1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/page_idle.h> 41 #include <linux/page_owner.h> 42 43 #include <asm/tlbflush.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/migrate.h> 47 48 #include "internal.h" 49 50 /* 51 * migrate_prep() needs to be called before we start compiling a list of pages 52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 53 * undesirable, use migrate_prep_local() 54 */ 55 int migrate_prep(void) 56 { 57 /* 58 * Clear the LRU lists so pages can be isolated. 59 * Note that pages may be moved off the LRU after we have 60 * drained them. Those pages will fail to migrate like other 61 * pages that may be busy. 62 */ 63 lru_add_drain_all(); 64 65 return 0; 66 } 67 68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 69 int migrate_prep_local(void) 70 { 71 lru_add_drain(); 72 73 return 0; 74 } 75 76 /* 77 * Put previously isolated pages back onto the appropriate lists 78 * from where they were once taken off for compaction/migration. 79 * 80 * This function shall be used whenever the isolated pageset has been 81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 82 * and isolate_huge_page(). 83 */ 84 void putback_movable_pages(struct list_head *l) 85 { 86 struct page *page; 87 struct page *page2; 88 89 list_for_each_entry_safe(page, page2, l, lru) { 90 if (unlikely(PageHuge(page))) { 91 putback_active_hugepage(page); 92 continue; 93 } 94 list_del(&page->lru); 95 dec_zone_page_state(page, NR_ISOLATED_ANON + 96 page_is_file_cache(page)); 97 if (unlikely(isolated_balloon_page(page))) 98 balloon_page_putback(page); 99 else 100 putback_lru_page(page); 101 } 102 } 103 104 /* 105 * Restore a potential migration pte to a working pte entry 106 */ 107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 108 unsigned long addr, void *old) 109 { 110 struct mm_struct *mm = vma->vm_mm; 111 swp_entry_t entry; 112 pmd_t *pmd; 113 pte_t *ptep, pte; 114 spinlock_t *ptl; 115 116 if (unlikely(PageHuge(new))) { 117 ptep = huge_pte_offset(mm, addr); 118 if (!ptep) 119 goto out; 120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 121 } else { 122 pmd = mm_find_pmd(mm, addr); 123 if (!pmd) 124 goto out; 125 126 ptep = pte_offset_map(pmd, addr); 127 128 /* 129 * Peek to check is_swap_pte() before taking ptlock? No, we 130 * can race mremap's move_ptes(), which skips anon_vma lock. 131 */ 132 133 ptl = pte_lockptr(mm, pmd); 134 } 135 136 spin_lock(ptl); 137 pte = *ptep; 138 if (!is_swap_pte(pte)) 139 goto unlock; 140 141 entry = pte_to_swp_entry(pte); 142 143 if (!is_migration_entry(entry) || 144 migration_entry_to_page(entry) != old) 145 goto unlock; 146 147 get_page(new); 148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 149 if (pte_swp_soft_dirty(*ptep)) 150 pte = pte_mksoft_dirty(pte); 151 152 /* Recheck VMA as permissions can change since migration started */ 153 if (is_write_migration_entry(entry)) 154 pte = maybe_mkwrite(pte, vma); 155 156 #ifdef CONFIG_HUGETLB_PAGE 157 if (PageHuge(new)) { 158 pte = pte_mkhuge(pte); 159 pte = arch_make_huge_pte(pte, vma, new, 0); 160 } 161 #endif 162 flush_dcache_page(new); 163 set_pte_at(mm, addr, ptep, pte); 164 165 if (PageHuge(new)) { 166 if (PageAnon(new)) 167 hugepage_add_anon_rmap(new, vma, addr); 168 else 169 page_dup_rmap(new, true); 170 } else if (PageAnon(new)) 171 page_add_anon_rmap(new, vma, addr, false); 172 else 173 page_add_file_rmap(new); 174 175 if (vma->vm_flags & VM_LOCKED) 176 mlock_vma_page(new); 177 178 /* No need to invalidate - it was non-present before */ 179 update_mmu_cache(vma, addr, ptep); 180 unlock: 181 pte_unmap_unlock(ptep, ptl); 182 out: 183 return SWAP_AGAIN; 184 } 185 186 /* 187 * Get rid of all migration entries and replace them by 188 * references to the indicated page. 189 */ 190 static void remove_migration_ptes(struct page *old, struct page *new) 191 { 192 struct rmap_walk_control rwc = { 193 .rmap_one = remove_migration_pte, 194 .arg = old, 195 }; 196 197 rmap_walk(new, &rwc); 198 } 199 200 /* 201 * Something used the pte of a page under migration. We need to 202 * get to the page and wait until migration is finished. 203 * When we return from this function the fault will be retried. 204 */ 205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 206 spinlock_t *ptl) 207 { 208 pte_t pte; 209 swp_entry_t entry; 210 struct page *page; 211 212 spin_lock(ptl); 213 pte = *ptep; 214 if (!is_swap_pte(pte)) 215 goto out; 216 217 entry = pte_to_swp_entry(pte); 218 if (!is_migration_entry(entry)) 219 goto out; 220 221 page = migration_entry_to_page(entry); 222 223 /* 224 * Once radix-tree replacement of page migration started, page_count 225 * *must* be zero. And, we don't want to call wait_on_page_locked() 226 * against a page without get_page(). 227 * So, we use get_page_unless_zero(), here. Even failed, page fault 228 * will occur again. 229 */ 230 if (!get_page_unless_zero(page)) 231 goto out; 232 pte_unmap_unlock(ptep, ptl); 233 wait_on_page_locked(page); 234 put_page(page); 235 return; 236 out: 237 pte_unmap_unlock(ptep, ptl); 238 } 239 240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 241 unsigned long address) 242 { 243 spinlock_t *ptl = pte_lockptr(mm, pmd); 244 pte_t *ptep = pte_offset_map(pmd, address); 245 __migration_entry_wait(mm, ptep, ptl); 246 } 247 248 void migration_entry_wait_huge(struct vm_area_struct *vma, 249 struct mm_struct *mm, pte_t *pte) 250 { 251 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 252 __migration_entry_wait(mm, pte, ptl); 253 } 254 255 #ifdef CONFIG_BLOCK 256 /* Returns true if all buffers are successfully locked */ 257 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 258 enum migrate_mode mode) 259 { 260 struct buffer_head *bh = head; 261 262 /* Simple case, sync compaction */ 263 if (mode != MIGRATE_ASYNC) { 264 do { 265 get_bh(bh); 266 lock_buffer(bh); 267 bh = bh->b_this_page; 268 269 } while (bh != head); 270 271 return true; 272 } 273 274 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 275 do { 276 get_bh(bh); 277 if (!trylock_buffer(bh)) { 278 /* 279 * We failed to lock the buffer and cannot stall in 280 * async migration. Release the taken locks 281 */ 282 struct buffer_head *failed_bh = bh; 283 put_bh(failed_bh); 284 bh = head; 285 while (bh != failed_bh) { 286 unlock_buffer(bh); 287 put_bh(bh); 288 bh = bh->b_this_page; 289 } 290 return false; 291 } 292 293 bh = bh->b_this_page; 294 } while (bh != head); 295 return true; 296 } 297 #else 298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 299 enum migrate_mode mode) 300 { 301 return true; 302 } 303 #endif /* CONFIG_BLOCK */ 304 305 /* 306 * Replace the page in the mapping. 