1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -hpage_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_zone_device_page(new))) { 250 if (is_device_private_page(new)) { 251 entry = make_device_private_entry(new, pte_write(pte)); 252 pte = swp_entry_to_pte(entry); 253 if (pte_swp_uffd_wp(*pvmw.pte)) 254 pte = pte_mkuffd_wp(pte); 255 } 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device public or private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += hpage_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 struct lruvec *old_lruvec, *new_lruvec; 494 struct mem_cgroup *memcg; 495 496 memcg = page_memcg(page); 497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 499 500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); 501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); 502 if (PageSwapBacked(page) && !PageSwapCache(page)) { 503 __dec_lruvec_state(old_lruvec, NR_SHMEM); 504 __inc_lruvec_state(new_lruvec, NR_SHMEM); 505 } 506 if (dirty && mapping_cap_account_dirty(mapping)) { 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 511 } 512 } 513 local_irq_enable(); 514 515 return MIGRATEPAGE_SUCCESS; 516 } 517 EXPORT_SYMBOL(migrate_page_move_mapping); 518 519 /* 520 * The expected number of remaining references is the same as that 521 * of migrate_page_move_mapping(). 522 */ 523 int migrate_huge_page_move_mapping(struct address_space *mapping, 524 struct page *newpage, struct page *page) 525 { 526 XA_STATE(xas, &mapping->i_pages, page_index(page)); 527 int expected_count; 528 529 xas_lock_irq(&xas); 530 expected_count = 2 + page_has_private(page); 531 if (page_count(page) != expected_count || xas_load(&xas) != page) { 532 xas_unlock_irq(&xas); 533 return -EAGAIN; 534 } 535 536 if (!page_ref_freeze(page, expected_count)) { 537 xas_unlock_irq(&xas); 538 return -EAGAIN; 539 } 540 541 newpage->index = page->index; 542 newpage->mapping = page->mapping; 543 544 get_page(newpage); 545 546 xas_store(&xas, newpage); 547 548 page_ref_unfreeze(page, expected_count - 1); 549 550 xas_unlock_irq(&xas); 551 552 return MIGRATEPAGE_SUCCESS; 553 } 554 555 /* 556 * Gigantic pages are so large that we do not guarantee that page++ pointer 557 * arithmetic will work across the entire page. We need something more 558 * specialized. 559 */ 560 static void __copy_gigantic_page(struct page *dst, struct page *src, 561 int nr_pages) 562 { 563 int i; 564 struct page *dst_base = dst; 565 struct page *src_base = src; 566 567 for (i = 0; i < nr_pages; ) { 568 cond_resched(); 569 copy_highpage(dst, src); 570 571 i++; 572 dst = mem_map_next(dst, dst_base, i); 573 src = mem_map_next(src, src_base, i); 574 } 575 } 576 577 static void copy_huge_page(struct page *dst, struct page *src) 578 { 579 int i; 580 int nr_pages; 581 582 if (PageHuge(src)) { 583 /* hugetlbfs page */ 584 struct hstate *h = page_hstate(src); 585 nr_pages = pages_per_huge_page(h); 586 587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 588 __copy_gigantic_page(dst, src, nr_pages); 589 return; 590 } 591 } else { 592 /* thp page */ 593 BUG_ON(!PageTransHuge(src)); 594 nr_pages = hpage_nr_pages(src); 595 } 596 597 for (i = 0; i < nr_pages; i++) { 598 cond_resched(); 599 copy_highpage(dst + i, src + i); 600 } 601 } 602 603 /* 604 * Copy the page to its new location 605 */ 606 void migrate_page_states(struct page *newpage, struct page *page) 607 { 608 int cpupid; 609 610 if (PageError(page)) 611 SetPageError(newpage); 612 if (PageReferenced(page)) 613 SetPageReferenced(newpage); 614 if (PageUptodate(page)) 615 SetPageUptodate(newpage); 616 if (TestClearPageActive(page)) { 617 VM_BUG_ON_PAGE(PageUnevictable(page), page); 618 SetPageActive(newpage); 619 } else if (TestClearPageUnevictable(page)) 620 SetPageUnevictable(newpage); 621 if (PageWorkingset(page)) 622 SetPageWorkingset(newpage); 623 if (PageChecked(page)) 624 SetPageChecked(newpage); 625 if (PageMappedToDisk(page)) 626 SetPageMappedToDisk(newpage); 627 628 /* Move dirty on pages not done by migrate_page_move_mapping() */ 629 if (PageDirty(page)) 630 SetPageDirty(newpage); 631 632 if (page_is_young(page)) 633 set_page_young(newpage); 634 if (page_is_idle(page)) 635 set_page_idle(newpage); 636 637 /* 638 * Copy NUMA information to the new page, to prevent over-eager 639 * future migrations of this same page. 640 */ 641 cpupid = page_cpupid_xchg_last(page, -1); 642 page_cpupid_xchg_last(newpage, cpupid); 643 644 ksm_migrate_page(newpage, page); 645 /* 646 * Please do not reorder this without considering how mm/ksm.c's 647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 648 */ 649 if (PageSwapCache(page)) 650 ClearPageSwapCache(page); 651 ClearPagePrivate(page); 652 set_page_private(page, 0); 653 654 /* 655 * If any waiters have accumulated on the new page then 656 * wake them up. 657 */ 658 if (PageWriteback(newpage)) 659 end_page_writeback(newpage); 660 661 /* 662 * PG_readahead shares the same bit with PG_reclaim. The above 663 * end_page_writeback() may clear PG_readahead mistakenly, so set the 664 * bit after that. 665 */ 666 if (PageReadahead(page)) 667 SetPageReadahead(newpage); 668 669 copy_page_owner(page, newpage); 670 671 mem_cgroup_migrate(page, newpage); 672 } 673 EXPORT_SYMBOL(migrate_page_states); 674 675 void migrate_page_copy(struct page *newpage, struct page *page) 676 { 677 if (PageHuge(page) || PageTransHuge(page)) 678 copy_huge_page(newpage, page); 679 else 680 copy_highpage(newpage, page); 681 682 migrate_page_states(newpage, page); 683 } 684 EXPORT_SYMBOL(migrate_page_copy); 685 686 /************************************************************ 687 * Migration functions 688 ***********************************************************/ 689 690 /* 691 * Common logic to directly migrate a single LRU page suitable for 692 * pages that do not use PagePrivate/PagePrivate2. 693 * 694 * Pages are locked upon entry and exit. 695 */ 696 int migrate_page(struct address_space *mapping, 697 struct page *newpage, struct page *page, 698 enum migrate_mode mode) 699 { 700 int rc; 701 702 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 703 704 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 705 706 if (rc != MIGRATEPAGE_SUCCESS) 707 return rc; 708 709 if (mode != MIGRATE_SYNC_NO_COPY) 710 migrate_page_copy(newpage, page); 711 else 712 migrate_page_states(newpage, page); 713 return MIGRATEPAGE_SUCCESS; 714 } 715 EXPORT_SYMBOL(migrate_page); 716 717 #ifdef CONFIG_BLOCK 718 /* Returns true if all buffers are successfully locked */ 719 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 720 enum migrate_mode mode) 721 { 722 struct buffer_head *bh = head; 723 724 /* Simple case, sync compaction */ 725 if (mode != MIGRATE_ASYNC) { 726 do { 727 lock_buffer(bh); 728 bh = bh->b_this_page; 729 730 } while (bh != head); 731 732 return true; 733 } 734 735 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 736 do { 737 if (!trylock_buffer(bh)) { 738 /* 739 * We failed to lock the buffer and cannot stall in 740 * async migration. Release the taken locks 741 */ 742 struct buffer_head *failed_bh = bh; 743 bh = head; 744 while (bh != failed_bh) { 745 unlock_buffer(bh); 746 bh = bh->b_this_page; 747 } 748 return false; 749 } 750 751 bh = bh->b_this_page; 752 } while (bh != head); 753 return true; 754 } 755 756 static int __buffer_migrate_page(struct address_space *mapping, 757 struct page *newpage, struct page *page, enum migrate_mode mode, 758 bool check_refs) 759 { 760 struct buffer_head *bh, *head; 761 int rc; 762 int expected_count; 763 764 if (!page_has_buffers(page)) 765 return migrate_page(mapping, newpage, page, mode); 766 767 /* Check whether page does not have extra refs before we do more work */ 768 expected_count = expected_page_refs(mapping, page); 769 if (page_count(page) != expected_count) 770 return -EAGAIN; 771 772 head = page_buffers(page); 773 if (!buffer_migrate_lock_buffers(head, mode)) 774 return -EAGAIN; 775 776 if (check_refs) { 777 bool busy; 778 bool invalidated = false; 779 780 recheck_buffers: 781 busy = false; 782 spin_lock(&mapping->private_lock); 783 bh = head; 784 do { 785 if (atomic_read(&bh->b_count)) { 786 busy = true; 787 break; 788 } 789 bh = bh->b_this_page; 790 } while (bh != head); 791 if (busy) { 792 if (invalidated) { 793 rc = -EAGAIN; 794 goto unlock_buffers; 795 } 796 spin_unlock(&mapping->private_lock); 797 invalidate_bh_lrus(); 798 invalidated = true; 799 goto recheck_buffers; 800 } 801 } 802 803 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 804 if (rc != MIGRATEPAGE_SUCCESS) 805 goto unlock_buffers; 806 807 attach_page_private(newpage, detach_page_private(page)); 808 809 bh = head; 810 do { 811 set_bh_page(bh, newpage, bh_offset(bh)); 812 bh = bh->b_this_page; 813 814 } while (bh != head); 815 816 if (mode != MIGRATE_SYNC_NO_COPY) 817 migrate_page_copy(newpage, page); 818 else 819 migrate_page_states(newpage, page); 820 821 rc = MIGRATEPAGE_SUCCESS; 822 unlock_buffers: 823 if (check_refs) 824 spin_unlock(&mapping->private_lock); 825 bh = head; 826 do { 827 unlock_buffer(bh); 828 bh = bh->b_this_page; 829 830 } while (bh != head); 831 832 return rc; 833 } 834 835 /* 836 * Migration function for pages with buffers. This function can only be used 837 * if the underlying filesystem guarantees that no other references to "page" 838 * exist. For example attached buffer heads are accessed only under page lock. 839 */ 840 int buffer_migrate_page(struct address_space *mapping, 841 struct page *newpage, struct page *page, enum migrate_mode mode) 842 { 843 return __buffer_migrate_page(mapping, newpage, page, mode, false); 844 } 845 EXPORT_SYMBOL(buffer_migrate_page); 846 847 /* 848 * Same as above except that this variant is more careful and checks that there 849 * are also no buffer head references. This function is the right one for 850 * mappings where buffer heads are directly looked up and referenced (such as 851 * block device mappings). 