1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grabbing the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } 250 } 251 252 #ifdef CONFIG_HUGETLB_PAGE 253 if (PageHuge(new)) { 254 pte = pte_mkhuge(pte); 255 pte = arch_make_huge_pte(pte, vma, new, 0); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 257 if (PageAnon(new)) 258 hugepage_add_anon_rmap(new, vma, pvmw.address); 259 else 260 page_dup_rmap(new, true); 261 } else 262 #endif 263 { 264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 265 266 if (PageAnon(new)) 267 page_add_anon_rmap(new, vma, pvmw.address, false); 268 else 269 page_add_file_rmap(new, false); 270 } 271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 272 mlock_vma_page(new); 273 274 if (PageTransHuge(page) && PageMlocked(page)) 275 clear_page_mlock(page); 276 277 /* No need to invalidate - it was non-present before */ 278 update_mmu_cache(vma, pvmw.address, pvmw.pte); 279 } 280 281 return true; 282 } 283 284 /* 285 * Get rid of all migration entries and replace them by 286 * references to the indicated page. 287 */ 288 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 289 { 290 struct rmap_walk_control rwc = { 291 .rmap_one = remove_migration_pte, 292 .arg = old, 293 }; 294 295 if (locked) 296 rmap_walk_locked(new, &rwc); 297 else 298 rmap_walk(new, &rwc); 299 } 300 301 /* 302 * Something used the pte of a page under migration. We need to 303 * get to the page and wait until migration is finished. 304 * When we return from this function the fault will be retried. 305 */ 306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 307 spinlock_t *ptl) 308 { 309 pte_t pte; 310 swp_entry_t entry; 311 struct page *page; 312 313 spin_lock(ptl); 314 pte = *ptep; 315 if (!is_swap_pte(pte)) 316 goto out; 317 318 entry = pte_to_swp_entry(pte); 319 if (!is_migration_entry(entry)) 320 goto out; 321 322 page = migration_entry_to_page(entry); 323 324 /* 325 * Once page cache replacement of page migration started, page_count 326 * is zero; but we must not call put_and_wait_on_page_locked() without 327 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 328 */ 329 if (!get_page_unless_zero(page)) 330 goto out; 331 pte_unmap_unlock(ptep, ptl); 332 put_and_wait_on_page_locked(page); 333 return; 334 out: 335 pte_unmap_unlock(ptep, ptl); 336 } 337 338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 339 unsigned long address) 340 { 341 spinlock_t *ptl = pte_lockptr(mm, pmd); 342 pte_t *ptep = pte_offset_map(pmd, address); 343 __migration_entry_wait(mm, ptep, ptl); 344 } 345 346 void migration_entry_wait_huge(struct vm_area_struct *vma, 347 struct mm_struct *mm, pte_t *pte) 348 { 349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 350 __migration_entry_wait(mm, pte, ptl); 351 } 352 353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 355 { 356 spinlock_t *ptl; 357 struct page *page; 358 359 ptl = pmd_lock(mm, pmd); 360 if (!is_pmd_migration_entry(*pmd)) 361 goto unlock; 362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 363 if (!get_page_unless_zero(page)) 364 goto unlock; 365 spin_unlock(ptl); 366 put_and_wait_on_page_locked(page); 367 return; 368 unlock: 369 spin_unlock(ptl); 370 } 371 #endif 372 373 static int expected_page_refs(struct address_space *mapping, struct page *page) 374 { 375 int expected_count = 1; 376 377 /* 378 * Device public or private pages have an extra refcount as they are 379 * ZONE_DEVICE pages. 380 */ 381 expected_count += is_device_private_page(page); 382 if (mapping) 383 expected_count += hpage_nr_pages(page) + page_has_private(page); 384 385 return expected_count; 386 } 387 388 /* 389 * Replace the page in the mapping. 390 * 391 * The number of remaining references must be: 392 * 1 for anonymous pages without a mapping 393 * 2 for pages with a mapping 394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 395 */ 396 int migrate_page_move_mapping(struct address_space *mapping, 397 struct page *newpage, struct page *page, int extra_count) 398 { 399 XA_STATE(xas, &mapping->i_pages, page_index(page)); 400 struct zone *oldzone, *newzone; 401 int dirty; 402 int expected_count = expected_page_refs(mapping, page) + extra_count; 403 404 if (!mapping) { 405 /* Anonymous page without mapping */ 406 if (page_count(page) != expected_count) 407 return -EAGAIN; 408 409 /* No turning