307 * 308 * The number of remaining references must be: 309 * 1 for anonymous pages without a mapping 310 * 2 for pages with a mapping 311 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 312 */ 313 int migrate_page_move_mapping(struct address_space *mapping, 314 struct page *newpage, struct page *page, 315 struct buffer_head *head, enum migrate_mode mode, 316 int extra_count) 317 { 318 struct zone *oldzone, *newzone; 319 int dirty; 320 int expected_count = 1 + extra_count; 321 void **pslot; 322 323 if (!mapping) { 324 /* Anonymous page without mapping */ 325 if (page_count(page) != expected_count) 326 return -EAGAIN; 327 328 /* No turning back from here */ 329 set_page_memcg(newpage, page_memcg(page)); 330 newpage->index = page->index; 331 newpage->mapping = page->mapping; 332 if (PageSwapBacked(page)) 333 SetPageSwapBacked(newpage); 334 335 return MIGRATEPAGE_SUCCESS; 336 } 337 338 oldzone = page_zone(page); 339 newzone = page_zone(newpage); 340 341 spin_lock_irq(&mapping->tree_lock); 342 343 pslot = radix_tree_lookup_slot(&mapping->page_tree, 344 page_index(page)); 345 346 expected_count += 1 + page_has_private(page); 347 if (page_count(page) != expected_count || 348 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 349 spin_unlock_irq(&mapping->tree_lock); 350 return -EAGAIN; 351 } 352 353 if (!page_freeze_refs(page, expected_count)) { 354 spin_unlock_irq(&mapping->tree_lock); 355 return -EAGAIN; 356 } 357 358 /* 359 * In the async migration case of moving a page with buffers, lock the 360 * buffers using trylock before the mapping is moved. If the mapping 361 * was moved, we later failed to lock the buffers and could not move 362 * the mapping back due to an elevated page count, we would have to 363 * block waiting on other references to be dropped. 364 */ 365 if (mode == MIGRATE_ASYNC && head && 366 !buffer_migrate_lock_buffers(head, mode)) { 367 page_unfreeze_refs(page, expected_count); 368 spin_unlock_irq(&mapping->tree_lock); 369 return -EAGAIN; 370 } 371 372 /* 373 * Now we know that no one else is looking at the page: 374 * no turning back from here. 375 */ 376 set_page_memcg(newpage, page_memcg(page)); 377 newpage->index = page->index; 378 newpage->mapping = page->mapping; 379 if (PageSwapBacked(page)) 380 SetPageSwapBacked(newpage); 381 382 get_page(newpage); /* add cache reference */ 383 if (PageSwapCache(page)) { 384 SetPageSwapCache(newpage); 385 set_page_private(newpage, page_private(page)); 386 } 387 388 /* Move dirty while page refs frozen and newpage not yet exposed */ 389 dirty = PageDirty(page); 390 if (dirty) { 391 ClearPageDirty(page); 392 SetPageDirty(newpage); 393 } 394 395 radix_tree_replace_slot(pslot, newpage); 396 397 /* 398 * Drop cache reference from old page by unfreezing 399 * to one less reference. 400 * We know this isn't the last reference. 401 */ 402 page_unfreeze_refs(page, expected_count - 1); 403 404 spin_unlock(&mapping->tree_lock); 405 /* Leave irq disabled to prevent preemption while updating stats */ 406 407 /* 408 * If moved to a different zone then also account 409 * the page for that zone. Other VM counters will be 410 * taken care of when we establish references to the 411 * new page and drop references to the old page. 412 * 413 * Note that anonymous pages are accounted for 414 * via NR_FILE_PAGES and NR_ANON_PAGES if they 415 * are mapped to swap space. 416 */ 417 if (newzone != oldzone) { 418 __dec_zone_state(oldzone, NR_FILE_PAGES); 419 __inc_zone_state(newzone, NR_FILE_PAGES); 420 if (PageSwapBacked(page) && !PageSwapCache(page)) { 421 __dec_zone_state(oldzone, NR_SHMEM); 422 __inc_zone_state(newzone, NR_SHMEM); 423 } 424 if (dirty && mapping_cap_account_dirty(mapping)) { 425 __dec_zone_state(oldzone, NR_FILE_DIRTY); 426 __inc_zone_state(newzone, NR_FILE_DIRTY); 427 } 428 } 429 local_irq_enable(); 430 431 return MIGRATEPAGE_SUCCESS; 432 } 433 434 /* 435 * The expected number of remaining references is the same as that 436 * of migrate_page_move_mapping(). 437 */ 438 int migrate_huge_page_move_mapping(struct address_space *mapping, 439 struct page *newpage, struct page *page) 440 { 441 int expected_count; 442 void **pslot; 443 444 spin_lock_irq(&mapping->tree_lock); 445 446 pslot = radix_tree_lookup_slot(&mapping->page_tree, 447 page_index(page)); 448 449 expected_count = 2 + page_has_private(page); 450 if (page_count(page) != expected_count || 451 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 452 spin_unlock_irq(&mapping->tree_lock); 453 return -EAGAIN; 454 } 455 456 if (!page_freeze_refs(page, expected_count)) { 457 spin_unlock_irq(&mapping->tree_lock); 458 return -EAGAIN; 459 } 460 461 set_page_memcg(newpage, page_memcg(page)); 462 newpage->index = page->index; 463 newpage->mapping = page->mapping; 464 get_page(newpage); 465 466 radix_tree_replace_slot(pslot, newpage); 467 468 page_unfreeze_refs(page, expected_count - 1); 469 470 spin_unlock_irq(&mapping->tree_lock); 471 return MIGRATEPAGE_SUCCESS; 472 } 473 474 /* 475 * Gigantic pages are so large that we do not guarantee that page++ pointer 476 * arithmetic will work across the entire page. We need something more 477 * specialized. 478 */ 479 static void __copy_gigantic_page(struct page *dst, struct page *src, 480 int nr_pages) 481 { 482 int i; 483 struct page *dst_base = dst; 484 struct page *src_base = src; 485 486 for (i = 0; i < nr_pages; ) { 487 cond_resched(); 488 copy_highpage(dst, src); 489 490 i++; 491 dst = mem_map_next(dst, dst_base, i); 492 src = mem_map_next(src, src_base, i); 493 } 494 } 495 496 static void copy_huge_page(struct page *dst, struct page *src) 497 { 498 int i; 499 int nr_pages; 500 501 if (PageHuge(src)) { 502 /* hugetlbfs page */ 503 struct hstate *h = page_hstate(src); 504 nr_pages = pages_per_huge_page(h); 505 506 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 507 __copy_gigantic_page(dst, src, nr_pages); 508 return; 509 } 510 } else { 511 /* thp page */ 512 BUG_ON(!PageTransHuge(src)); 513 nr_pages = hpage_nr_pages(src); 514 } 515 516 for (i = 0; i < nr_pages; i++) { 517 cond_resched(); 518 copy_highpage(dst + i, src + i); 519 } 520 } 521 522 /* 523 * Copy the page to its new location 524 */ 525 void migrate_page_copy(struct page *newpage, struct page *page) 526 { 527 int cpupid; 528 529 if (PageHuge(page) || PageTransHuge(page)) 530 copy_huge_page(newpage, page); 531 else 532 copy_highpage(newpage, page); 533 534 if (PageError(page)) 535 SetPageError(newpage); 536 if (PageReferenced(page)) 537 