852 */ 853 int buffer_migrate_page_norefs(struct address_space *mapping, 854 struct page *newpage, struct page *page, enum migrate_mode mode) 855 { 856 return __buffer_migrate_page(mapping, newpage, page, mode, true); 857 } 858 #endif 859 860 /* 861 * Writeback a page to clean the dirty state 862 */ 863 static int writeout(struct address_space *mapping, struct page *page) 864 { 865 struct writeback_control wbc = { 866 .sync_mode = WB_SYNC_NONE, 867 .nr_to_write = 1, 868 .range_start = 0, 869 .range_end = LLONG_MAX, 870 .for_reclaim = 1 871 }; 872 int rc; 873 874 if (!mapping->a_ops->writepage) 875 /* No write method for the address space */ 876 return -EINVAL; 877 878 if (!clear_page_dirty_for_io(page)) 879 /* Someone else already triggered a write */ 880 return -EAGAIN; 881 882 /* 883 * A dirty page may imply that the underlying filesystem has 884 * the page on some queue. So the page must be clean for 885 * migration. Writeout may mean we loose the lock and the 886 * page state is no longer what we checked for earlier. 887 * At this point we know that the migration attempt cannot 888 * be successful. 889 */ 890 remove_migration_ptes(page, page, false); 891 892 rc = mapping->a_ops->writepage(page, &wbc); 893 894 if (rc != AOP_WRITEPAGE_ACTIVATE) 895 /* unlocked. Relock */ 896 lock_page(page); 897 898 return (rc < 0) ? -EIO : -EAGAIN; 899 } 900 901 /* 902 * Default handling if a filesystem does not provide a migration function. 903 */ 904 static int fallback_migrate_page(struct address_space *mapping, 905 struct page *newpage, struct page *page, enum migrate_mode mode) 906 { 907 if (PageDirty(page)) { 908 /* Only writeback pages in full synchronous migration */ 909 switch (mode) { 910 case MIGRATE_SYNC: 911 case MIGRATE_SYNC_NO_COPY: 912 break; 913 default: 914 return -EBUSY; 915 } 916 return writeout(mapping, page); 917 } 918 919 /* 920 * Buffers may be managed in a filesystem specific way. 921 * We must have no buffers or drop them. 922 */ 923 if (page_has_private(page) && 924 !try_to_release_page(page, GFP_KERNEL)) 925 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 926 927 return migrate_page(mapping, newpage, page, mode); 928 } 929 930 /* 931 * Move a page to a newly allocated page 932 * The page is locked and all ptes have been successfully removed. 933 * 934 * The new page will have replaced the old page if this function 935 * is successful. 936 * 937 * Return value: 938 * < 0 - error code 939 * MIGRATEPAGE_SUCCESS - success 940 */ 941 static int move_to_new_page(struct page *newpage, struct page *page, 942 enum migrate_mode mode) 943 { 944 struct address_space *mapping; 945 int rc = -EAGAIN; 946 bool is_lru = !__PageMovable(page); 947 948 VM_BUG_ON_PAGE(!PageLocked(page), page); 949 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 950 951 mapping = page_mapping(page); 952 953 if (likely(is_lru)) { 954 if (!mapping) 955 rc = migrate_page(mapping, newpage, page, mode); 956 else if (mapping->a_ops->migratepage) 957 /* 958 * Most pages have a mapping and most filesystems 959 * provide a migratepage callback. Anonymous pages 960 * are part of swap space which also has its own 961 * migratepage callback. This is the most common path 962 * for page migration. 963 */ 964 rc = mapping->a_ops->migratepage(mapping, newpage, 965 page, mode); 966 else 967 rc = fallback_migrate_page(mapping, newpage, 968 page, mode); 969 } else { 970 /* 971 * In case of non-lru page, it could be released after 972 * isolation step. In that case, we shouldn't try migration. 973 */ 974 VM_BUG_ON_PAGE(!PageIsolated(page), page); 975 if (!PageMovable(page)) { 976 rc = MIGRATEPAGE_SUCCESS; 977 __ClearPageIsolated(page); 978 goto out; 979 } 980 981 rc = mapping->a_ops->migratepage(mapping, newpage, 982 page, mode); 983 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 984 !PageIsolated(page)); 985 } 986 987 /* 988 * When successful, old pagecache page->mapping must be cleared before 989 * page is freed; but stats require that PageAnon be left as PageAnon. 990 */ 991 if (rc == MIGRATEPAGE_SUCCESS) { 992 if (__PageMovable(page)) { 993 VM_BUG_ON_PAGE(!PageIsolated(page), page); 994 995 /* 996 * We clear PG_movable under page_lock so any compactor 997 * cannot try to migrate this page. 998 */ 999 __ClearPageIsolated(page); 1000 } 1001 1002 /* 1003 * Anonymous and movable page->mapping will be cleared by 1004 * free_pages_prepare so don't reset it here for keeping 1005 * the type to work PageAnon, for example. 1006 */ 1007 if (!PageMappingFlags(page)) 1008 page->mapping = NULL; 1009 1010 if (likely(!is_zone_device_page(newpage))) 1011 flush_dcache_page(newpage); 1012 1013 } 1014 out: 1015 return rc; 1016 } 1017 1018 static int __unmap_and_move(struct page *page, struct page *newpage, 1019 int force, enum migrate_mode mode) 1020 { 1021 int rc = -EAGAIN; 1022 int page_was_mapped = 0; 1023 struct anon_vma *anon_vma = NULL; 1024 bool is_lru = !__PageMovable(page); 1025 1026 if (!trylock_page(page)) { 1027 if (!force || mode == MIGRATE_ASYNC) 1028 goto out; 1029 1030 /* 1031 * It's not safe for direct compaction to call lock_page. 1032 * For example, during page readahead pages are added locked 1033 * to the LRU. Later, when the IO completes the pages are 1034 * marked uptodate and unlocked. However, the queueing 1035 * could be merging multiple pages for one bio (e.g. 1036 * mpage_readahead). If an allocation happens for the 1037 * second or third page, the process can end up locking 1038 * the same page twice and deadlocking. Rather than 1039 * trying to be clever about what pages can be locked, 1040 * avoid the use of lock_page for direct compaction 1041 * altogether. 1042 */ 1043 if (current->flags & PF_MEMALLOC) 1044 goto out; 1045 1046 lock_page(page); 1047 } 1048 1049 if (PageWriteback(page)) { 1050 /* 1051 * Only in the case of a full synchronous migration is it 1052 * necessary to wait for PageWriteback. In the async case, 1053 * the retry loop is too short and in the sync-light case, 1054 * the overhead of stalling is too much 1055 */ 1056 switch (mode) { 1057 case MIGRATE_SYNC: 1058 case MIGRATE_SYNC_NO_COPY: 1059 break; 1060 default: 1061 rc = -EBUSY; 1062 goto out_unlock; 1063 } 1064 if (!force) 1065 goto out_unlock; 1066 wait_on_page_writeback(page); 1067 } 1068 1069 /* 1070 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1071 * we cannot notice that anon_vma is freed while we migrates a page. 1072 * This get_anon_vma() delays freeing anon_vma pointer until the end 1073 * of migration. File cache pages are no problem because of page_lock() 1074 * File Caches may use write_page() or lock_page() in migration, then, 1075 * just care Anon page here. 1076 * 1077 * Only page_get_anon_vma() understands the subtleties of 1078 * getting a hold on an anon_vma from outside one of its mms. 1079 * But if we cannot get anon_vma, then we won't need it anyway, 1080 * because that implies that the anon page is no longer mapped 1081 * (and cannot be remapped so long as we hold the page lock). 1082 */ 1083 if (PageAnon(page) && !PageKsm(page)) 1084 anon_vma = page_get_anon_vma(page); 1085 1086 /* 1087 * Block others from accessing the new page when we get around to 1088 * establishing additional references. We are usually the only one 1089 * holding a reference to newpage at this point. We used to have a BUG 1090 * here if trylock_page(newpage) fails, but would like to allow for 1091 * cases where there might be a race with the previous use of newpage. 1092 * This is much like races on refcount of oldpage: just don't BUG(). 1093 */ 1094 if (unlikely(!trylock_page(newpage))) 1095 goto out_unlock; 1096 1097 if (unlikely(!is_lru)) { 1098 rc = move_to_new_page(newpage, page, mode); 1099 goto out_unlock_both; 1100 } 1101 1102 /* 1103 * Corner case handling: 1104 * 1. When a new swap-cache page is read into, it is added to the LRU 1105 * and treated as swapcache but it has no rmap yet. 1106 * Calling try_to_unmap() against a page->mapping==NULL page will 1107 * trigger a BUG. So handle it here. 1108 * 2. An orphaned page (see truncate_complete_page) might have 1109 * fs-private metadata. The page can be picked up due to memory 1110 * offlining. Everywhere else except page reclaim, the page is 1111 * invisible to the vm, so the page can not be migrated. So try to 1112 * free the metadata, so the page can be freed. 