1479  */
1480 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1481 		const void __user * __user *, pages,
1482 		const int __user *, nodes,
1483 		int __user *, status, int, flags)
1484 {
1485 	const struct cred *cred = current_cred(), *tcred;
1486 	struct task_struct *task;
1487 	struct mm_struct *mm;
1488 	int err;
1489 	nodemask_t task_nodes;
1490 
1491 	/* Check flags */
1492 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1493 		return -EINVAL;
1494 
1495 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1496 		return -EPERM;
1497 
1498 	/* Find the mm_struct */
1499 	rcu_read_lock();
1500 	task = pid ? find_task_by_vpid(pid) : current;
1501 	if (!task) {
1502 		rcu_read_unlock();
1503 		return -ESRCH;
1504 	}
1505 	get_task_struct(task);
1506 
1507 	/*
1508 	 * Check if this process has the right to modify the specified
1509 	 * process. The right exists if the process has administrative
1510 	 * capabilities, superuser privileges or the same
1511 	 * userid as the target process.
1512 	 */
1513 	tcred = __task_cred(task);
1514 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1515 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1516 	    !capable(CAP_SYS_NICE)) {
1517 		rcu_read_unlock();
1518 		err = -EPERM;
1519 		goto out;
1520 	}
1521 	rcu_read_unlock();
1522 
1523  	err = security_task_movememory(task);
1524  	if (err)
1525 		goto out;
1526 
1527 	task_nodes = cpuset_mems_allowed(task);
1528 	mm = get_task_mm(task);
1529 	put_task_struct(task);
1530 
1531 	if (!mm)
1532 		return -EINVAL;
1533 
1534 	if (nodes)
1535 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1536 				    nodes, status, flags);
1537 	else
1538 		err = do_pages_stat(mm, nr_pages, pages, status);
1539 
1540 	mmput(mm);
1541 	return err;
1542 
1543 out:
1544 	put_task_struct(task);
1545 	return err;
1546 }
1547 
1548 #ifdef CONFIG_NUMA_BALANCING
1549 /*
1550  * Returns true if this is a safe migration target node for misplaced NUMA
1551  * pages. Currently it only checks the watermarks which crude
1552  */
1553 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1554 				   unsigned long nr_migrate_pages)
1555 {
1556 	int z;
1557 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1558 		struct zone *zone = pgdat->node_zones + z;
1559 
1560 		if (!populated_zone(zone))
1561 			continue;
1562 
1563 		if (!zone_reclaimable(zone))
1564 			continue;
1565 
1566 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1567 		if (!zone_watermark_ok(zone, 0,
1568 				       high_wmark_pages(zone) +
1569 				       nr_migrate_pages,
1570 				       0, 0))
1571 			continue;
1572 		return true;
1573 	}
1574 	return false;
1575 }
1576 
1577 static struct page *alloc_misplaced_dst_page(struct page *page,
1578 					   unsigned long data,
1579 					   int **result)
1580 {
1581 	int nid = (int) data;
1582 	struct page *newpage;
1583 
1584 	newpage = __alloc_pages_node(nid,
1585 					 (GFP_HIGHUSER_MOVABLE |
1586 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1587 					  __GFP_NORETRY | __GFP_NOWARN) &
1588 					 ~__GFP_RECLAIM, 0);
1589 
1590 	return newpage;
1591 }
1592 
1593 /*
1594  * page migration rate limiting control.
1595  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1596  * window of time. Default here says do not migrate more than 1280M per second.
1597  */
1598 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1599 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1600 
1601 /* Returns true if the node is migrate rate-limited after the update */
1602 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1603 					unsigned long nr_pages)
1604 {
1605 	/*
1606 	 * Rate-limit the amount of data that is being migrated to a node.
1607 	 * Optimal placement is no good if the memory bus is saturated and
1608 	 * all the time is being spent migrating!
1609 	 */
1610 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1611 		spin_lock(&pgdat->numabalancing_migrate_lock);
1612 		pgdat->numabalancing_migrate_nr_pages = 0;
1613 		pgdat->numabalancing_migrate_next_window = jiffies +
1614 			msecs_to_jiffies(migrate_interval_millisecs);
1615 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1616 	}
1617 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1618 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1619 								nr_pages);
1620 		return true;
1621 	}
1622 
1623 	/*
1624 	 * This is an unlocked non-atomic update so errors are possible.