SetPageReferenced(newpage); 538 if (PageUptodate(page)) 539 SetPageUptodate(newpage); 540 if (TestClearPageActive(page)) { 541 VM_BUG_ON_PAGE(PageUnevictable(page), page); 542 SetPageActive(newpage); 543 } else if (TestClearPageUnevictable(page)) 544 SetPageUnevictable(newpage); 545 if (PageChecked(page)) 546 SetPageChecked(newpage); 547 if (PageMappedToDisk(page)) 548 SetPageMappedToDisk(newpage); 549 550 /* Move dirty on pages not done by migrate_page_move_mapping() */ 551 if (PageDirty(page)) 552 SetPageDirty(newpage); 553 554 if (page_is_young(page)) 555 set_page_young(newpage); 556 if (page_is_idle(page)) 557 set_page_idle(newpage); 558 559 /* 560 * Copy NUMA information to the new page, to prevent over-eager 561 * future migrations of this same page. 562 */ 563 cpupid = page_cpupid_xchg_last(page, -1); 564 page_cpupid_xchg_last(newpage, cpupid); 565 566 ksm_migrate_page(newpage, page); 567 /* 568 * Please do not reorder this without considering how mm/ksm.c's 569 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 570 */ 571 if (PageSwapCache(page)) 572 ClearPageSwapCache(page); 573 ClearPagePrivate(page); 574 set_page_private(page, 0); 575 576 /* 577 * If any waiters have accumulated on the new page then 578 * wake them up. 579 */ 580 if (PageWriteback(newpage)) 581 end_page_writeback(newpage); 582 583 copy_page_owner(page, newpage); 584 } 585 586 /************************************************************ 587 * Migration functions 588 ***********************************************************/ 589 590 /* 591 * Common logic to directly migrate a single page suitable for 592 * pages that do not use PagePrivate/PagePrivate2. 593 * 594 * Pages are locked upon entry and exit. 595 */ 596 int migrate_page(struct address_space *mapping, 597 struct page *newpage, struct page *page, 598 enum migrate_mode mode) 599 { 600 int rc; 601 602 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 603 604 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 605 606 if (rc != MIGRATEPAGE_SUCCESS) 607 return rc; 608 609 migrate_page_copy(newpage, page); 610 return MIGRATEPAGE_SUCCESS; 611 } 612 EXPORT_SYMBOL(migrate_page); 613 614 #ifdef CONFIG_BLOCK 615 /* 616 * Migration function for pages with buffers. This function can only be used 617 * if the underlying filesystem guarantees that no other references to "page" 618 * exist. 619 */ 620 int buffer_migrate_page(struct address_space *mapping, 621 struct page *newpage, struct page *page, enum migrate_mode mode) 622 { 623 struct buffer_head *bh, *head; 624 int rc; 625 626 if (!page_has_buffers(page)) 627 return migrate_page(mapping, newpage, page, mode); 628 629 head = page_buffers(page); 630 631 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 632 633 if (rc != MIGRATEPAGE_SUCCESS) 634 return rc; 635 636 /* 637 * In the async case, migrate_page_move_mapping locked the buffers 638 * with an IRQ-safe spinlock held. In the sync case, the buffers 639 * need to be locked now 640 */ 641 if (mode != MIGRATE_ASYNC) 642 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 643 644 ClearPagePrivate(page); 645 set_page_private(newpage, page_private(page)); 646 set_page_private(page, 0); 647 put_page(page); 648 get_page(newpage); 649 650 bh = head; 651 do { 652 set_bh_page(bh, newpage, bh_offset(bh)); 653 bh = bh->b_this_page; 654 655 } while (bh != head); 656 657 SetPagePrivate(newpage); 658 659 migrate_page_copy(newpage, page); 660 661 bh = head; 662 do { 663 unlock_buffer(bh); 664 put_bh(bh); 665 bh = bh->b_this_page; 666 667 } while (bh != head); 668 669 return MIGRATEPAGE_SUCCESS; 670 } 671 EXPORT_SYMBOL(buffer_migrate_page); 672 #endif 673 674 /* 675 * Writeback a page to clean the dirty state 676 */ 677 static int writeout(struct address_space *mapping, struct page *page) 678 { 679 struct writeback_control wbc = { 680 .sync_mode = WB_SYNC_NONE, 681 .nr_to_write = 1, 682 .range_start = 0, 683 .range_end = LLONG_MAX, 684 .for_reclaim = 1 685 }; 686 int rc; 687 688 if (!mapping->a_ops->writepage) 689 /* No write method for the address space */ 690 return -EINVAL; 691 692 if (!clear_page_dirty_for_io(page)) 693 /* Someone else already triggered a write */ 694 return -EAGAIN; 695 696 /* 697 * A dirty page may imply that the underlying filesystem has 698 * the page on some queue. So the page must be clean for 699 * migration. Writeout may mean we loose the lock and the 700 * page state is no longer what we checked for earlier. 701 * At this point we know that the migration attempt cannot 702 * be successful. 703 */ 704 remove_migration_ptes(page, page); 705 706 rc = mapping->a_ops->writepage(page, &wbc); 707 708 if (rc != AOP_WRITEPAGE_ACTIVATE) 709 /* unlocked. Relock */ 710 lock_page(page); 711 712 return (rc < 0) ? -EIO : -EAGAIN; 713 } 714 715 /* 716 * Default handling if a filesystem does not provide a migration function. 717 */ 718 static int fallback_migrate_page(struct address_space *mapping, 719 struct page *newpage, struct page *page, enum migrate_mode mode) 720 { 721 if (PageDirty(page)) { 722 /* Only writeback pages in full synchronous migration */ 723 if (mode != MIGRATE_SYNC) 724 return -EBUSY; 725 return writeout(mapping, page); 726 } 727 728 /* 729 * Buffers may be managed in a filesystem specific way. 730 * We must have no buffers or drop them. 731 */ 732 if (page_has_private(page) && 733 !try_to_release_page(page, GFP_KERNEL)) 734 return -EAGAIN; 735 736 return migrate_page(mapping, newpage, page, mode); 737 } 738 739 /* 740 * Move a page to a newly allocated page 741 * The page is locked and all ptes have been successfully removed. 742 * 743 * The new page will have replaced the old page if this function 744 * is successful. 745 * 746 * Return value: 747 * < 0 - error code 748 * MIGRATEPAGE_SUCCESS - success 749 */ 750 static int move_to_new_page(struct page *newpage, struct page *page, 751 enum migrate_mode mode) 752 { 753 struct address_space *mapping; 754 int rc; 755 756 VM_BUG_ON_PAGE(!PageLocked(page), page); 757 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 758 759 mapping = page_mapping(page); 760 if (!mapping) 761 rc = migrate_page(mapping, newpage, page, mode); 762 else if (mapping->a_ops->migratepage) 763 /* 764 * Most pages have a mapping and most filesystems provide a 765 * migratepage callback. Anonymous pages are part of swap 766 * space which also has its own migratepage callback. This 767 * is the most common path for page migration. 