1113 */ 1114 if (!page->mapping) { 1115 VM_BUG_ON_PAGE(PageAnon(page), page); 1116 if (page_has_private(page)) { 1117 try_to_free_buffers(page); 1118 goto out_unlock_both; 1119 } 1120 } else if (page_mapped(page)) { 1121 /* Establish migration ptes */ 1122 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1123 page); 1124 try_to_unmap(page, 1125 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1126 page_was_mapped = 1; 1127 } 1128 1129 if (!page_mapped(page)) 1130 rc = move_to_new_page(newpage, page, mode); 1131 1132 if (page_was_mapped) 1133 remove_migration_ptes(page, 1134 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1135 1136 out_unlock_both: 1137 unlock_page(newpage); 1138 out_unlock: 1139 /* Drop an anon_vma reference if we took one */ 1140 if (anon_vma) 1141 put_anon_vma(anon_vma); 1142 unlock_page(page); 1143 out: 1144 /* 1145 * If migration is successful, decrease refcount of the newpage 1146 * which will not free the page because new page owner increased 1147 * refcounter. As well, if it is LRU page, add the page to LRU 1148 * list in here. Use the old state of the isolated source page to 1149 * determine if we migrated a LRU page. newpage was already unlocked 1150 * and possibly modified by its owner - don't rely on the page 1151 * state. 1152 */ 1153 if (rc == MIGRATEPAGE_SUCCESS) { 1154 if (unlikely(!is_lru)) 1155 put_page(newpage); 1156 else 1157 putback_lru_page(newpage); 1158 } 1159 1160 return rc; 1161 } 1162 1163 /* 1164 * Obtain the lock on page, remove all ptes and migrate the page 1165 * to the newly allocated page in newpage. 1166 */ 1167 static int unmap_and_move(new_page_t get_new_page, 1168 free_page_t put_new_page, 1169 unsigned long private, struct page *page, 1170 int force, enum migrate_mode mode, 1171 enum migrate_reason reason) 1172 { 1173 int rc = MIGRATEPAGE_SUCCESS; 1174 struct page *newpage = NULL; 1175 1176 if (!thp_migration_supported() && PageTransHuge(page)) 1177 return -ENOMEM; 1178 1179 if (page_count(page) == 1) { 1180 /* page was freed from under us. So we are done. */ 1181 ClearPageActive(page); 1182 ClearPageUnevictable(page); 1183 if (unlikely(__PageMovable(page))) { 1184 lock_page(page); 1185 if (!PageMovable(page)) 1186 __ClearPageIsolated(page); 1187 unlock_page(page); 1188 } 1189 goto out; 1190 } 1191 1192 newpage = get_new_page(page, private); 1193 if (!newpage) 1194 return -ENOMEM; 1195 1196 rc = __unmap_and_move(page, newpage, force, mode); 1197 if (rc == MIGRATEPAGE_SUCCESS) 1198 set_page_owner_migrate_reason(newpage, reason); 1199 1200 out: 1201 if (rc != -EAGAIN) { 1202 /* 1203 * A page that has been migrated has all references 1204 * removed and will be freed. A page that has not been 1205 * migrated will have kept its references and be restored. 1206 */ 1207 list_del(&page->lru); 1208 1209 /* 1210 * Compaction can migrate also non-LRU pages which are 1211 * not accounted to NR_ISOLATED_*. They can be recognized 1212 * as __PageMovable 1213 */ 1214 if (likely(!__PageMovable(page))) 1215 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1216 page_is_file_lru(page), -hpage_nr_pages(page)); 1217 } 1218 1219 /* 1220 * If migration is successful, releases reference grabbed during 1221 * isolation. Otherwise, restore the page to right list unless 1222 * we want to retry. 1223 */ 1224 if (rc == MIGRATEPAGE_SUCCESS) { 1225 put_page(page); 1226 if (reason == MR_MEMORY_FAILURE) { 1227 /* 1228 * Set PG_HWPoison on just freed page 1229 * intentionally. Although it's rather weird, 1230 * it's how HWPoison flag works at the moment. 1231 */ 1232 if (set_hwpoison_free_buddy_page(page)) 1233 num_poisoned_pages_inc(); 1234 } 1235 } else { 1236 if (rc != -EAGAIN) { 1237 if (likely(!__PageMovable(page))) { 1238 putback_lru_page(page); 1239 goto put_new; 1240 } 1241 1242 lock_page(page); 1243 if (PageMovable(page)) 1244 putback_movable_page(page); 1245 else 1246 __ClearPageIsolated(page); 1247 unlock_page(page); 1248 put_page(page); 1249 } 1250 put_new: 1251 if (put_new_page) 1252 put_new_page(newpage, private); 1253 else 1254 put_page(newpage); 1255 } 1256 1257 return rc; 1258 } 1259 1260 /* 1261 * Counterpart of unmap_and_move_page() for hugepage migration. 1262 * 1263 * This function doesn't wait the completion of hugepage I/O 1264 * because there is no race between I/O and migration for hugepage. 1265 * Note that currently hugepage I/O occurs only in direct I/O 1266 * where no lock is held and PG_writeback is irrelevant, 1267 * and writeback status of all subpages are counted in the reference 1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1269 * under direct I/O, the reference of the head page is 512 and a bit more.) 1270 * This means that when we try to migrate hugepage whose subpages are 1271 * doing direct I/O, some references remain after try_to_unmap() and 1272 * hugepage migration fails without data corruption. 1273 * 1274 * There is also no race when direct I/O is issued on the page under migration, 1275 * because then pte is replaced with migration swap entry and direct I/O code 1276 * will wait in the page fault for migration to complete. 1277 */ 1278 static int unmap_and_move_huge_page(new_page_t get_new_page, 1279 free_page_t put_new_page, unsigned long private, 1280 struct page *hpage, int force, 1281 enum migrate_mode mode, int reason) 1282 { 1283 int rc = -EAGAIN; 1284 int page_was_mapped = 0; 1285 struct page *new_hpage; 1286 struct anon_vma *anon_vma = NULL; 1287 struct address_space *mapping = NULL; 1288 1289 /* 1290 * Migratability of hugepages depends on architectures and their size. 1291 * This check is necessary because some callers of hugepage migration 1292 * like soft offline and memory hotremove don't walk through page 1293 * tables or check whether the hugepage is pmd-based or not before 1294 * kicking migration. 1295 */ 1296 if (!hugepage_migration_supported(page_hstate(hpage))) { 1297 putback_active_hugepage(hpage); 1298 return -ENOSYS; 1299 } 1300 1301 new_hpage = get_new_page(hpage, private); 1302 if (!new_hpage) 1303 return -ENOMEM; 1304 1305 if (!trylock_page(hpage)) { 1306 if (!force) 1307 goto out; 1308 switch (mode) { 1309 case MIGRATE_SYNC: 1310 case MIGRATE_SYNC_NO_COPY: 1311 break; 1312 default: 1313 goto out; 1314 } 1315 lock_page(hpage); 1316 } 1317 1318 /* 1319 * Check for pages which are in the process of being freed. Without 1320 * page_mapping() set, hugetlbfs specific move page routine will not 1321 * be called and we could leak usage counts for subpools. 1322 */ 1323 if (page_private(hpage) && !page_mapping(hpage)) { 1324 rc = -EBUSY; 1325 goto out_unlock; 1326 } 1327 1328 if (PageAnon(hpage)) 1329 anon_vma = page_get_anon_vma(hpage); 1330 1331 if (unlikely(!trylock_page(new_hpage))) 1332 goto put_anon; 1333 1334 if (page_mapped(hpage)) { 1335 /* 1336 * try_to_unmap could potentially call huge_pmd_unshare. 1337 * Because of this, take semaphore in write mode here and 1338 * set TTU_RMAP_LOCKED to let lower levels know we have 1339 * taken the lock. 1340 */ 1341 mapping = hugetlb_page_mapping_lock_write(hpage); 1342 if (unlikely(!mapping)) 1343 goto unlock_put_anon; 1344 1345 try_to_unmap(hpage, 1346 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| 1347 TTU_RMAP_LOCKED); 1348 page_was_mapped = 1; 1349 /* 1350 * Leave mapping locked until after subsequent call to 1351 * remove_migration_ptes() 1352 */ 1353 } 1354 1355 if (!page_mapped(hpage)) 1356 rc = move_to_new_page(new_hpage, hpage, mode); 1357 1358 if (page_was_mapped) { 1359 remove_migration_ptes(hpage, 1360 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); 1361 i_mmap_unlock_write(mapping); 1362 } 1363 1364 unlock_put_anon: 1365 unlock_page(new_hpage); 1366 1367 put_anon: 1368 if (anon_vma) 1369 put_anon_vma(anon_vma); 1370 1371 if (rc == MIGRATEPAGE_SUCCESS) { 1372 move_hugetlb_state(hpage, new_hpage, reason); 1373 put_new_page = NULL; 1374 } 1375 1376 out_unlock: 1377 unlock_page(hpage); 1378 out: 1379 if (rc != -EAGAIN) 1380 putback_active_hugepage(hpage); 1381 1382 /* 1383 * If migration was not successful and there's a freeing callback, use 1384 * it. Otherwise, put_page() will drop the reference grabbed during 1385 * isolation. 1386 */ 1387 if (put_new_page) 1388 put_new_page(new_hpage, private); 1389 else 1390 putback_active_hugepage(new_hpage); 1391 1392 return rc; 1393 } 1394 1395 /* 1396 * migrate_pages - migrate the pages specified in a list, to the free pages 1397 * supplied as the target for the page migration 1398 * 1399 * @from: The list of pages to be migrated. 1400 * @get_new_page: The function used to allocate free pages to be used 1401 * as the target of the page migration. 1402 * @put_new_page: The function used to free target pages if migration 1403 * fails, or NULL if no special handling is necessary. 1404 * @private: Private data to be passed on to get_new_page() 1405 * @mode: The migration mode that specifies the constraints for 1406 * page migration, if any. 1407 * @reason: The reason for page migration. 1408 * 1409 * The function returns after 10 attempts or if no pages are movable any more 1410 * because the list has become empty or no retryable pages exist any more. 1411 * The caller should call putback_movable_pages() to return pages to the LRU 1412 * or free list only if ret != 0. 