back from here */ 410 newpage->index = page->index; 411 newpage->mapping = page->mapping; 412 if (PageSwapBacked(page)) 413 __SetPageSwapBacked(newpage); 414 415 return MIGRATEPAGE_SUCCESS; 416 } 417 418 oldzone = page_zone(page); 419 newzone = page_zone(newpage); 420 421 xas_lock_irq(&xas); 422 if (page_count(page) != expected_count || xas_load(&xas) != page) { 423 xas_unlock_irq(&xas); 424 return -EAGAIN; 425 } 426 427 if (!page_ref_freeze(page, expected_count)) { 428 xas_unlock_irq(&xas); 429 return -EAGAIN; 430 } 431 432 /* 433 * Now we know that no one else is looking at the page: 434 * no turning back from here. 435 */ 436 newpage->index = page->index; 437 newpage->mapping = page->mapping; 438 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 439 if (PageSwapBacked(page)) { 440 __SetPageSwapBacked(newpage); 441 if (PageSwapCache(page)) { 442 SetPageSwapCache(newpage); 443 set_page_private(newpage, page_private(page)); 444 } 445 } else { 446 VM_BUG_ON_PAGE(PageSwapCache(page), page); 447 } 448 449 /* Move dirty while page refs frozen and newpage not yet exposed */ 450 dirty = PageDirty(page); 451 if (dirty) { 452 ClearPageDirty(page); 453 SetPageDirty(newpage); 454 } 455 456 xas_store(&xas, newpage); 457 if (PageTransHuge(page)) { 458 int i; 459 460 for (i = 1; i < HPAGE_PMD_NR; i++) { 461 xas_next(&xas); 462 xas_store(&xas, newpage + i); 463 } 464 } 465 466 /* 467 * Drop cache reference from old page by unfreezing 468 * to one less reference. 469 * We know this isn't the last reference. 470 */ 471 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 472 473 xas_unlock(&xas); 474 /* Leave irq disabled to prevent preemption while updating stats */ 475 476 /* 477 * If moved to a different zone then also account 478 * the page for that zone. Other VM counters will be 479 * taken care of when we establish references to the 480 * new page and drop references to the old page. 481 * 482 * Note that anonymous pages are accounted for 483 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 484 * are mapped to swap space. 485 */ 486 if (newzone != oldzone) { 487 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 488 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 489 if (PageSwapBacked(page) && !PageSwapCache(page)) { 490 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 491 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 492 } 493 if (dirty && mapping_cap_account_dirty(mapping)) { 494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 495 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 496 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 497 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 498 } 499 } 500 local_irq_enable(); 501 502 return MIGRATEPAGE_SUCCESS; 503 } 504 EXPORT_SYMBOL(migrate_page_move_mapping); 505 506 /* 507 * The expected number of remaining references is the same as that 508 * of migrate_page_move_mapping(). 509 */ 510 int migrate_huge_page_move_mapping(struct address_space *mapping, 511 struct page *newpage, struct page *page) 512 { 513 XA_STATE(xas, &mapping->i_pages, page_index(page)); 514 int expected_count; 515 516 xas_lock_irq(&xas); 517 expected_count = 2 + page_has_private(page); 518 if (page_count(page) != expected_count || xas_load(&xas) != page) { 519 xas_unlock_irq(&xas); 520 return -EAGAIN; 521 } 522 523 if (!page_ref_freeze(page, expected_count)) { 524 xas_unlock_irq(&xas); 525 return -EAGAIN; 526 } 527 528 newpage->index = page->index; 529 newpage->mapping = page->mapping; 530 531 get_page(newpage); 532 533 xas_store(&xas, newpage); 534 535 page_ref_unfreeze(page, expected_count - 1); 536 537 xas_unlock_irq(&xas); 538 539 return MIGRATEPAGE_SUCCESS; 540 } 541 542 /* 543 * Gigantic pages are so large that we do not guarantee that page++ pointer 544 * arithmetic will work across the entire page. We need something more 545 * specialized. 