768 */ 769 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode); 770 else 771 rc = fallback_migrate_page(mapping, newpage, page, mode); 772 773 /* 774 * When successful, old pagecache page->mapping must be cleared before 775 * page is freed; but stats require that PageAnon be left as PageAnon. 776 */ 777 if (rc == MIGRATEPAGE_SUCCESS) { 778 set_page_memcg(page, NULL); 779 if (!PageAnon(page)) 780 page->mapping = NULL; 781 } 782 return rc; 783 } 784 785 static int __unmap_and_move(struct page *page, struct page *newpage, 786 int force, enum migrate_mode mode) 787 { 788 int rc = -EAGAIN; 789 int page_was_mapped = 0; 790 struct anon_vma *anon_vma = NULL; 791 792 if (!trylock_page(page)) { 793 if (!force || mode == MIGRATE_ASYNC) 794 goto out; 795 796 /* 797 * It's not safe for direct compaction to call lock_page. 798 * For example, during page readahead pages are added locked 799 * to the LRU. Later, when the IO completes the pages are 800 * marked uptodate and unlocked. However, the queueing 801 * could be merging multiple pages for one bio (e.g. 802 * mpage_readpages). If an allocation happens for the 803 * second or third page, the process can end up locking 804 * the same page twice and deadlocking. Rather than 805 * trying to be clever about what pages can be locked, 806 * avoid the use of lock_page for direct compaction 807 * altogether. 808 */ 809 if (current->flags & PF_MEMALLOC) 810 goto out; 811 812 lock_page(page); 813 } 814 815 if (PageWriteback(page)) { 816 /* 817 * Only in the case of a full synchronous migration is it 818 * necessary to wait for PageWriteback. In the async case, 819 * the retry loop is too short and in the sync-light case, 820 * the overhead of stalling is too much 821 */ 822 if (mode != MIGRATE_SYNC) { 823 rc = -EBUSY; 824 goto out_unlock; 825 } 826 if (!force) 827 goto out_unlock; 828 wait_on_page_writeback(page); 829 } 830 831 /* 832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 833 * we cannot notice that anon_vma is freed while we migrates a page. 834 * This get_anon_vma() delays freeing anon_vma pointer until the end 835 * of migration. File cache pages are no problem because of page_lock() 836 * File Caches may use write_page() or lock_page() in migration, then, 837 * just care Anon page here. 838 * 839 * Only page_get_anon_vma() understands the subtleties of 840 * getting a hold on an anon_vma from outside one of its mms. 841 * But if we cannot get anon_vma, then we won't need it anyway, 842 * because that implies that the anon page is no longer mapped 843 * (and cannot be remapped so long as we hold the page lock). 844 */ 845 if (PageAnon(page) && !PageKsm(page)) 846 anon_vma = page_get_anon_vma(page); 847 848 /* 849 * Block others from accessing the new page when we get around to 850 * establishing additional references. We are usually the only one 851 * holding a reference to newpage at this point. We used to have a BUG 852 * here if trylock_page(newpage) fails, but would like to allow for 853 * cases where there might be a race with the previous use of newpage. 854 * This is much like races on refcount of oldpage: just don't BUG(). 855 */ 856 if (unlikely(!trylock_page(newpage))) 857 goto out_unlock; 858 859 if (unlikely(isolated_balloon_page(page))) { 860 /* 861 * A ballooned page does not need any special attention from 862 * physical to virtual reverse mapping procedures. 863 * Skip any attempt to unmap PTEs or to remap swap cache, 864 * in order to avoid burning cycles at rmap level, and perform 865 * the page migration right away (proteced by page lock). 866 */ 867 rc = balloon_page_migrate(newpage, page, mode); 868 goto out_unlock_both; 869 } 870 871 /* 872 * Corner case handling: 873 * 1. When a new swap-cache page is read into, it is added to the LRU 874 * and treated as swapcache but it has no rmap yet. 875 * Calling try_to_unmap() against a page->mapping==NULL page will 876 * trigger a BUG. So handle it here. 877 * 2. An orphaned page (see truncate_complete_page) might have 878 * fs-private metadata. The page can be picked up due to memory 879 * offlining. Everywhere else except page reclaim, the page is 880 * invisible to the vm, so the page can not be migrated. So try to 881 * free the metadata, so the page can be freed. 882 */ 883 if (!page->mapping) { 884 VM_BUG_ON_PAGE(PageAnon(page), page); 885 if (page_has_private(page)) { 886 try_to_free_buffers(page); 887 goto out_unlock_both; 888 } 889 } else if (page_mapped(page)) { 890 /* Establish migration ptes */ 891 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 892 page); 893 try_to_unmap(page, 894 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 895 page_was_mapped = 1; 896 } 897 898 if (!page_mapped(page)) 899 rc = move_to_new_page(newpage, page, mode); 900 901 if (page_was_mapped) 902 remove_migration_ptes(page, 903 rc == MIGRATEPAGE_SUCCESS ? newpage : page); 904 905 out_unlock_both: 906 unlock_page(newpage); 907 out_unlock: 908 /* Drop an anon_vma reference if we took one */ 909 if (anon_vma) 910 put_anon_vma(anon_vma); 911 unlock_page(page); 912 out: 913 return rc; 914 } 915 916 /* 917 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 918 * around it. 919 */ 920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 921 #define ICE_noinline noinline 922 #else 923 #define ICE_noinline 924 #endif 925 926 /* 927 * Obtain the lock on page, remove all ptes and migrate the page 928 * to the newly allocated page in newpage. 929 */ 930 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 931 free_page_t put_new_page, 932 unsigned long private, struct page *page, 933 int force, enum migrate_mode mode, 934 enum migrate_reason reason) 935 { 936 int rc = MIGRATEPAGE_SUCCESS; 937 int *result = NULL; 938 struct page *newpage; 939 940 newpage = get_new_page(page, private, &result); 941 if (!newpage) 942 return -ENOMEM; 943 944 if (page_count(page) == 1) { 945 /* page was freed from under us. So we are done. */ 946 goto out; 947 } 948 949 if (unlikely(PageTransHuge(page))) { 950 lock_page(page); 951 rc = split_huge_page(page); 952 unlock_page(page); 953 if (rc) 954 goto out; 955 } 956 957 rc = __unmap_and_move(page, newpage, force, mode); 958 if (rc == MIGRATEPAGE_SUCCESS) 959 put_new_page = NULL; 960 961 out: 962 if (rc != -EAGAIN) { 963 /* 964 * A page that has been migrated has all references 965 * removed and will be freed. A page that has not been 966 * migrated will have kepts its references and be 967 * restored. 