1413 * 1414 * Returns the number of pages that were not migrated, or an error code. 1415 */ 1416 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1417 free_page_t put_new_page, unsigned long private, 1418 enum migrate_mode mode, int reason) 1419 { 1420 int retry = 1; 1421 int nr_failed = 0; 1422 int nr_succeeded = 0; 1423 int pass = 0; 1424 struct page *page; 1425 struct page *page2; 1426 int swapwrite = current->flags & PF_SWAPWRITE; 1427 int rc; 1428 1429 if (!swapwrite) 1430 current->flags |= PF_SWAPWRITE; 1431 1432 for(pass = 0; pass < 10 && retry; pass++) { 1433 retry = 0; 1434 1435 list_for_each_entry_safe(page, page2, from, lru) { 1436 retry: 1437 cond_resched(); 1438 1439 if (PageHuge(page)) 1440 rc = unmap_and_move_huge_page(get_new_page, 1441 put_new_page, private, page, 1442 pass > 2, mode, reason); 1443 else 1444 rc = unmap_and_move(get_new_page, put_new_page, 1445 private, page, pass > 2, mode, 1446 reason); 1447 1448 switch(rc) { 1449 case -ENOMEM: 1450 /* 1451 * THP migration might be unsupported or the 1452 * allocation could've failed so we should 1453 * retry on the same page with the THP split 1454 * to base pages. 1455 * 1456 * Head page is retried immediately and tail 1457 * pages are added to the tail of the list so 1458 * we encounter them after the rest of the list 1459 * is processed. 1460 */ 1461 if (PageTransHuge(page) && !PageHuge(page)) { 1462 lock_page(page); 1463 rc = split_huge_page_to_list(page, from); 1464 unlock_page(page); 1465 if (!rc) { 1466 list_safe_reset_next(page, page2, lru); 1467 goto retry; 1468 } 1469 } 1470 nr_failed++; 1471 goto out; 1472 case -EAGAIN: 1473 retry++; 1474 break; 1475 case MIGRATEPAGE_SUCCESS: 1476 nr_succeeded++; 1477 break; 1478 default: 1479 /* 1480 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1481 * unlike -EAGAIN case, the failed page is 1482 * removed from migration page list and not 1483 * retried in the next outer loop. 1484 */ 1485 nr_failed++; 1486 break; 1487 } 1488 } 1489 } 1490 nr_failed += retry; 1491 rc = nr_failed; 1492 out: 1493 if (nr_succeeded) 1494 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1495 if (nr_failed) 1496 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1497 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1498 1499 if (!swapwrite) 1500 current->flags &= ~PF_SWAPWRITE; 1501 1502 return rc; 1503 } 1504 1505 #ifdef CONFIG_NUMA 1506 1507 static int store_status(int __user *status, int start, int value, int nr) 1508 { 1509 while (nr-- > 0) { 1510 if (put_user(value, status + start)) 1511 return -EFAULT; 1512 start++; 1513 } 1514 1515 return 0; 1516 } 1517 1518 static int do_move_pages_to_node(struct mm_struct *mm, 1519 struct list_head *pagelist, int node) 1520 { 1521 int err; 1522 1523 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1524 MIGRATE_SYNC, MR_SYSCALL); 1525 if (err) 1526 putback_movable_pages(pagelist); 1527 return err; 1528 } 1529 1530 /* 1531 * Resolves the given address to a struct page, isolates it from the LRU and 1532 * puts it to the given pagelist. 1533 * Returns: 1534 * errno - if the page cannot be found/isolated 1535 * 0 - when it doesn't have to be migrated because it is already on the 1536 * target node 1537 * 1 - when it has been queued 1538 */ 1539 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1540 int node, struct list_head *pagelist, bool migrate_all) 1541 { 1542 struct vm_area_struct *vma; 1543 struct page *page; 1544 unsigned int follflags; 1545 int err; 1546 1547 mmap_read_lock(mm); 1548 err = -EFAULT; 1549 vma = find_vma(mm, addr); 1550 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1551 goto out; 1552 1553 /* FOLL_DUMP to ignore special (like zero) pages */ 1554 follflags = FOLL_GET | FOLL_DUMP; 1555 page = follow_page(vma, addr, follflags); 1556 1557 err = PTR_ERR(page); 1558 if (IS_ERR(page)) 1559 goto out; 1560 1561 err = -ENOENT; 1562 if (!page) 1563 goto out; 1564 1565 err = 0; 1566 if (page_to_nid(page) == node) 1567 goto out_putpage; 1568 1569 err = -EACCES; 1570 if (page_mapcount(page) > 1 && !migrate_all) 1571 goto out_putpage; 1572 1573 if (PageHuge(page)) { 1574 if (PageHead(page)) { 1575 isolate_huge_page(page, pagelist); 1576 err = 1; 1577 } 1578 } else { 1579 struct page *head; 1580 1581 head = compound_head(page); 1582 err = isolate_lru_page(head); 1583 if (err) 1584 goto out_putpage; 1585 1586 err = 1; 1587 list_add_tail(&head->lru, pagelist); 1588 mod_node_page_state(page_pgdat(head), 1589 NR_ISOLATED_ANON + page_is_file_lru(head), 1590 hpage_nr_pages(head)); 1591 } 1592 out_putpage: 1593 /* 1594 * Either remove the duplicate refcount from 1595 * isolate_lru_page() or drop the page ref if it was 1596 * not isolated. 1597 */ 1598 put_page(page); 1599 out: 1600 mmap_read_unlock(mm); 1601 return err; 1602 } 1603 1604 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1605 struct list_head *pagelist, int __user *status, 1606 int start, int i, unsigned long nr_pages) 1607 { 1608 int err; 1609 1610 if (list_empty(pagelist)) 1611 return 0; 1612 1613 err = do_move_pages_to_node(mm, pagelist, node); 1614 if (err) { 1615 /* 1616 * Positive err means the number of failed 1617 * pages to migrate. Since we are going to 1618 * abort and return the number of non-migrated 1619 * pages, so need to incude the rest of the 1620 * nr_pages that have not been attempted as 1621 * well. 1622 */ 1623 if (err > 0) 1624 err += nr_pages - i - 1; 1625 return err; 1626 } 1627 return store_status(status, start, node, i - start); 1628 } 1629 1630 /* 1631 * Migrate an array of page address onto an array of nodes and fill 1632 * the corresponding array of status. 1633 */ 1634 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1635 unsigned long nr_pages, 1636 const void __user * __user *pages, 1637 const int __user *nodes, 1638 int __user *status, int flags) 1639 { 1640 int current_node = NUMA_NO_NODE; 1641 LIST_HEAD(pagelist); 1642 int start, i; 1643 int err = 0, err1; 1644 1645 migrate_prep(); 1646 1647 for (i = start = 0; i < nr_pages; i++) { 1648 const void __user *p; 1649 unsigned long addr; 1650 int node; 1651 1652 err = -EFAULT; 1653 if (get_user(p, pages + i)) 1654 goto out_flush; 1655 if (get_user(node, nodes + i)) 1656 goto out_flush; 1657 addr = (unsigned long)untagged_addr(p); 1658 1659 err = -ENODEV; 1660 if (node < 0 || node >= MAX_NUMNODES) 1661 goto out_flush; 1662 if (!node_state(node, N_MEMORY)) 1663 goto out_flush; 1664 1665 err = -EACCES; 1666 if (!node_isset(node, task_nodes)) 1667 goto out_flush; 1668 1669 if (current_node == NUMA_NO_NODE) { 1670 current_node = node; 1671 start = i; 1672 } else if (node != current_node) { 1673 err = move_pages_and_store_status(mm, current_node, 1674 &pagelist, status, start, i, nr_pages); 1675 if (err) 1676 goto out; 1677 start = i; 1678 current_node = node; 1679 } 1680 1681 /* 1682 * Errors in the page lookup or isolation are not fatal and we simply 1683 * report them via status 1684 */ 1685 err = add_page_for_migration(mm, addr, current_node, 1686 &pagelist, flags & MPOL_MF_MOVE_ALL); 1687 1688 if (err > 0) { 1689 /* The page is successfully queued for migration */ 1690 continue; 1691 } 1692 1693 /* 1694 * If the page is already on the target node (!err), store the 1695 * node, otherwise, store the err. 1696 */ 1697 err = store_status(status, i, err ? : current_node, 1); 1698 if (err) 1699 goto out_flush; 1700 1701 err = move_pages_and_store_status(mm, current_node, &pagelist, 1702 status, start, i, nr_pages); 1703 if (err) 1704 goto out; 1705 current_node = NUMA_NO_NODE; 1706 } 1707 out_flush: 1708 /* Make sure we do not overwrite the existing error */ 1709 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1710 status, start, i, nr_pages); 1711 if (err >= 0) 1712 err = err1; 1713 out: 1714 return err; 1715 } 1716 1717 /* 1718 * Determine the nodes of an array of pages and store it in an array of status. 1719 */ 1720 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1721 const void __user **pages, int *status) 1722 { 1723 unsigned long i; 1724 1725 mmap_read_lock(mm); 1726 1727 for (i = 0; i < nr_pages; i++) { 1728 unsigned long addr = (unsigned long)(*pages); 1729 struct vm_area_struct *vma; 1730 struct page *page; 1731 int err = -EFAULT; 1732 1733 vma = find_vma(mm, addr); 1734 if (!vma || addr < vma->vm_start) 1735 goto set_status; 1736 1737 /* FOLL_DUMP to ignore special (like zero) pages */ 1738 page = follow_page(vma, addr, FOLL_DUMP); 1739 1740 err = PTR_ERR(page); 1741 if (IS_ERR(page)) 1742 goto set_status; 1743 1744 err = page ? page_to_nid(page) : -ENOENT; 1745 set_status: 1746 *status = err; 1747 1748 pages++; 1749 status++; 1750 } 1751 1752 mmap_read_unlock(mm); 1753 } 1754 1755 /* 1756 * Determine the nodes of a user array of pages and store it in 1757 * a user array of status. 1758 */ 1759 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1760 const void __user * __user *pages, 1761 int __user *status) 1762 { 1763 #define DO_PAGES_STAT_CHUNK_NR 16 1764 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1765 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1766 1767 while (nr_pages) { 1768 unsigned long chunk_nr; 1769 1770 chunk_nr = nr_pages; 1771 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1772 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1773 1774 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1775 break; 1776 1777 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1778 1779 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1780 break; 1781 1782 pages += chunk_nr; 1783 status += chunk_nr; 1784 nr_pages -= chunk_nr; 1785 } 1786 return nr_pages ? -EFAULT : 0; 1787 } 1788 1789 /* 1790 * Move a list of pages in the address space of the currently executing 1791 * process. 