546 */ 547 static void __copy_gigantic_page(struct page *dst, struct page *src, 548 int nr_pages) 549 { 550 int i; 551 struct page *dst_base = dst; 552 struct page *src_base = src; 553 554 for (i = 0; i < nr_pages; ) { 555 cond_resched(); 556 copy_highpage(dst, src); 557 558 i++; 559 dst = mem_map_next(dst, dst_base, i); 560 src = mem_map_next(src, src_base, i); 561 } 562 } 563 564 static void copy_huge_page(struct page *dst, struct page *src) 565 { 566 int i; 567 int nr_pages; 568 569 if (PageHuge(src)) { 570 /* hugetlbfs page */ 571 struct hstate *h = page_hstate(src); 572 nr_pages = pages_per_huge_page(h); 573 574 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 575 __copy_gigantic_page(dst, src, nr_pages); 576 return; 577 } 578 } else { 579 /* thp page */ 580 BUG_ON(!PageTransHuge(src)); 581 nr_pages = hpage_nr_pages(src); 582 } 583 584 for (i = 0; i < nr_pages; i++) { 585 cond_resched(); 586 copy_highpage(dst + i, src + i); 587 } 588 } 589 590 /* 591 * Copy the page to its new location 592 */ 593 void migrate_page_states(struct page *newpage, struct page *page) 594 { 595 int cpupid; 596 597 if (PageError(page)) 598 SetPageError(newpage); 599 if (PageReferenced(page)) 600 SetPageReferenced(newpage); 601 if (PageUptodate(page)) 602 SetPageUptodate(newpage); 603 if (TestClearPageActive(page)) { 604 VM_BUG_ON_PAGE(PageUnevictable(page), page); 605 SetPageActive(newpage); 606 } else if (TestClearPageUnevictable(page)) 607 SetPageUnevictable(newpage); 608 if (PageWorkingset(page)) 609 SetPageWorkingset(newpage); 610 if (PageChecked(page)) 611 SetPageChecked(newpage); 612 if (PageMappedToDisk(page)) 613 SetPageMappedToDisk(newpage); 614 615 /* Move dirty on pages not done by migrate_page_move_mapping() */ 616 if (PageDirty(page)) 617 SetPageDirty(newpage); 618 619 if (page_is_young(page)) 620 set_page_young(newpage); 621 if (page_is_idle(page)) 622 set_page_idle(newpage); 623 624 /* 625 * Copy NUMA information to the new page, to prevent over-eager 626 * future migrations of this same page. 627 */ 628 cpupid = page_cpupid_xchg_last(page, -1); 629 page_cpupid_xchg_last(newpage, cpupid); 630 631 ksm_migrate_page(newpage, page); 632 /* 633 * Please do not reorder this without considering how mm/ksm.c's 634 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 635 */ 636 if (PageSwapCache(page)) 637 ClearPageSwapCache(page); 638 ClearPagePrivate(page); 639 set_page_private(page, 0); 640 641 /* 642 * If any waiters have accumulated on the new page then 643 * wake them up. 644 */ 645 if (PageWriteback(newpage)) 646 end_page_writeback(newpage); 647 648 copy_page_owner(page, newpage); 649 650 mem_cgroup_migrate(page, newpage); 651 } 652 EXPORT_SYMBOL(migrate_page_states); 653 654 void migrate_page_copy(struct page *newpage, struct page *page) 655 { 656 if (PageHuge(page) || PageTransHuge(page)) 657 copy_huge_page(newpage, page); 658 else 659 copy_highpage(newpage, page); 660 661 migrate_page_states(newpage, page); 662 } 663 EXPORT_SYMBOL(migrate_page_copy); 664 665 /************************************************************ 666 * Migration functions 667 ***********************************************************/ 668 669 /* 670 * Common logic to directly migrate a single LRU page suitable for 671 * pages that do not use PagePrivate/PagePrivate2. 672 * 673 * Pages are locked upon entry and exit. 674 */ 675 int migrate_page(struct address_space *mapping, 676 struct page *newpage, struct page *page, 677 enum migrate_mode mode) 678 { 679 int rc; 680 681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 682 683 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 684 685 if (rc != MIGRATEPAGE_SUCCESS) 686 return rc; 687 688 if (mode != MIGRATE_SYNC_NO_COPY) 689 migrate_page_copy(newpage, page); 690 else 691 migrate_page_states(newpage, page); 692 return MIGRATEPAGE_SUCCESS; 693 } 694 EXPORT_SYMBOL(migrate_page); 695 696 #ifdef CONFIG_BLOCK 697 /* Returns true if all buffers are successfully locked */ 698 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 699 enum migrate_mode mode) 700 { 701 struct buffer_head *bh = head; 702 703 /* Simple case, sync compaction */ 704 if (mode != MIGRATE_ASYNC) { 705 do { 706 lock_buffer(bh); 707 bh = bh->b_this_page; 708 709 } while (bh != head); 710 711 return true; 712 } 713 714 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 715 do { 716 if (!trylock_buffer(bh)) { 717 /* 718 * We failed to lock the buffer and cannot stall in 719 * async migration. Release the taken locks 720 */ 721 struct buffer_head *failed_bh = bh; 722 bh = head; 723 while (bh != failed_bh) { 724 unlock_buffer(bh); 725 bh = bh->b_this_page; 726 } 727 return false; 728 } 729 730 bh = bh->b_this_page; 731 } while (bh != head); 732 return true; 733 } 734 735 static int __buffer_migrate_page(struct address_space *mapping, 736 struct page *newpage, struct page *page, enum migrate_mode mode, 737 bool check_refs) 738 { 739 struct buffer_head *bh, *head; 740 int rc; 741 int expected_count; 742 743 if (!page_has_buffers(page)) 744 return migrate_page(mapping, newpage, page, mode); 745 746 /* Check whether page does not have extra refs before we do more work */ 747 expected_count = expected_page_refs(mapping, page); 748 if (page_count(page) != expected_count) 749 return -EAGAIN; 750 751 head = page_buffers(page); 752 if (!buffer_migrate_lock_buffers(head, mode)) 753 return -EAGAIN; 754 755 if (check_refs) { 756 bool busy; 757 bool invalidated = false; 758 759 recheck_buffers: 760 busy = false; 761 spin_lock(&mapping->private_lock); 762 bh = head; 763 do { 764 if (atomic_read(&bh->b_count)) { 765 busy = true; 766 break; 767 } 768 bh = bh->b_this_page; 769 } while (bh != head); 770 if (busy) { 771 if (invalidated) { 772 rc = -EAGAIN; 773 goto unlock_buffers; 774 } 775 spin_unlock(&mapping->private_lock); 776 invalidate_bh_lrus(); 777 invalidated = true; 778 goto recheck_buffers; 779 } 780 } 781 782 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 783 if (rc != MIGRATEPAGE_SUCCESS) 784 goto unlock_buffers; 785 786 ClearPagePrivate(page); 787 set_page_private(newpage, page_private(page)); 788 set_page_private(page, 0); 789 put_page(page); 790 get_page(newpage); 791 792 bh = head; 793 do { 794 set_bh_page(bh, newpage, bh_offset(bh)); 795 bh = bh->b_this_page; 796 797 } while (bh != head); 798 799 SetPagePrivate(newpage); 800 801 if (mode != MIGRATE_SYNC_NO_COPY) 802 migrate_page_copy(newpage, page); 803 else 804 migrate_page_states(newpage, page); 805 806 rc = MIGRATEPAGE_SUCCESS; 807 unlock_buffers: 808 if (check_refs) 809 spin_unlock(&mapping->private_lock); 810 bh = head; 811 do { 812 unlock_buffer(bh); 813 bh = bh->b_this_page; 814 815 } while (bh != head); 816 817 return rc; 818 } 819 820 /* 821 * Migration function for pages with buffers. This function can only be used 822 * if the underlying filesystem guarantees that no other references to "page" 823 * exist. For example attached buffer heads are accessed only under page lock. 824 */ 825 int buffer_migrate_page(struct address_space *mapping, 826 struct page *newpage, struct page *page, enum migrate_mode mode) 827 { 828 return __buffer_migrate_page(mapping, newpage, page, mode, false); 829 } 830 EXPORT_SYMBOL(buffer_migrate_page); 831 832 /* 833 * Same as above except that this variant is more careful and checks that there 834 * are also no buffer head references. This function is the right one for 835 * mappings where buffer heads are directly looked up and referenced (such as 836 * block device mappings). 837 */ 838 int buffer_migrate_page_norefs(struct address_space *mapping, 839 struct page *newpage, struct page *page, enum migrate_mode mode) 840 { 841 return __buffer_migrate_page(mapping, newpage, page, mode, true); 842 } 843 #endif 844 845 /* 846 * Writeback a page to clean the dirty state 847 */ 848 static int writeout(struct address_space *mapping, struct page *page) 849 { 850 struct writeback_control wbc = { 851 .sync_mode = WB_SYNC_NONE, 852 .nr_to_write = 1, 853 .range_start = 0, 854 .range_end = LLONG_MAX, 855 .for_reclaim = 1 856 }; 857 int rc; 858 859 if (!mapping->a_ops->writepage) 860 /* No write method for the address space */ 861 return -EINVAL; 862 863 if (!clear_page_dirty_for_io(page)) 864 /* Someone else already triggered a write */ 865 return -EAGAIN; 866 867 /* 868 * A dirty page may imply that the underlying filesystem has 869 * the page on some queue. So the page must be clean for 870 * migration. Writeout may mean we loose the lock and the 871 * page state is no longer what we checked for earlier. 872 * At this point we know that the migration attempt cannot 873 * be successful. 874 */ 875 remove_migration_ptes(page, page, false); 876 877 rc = mapping->a_ops->writepage(page, &wbc); 878 879 if (rc != AOP_WRITEPAGE_ACTIVATE) 880 /* unlocked. Relock */ 881 lock_page(page); 882 883 return (rc < 0) ? -EIO : -EAGAIN; 884 } 885 886 /* 887 * Default handling if a filesystem does not provide a migration function. 