968 */ 969 list_del(&page->lru); 970 dec_zone_page_state(page, NR_ISOLATED_ANON + 971 page_is_file_cache(page)); 972 /* Soft-offlined page shouldn't go through lru cache list */ 973 if (reason == MR_MEMORY_FAILURE) { 974 put_page(page); 975 if (!test_set_page_hwpoison(page)) 976 num_poisoned_pages_inc(); 977 } else 978 putback_lru_page(page); 979 } 980 981 /* 982 * If migration was not successful and there's a freeing callback, use 983 * it. Otherwise, putback_lru_page() will drop the reference grabbed 984 * during isolation. 985 */ 986 if (put_new_page) 987 put_new_page(newpage, private); 988 else if (unlikely(__is_movable_balloon_page(newpage))) { 989 /* drop our reference, page already in the balloon */ 990 put_page(newpage); 991 } else 992 putback_lru_page(newpage); 993 994 if (result) { 995 if (rc) 996 *result = rc; 997 else 998 *result = page_to_nid(newpage); 999 } 1000 return rc; 1001 } 1002 1003 /* 1004 * Counterpart of unmap_and_move_page() for hugepage migration. 1005 * 1006 * This function doesn't wait the completion of hugepage I/O 1007 * because there is no race between I/O and migration for hugepage. 1008 * Note that currently hugepage I/O occurs only in direct I/O 1009 * where no lock is held and PG_writeback is irrelevant, 1010 * and writeback status of all subpages are counted in the reference 1011 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1012 * under direct I/O, the reference of the head page is 512 and a bit more.) 1013 * This means that when we try to migrate hugepage whose subpages are 1014 * doing direct I/O, some references remain after try_to_unmap() and 1015 * hugepage migration fails without data corruption. 1016 * 1017 * There is also no race when direct I/O is issued on the page under migration, 1018 * because then pte is replaced with migration swap entry and direct I/O code 1019 * will wait in the page fault for migration to complete. 1020 */ 1021 static int unmap_and_move_huge_page(new_page_t get_new_page, 1022 free_page_t put_new_page, unsigned long private, 1023 struct page *hpage, int force, 1024 enum migrate_mode mode) 1025 { 1026 int rc = -EAGAIN; 1027 int *result = NULL; 1028 int page_was_mapped = 0; 1029 struct page *new_hpage; 1030 struct anon_vma *anon_vma = NULL; 1031 1032 /* 1033 * Movability of hugepages depends on architectures and hugepage size. 1034 * This check is necessary because some callers of hugepage migration 1035 * like soft offline and memory hotremove don't walk through page 1036 * tables or check whether the hugepage is pmd-based or not before 1037 * kicking migration. 1038 */ 1039 if (!hugepage_migration_supported(page_hstate(hpage))) { 1040 putback_active_hugepage(hpage); 1041 return -ENOSYS; 1042 } 1043 1044 new_hpage = get_new_page(hpage, private, &result); 1045 if (!new_hpage) 1046 return -ENOMEM; 1047 1048 if (!trylock_page(hpage)) { 1049 if (!force || mode != MIGRATE_SYNC) 1050 goto out; 1051 lock_page(hpage); 1052 } 1053 1054 if (PageAnon(hpage)) 1055 anon_vma = page_get_anon_vma(hpage); 1056 1057 if (unlikely(!trylock_page(new_hpage))) 1058 goto put_anon; 1059 1060 if (page_mapped(hpage)) { 1061 try_to_unmap(hpage, 1062 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1063 page_was_mapped = 1; 1064 } 1065 1066 if (!page_mapped(hpage)) 1067 rc = move_to_new_page(new_hpage, hpage, mode); 1068 1069 if (page_was_mapped) 1070 remove_migration_ptes(hpage, 1071 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage); 1072 1073 unlock_page(new_hpage); 1074 1075 put_anon: 1076 if (anon_vma) 1077 put_anon_vma(anon_vma); 1078 1079 if (rc == MIGRATEPAGE_SUCCESS) { 1080 hugetlb_cgroup_migrate(hpage, new_hpage); 1081 put_new_page = NULL; 1082 } 1083 1084 unlock_page(hpage); 1085 out: 1086 if (rc != -EAGAIN) 1087 putback_active_hugepage(hpage); 1088 1089 /* 1090 * If migration was not successful and there's a freeing callback, use 1091 * it. Otherwise, put_page() will drop the reference grabbed during 1092 * isolation. 1093 */ 1094 if (put_new_page) 1095 put_new_page(new_hpage, private); 1096 else 1097 putback_active_hugepage(new_hpage); 1098 1099 if (result) { 1100 if (rc) 1101 *result = rc; 1102 else 1103 *result = page_to_nid(new_hpage); 1104 } 1105 return rc; 1106 } 1107 1108 /* 1109 * migrate_pages - migrate the pages specified in a list, to the free pages 1110 * supplied as the target for the page migration 1111 * 1112 * @from: The list of pages to be migrated. 1113 * @get_new_page: The function used to allocate free pages to be used 1114 * as the target of the page migration. 1115 * @put_new_page: The function used to free target pages if migration 1116 * fails, or NULL if no special handling is necessary. 1117 * @private: Private data to be passed on to get_new_page() 1118 * @mode: The migration mode that specifies the constraints for 1119 * page migration, if any. 1120 * @reason: The reason for page migration. 1121 * 1122 * The function returns after 10 attempts or if no pages are movable any more 1123 * because the list has become empty or no retryable pages exist any more. 1124 * The caller should call putback_movable_pages() to return pages to the LRU 1125 * or free list only if ret != 0. 1126 * 1127 * Returns the number of pages that were not migrated, or an error code. 1128 */ 1129 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1130 free_page_t put_new_page, unsigned long private, 1131 enum migrate_mode mode, int reason) 1132 { 1133 int retry = 1; 1134 int nr_failed = 0; 1135 int nr_succeeded = 0; 1136 int pass = 0; 1137 struct page *page; 1138 struct page *page2; 1139 int swapwrite = current->flags & PF_SWAPWRITE; 1140 int rc; 1141 1142 if (!swapwrite) 1143 current->flags |= PF_SWAPWRITE; 1144 1145 for(pass = 0; pass < 10 && retry; pass++) { 1146 retry = 0; 1147 1148 list_for_each_entry_safe(page, page2, from, lru) { 1149 cond_resched(); 1150 1151 if (PageHuge(page)) 1152 rc = unmap_and_move_huge_page(get_new_page, 1153 put_new_page, private, page, 1154 pass > 2, mode); 1155 else 1156 rc = unmap_and_move(get_new_page, put_new_page, 1157 private, page, pass > 2, mode, 1158 reason); 1159 1160 switch(rc) { 1161 case -ENOMEM: 1162 goto out; 1163 case -EAGAIN: 1164 retry++; 1165 break; 1166 case MIGRATEPAGE_SUCCESS: 1167 nr_succeeded++; 1168 break; 1169 default: 1170 /* 1171 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1172 * unlike -EAGAIN case, the failed page is 1173 * removed from migration page list and not 1174 * retried in the next outer loop. 1175 */ 1176 nr_failed++; 1177 break; 1178 } 1179 } 1180 } 1181 nr_failed += retry; 1182 rc = nr_failed; 1183 out: 1184 if (nr_succeeded) 1185 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1186 if (nr_failed) 1187 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1188 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1189 