1792 */ 1793 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1794 const void __user * __user *pages, 1795 const int __user *nodes, 1796 int __user *status, int flags) 1797 { 1798 struct task_struct *task; 1799 struct mm_struct *mm; 1800 int err; 1801 nodemask_t task_nodes; 1802 1803 /* Check flags */ 1804 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1805 return -EINVAL; 1806 1807 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1808 return -EPERM; 1809 1810 /* Find the mm_struct */ 1811 rcu_read_lock(); 1812 task = pid ? find_task_by_vpid(pid) : current; 1813 if (!task) { 1814 rcu_read_unlock(); 1815 return -ESRCH; 1816 } 1817 get_task_struct(task); 1818 1819 /* 1820 * Check if this process has the right to modify the specified 1821 * process. Use the regular "ptrace_may_access()" checks. 1822 */ 1823 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1824 rcu_read_unlock(); 1825 err = -EPERM; 1826 goto out; 1827 } 1828 rcu_read_unlock(); 1829 1830 err = security_task_movememory(task); 1831 if (err) 1832 goto out; 1833 1834 task_nodes = cpuset_mems_allowed(task); 1835 mm = get_task_mm(task); 1836 put_task_struct(task); 1837 1838 if (!mm) 1839 return -EINVAL; 1840 1841 if (nodes) 1842 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1843 nodes, status, flags); 1844 else 1845 err = do_pages_stat(mm, nr_pages, pages, status); 1846 1847 mmput(mm); 1848 return err; 1849 1850 out: 1851 put_task_struct(task); 1852 return err; 1853 } 1854 1855 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1856 const void __user * __user *, pages, 1857 const int __user *, nodes, 1858 int __user *, status, int, flags) 1859 { 1860 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1861 } 1862 1863 #ifdef CONFIG_COMPAT 1864 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1865 compat_uptr_t __user *, pages32, 1866 const int __user *, nodes, 1867 int __user *, status, 1868 int, flags) 1869 { 1870 const void __user * __user *pages; 1871 int i; 1872 1873 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1874 for (i = 0; i < nr_pages; i++) { 1875 compat_uptr_t p; 1876 1877 if (get_user(p, pages32 + i) || 1878 put_user(compat_ptr(p), pages + i)) 1879 return -EFAULT; 1880 } 1881 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1882 } 1883 #endif /* CONFIG_COMPAT */ 1884 1885 #ifdef CONFIG_NUMA_BALANCING 1886 /* 1887 * Returns true if this is a safe migration target node for misplaced NUMA 1888 * pages. Currently it only checks the watermarks which crude 1889 */ 1890 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1891 unsigned long nr_migrate_pages) 1892 { 1893 int z; 1894 1895 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1896 struct zone *zone = pgdat->node_zones + z; 1897 1898 if (!populated_zone(zone)) 1899 continue; 1900 1901 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1902 if (!zone_watermark_ok(zone, 0, 1903 high_wmark_pages(zone) + 1904 nr_migrate_pages, 1905 ZONE_MOVABLE, 0)) 1906 continue; 1907 return true; 1908 } 1909 return false; 1910 } 1911 1912 static struct page *alloc_misplaced_dst_page(struct page *page, 1913 unsigned long data) 1914 { 1915 int nid = (int) data; 1916 struct page *newpage; 1917 1918 newpage = __alloc_pages_node(nid, 1919 (GFP_HIGHUSER_MOVABLE | 1920 __GFP_THISNODE | __GFP_NOMEMALLOC | 1921 __GFP_NORETRY | __GFP_NOWARN) & 1922 ~__GFP_RECLAIM, 0); 1923 1924 return newpage; 1925 } 1926 1927 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1928 { 1929 int page_lru; 1930 1931 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1932 1933 /* Avoid migrating to a node that is nearly full */ 1934 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 1935 return 0; 1936 1937 if (isolate_lru_page(page)) 1938 return 0; 1939 1940 /* 1941 * migrate_misplaced_transhuge_page() skips page migration's usual 1942 * check on page_count(), so we must do it here, now that the page 1943 * has been isolated: a GUP pin, or any other pin, prevents migration. 1944 * The expected page count is 3: 1 for page's mapcount and 1 for the 1945 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1946 */ 1947 if (PageTransHuge(page) && page_count(page) != 3) { 1948 putback_lru_page(page); 1949 return 0; 1950 } 1951 1952 page_lru = page_is_file_lru(page); 1953 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1954 hpage_nr_pages(page)); 1955 1956 /* 1957 * Isolating the page has taken another reference, so the 1958 * caller's reference can be safely dropped without the page 1959 * disappearing underneath us during migration. 1960 */ 1961 put_page(page); 1962 return 1; 1963 } 1964 1965 bool pmd_trans_migrating(pmd_t pmd) 1966 { 1967 struct page *page = pmd_page(pmd); 1968 return PageLocked(page); 1969 } 1970 1971 /* 1972 * Attempt to migrate a misplaced page to the specified destination 1973 * node. Caller is expected to have an elevated reference count on 1974 * the page that will be dropped by this function before returning. 1975 */ 1976 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1977 int node) 1978 { 1979 pg_data_t *pgdat = NODE_DATA(node); 1980 int isolated; 1981 int nr_remaining; 1982 LIST_HEAD(migratepages); 1983 1984 /* 1985 * Don't migrate file pages that are mapped in multiple processes 1986 * with execute permissions as they are probably shared libraries. 1987 */ 1988 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 1989 (vma->vm_flags & VM_EXEC)) 1990 goto out; 1991 1992 /* 1993 * Also do not migrate dirty pages as not all filesystems can move 1994 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1995 */ 1996 if (page_is_file_lru(page) && PageDirty(page)) 1997 goto out; 1998 1999 isolated = numamigrate_isolate_page(pgdat, page); 2000 if (!isolated) 2001 goto out; 2002 2003 list_add(&page->lru, &migratepages); 2004 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2005 NULL, node, MIGRATE_ASYNC, 2006 MR_NUMA_MISPLACED); 2007 if (nr_remaining) { 2008 if (!list_empty(&migratepages)) { 2009 list_del(&page->lru); 2010 dec_node_page_state(page, NR_ISOLATED_ANON + 2011 page_is_file_lru(page)); 2012 putback_lru_page(page); 2013 } 2014 isolated = 0; 2015 } else 2016 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2017 BUG_ON(!list_empty(&migratepages)); 2018 return isolated; 2019 2020 out: 2021 put_page(page); 2022 return 0; 2023 } 2024 #endif /* CONFIG_NUMA_BALANCING */ 2025 2026 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2027 /* 2028 * Migrates a THP to a given target node. page must be locked and is unlocked 2029 * before returning. 2030 */ 2031 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2032 struct vm_area_struct *vma, 2033 pmd_t *pmd, pmd_t entry, 2034 unsigned long address, 2035 struct page *page, int node) 2036 { 2037 spinlock_t *ptl; 2038 pg_data_t *pgdat = NODE_DATA(node); 2039 int isolated = 0; 2040 struct page *new_page = NULL; 2041 int page_lru = page_is_file_lru(page); 2042 unsigned long start = address & HPAGE_PMD_MASK; 2043 2044 new_page = alloc_pages_node(node, 2045 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2046 HPAGE_PMD_ORDER); 2047 if (!new_page) 2048 goto out_fail; 2049 prep_transhuge_page(new_page); 2050 2051 isolated = numamigrate_isolate_page(pgdat, page); 2052 if (!isolated) { 2053 put_page(new_page); 2054 goto out_fail; 2055 } 2056 2057 /* Prepare a page as a migration target */ 2058 __SetPageLocked(new_page); 2059 if (PageSwapBacked(page)) 2060 __SetPageSwapBacked(new_page); 2061 2062 /* anon mapping, we can simply copy page->mapping to the new page: */ 2063 new_page->mapping = page->mapping; 2064 new_page->index = page->index; 2065 /* flush the cache before copying using the kernel virtual address */ 2066 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2067 migrate_page_copy(new_page, page); 2068 WARN_ON(PageLRU(new_page)); 2069 2070 /* Recheck the target PMD */ 2071 ptl = pmd_lock(mm, pmd); 2072 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2073 spin_unlock(ptl); 2074 2075 /* Reverse changes made by migrate_page_copy() */ 2076 if (TestClearPageActive(new_page)) 2077 SetPageActive(page); 2078 if (TestClearPageUnevictable(new_page)) 2079 SetPageUnevictable(page); 2080 2081 unlock_page(new_page); 2082 put_page(new_page); /* Free it */ 2083 2084 /* Retake the callers reference and putback on LRU */ 2085 get_page(page); 2086 putback_lru_page(page); 2087 mod_node_page_state(page_pgdat(page), 2088 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2089 2090 goto out_unlock; 2091 } 2092 2093 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2094 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2095 2096 /* 2097 * Overwrite the old entry under pagetable lock and establish 2098 * the new PTE. Any parallel GUP will either observe the old 2099 * page blocking on the page lock, block on the page table 2100 * lock or observe the new page. The SetPageUptodate on the 2101 * new page and page_add_new_anon_rmap guarantee the copy is 2102 * visible before the pagetable update. 