888 */ 889 static int fallback_migrate_page(struct address_space *mapping, 890 struct page *newpage, struct page *page, enum migrate_mode mode) 891 { 892 if (PageDirty(page)) { 893 /* Only writeback pages in full synchronous migration */ 894 switch (mode) { 895 case MIGRATE_SYNC: 896 case MIGRATE_SYNC_NO_COPY: 897 break; 898 default: 899 return -EBUSY; 900 } 901 return writeout(mapping, page); 902 } 903 904 /* 905 * Buffers may be managed in a filesystem specific way. 906 * We must have no buffers or drop them. 907 */ 908 if (page_has_private(page) && 909 !try_to_release_page(page, GFP_KERNEL)) 910 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 911 912 return migrate_page(mapping, newpage, page, mode); 913 } 914 915 /* 916 * Move a page to a newly allocated page 917 * The page is locked and all ptes have been successfully removed. 918 * 919 * The new page will have replaced the old page if this function 920 * is successful. 921 * 922 * Return value: 923 * < 0 - error code 924 * MIGRATEPAGE_SUCCESS - success 925 */ 926 static int move_to_new_page(struct page *newpage, struct page *page, 927 enum migrate_mode mode) 928 { 929 struct address_space *mapping; 930 int rc = -EAGAIN; 931 bool is_lru = !__PageMovable(page); 932 933 VM_BUG_ON_PAGE(!PageLocked(page), page); 934 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 935 936 mapping = page_mapping(page); 937 938 if (likely(is_lru)) { 939 if (!mapping) 940 rc = migrate_page(mapping, newpage, page, mode); 941 else if (mapping->a_ops->migratepage) 942 /* 943 * Most pages have a mapping and most filesystems 944 * provide a migratepage callback. Anonymous pages 945 * are part of swap space which also has its own 946 * migratepage callback. This is the most common path 947 * for page migration. 948 */ 949 rc = mapping->a_ops->migratepage(mapping, newpage, 950 page, mode); 951 else 952 rc = fallback_migrate_page(mapping, newpage, 953 page, mode); 954 } else { 955 /* 956 * In case of non-lru page, it could be released after 957 * isolation step. In that case, we shouldn't try migration. 958 */ 959 VM_BUG_ON_PAGE(!PageIsolated(page), page); 960 if (!PageMovable(page)) { 961 rc = MIGRATEPAGE_SUCCESS; 962 __ClearPageIsolated(page); 963 goto out; 964 } 965 966 rc = mapping->a_ops->migratepage(mapping, newpage, 967 page, mode); 968 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 969 !PageIsolated(page)); 970 } 971 972 /* 973 * When successful, old pagecache page->mapping must be cleared before 974 * page is freed; but stats require that PageAnon be left as PageAnon. 975 */ 976 if (rc == MIGRATEPAGE_SUCCESS) { 977 if (__PageMovable(page)) { 978 VM_BUG_ON_PAGE(!PageIsolated(page), page); 979 980 /* 981 * We clear PG_movable under page_lock so any compactor 982 * cannot try to migrate this page. 983 */ 984 __ClearPageIsolated(page); 985 } 986 987 /* 988 * Anonymous and movable page->mapping will be cleard by 989 * free_pages_prepare so don't reset it here for keeping 990 * the type to work PageAnon, for example. 991 */ 992 if (!PageMappingFlags(page)) 993 page->mapping = NULL; 994 995 if (likely(!is_zone_device_page(newpage))) 996 flush_dcache_page(newpage); 997 998 } 999 out: 1000 return rc; 1001 } 1002 1003 static int __unmap_and_move(struct page *page, struct page *newpage, 1004 int force, enum migrate_mode mode) 1005 { 1006 int rc = -EAGAIN; 1007 int page_was_mapped = 0; 1008 struct anon_vma *anon_vma = NULL; 1009 bool is_lru = !__PageMovable(page); 1010 1011 if (!trylock_page(page)) { 1012 if (!force || mode == MIGRATE_ASYNC) 1013 goto out; 1014 1015 /* 1016 * It's not safe for direct compaction to call lock_page. 1017 * For example, during page readahead pages are added locked 1018 * to the LRU. Later, when the IO completes the pages are 1019 * marked uptodate and unlocked. However, the queueing 1020 * could be merging multiple pages for one bio (e.g. 1021 * mpage_readpages). If an allocation happens for the 1022 * second or third page, the process can end up locking 1023 * the same page twice and deadlocking. Rather than 1024 * trying to be clever about what pages can be locked, 1025 * avoid the use of lock_page for direct compaction 1026 * altogether. 