1190 if (!swapwrite) 1191 current->flags &= ~PF_SWAPWRITE; 1192 1193 return rc; 1194 } 1195 1196 #ifdef CONFIG_NUMA 1197 /* 1198 * Move a list of individual pages 1199 */ 1200 struct page_to_node { 1201 unsigned long addr; 1202 struct page *page; 1203 int node; 1204 int status; 1205 }; 1206 1207 static struct page *new_page_node(struct page *p, unsigned long private, 1208 int **result) 1209 { 1210 struct page_to_node *pm = (struct page_to_node *)private; 1211 1212 while (pm->node != MAX_NUMNODES && pm->page != p) 1213 pm++; 1214 1215 if (pm->node == MAX_NUMNODES) 1216 return NULL; 1217 1218 *result = &pm->status; 1219 1220 if (PageHuge(p)) 1221 return alloc_huge_page_node(page_hstate(compound_head(p)), 1222 pm->node); 1223 else 1224 return __alloc_pages_node(pm->node, 1225 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1226 } 1227 1228 /* 1229 * Move a set of pages as indicated in the pm array. The addr 1230 * field must be set to the virtual address of the page to be moved 1231 * and the node number must contain a valid target node. 1232 * The pm array ends with node = MAX_NUMNODES. 1233 */ 1234 static int do_move_page_to_node_array(struct mm_struct *mm, 1235 struct page_to_node *pm, 1236 int migrate_all) 1237 { 1238 int err; 1239 struct page_to_node *pp; 1240 LIST_HEAD(pagelist); 1241 1242 down_read(&mm->mmap_sem); 1243 1244 /* 1245 * Build a list of pages to migrate 1246 */ 1247 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1248 struct vm_area_struct *vma; 1249 struct page *page; 1250 1251 err = -EFAULT; 1252 vma = find_vma(mm, pp->addr); 1253 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1254 goto set_status; 1255 1256 /* FOLL_DUMP to ignore special (like zero) pages */ 1257 page = follow_page(vma, pp->addr, 1258 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1259 1260 err = PTR_ERR(page); 1261 if (IS_ERR(page)) 1262 goto set_status; 1263 1264 err = -ENOENT; 1265 if (!page) 1266 goto set_status; 1267 1268 pp->page = page; 1269 err = page_to_nid(page); 1270 1271 if (err == pp->node) 1272 /* 1273 * Node already in the right place 1274 */ 1275 goto put_and_set; 1276 1277 err = -EACCES; 1278 if (page_mapcount(page) > 1 && 1279 !migrate_all) 1280 goto put_and_set; 1281 1282 if (PageHuge(page)) { 1283 if (PageHead(page)) 1284 isolate_huge_page(page, &pagelist); 1285 goto put_and_set; 1286 } 1287 1288 err = isolate_lru_page(page); 1289 if (!err) { 1290 list_add_tail(&page->lru, &pagelist); 1291 inc_zone_page_state(page, NR_ISOLATED_ANON + 1292 page_is_file_cache(page)); 1293 } 1294 put_and_set: 1295 /* 1296 * Either remove the duplicate refcount from 1297 * isolate_lru_page() or drop the page ref if it was 1298 * not isolated. 1299 */ 1300 put_page(page); 1301 set_status: 1302 pp->status = err; 1303 } 1304 1305 err = 0; 1306 if (!list_empty(&pagelist)) { 1307 err = migrate_pages(&pagelist, new_page_node, NULL, 1308 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1309 if (err) 1310 putback_movable_pages(&pagelist); 1311 } 1312 1313 up_read(&mm->mmap_sem); 1314 return err; 1315 } 1316 1317 /* 1318 * Migrate an array of page address onto an array of nodes and fill 1319 * the corresponding array of status. 1320 */ 1321 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1322 unsigned long nr_pages, 1323 const void __user * __user *pages, 1324 const int __user *nodes, 1325 int __user *status, int flags) 1326 { 1327 struct page_to_node *pm; 1328 unsigned long chunk_nr_pages; 1329 unsigned long chunk_start; 1330 int err; 1331 1332 err = -ENOMEM; 1333 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1334 if (!pm) 1335 goto out; 1336 1337 migrate_prep(); 1338 1339 /* 1340 * Store a chunk of page_to_node array in a page, 1341 * but keep the last one as a marker 1342 */ 1343 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1344 1345 for (chunk_start = 0; 1346 chunk_start < nr_pages; 1347 chunk_start += chunk_nr_pages) { 1348 int j; 1349 1350 if (chunk_start + chunk_nr_pages > nr_pages) 1351 chunk_nr_pages = nr_pages - chunk_start; 1352 1353 /* fill the chunk pm with addrs and nodes from user-space */ 1354 for (j = 0; j < chunk_nr_pages; j++) { 1355 const void __user *p; 1356 int node; 1357 1358 err = -EFAULT; 1359 if (get_user(p, pages + j + chunk_start)) 1360 goto out_pm; 1361 pm[j].addr = (unsigned long) p; 1362 1363 if (get_user(node, nodes + j + chunk_start)) 1364 goto out_pm; 1365 1366 err = -ENODEV; 1367 if (node < 0 || node >= MAX_NUMNODES) 1368 goto out_pm; 1369 1370 if (!node_state(node, N_MEMORY)) 1371 goto out_pm; 1372 1373 err = -EACCES; 1374 if (!node_isset(node, task_nodes)) 1375 goto out_pm; 1376 1377 pm[j].node = node; 1378 } 1379 1380 /* End marker for this chunk */ 1381 pm[chunk_nr_pages].node = MAX_NUMNODES; 1382 1383 /* Migrate this chunk */ 1384 err = do_move_page_to_node_array(mm, pm, 1385 flags & MPOL_MF_MOVE_ALL); 1386 if (err < 0) 1387 goto out_pm; 1388 1389 /* Return status information */ 1390 for (j = 0; j < chunk_nr_pages; j++) 1391 if (put_user(pm[j].status, status + j + chunk_start)) { 1392 err = -EFAULT; 1393 goto out_pm; 1394 } 1395 } 1396 err = 0; 1397 1398 out_pm: 1399 free_page((unsigned long)pm); 1400 out: 1401 return err; 1402 } 1403 1404 /* 1405 * Determine the nodes of an array of pages and store it in an array of status. 1406 */ 1407 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1408 const void __user **pages, int *status) 1409 { 1410 unsigned long i; 1411 1412 down_read(&mm->mmap_sem); 1413 1414 for (i = 0; i < nr_pages; i++) { 1415 unsigned long addr = (unsigned long)(*pages); 1416 struct vm_area_struct *vma; 1417 struct page *page; 1418 int err = -EFAULT; 1419 1420 vma = find_vma(mm, addr); 1421 if (!vma || addr < vma->vm_start) 1422 goto set_status; 1423 1424 /* FOLL_DUMP to ignore special (like zero) pages */ 1425 page = follow_page(vma, addr, FOLL_DUMP); 1426 1427 err = PTR_ERR(page); 1428 if (IS_ERR(page)) 1429 goto set_status; 1430 1431 err = page ? page_to_nid(page) : -ENOENT; 1432 set_status: 1433 *status = err; 1434 1435 pages++; 1436 status++; 1437 } 1438 1439 up_read(&mm->mmap_sem); 1440 } 1441 1442 /* 1443 * Determine the nodes of a user array of pages and store it in 1444 * a user array of status. 