2103 */ 2104 page_add_anon_rmap(new_page, vma, start, true); 2105 /* 2106 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2107 * has already been flushed globally. So no TLB can be currently 2108 * caching this non present pmd mapping. There's no need to clear the 2109 * pmd before doing set_pmd_at(), nor to flush the TLB after 2110 * set_pmd_at(). Clearing the pmd here would introduce a race 2111 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2112 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2113 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2114 * pmd. 2115 */ 2116 set_pmd_at(mm, start, pmd, entry); 2117 update_mmu_cache_pmd(vma, address, &entry); 2118 2119 page_ref_unfreeze(page, 2); 2120 mlock_migrate_page(new_page, page); 2121 page_remove_rmap(page, true); 2122 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2123 2124 spin_unlock(ptl); 2125 2126 /* Take an "isolate" reference and put new page on the LRU. */ 2127 get_page(new_page); 2128 putback_lru_page(new_page); 2129 2130 unlock_page(new_page); 2131 unlock_page(page); 2132 put_page(page); /* Drop the rmap reference */ 2133 put_page(page); /* Drop the LRU isolation reference */ 2134 2135 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2136 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2137 2138 mod_node_page_state(page_pgdat(page), 2139 NR_ISOLATED_ANON + page_lru, 2140 -HPAGE_PMD_NR); 2141 return isolated; 2142 2143 out_fail: 2144 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2145 ptl = pmd_lock(mm, pmd); 2146 if (pmd_same(*pmd, entry)) { 2147 entry = pmd_modify(entry, vma->vm_page_prot); 2148 set_pmd_at(mm, start, pmd, entry); 2149 update_mmu_cache_pmd(vma, address, &entry); 2150 } 2151 spin_unlock(ptl); 2152 2153 out_unlock: 2154 unlock_page(page); 2155 put_page(page); 2156 return 0; 2157 } 2158 #endif /* CONFIG_NUMA_BALANCING */ 2159 2160 #endif /* CONFIG_NUMA */ 2161 2162 #ifdef CONFIG_DEVICE_PRIVATE 2163 static int migrate_vma_collect_hole(unsigned long start, 2164 unsigned long end, 2165 __always_unused int depth, 2166 struct mm_walk *walk) 2167 { 2168 struct migrate_vma *migrate = walk->private; 2169 unsigned long addr; 2170 2171 for (addr = start; addr < end; addr += PAGE_SIZE) { 2172 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2173 migrate->dst[migrate->npages] = 0; 2174 migrate->npages++; 2175 migrate->cpages++; 2176 } 2177 2178 return 0; 2179 } 2180 2181 static int migrate_vma_collect_skip(unsigned long start, 2182 unsigned long end, 2183 struct mm_walk *walk) 2184 { 2185 struct migrate_vma *migrate = walk->private; 2186 unsigned long addr; 2187 2188 for (addr = start; addr < end; addr += PAGE_SIZE) { 2189 migrate->dst[migrate->npages] = 0; 2190 migrate->src[migrate->npages++] = 0; 2191 } 2192 2193 return 0; 2194 } 2195 2196 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2197 unsigned long start, 2198 unsigned long end, 2199 struct mm_walk *walk) 2200 { 2201 struct migrate_vma *migrate = walk->private; 2202 struct vm_area_struct *vma = walk->vma; 2203 struct mm_struct *mm = vma->vm_mm; 2204 unsigned long addr = start, unmapped = 0; 2205 spinlock_t *ptl; 2206 pte_t *ptep; 2207 2208 again: 2209 if (pmd_none(*pmdp)) 2210 return migrate_vma_collect_hole(start, end, -1, walk); 2211 2212 if (pmd_trans_huge(*pmdp)) { 2213 struct page *page; 2214 2215 ptl = pmd_lock(mm, pmdp); 2216 if (unlikely(!pmd_trans_huge(*pmdp))) { 2217 spin_unlock(ptl); 2218 goto again; 2219 } 2220 2221 page = pmd_page(*pmdp); 2222 if (is_huge_zero_page(page)) { 2223 spin_unlock(ptl); 2224 split_huge_pmd(vma, pmdp, addr); 2225 if (pmd_trans_unstable(pmdp)) 2226 return migrate_vma_collect_skip(start, end, 2227 walk); 2228 } else { 2229 int ret; 2230 2231 get_page(page); 2232 spin_unlock(ptl); 2233 if (unlikely(!trylock_page(page))) 2234 return migrate_vma_collect_skip(start, end, 2235 walk); 2236 ret = split_huge_page(page); 2237 unlock_page(page); 2238 put_page(page); 2239 if (ret) 2240 return migrate_vma_collect_skip(start, end, 2241 walk); 2242 if (pmd_none(*pmdp)) 2243 return migrate_vma_collect_hole(start, end, -1, 2244 walk); 2245 } 2246 } 2247 2248 if (unlikely(pmd_bad(*pmdp))) 2249 return migrate_vma_collect_skip(start, end, walk); 2250 2251 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2252 arch_enter_lazy_mmu_mode(); 2253 2254 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2255 unsigned long mpfn = 0, pfn; 2256 struct page *page; 2257 swp_entry_t entry; 2258 pte_t pte; 2259 2260 pte = *ptep; 2261 2262 if (pte_none(pte)) { 2263 mpfn = MIGRATE_PFN_MIGRATE; 2264 migrate->cpages++; 2265 goto next; 2266 } 2267 2268 if (!pte_present(pte)) { 2269 /* 2270 * Only care about unaddressable device page special 2271 * page table entry. Other special swap entries are not 2272 * migratable, and we ignore regular swapped page. 2273 */ 2274 entry = pte_to_swp_entry(pte); 2275 if (!is_device_private_entry(entry)) 2276 goto next; 2277 2278 page = device_private_entry_to_page(entry); 2279 if (!(migrate->flags & 2280 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2281 page->pgmap->owner != migrate->pgmap_owner) 2282 goto next; 2283 2284 mpfn = migrate_pfn(page_to_pfn(page)) | 2285 MIGRATE_PFN_MIGRATE; 2286 if (is_write_device_private_entry(entry)) 2287 mpfn |= MIGRATE_PFN_WRITE; 2288 } else { 2289 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2290 goto next; 2291 pfn = pte_pfn(pte); 2292 if (is_zero_pfn(pfn)) { 2293 mpfn = MIGRATE_PFN_MIGRATE; 2294 migrate->cpages++; 2295 goto next; 2296 } 2297 page = vm_normal_page(migrate->vma, addr, pte); 2298 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2299 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2300 } 2301 2302 /* FIXME support THP */ 2303 if (!page || !page->mapping || PageTransCompound(page)) { 2304 mpfn = 0; 2305 goto next; 2306 } 2307 2308 /* 2309 * By getting a reference on the page we pin it and that blocks 2310 * any kind of migration. Side effect is that it "freezes" the 2311 * pte. 2312 * 2313 * We drop this reference after isolating the page from the lru 2314 * for non device page (device page are not on the lru and thus 2315 * can't be dropped from it). 2316 */ 2317 get_page(page); 2318 migrate->cpages++; 2319 2320 /* 2321 * Optimize for the common case where page is only mapped once 2322 * in one process. If we can lock the page, then we can safely 2323 * set up a special migration page table entry now. 2324 */ 2325 if (trylock_page(page)) { 2326 pte_t swp_pte; 2327 2328 mpfn |= MIGRATE_PFN_LOCKED; 2329 ptep_get_and_clear(mm, addr, ptep); 2330 2331 /* Setup special migration page table entry */ 2332 entry = make_migration_entry(page, mpfn & 2333 MIGRATE_PFN_WRITE); 2334 swp_pte = swp_entry_to_pte(entry); 2335 if (pte_soft_dirty(pte)) 2336 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2337 if (pte_uffd_wp(pte)) 2338 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2339 set_pte_at(mm, addr, ptep, swp_pte); 2340 2341 /* 2342 * This is like regular unmap: we remove the rmap and 2343 * drop page refcount. Page won't be freed, as we took 2344 * a reference just above. 2345 */ 2346 page_remove_rmap(page, false); 2347 put_page(page); 2348 2349 if (pte_present(pte)) 2350 unmapped++; 2351 } 2352 2353 next: 2354 migrate->dst[migrate->npages] = 0; 2355 migrate->src[migrate->npages++] = mpfn; 2356 } 2357 arch_leave_lazy_mmu_mode(); 2358 pte_unmap_unlock(ptep - 1, ptl); 2359 2360 /* Only flush the TLB if we actually modified any entries */ 2361 if (unmapped) 2362 flush_tlb_range(walk->vma, start, end); 2363 2364 return 0; 2365 } 2366 2367 static const struct mm_walk_ops migrate_vma_walk_ops = { 2368 .pmd_entry = migrate_vma_collect_pmd, 2369 .pte_hole = migrate_vma_collect_hole, 2370 }; 2371 2372 /* 2373 * migrate_vma_collect() - collect pages over a range of virtual addresses 2374 * @migrate: migrate struct containing all migration information 2375 * 2376 * This will walk the CPU page table. For each virtual address backed by a 2377 * valid page, it updates the src array and takes a reference on the page, in 2378 * order to pin the page until we lock it and unmap it. 2379 */ 2380 static void migrate_vma_collect(struct migrate_vma *migrate) 2381 { 2382 struct mmu_notifier_range range; 2383 2384 /* 2385 * Note that the pgmap_owner is passed to the mmu notifier callback so 2386 * that the registered device driver can skip invalidating device 2387 * private page mappings that won't be migrated. 2388 */ 2389 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2390 migrate->vma->vm_mm, migrate->start, migrate->end, 2391 migrate->pgmap_owner); 2392 mmu_notifier_invalidate_range_start(&range); 2393 2394 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2395 &migrate_vma_walk_ops, migrate); 2396 2397 mmu_notifier_invalidate_range_end(&range); 2398 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2399 } 2400 2401 /* 2402 * migrate_vma_check_page() - check if page is pinned or not 2403 * @page: struct page to check 2404 * 2405 * Pinned pages cannot be migrated. This is the same test as in 2406 * migrate_page_move_mapping(), except that here we allow migration of a 2407 * ZONE_DEVICE page. 2408 */ 2409 static bool migrate_vma_check_page(struct page *page) 2410 { 2411 /* 2412 * One extra ref because caller holds an extra reference, either from 2413 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2414 * a device page. 2415 */ 2416 int extra = 1; 2417 2418 /* 2419 * FIXME support THP (transparent huge page), it is bit more complex to 2420 * check them than regular pages, because they can be mapped with a pmd 2421 * or with a pte (split pte mapping). 