1027 */ 1028 if (current->flags & PF_MEMALLOC) 1029 goto out; 1030 1031 lock_page(page); 1032 } 1033 1034 if (PageWriteback(page)) { 1035 /* 1036 * Only in the case of a full synchronous migration is it 1037 * necessary to wait for PageWriteback. In the async case, 1038 * the retry loop is too short and in the sync-light case, 1039 * the overhead of stalling is too much 1040 */ 1041 switch (mode) { 1042 case MIGRATE_SYNC: 1043 case MIGRATE_SYNC_NO_COPY: 1044 break; 1045 default: 1046 rc = -EBUSY; 1047 goto out_unlock; 1048 } 1049 if (!force) 1050 goto out_unlock; 1051 wait_on_page_writeback(page); 1052 } 1053 1054 /* 1055 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1056 * we cannot notice that anon_vma is freed while we migrates a page. 1057 * This get_anon_vma() delays freeing anon_vma pointer until the end 1058 * of migration. File cache pages are no problem because of page_lock() 1059 * File Caches may use write_page() or lock_page() in migration, then, 1060 * just care Anon page here. 1061 * 1062 * Only page_get_anon_vma() understands the subtleties of 1063 * getting a hold on an anon_vma from outside one of its mms. 1064 * But if we cannot get anon_vma, then we won't need it anyway, 1065 * because that implies that the anon page is no longer mapped 1066 * (and cannot be remapped so long as we hold the page lock). 1067 */ 1068 if (PageAnon(page) && !PageKsm(page)) 1069 anon_vma = page_get_anon_vma(page); 1070 1071 /* 1072 * Block others from accessing the new page when we get around to 1073 * establishing additional references. We are usually the only one 1074 * holding a reference to newpage at this point. We used to have a BUG 1075 * here if trylock_page(newpage) fails, but would like to allow for 1076 * cases where there might be a race with the previous use of newpage. 1077 * This is much like races on refcount of oldpage: just don't BUG(). 1078 */ 1079 if (unlikely(!trylock_page(newpage))) 1080 goto out_unlock; 1081 1082 if (unlikely(!is_lru)) { 1083 rc = move_to_new_page(newpage, page, mode); 1084 goto out_unlock_both; 1085 } 1086 1087 /* 1088 * Corner case handling: 1089 * 1. When a new swap-cache page is read into, it is added to the LRU 1090 * and treated as swapcache but it has no rmap yet. 1091 * Calling try_to_unmap() against a page->mapping==NULL page will 1092 * trigger a BUG. So handle it here. 1093 * 2. An orphaned page (see truncate_complete_page) might have 1094 * fs-private metadata. The page can be picked up due to memory 1095 * offlining. Everywhere else except page reclaim, the page is 1096 * invisible to the vm, so the page can not be migrated. So try to 1097 * free the metadata, so the page can be freed. 1098 */ 1099 if (!page->mapping) { 1100 VM_BUG_ON_PAGE(PageAnon(page), page); 1101 if (page_has_private(page)) { 1102 try_to_free_buffers(page); 1103 goto out_unlock_both; 1104 } 1105 } else if (page_mapped(page)) { 1106 /* Establish migration ptes */ 1107 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1108 page); 1109 try_to_unmap(page, 1110 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1111 page_was_mapped = 1; 1112 } 1113 1114 if (!page_mapped(page)) 1115 rc = move_to_new_page(newpage, page, mode); 1116 1117 if (page_was_mapped) 1118 remove_migration_ptes(page, 1119 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1120 1121 out_unlock_both: 1122 unlock_page(newpage); 1123 out_unlock: 1124 /* Drop an anon_vma reference if we took one */ 1125 if (anon_vma) 1126 put_anon_vma(anon_vma); 1127 unlock_page(page); 1128 out: 1129 /* 1130 * If migration is successful, decrease refcount of the newpage 1131 * which will not free the page because new page owner increased 1132 * refcounter. As well, if it is LRU page, add the page to LRU 1133 * list in here. Use the old state of the isolated source page to 1134 * determine if we migrated a LRU page. newpage was already unlocked 1135 * and possibly modified by its owner - don't rely on the page 1136 * state. 1137 */ 1138 if (rc == MIGRATEPAGE_SUCCESS) { 1139 if (unlikely(!is_lru)) 1140 put_page(newpage); 1141 else 1142 putback_lru_page(newpage); 1143 } 1144 1145 return rc; 1146 } 1147 1148 /* 1149 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1150 * around it. 1151 */ 1152 #if defined(CONFIG_ARM) && \ 1153 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1154 #define ICE_noinline noinline 1155 #else 1156 #define ICE_noinline 1157 #endif 1158 1159 /* 1160 * Obtain the lock on page, remove all ptes and migrate the page 1161 * to the newly allocated page in newpage. 