1445 */ 1446 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1447 const void __user * __user *pages, 1448 int __user *status) 1449 { 1450 #define DO_PAGES_STAT_CHUNK_NR 16 1451 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1452 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1453 1454 while (nr_pages) { 1455 unsigned long chunk_nr; 1456 1457 chunk_nr = nr_pages; 1458 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1459 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1460 1461 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1462 break; 1463 1464 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1465 1466 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1467 break; 1468 1469 pages += chunk_nr; 1470 status += chunk_nr; 1471 nr_pages -= chunk_nr; 1472 } 1473 return nr_pages ? -EFAULT : 0; 1474 } 1475 1476 /* 1477 * Move a list of pages in the address space of the currently executing 1478 * process. 1479 */ 1480 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1481 const void __user * __user *, pages, 1482 const int __user *, nodes, 1483 int __user *, status, int, flags) 1484 { 1485 const struct cred *cred = current_cred(), *tcred; 1486 struct task_struct *task; 1487 struct mm_struct *mm; 1488 int err; 1489 nodemask_t task_nodes; 1490 1491 /* Check flags */ 1492 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1493 return -EINVAL; 1494 1495 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1496 return -EPERM; 1497 1498 /* Find the mm_struct */ 1499 rcu_read_lock(); 1500 task = pid ? find_task_by_vpid(pid) : current; 1501 if (!task) { 1502 rcu_read_unlock(); 1503 return -ESRCH; 1504 } 1505 get_task_struct(task); 1506 1507 /* 1508 * Check if this process has the right to modify the specified 1509 * process. The right exists if the process has administrative 1510 * capabilities, superuser privileges or the same 1511 * userid as the target process. 1512 */ 1513 tcred = __task_cred(task); 1514 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1515 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1516 !capable(CAP_SYS_NICE)) { 1517 rcu_read_unlock(); 1518 err = -EPERM; 1519 goto out; 1520 } 1521 rcu_read_unlock(); 1522 1523 err = security_task_movememory(task); 1524 if (err) 1525 goto out; 1526 1527 task_nodes = cpuset_mems_allowed(task); 1528 mm = get_task_mm(task); 1529 put_task_struct(task); 1530 1531 if (!mm) 1532 return -EINVAL; 1533 1534 if (nodes) 1535 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1536 nodes, status, flags); 1537 else 1538 err = do_pages_stat(mm, nr_pages, pages, status); 1539 1540 mmput(mm); 1541 return err; 1542 1543 out: 1544 put_task_struct(task); 1545 return err; 1546 } 1547 1548 #ifdef CONFIG_NUMA_BALANCING 1549 /* 1550 * Returns true if this is a safe migration target node for misplaced NUMA 1551 * pages. Currently it only checks the watermarks which crude 1552 */ 1553 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1554 unsigned long nr_migrate_pages) 1555 { 1556 int z; 1557 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1558 struct zone *zone = pgdat->node_zones + z; 1559 1560 if (!populated_zone(zone)) 1561 continue; 1562 1563 if (!zone_reclaimable(zone)) 1564 continue; 1565 1566 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1567 if (!zone_watermark_ok(zone, 0, 1568 high_wmark_pages(zone) + 1569 nr_migrate_pages, 1570 0, 0)) 1571 continue; 1572 return true; 1573 } 1574 return false; 1575 } 1576 1577 static struct page *alloc_misplaced_dst_page(struct page *page, 1578 unsigned long data, 1579 int **result) 1580 { 1581 int nid = (int) data; 1582 struct page *newpage; 1583 1584 newpage = __alloc_pages_node(nid, 1585 (GFP_HIGHUSER_MOVABLE | 1586 __GFP_THISNODE | __GFP_NOMEMALLOC | 1587 __GFP_NORETRY | __GFP_NOWARN) & 1588 ~__GFP_RECLAIM, 0); 1589 1590 return newpage; 1591 } 1592 1593 /* 1594 * page migration rate limiting control. 1595 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1596 * window of time. Default here says do not migrate more than 1280M per second. 1597 */ 1598 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1599 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1600 1601 /* Returns true if the node is migrate rate-limited after the update */ 1602 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1603 unsigned long nr_pages) 1604 { 1605 /* 1606 * Rate-limit the amount of data that is being migrated to a node. 1607 * Optimal placement is no good if the memory bus is saturated and 1608 * all the time is being spent migrating! 1609 */ 1610 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1611 spin_lock(&pgdat->numabalancing_migrate_lock); 1612 pgdat->numabalancing_migrate_nr_pages = 0; 1613 pgdat->numabalancing_migrate_next_window = jiffies + 1614 msecs_to_jiffies(migrate_interval_millisecs); 1615 spin_unlock(&pgdat->numabalancing_migrate_lock); 1616 } 1617 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1618 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1619 nr_pages); 1620 return true; 1621 } 1622 1623 /* 1624 * This is an unlocked non-atomic update so errors are possible. 1625 * The consequences are failing to migrate when we potentiall should 1626 * have which is not severe enough to warrant locking. If it is ever 1627 * a problem, it can be converted to a per-cpu counter. 1628 */ 1629 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1630 return false; 1631 } 1632 1633 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1634 { 1635 int page_lru; 1636 1637 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1638 1639 /* Avoid migrating to a node that is nearly full */ 1640 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1641 return 0; 1642 1643 if (isolate_lru_page(page)) 1644 return 0; 1645 1646 /* 1647 * migrate_misplaced_transhuge_page() skips page migration's usual 1648 * check on page_count(), so we must do it here, now that the page 1649 * has been isolated: a GUP pin, or any other pin, prevents migration. 1650 * The expected page count is 3: 1 for page's mapcount and 1 for the 1651 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1652 */ 1653 if (PageTransHuge(page) && page_count(page) != 3) { 1654 putback_lru_page(page); 1655 return 0; 1656 } 1657 1658 page_lru = page_is_file_cache(page); 1659 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1660 hpage_nr_pages(page)); 1661 1662 /* 1663 * Isolating the page has taken another reference, so the 1664 * caller's reference can be safely dropped without the page 1665 * disappearing underneath us during migration. 1666 */ 1667 put_page(page); 1668 return 1; 1669 } 1670 1671 bool pmd_trans_migrating(pmd_t pmd) 1672 { 1673 struct page *page = pmd_page(pmd); 1674 return PageLocked(page); 1675 } 1676 1677 /* 1678 * Attempt to migrate a misplaced page to the specified destination 1679 * node. Caller is expected to have an elevated reference count on 1680 * the page that will be dropped by this function before returning. 