2422 */ 2423 if (PageCompound(page)) 2424 return false; 2425 2426 /* Page from ZONE_DEVICE have one extra reference */ 2427 if (is_zone_device_page(page)) { 2428 /* 2429 * Private page can never be pin as they have no valid pte and 2430 * GUP will fail for those. Yet if there is a pending migration 2431 * a thread might try to wait on the pte migration entry and 2432 * will bump the page reference count. Sadly there is no way to 2433 * differentiate a regular pin from migration wait. Hence to 2434 * avoid 2 racing thread trying to migrate back to CPU to enter 2435 * infinite loop (one stoping migration because the other is 2436 * waiting on pte migration entry). We always return true here. 2437 * 2438 * FIXME proper solution is to rework migration_entry_wait() so 2439 * it does not need to take a reference on page. 2440 */ 2441 return is_device_private_page(page); 2442 } 2443 2444 /* For file back page */ 2445 if (page_mapping(page)) 2446 extra += 1 + page_has_private(page); 2447 2448 if ((page_count(page) - extra) > page_mapcount(page)) 2449 return false; 2450 2451 return true; 2452 } 2453 2454 /* 2455 * migrate_vma_prepare() - lock pages and isolate them from the lru 2456 * @migrate: migrate struct containing all migration information 2457 * 2458 * This locks pages that have been collected by migrate_vma_collect(). Once each 2459 * page is locked it is isolated from the lru (for non-device pages). Finally, 2460 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2461 * migrated by concurrent kernel threads. 2462 */ 2463 static void migrate_vma_prepare(struct migrate_vma *migrate) 2464 { 2465 const unsigned long npages = migrate->npages; 2466 const unsigned long start = migrate->start; 2467 unsigned long addr, i, restore = 0; 2468 bool allow_drain = true; 2469 2470 lru_add_drain(); 2471 2472 for (i = 0; (i < npages) && migrate->cpages; i++) { 2473 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2474 bool remap = true; 2475 2476 if (!page) 2477 continue; 2478 2479 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2480 /* 2481 * Because we are migrating several pages there can be 2482 * a deadlock between 2 concurrent migration where each 2483 * are waiting on each other page lock. 2484 * 2485 * Make migrate_vma() a best effort thing and backoff 2486 * for any page we can not lock right away. 2487 */ 2488 if (!trylock_page(page)) { 2489 migrate->src[i] = 0; 2490 migrate->cpages--; 2491 put_page(page); 2492 continue; 2493 } 2494 remap = false; 2495 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2496 } 2497 2498 /* ZONE_DEVICE pages are not on LRU */ 2499 if (!is_zone_device_page(page)) { 2500 if (!PageLRU(page) && allow_drain) { 2501 /* Drain CPU's pagevec */ 2502 lru_add_drain_all(); 2503 allow_drain = false; 2504 } 2505 2506 if (isolate_lru_page(page)) { 2507 if (remap) { 2508 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2509 migrate->cpages--; 2510 restore++; 2511 } else { 2512 migrate->src[i] = 0; 2513 unlock_page(page); 2514 migrate->cpages--; 2515 put_page(page); 2516 } 2517 continue; 2518 } 2519 2520 /* Drop the reference we took in collect */ 2521 put_page(page); 2522 } 2523 2524 if (!migrate_vma_check_page(page)) { 2525 if (remap) { 2526 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2527 migrate->cpages--; 2528 restore++; 2529 2530 if (!is_zone_device_page(page)) { 2531 get_page(page); 2532 putback_lru_page(page); 2533 } 2534 } else { 2535 migrate->src[i] = 0; 2536 unlock_page(page); 2537 migrate->cpages--; 2538 2539 if (!is_zone_device_page(page)) 2540 putback_lru_page(page); 2541 else 2542 put_page(page); 2543 } 2544 } 2545 } 2546 2547 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2548 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2549 2550 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2551 continue; 2552 2553 remove_migration_pte(page, migrate->vma, addr, page); 2554 2555 migrate->src[i] = 0; 2556 unlock_page(page); 2557 put_page(page); 2558 restore--; 2559 } 2560 } 2561 2562 /* 2563 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2564 * @migrate: migrate struct containing all migration information 2565 * 2566 * Replace page mapping (CPU page table pte) with a special migration pte entry 2567 * and check again if it has been pinned. Pinned pages are restored because we 2568 * cannot migrate them. 2569 * 2570 * This is the last step before we call the device driver callback to allocate 2571 * destination memory and copy contents of original page over to new page. 2572 */ 2573 static void migrate_vma_unmap(struct migrate_vma *migrate) 2574 { 2575 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2576 const unsigned long npages = migrate->npages; 2577 const unsigned long start = migrate->start; 2578 unsigned long addr, i, restore = 0; 2579 2580 for (i = 0; i < npages; i++) { 2581 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2582 2583 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2584 continue; 2585 2586 if (page_mapped(page)) { 2587 try_to_unmap(page, flags); 2588 if (page_mapped(page)) 2589 goto restore; 2590 } 2591 2592 if (migrate_vma_check_page(page)) 2593 continue; 2594 2595 restore: 2596 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2597 migrate->cpages--; 2598 restore++; 2599 } 2600 2601 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2602 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2603 2604 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2605 continue; 2606 2607 remove_migration_ptes(page, page, false); 2608 2609 migrate->src[i] = 0; 2610 unlock_page(page); 2611 restore--; 2612 2613 if (is_zone_device_page(page)) 2614 put_page(page); 2615 else 2616 putback_lru_page(page); 2617 } 2618 } 2619 2620 /** 2621 * migrate_vma_setup() - prepare to migrate a range of memory 2622 * @args: contains the vma, start, and and pfns arrays for the migration 2623 * 2624 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2625 * without an error. 2626 * 2627 * Prepare to migrate a range of memory virtual address range by collecting all 2628 * the pages backing each virtual address in the range, saving them inside the 2629 * src array. Then lock those pages and unmap them. Once the pages are locked 2630 * and unmapped, check whether each page is pinned or not. Pages that aren't 2631 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2632 * corresponding src array entry. Then restores any pages that are pinned, by 2633 * remapping and unlocking those pages. 2634 * 2635 * The caller should then allocate destination memory and copy source memory to 2636 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2637 * flag set). Once these are allocated and copied, the caller must update each 2638 * corresponding entry in the dst array with the pfn value of the destination 2639 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2640 * (destination pages must have their struct pages locked, via lock_page()). 2641 * 2642 * Note that the caller does not have to migrate all the pages that are marked 2643 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2644 * device memory to system memory. If the caller cannot migrate a device page 2645 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2646 * consequences for the userspace process, so it must be avoided if at all 2647 * possible. 2648 * 2649 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2650 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2651 * allowing the caller to allocate device memory for those unback virtual 2652 * address. For this the caller simply has to allocate device memory and 2653 * properly set the destination entry like for regular migration. Note that 2654 * this can still fails and thus inside the device driver must check if the 2655 * migration was successful for those entries after calling migrate_vma_pages() 2656 * just like for regular migration. 2657 * 2658 * After that, the callers must call migrate_vma_pages() to go over each entry 2659 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2660 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2661 * then migrate_vma_pages() to migrate struct page information from the source 2662 * struct page to the destination struct page. If it fails to migrate the 2663 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2664 * src array. 2665 * 2666 * At this point all successfully migrated pages have an entry in the src 2667 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2668 * array entry with MIGRATE_PFN_VALID flag set. 2669 * 2670 * Once migrate_vma_pages() returns the caller may inspect which pages were 2671 * successfully migrated, and which were not. Successfully migrated pages will 2672 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2673 * 2674 * It is safe to update device page table after migrate_vma_pages() because 2675 * both destination and source page are still locked, and the mmap_lock is held 2676 * in read mode (hence no one can unmap the range being migrated). 