1162 */ 1163 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1164 free_page_t put_new_page, 1165 unsigned long private, struct page *page, 1166 int force, enum migrate_mode mode, 1167 enum migrate_reason reason) 1168 { 1169 int rc = MIGRATEPAGE_SUCCESS; 1170 struct page *newpage; 1171 1172 if (!thp_migration_supported() && PageTransHuge(page)) 1173 return -ENOMEM; 1174 1175 newpage = get_new_page(page, private); 1176 if (!newpage) 1177 return -ENOMEM; 1178 1179 if (page_count(page) == 1) { 1180 /* page was freed from under us. So we are done. */ 1181 ClearPageActive(page); 1182 ClearPageUnevictable(page); 1183 if (unlikely(__PageMovable(page))) { 1184 lock_page(page); 1185 if (!PageMovable(page)) 1186 __ClearPageIsolated(page); 1187 unlock_page(page); 1188 } 1189 if (put_new_page) 1190 put_new_page(newpage, private); 1191 else 1192 put_page(newpage); 1193 goto out; 1194 } 1195 1196 rc = __unmap_and_move(page, newpage, force, mode); 1197 if (rc == MIGRATEPAGE_SUCCESS) 1198 set_page_owner_migrate_reason(newpage, reason); 1199 1200 out: 1201 if (rc != -EAGAIN) { 1202 /* 1203 * A page that has been migrated has all references 1204 * removed and will be freed. A page that has not been 1205 * migrated will have kepts its references and be 1206 * restored. 1207 */ 1208 list_del(&page->lru); 1209 1210 /* 1211 * Compaction can migrate also non-LRU pages which are 1212 * not accounted to NR_ISOLATED_*. They can be recognized 1213 * as __PageMovable 1214 */ 1215 if (likely(!__PageMovable(page))) 1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1217 page_is_file_cache(page), -hpage_nr_pages(page)); 1218 } 1219 1220 /* 1221 * If migration is successful, releases reference grabbed during 1222 * isolation. Otherwise, restore the page to right list unless 1223 * we want to retry. 1224 */ 1225 if (rc == MIGRATEPAGE_SUCCESS) { 1226 put_page(page); 1227 if (reason == MR_MEMORY_FAILURE) { 1228 /* 1229 * Set PG_HWPoison on just freed page 1230 * intentionally. Although it's rather weird, 1231 * it's how HWPoison flag works at the moment. 1232 */ 1233 if (set_hwpoison_free_buddy_page(page)) 1234 num_poisoned_pages_inc(); 1235 } 1236 } else { 1237 if (rc != -EAGAIN) { 1238 if (likely(!__PageMovable(page))) { 1239 putback_lru_page(page); 1240 goto put_new; 1241 } 1242 1243 lock_page(page); 1244 if (PageMovable(page)) 1245 putback_movable_page(page); 1246 else 1247 __ClearPageIsolated(page); 1248 unlock_page(page); 1249 put_page(page); 1250 } 1251 put_new: 1252 if (put_new_page) 1253 put_new_page(newpage, private); 1254 else 1255 put_page(newpage); 1256 } 1257 1258 return rc; 1259 } 1260 1261 /* 1262 * Counterpart of unmap_and_move_page() for hugepage migration. 1263 * 1264 * This function doesn't wait the completion of hugepage I/O 1265 * because there is no race between I/O and migration for hugepage. 1266 * Note that currently hugepage I/O occurs only in direct I/O 1267 * where no lock is held and PG_writeback is irrelevant, 1268 * and writeback status of all subpages are counted in the reference 1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1270 * under direct I/O, the reference of the head page is 512 and a bit more.) 1271 * This means that when we try to migrate hugepage whose subpages are 1272 * doing direct I/O, some references remain after try_to_unmap() and 1273 * hugepage migration fails without data corruption. 1274 * 1275 * There is also no race when direct I/O is issued on the page under migration, 1276 * because then pte is replaced with migration swap entry and direct I/O code 1277 * will wait in the page fault for migration to complete. 1278 */ 1279 static int unmap_and_move_huge_page(new_page_t get_new_page, 1280 free_page_t put_new_page, unsigned long private, 1281 struct page *hpage, int force, 1282 enum migrate_mode mode, int reason) 1283 { 1284 int rc = -EAGAIN; 1285 int page_was_mapped = 0; 1286 struct page *new_hpage; 1287 struct anon_vma *anon_vma = NULL; 1288 1289 /* 1290 * Migratability of hugepages depends on architectures and their size. 1291 * This check is necessary because some callers of hugepage migration 1292 * like soft offline and memory hotremove don't walk through page 1293 * tables or check whether the hugepage is pmd-based or not before 1294 * kicking migration. 