1681 */ 1682 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1683 int node) 1684 { 1685 pg_data_t *pgdat = NODE_DATA(node); 1686 int isolated; 1687 int nr_remaining; 1688 LIST_HEAD(migratepages); 1689 1690 /* 1691 * Don't migrate file pages that are mapped in multiple processes 1692 * with execute permissions as they are probably shared libraries. 1693 */ 1694 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1695 (vma->vm_flags & VM_EXEC)) 1696 goto out; 1697 1698 /* 1699 * Rate-limit the amount of data that is being migrated to a node. 1700 * Optimal placement is no good if the memory bus is saturated and 1701 * all the time is being spent migrating! 1702 */ 1703 if (numamigrate_update_ratelimit(pgdat, 1)) 1704 goto out; 1705 1706 isolated = numamigrate_isolate_page(pgdat, page); 1707 if (!isolated) 1708 goto out; 1709 1710 list_add(&page->lru, &migratepages); 1711 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1712 NULL, node, MIGRATE_ASYNC, 1713 MR_NUMA_MISPLACED); 1714 if (nr_remaining) { 1715 if (!list_empty(&migratepages)) { 1716 list_del(&page->lru); 1717 dec_zone_page_state(page, NR_ISOLATED_ANON + 1718 page_is_file_cache(page)); 1719 putback_lru_page(page); 1720 } 1721 isolated = 0; 1722 } else 1723 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1724 BUG_ON(!list_empty(&migratepages)); 1725 return isolated; 1726 1727 out: 1728 put_page(page); 1729 return 0; 1730 } 1731 #endif /* CONFIG_NUMA_BALANCING */ 1732 1733 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1734 /* 1735 * Migrates a THP to a given target node. page must be locked and is unlocked 1736 * before returning. 1737 */ 1738 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1739 struct vm_area_struct *vma, 1740 pmd_t *pmd, pmd_t entry, 1741 unsigned long address, 1742 struct page *page, int node) 1743 { 1744 spinlock_t *ptl; 1745 pg_data_t *pgdat = NODE_DATA(node); 1746 int isolated = 0; 1747 struct page *new_page = NULL; 1748 int page_lru = page_is_file_cache(page); 1749 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1750 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1751 pmd_t orig_entry; 1752 1753 /* 1754 * Rate-limit the amount of data that is being migrated to a node. 1755 * Optimal placement is no good if the memory bus is saturated and 1756 * all the time is being spent migrating! 1757 */ 1758 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1759 goto out_dropref; 1760 1761 new_page = alloc_pages_node(node, 1762 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1763 HPAGE_PMD_ORDER); 1764 if (!new_page) 1765 goto out_fail; 1766 prep_transhuge_page(new_page); 1767 1768 isolated = numamigrate_isolate_page(pgdat, page); 1769 if (!isolated) { 1770 put_page(new_page); 1771 goto out_fail; 1772 } 1773 1774 if (mm_tlb_flush_pending(mm)) 1775 flush_tlb_range(vma, mmun_start, mmun_end); 1776 1777 /* Prepare a page as a migration target */ 1778 __SetPageLocked(new_page); 1779 SetPageSwapBacked(new_page); 1780 1781 /* anon mapping, we can simply copy page->mapping to the new page: */ 1782 new_page->mapping = page->mapping; 1783 new_page->index = page->index; 1784 migrate_page_copy(new_page, page); 1785 WARN_ON(PageLRU(new_page)); 1786 1787 /* Recheck the target PMD */ 1788 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1789 ptl = pmd_lock(mm, pmd); 1790 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1791 fail_putback: 1792 spin_unlock(ptl); 1793 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1794 1795 /* Reverse changes made by migrate_page_copy() */ 1796 if (TestClearPageActive(new_page)) 1797 SetPageActive(page); 1798 if (TestClearPageUnevictable(new_page)) 1799 SetPageUnevictable(page); 1800 1801 unlock_page(new_page); 1802 put_page(new_page); /* Free it */ 1803 1804 /* Retake the callers reference and putback on LRU */ 1805 get_page(page); 1806 putback_lru_page(page); 1807 mod_zone_page_state(page_zone(page), 1808 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1809 1810 goto out_unlock; 1811 } 1812 1813 orig_entry = *pmd; 1814 entry = mk_pmd(new_page, vma->vm_page_prot); 1815 entry = pmd_mkhuge(entry); 1816 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1817 1818 /* 1819 * Clear the old entry under pagetable lock and establish the new PTE. 1820 * Any parallel GUP will either observe the old page blocking on the 1821 * page lock, block on the page table lock or observe the new page. 1822 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1823 * guarantee the copy is visible before the pagetable update. 1824 */ 1825 flush_cache_range(vma, mmun_start, mmun_end); 1826 page_add_anon_rmap(new_page, vma, mmun_start, true); 1827 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1828 set_pmd_at(mm, mmun_start, pmd, entry); 1829 flush_tlb_range(vma, mmun_start, mmun_end); 1830 update_mmu_cache_pmd(vma, address, &entry); 1831 1832 if (page_count(page) != 2) { 1833 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1834 flush_tlb_range(vma, mmun_start, mmun_end); 1835 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1836 update_mmu_cache_pmd(vma, address, &entry); 1837 page_remove_rmap(new_page, true); 1838 goto fail_putback; 1839 } 1840 1841 mlock_migrate_page(new_page, page); 1842 set_page_memcg(new_page, page_memcg(page)); 1843 set_page_memcg(page, NULL); 1844 page_remove_rmap(page, true); 1845 1846 spin_unlock(ptl); 1847 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1848 1849 /* Take an "isolate" reference and put new page on the LRU. */ 1850 get_page(new_page); 1851 putback_lru_page(new_page); 1852 1853 unlock_page(new_page); 1854 unlock_page(page); 1855 put_page(page); /* Drop the rmap reference */ 1856 put_page(page); /* Drop the LRU isolation reference */ 1857 1858 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1859 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1860 1861 mod_zone_page_state(page_zone(page), 1862 NR_ISOLATED_ANON + page_lru, 1863 -HPAGE_PMD_NR); 1864 return isolated; 1865 1866 out_fail: 1867 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1868 out_dropref: 1869 ptl = pmd_lock(mm, pmd); 1870 if (pmd_same(*pmd, entry)) { 1871 entry = pmd_modify(entry, vma->vm_page_prot); 1872 set_pmd_at(mm, mmun_start, pmd, entry); 1873 update_mmu_cache_pmd(vma, address, &entry); 1874 } 1875 spin_unlock(ptl); 1876 1877 out_unlock: 1878 unlock_page(page); 1879 put_page(page); 1880 return 0; 1881 } 1882 #endif /* CONFIG_NUMA_BALANCING */ 1883 1884 #endif /* CONFIG_NUMA */ 1885