1625 	 * The consequences are failing to migrate when we potentiall should
1626 	 * have which is not severe enough to warrant locking. If it is ever
1627 	 * a problem, it can be converted to a per-cpu counter.
1628 	 */
1629 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1630 	return false;
1631 }
1632 
1633 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1634 {
1635 	int page_lru;
1636 
1637 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1638 
1639 	/* Avoid migrating to a node that is nearly full */
1640 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1641 		return 0;
1642 
1643 	if (isolate_lru_page(page))
1644 		return 0;
1645 
1646 	/*
1647 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1648 	 * check on page_count(), so we must do it here, now that the page
1649 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1650 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1651 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1652 	 */
1653 	if (PageTransHuge(page) && page_count(page) != 3) {
1654 		putback_lru_page(page);
1655 		return 0;
1656 	}
1657 
1658 	page_lru = page_is_file_cache(page);
1659 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1660 				hpage_nr_pages(page));
1661 
1662 	/*
1663 	 * Isolating the page has taken another reference, so the
1664 	 * caller's reference can be safely dropped without the page
1665 	 * disappearing underneath us during migration.
1666 	 */
1667 	put_page(page);
1668 	return 1;
1669 }
1670 
1671 bool pmd_trans_migrating(pmd_t pmd)
1672 {
1673 	struct page *page = pmd_page(pmd);
1674 	return PageLocked(page);
1675 }
1676 
1677 /*
1678  * Attempt to migrate a misplaced page to the specified destination
1679  * node. Caller is expected to have an elevated reference count on
1680  * the page that will be dropped by this function before returning.
1681  */
1682 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1683 			   int node)
1684 {
1685 	pg_data_t *pgdat = NODE_DATA(node);
1686 	int isolated;
1687 	int nr_remaining;
1688 	LIST_HEAD(migratepages);
1689 
1690 	/*
1691 	 * Don't migrate file pages that are mapped in multiple processes
1692 	 * with execute permissions as they are probably shared libraries.
1693 	 */
1694 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1695 	    (vma->vm_flags & VM_EXEC))
1696 		goto out;
1697 
1698 	/*
1699 	 * Rate-limit the amount of data that is being migrated to a node.
1700 	 * Optimal placement is no good if the memory bus is saturated and
1701 	 * all the time is being spent migrating!
1702 	 */
1703 	if (numamigrate_update_ratelimit(pgdat, 1))
1704 		goto out;
1705 
1706 	isolated = numamigrate_isolate_page(pgdat, page);
1707 	if (!isolated)
1708 		goto out;
1709 
1710 	list_add(&page->lru, &migratepages);
1711 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1712 				     NULL, node, MIGRATE_ASYNC,
1713 				     MR_NUMA_MISPLACED);
1714 	if (nr_remaining) {
1715 		if (!list_empty(&migratepages)) {
1716 			list_del(&page->lru);
1717 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1718 					page_is_file_cache(page));
1719 			putback_lru_page(page);
1720 		}
1721 		isolated = 0;
1722 	} else
1723 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1724 	BUG_ON(!list_empty(&migratepages));
1725 	return isolated;
1726 
1727 out:
1728 	put_page(page);
1729 	return 0;
1730 }
1731 #endif /* CONFIG_NUMA_BALANCING */
1732 
1733 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1734 /*
1735  * Migrates a THP to a given target node. page must be locked and is unlocked
1736  * before returning.
1737  */
1738 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1739 				struct vm_area_struct *vma,
1740 				pmd_t *pmd, pmd_t entry,
1741 				unsigned long address,
1742 				struct page *page, int node)
1743 {
1744 	spinlock_t *ptl;
1745 	pg_data_t *pgdat = NODE_DATA(node);
1746 	int isolated = 0;
1747 	struct page *new_page = NULL;
1748 	int page_lru = page_is_file_cache(page);
1749 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1750 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1751 	pmd_t orig_entry;
1752 
1753 	/*
1754 	 * Rate-limit the amount of data that is being migrated to a node.
1755 	 * Optimal placement is no good if the memory bus is saturated and
1756 	 * all the time is being spent migrating!