2677 * 2678 * Once the caller is done cleaning up things and updating its page table (if it 2679 * chose to do so, this is not an obligation) it finally calls 2680 * migrate_vma_finalize() to update the CPU page table to point to new pages 2681 * for successfully migrated pages or otherwise restore the CPU page table to 2682 * point to the original source pages. 2683 */ 2684 int migrate_vma_setup(struct migrate_vma *args) 2685 { 2686 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2687 2688 args->start &= PAGE_MASK; 2689 args->end &= PAGE_MASK; 2690 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2691 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2692 return -EINVAL; 2693 if (nr_pages <= 0) 2694 return -EINVAL; 2695 if (args->start < args->vma->vm_start || 2696 args->start >= args->vma->vm_end) 2697 return -EINVAL; 2698 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2699 return -EINVAL; 2700 if (!args->src || !args->dst) 2701 return -EINVAL; 2702 2703 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2704 args->cpages = 0; 2705 args->npages = 0; 2706 2707 migrate_vma_collect(args); 2708 2709 if (args->cpages) 2710 migrate_vma_prepare(args); 2711 if (args->cpages) 2712 migrate_vma_unmap(args); 2713 2714 /* 2715 * At this point pages are locked and unmapped, and thus they have 2716 * stable content and can safely be copied to destination memory that 2717 * is allocated by the drivers. 2718 */ 2719 return 0; 2720 2721 } 2722 EXPORT_SYMBOL(migrate_vma_setup); 2723 2724 /* 2725 * This code closely matches the code in: 2726 * __handle_mm_fault() 2727 * handle_pte_fault() 2728 * do_anonymous_page() 2729 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2730 * private page. 2731 */ 2732 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2733 unsigned long addr, 2734 struct page *page, 2735 unsigned long *src, 2736 unsigned long *dst) 2737 { 2738 struct vm_area_struct *vma = migrate->vma; 2739 struct mm_struct *mm = vma->vm_mm; 2740 bool flush = false; 2741 spinlock_t *ptl; 2742 pte_t entry; 2743 pgd_t *pgdp; 2744 p4d_t *p4dp; 2745 pud_t *pudp; 2746 pmd_t *pmdp; 2747 pte_t *ptep; 2748 2749 /* Only allow populating anonymous memory */ 2750 if (!vma_is_anonymous(vma)) 2751 goto abort; 2752 2753 pgdp = pgd_offset(mm, addr); 2754 p4dp = p4d_alloc(mm, pgdp, addr); 2755 if (!p4dp) 2756 goto abort; 2757 pudp = pud_alloc(mm, p4dp, addr); 2758 if (!pudp) 2759 goto abort; 2760 pmdp = pmd_alloc(mm, pudp, addr); 2761 if (!pmdp) 2762 goto abort; 2763 2764 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2765 goto abort; 2766 2767 /* 2768 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2769 * pte_offset_map() on pmds where a huge pmd might be created 2770 * from a different thread. 2771 * 2772 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2773 * parallel threads are excluded by other means. 2774 * 2775 * Here we only have mmap_read_lock(mm). 2776 */ 2777 if (pte_alloc(mm, pmdp)) 2778 goto abort; 2779 2780 /* See the comment in pte_alloc_one_map() */ 2781 if (unlikely(pmd_trans_unstable(pmdp))) 2782 goto abort; 2783 2784 if (unlikely(anon_vma_prepare(vma))) 2785 goto abort; 2786 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2787 goto abort; 2788 2789 /* 2790 * The memory barrier inside __SetPageUptodate makes sure that 2791 * preceding stores to the page contents become visible before 2792 * the set_pte_at() write. 2793 */ 2794 __SetPageUptodate(page); 2795 2796 if (is_zone_device_page(page)) { 2797 if (is_device_private_page(page)) { 2798 swp_entry_t swp_entry; 2799 2800 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2801 entry = swp_entry_to_pte(swp_entry); 2802 } 2803 } else { 2804 entry = mk_pte(page, vma->vm_page_prot); 2805 if (vma->vm_flags & VM_WRITE) 2806 entry = pte_mkwrite(pte_mkdirty(entry)); 2807 } 2808 2809 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2810 2811 if (check_stable_address_space(mm)) 2812 goto unlock_abort; 2813 2814 if (pte_present(*ptep)) { 2815 unsigned long pfn = pte_pfn(*ptep); 2816 2817 if (!is_zero_pfn(pfn)) 2818 goto unlock_abort; 2819 flush = true; 2820 } else if (!pte_none(*ptep)) 2821 goto unlock_abort; 2822 2823 /* 2824 * Check for userfaultfd but do not deliver the fault. Instead, 2825 * just back off. 2826 */ 2827 if (userfaultfd_missing(vma)) 2828 goto unlock_abort; 2829 2830 inc_mm_counter(mm, MM_ANONPAGES); 2831 page_add_new_anon_rmap(page, vma, addr, false); 2832 if (!is_zone_device_page(page)) 2833 lru_cache_add_active_or_unevictable(page, vma); 2834 get_page(page); 2835 2836 if (flush) { 2837 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2838 ptep_clear_flush_notify(vma, addr, ptep); 2839 set_pte_at_notify(mm, addr, ptep, entry); 2840 update_mmu_cache(vma, addr, ptep); 2841 } else { 2842 /* No need to invalidate - it was non-present before */ 2843 set_pte_at(mm, addr, ptep, entry); 2844 update_mmu_cache(vma, addr, ptep); 2845 } 2846 2847 pte_unmap_unlock(ptep, ptl); 2848 *src = MIGRATE_PFN_MIGRATE; 2849 return; 2850 2851 unlock_abort: 2852 pte_unmap_unlock(ptep, ptl); 2853 abort: 2854 *src &= ~MIGRATE_PFN_MIGRATE; 2855 } 2856 2857 /** 2858 * migrate_vma_pages() - migrate meta-data from src page to dst page 2859 * @migrate: migrate struct containing all migration information 2860 * 2861 * This migrates struct page meta-data from source struct page to destination 2862 * struct page. This effectively finishes the migration from source page to the 2863 * destination page. 2864 */ 2865 void migrate_vma_pages(struct migrate_vma *migrate) 2866 { 2867 const unsigned long npages = migrate->npages; 2868 const unsigned long start = migrate->start; 2869 struct mmu_notifier_range range; 2870 unsigned long addr, i; 2871 bool notified = false; 2872 2873 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2874 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2875 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2876 struct address_space *mapping; 2877 int r; 2878 2879 if (!newpage) { 2880 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2881 continue; 2882 } 2883 2884 if (!page) { 2885 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2886 continue; 2887 if (!notified) { 2888 notified = true; 2889 2890 mmu_notifier_range_init(&range, 2891 MMU_NOTIFY_CLEAR, 0, 2892 NULL, 2893 migrate->vma->vm_mm, 2894 addr, migrate->end); 2895 mmu_notifier_invalidate_range_start(&range); 2896 } 2897 migrate_vma_insert_page(migrate, addr, newpage, 2898 &migrate->src[i], 2899 &migrate->dst[i]); 2900 continue; 2901 } 2902 2903 mapping = page_mapping(page); 2904 2905 if (is_zone_device_page(newpage)) { 2906 if (is_device_private_page(newpage)) { 2907 /* 2908 * For now only support private anonymous when 2909 * migrating to un-addressable device memory. 2910 */ 2911 if (mapping) { 2912 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2913 continue; 2914 } 2915 } else { 2916 /* 2917 * Other types of ZONE_DEVICE page are not 2918 * supported. 2919 */ 2920 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2921 continue; 2922 } 2923 } 2924 2925 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2926 if (r != MIGRATEPAGE_SUCCESS) 2927 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2928 } 2929 2930 /* 2931 * No need to double call mmu_notifier->invalidate_range() callback as 2932 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2933 * did already call it. 2934 */ 2935 if (notified) 2936 mmu_notifier_invalidate_range_only_end(&range); 2937 } 2938 EXPORT_SYMBOL(migrate_vma_pages); 2939 2940 /** 2941 * migrate_vma_finalize() - restore CPU page table entry 2942 * @migrate: migrate struct containing all migration information 2943 * 2944 * This replaces the special migration pte entry with either a mapping to the 2945 * new page if migration was successful for that page, or to the original page 2946 * otherwise. 2947 * 2948 * This also unlocks the pages and puts them back on the lru, or drops the extra 2949 * refcount, for device pages. 2950 */ 2951 void migrate_vma_finalize(struct migrate_vma *migrate) 2952 { 2953 const unsigned long npages = migrate->npages; 2954 unsigned long i; 2955 2956 for (i = 0; i < npages; i++) { 2957 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2958 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2959 2960 if (!page) { 2961 if (newpage) { 2962 unlock_page(newpage); 2963 put_page(newpage); 2964 } 2965 continue; 2966 } 2967 2968 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2969 if (newpage) { 2970 unlock_page(newpage); 2971 put_page(newpage); 2972 } 2973 newpage = page; 2974 } 2975 2976 remove_migration_ptes(page, newpage, false); 2977 unlock_page(page); 2978 migrate->cpages--; 2979 2980 if (is_zone_device_page(page)) 2981 put_page(page); 2982 else 2983 putback_lru_page(page); 2984 2985 if (newpage != page) { 2986 unlock_page(newpage); 2987 if (is_zone_device_page(newpage)) 2988 put_page(newpage); 2989 else 2990 putback_lru_page(newpage); 2991 } 2992 } 2993 } 2994 EXPORT_SYMBOL(migrate_vma_finalize); 2995 #endif /* CONFIG_DEVICE_PRIVATE */ 2996