1757 	 */
1758 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1759 		goto out_dropref;
1760 
1761 	new_page = alloc_pages_node(node,
1762 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1763 		HPAGE_PMD_ORDER);
1764 	if (!new_page)
1765 		goto out_fail;
1766 	prep_transhuge_page(new_page);
1767 
1768 	isolated = numamigrate_isolate_page(pgdat, page);
1769 	if (!isolated) {
1770 		put_page(new_page);
1771 		goto out_fail;
1772 	}
1773 
1774 	if (mm_tlb_flush_pending(mm))
1775 		flush_tlb_range(vma, mmun_start, mmun_end);
1776 
1777 	/* Prepare a page as a migration target */
1778 	__SetPageLocked(new_page);
1779 	SetPageSwapBacked(new_page);
1780 
1781 	/* anon mapping, we can simply copy page->mapping to the new page: */
1782 	new_page->mapping = page->mapping;
1783 	new_page->index = page->index;
1784 	migrate_page_copy(new_page, page);
1785 	WARN_ON(PageLRU(new_page));
1786 
1787 	/* Recheck the target PMD */
1788 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1789 	ptl = pmd_lock(mm, pmd);
1790 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1791 fail_putback:
1792 		spin_unlock(ptl);
1793 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1794 
1795 		/* Reverse changes made by migrate_page_copy() */
1796 		if (TestClearPageActive(new_page))
1797 			SetPageActive(page);
1798 		if (TestClearPageUnevictable(new_page))
1799 			SetPageUnevictable(page);
1800 
1801 		unlock_page(new_page);
1802 		put_page(new_page);		/* Free it */
1803 
1804 		/* Retake the callers reference and putback on LRU */
1805 		get_page(page);
1806 		putback_lru_page(page);
1807 		mod_zone_page_state(page_zone(page),
1808 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1809 
1810 		goto out_unlock;
1811 	}
1812 
1813 	orig_entry = *pmd;
1814 	entry = mk_pmd(new_page, vma->vm_page_prot);
1815 	entry = pmd_mkhuge(entry);
1816 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1817 
1818 	/*
1819 	 * Clear the old entry under pagetable lock and establish the new PTE.
1820 	 * Any parallel GUP will either observe the old page blocking on the
1821 	 * page lock, block on the page table lock or observe the new page.
1822 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1823 	 * guarantee the copy is visible before the pagetable update.
1824 	 */
1825 	flush_cache_range(vma, mmun_start, mmun_end);
1826 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1827 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1828 	set_pmd_at(mm, mmun_start, pmd, entry);
1829 	flush_tlb_range(vma, mmun_start, mmun_end);
1830 	update_mmu_cache_pmd(vma, address, &entry);
1831 
1832 	if (page_count(page) != 2) {
1833 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1834 		flush_tlb_range(vma, mmun_start, mmun_end);
1835 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1836 		update_mmu_cache_pmd(vma, address, &entry);
1837 		page_remove_rmap(new_page, true);
1838 		goto fail_putback;
1839 	}
1840 
1841 	mlock_migrate_page(new_page, page);
1842 	set_page_memcg(new_page, page_memcg(page));
1843 	set_page_memcg(page, NULL);
1844 	page_remove_rmap(page, true);
1845 
1846 	spin_unlock(ptl);
1847 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1848 
1849 	/* Take an "isolate" reference and put new page on the LRU. */
1850 	get_page(new_page);
1851 	putback_lru_page(new_page);
1852 
1853 	unlock_page(new_page);
1854 	unlock_page(page);
1855 	put_page(page);			/* Drop the rmap reference */
1856 	put_page(page);			/* Drop the LRU isolation reference */
1857 
1858 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1859 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1860 
1861 	mod_zone_page_state(page_zone(page),
1862 			NR_ISOLATED_ANON + page_lru,
1863 			-HPAGE_PMD_NR);
1864 	return isolated;
1865 
1866 out_fail:
1867 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1868 out_dropref:
1869 	ptl = pmd_lock(mm, pmd);
1870 	if (pmd_same(*pmd, entry)) {
1871 		entry = pmd_modify(entry, vma->vm_page_prot);
1872 		set_pmd_at(mm, mmun_start, pmd, entry);
1873 		update_mmu_cache_pmd(vma, address, &entry);
1874 	}
1875 	spin_unlock(ptl);
1876 
1877 out_unlock:
1878 	unlock_page(page);
1879 	put_page(page);
1880 	return 0;
1881 }
1882 #endif /* CONFIG_NUMA_BALANCING */
1883 
1884 #endif /* CONFIG_NUMA */
1885