1295 */ 1296 if (!hugepage_migration_supported(page_hstate(hpage))) { 1297 putback_active_hugepage(hpage); 1298 return -ENOSYS; 1299 } 1300 1301 new_hpage = get_new_page(hpage, private); 1302 if (!new_hpage) 1303 return -ENOMEM; 1304 1305 if (!trylock_page(hpage)) { 1306 if (!force) 1307 goto out; 1308 switch (mode) { 1309 case MIGRATE_SYNC: 1310 case MIGRATE_SYNC_NO_COPY: 1311 break; 1312 default: 1313 goto out; 1314 } 1315 lock_page(hpage); 1316 } 1317 1318 /* 1319 * Check for pages which are in the process of being freed. Without 1320 * page_mapping() set, hugetlbfs specific move page routine will not 1321 * be called and we could leak usage counts for subpools. 1322 */ 1323 if (page_private(hpage) && !page_mapping(hpage)) { 1324 rc = -EBUSY; 1325 goto out_unlock; 1326 } 1327 1328 if (PageAnon(hpage)) 1329 anon_vma = page_get_anon_vma(hpage); 1330 1331 if (unlikely(!trylock_page(new_hpage))) 1332 goto put_anon; 1333 1334 if (page_mapped(hpage)) { 1335 try_to_unmap(hpage, 1336 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1337 page_was_mapped = 1; 1338 } 1339 1340 if (!page_mapped(hpage)) 1341 rc = move_to_new_page(new_hpage, hpage, mode); 1342 1343 if (page_was_mapped) 1344 remove_migration_ptes(hpage, 1345 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1346 1347 unlock_page(new_hpage); 1348 1349 put_anon: 1350 if (anon_vma) 1351 put_anon_vma(anon_vma); 1352 1353 if (rc == MIGRATEPAGE_SUCCESS) { 1354 move_hugetlb_state(hpage, new_hpage, reason); 1355 put_new_page = NULL; 1356 } 1357 1358 out_unlock: 1359 unlock_page(hpage); 1360 out: 1361 if (rc != -EAGAIN) 1362 putback_active_hugepage(hpage); 1363 1364 /* 1365 * If migration was not successful and there's a freeing callback, use 1366 * it. Otherwise, put_page() will drop the reference grabbed during 1367 * isolation. 1368 */ 1369 if (put_new_page) 1370 put_new_page(new_hpage, private); 1371 else 1372 putback_active_hugepage(new_hpage); 1373 1374 return rc; 1375 } 1376 1377 /* 1378 * migrate_pages - migrate the pages specified in a list, to the free pages 1379 * supplied as the target for the page migration 1380 * 1381 * @from: The list of pages to be migrated. 1382 * @get_new_page: The function used to allocate free pages to be used 1383 * as the target of the page migration. 1384 * @put_new_page: The function used to free target pages if migration 1385 * fails, or NULL if no special handling is necessary. 1386 * @private: Private data to be passed on to get_new_page() 1387 * @mode: The migration mode that specifies the constraints for 1388 * page migration, if any. 1389 * @reason: The reason for page migration. 1390 * 1391 * The function returns after 10 attempts or if no pages are movable any more 1392 * because the list has become empty or no retryable pages exist any more. 1393 * The caller should call putback_movable_pages() to return pages to the LRU 1394 * or free list only if ret != 0. 1395 * 1396 * Returns the number of pages that were not migrated, or an error code. 1397 */ 1398 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1399 free_page_t put_new_page, unsigned long private, 1400 enum migrate_mode mode, int reason) 1401 { 1402 int retry = 1; 1403 int nr_failed = 0; 1404 int nr_succeeded = 0; 1405 int pass = 0; 1406 struct page *page; 1407 struct page *page2; 1408 int swapwrite = current->flags & PF_SWAPWRITE; 1409 int rc; 1410 1411 if (!swapwrite) 1412 current->flags |= PF_SWAPWRITE; 1413 1414 for(pass = 0; pass < 10 && retry; pass++) { 1415 retry = 0; 1416 1417 list_for_each_entry_safe(page, page2, from, lru) { 1418 retry: 1419 cond_resched(); 1420 1421 if (PageHuge(page)) 1422 rc = unmap_and_move_huge_page(get_new_page, 1423 put_new_page, private, page, 1424 pass > 2, mode, reason); 1425 else 1426 rc = unmap_and_move(get_new_page, put_new_page, 1427 private, page, pass > 2, mode, 1428 reason); 1429 1430 switch(rc) { 1431 case -ENOMEM: 1432 /* 1433 * THP migration might be unsupported or the 1434 * allocation could've failed so we should 1435 * retry on the same page with the THP split 1436 * to base pages. 1437 * 1438 * Head page is retried immediately and tail 1439 * pages are added to the tail of the list so 1440 * we encounter them after the rest of the list 1441 * is processed. 1442 */ 1443 if (PageTransHuge(page) && !PageHuge(page)) { 1444 lock_page(page); 1445 rc = split_huge_page_to_list(page, from); 1446 unlock_page(page); 1447 if (!rc) { 1448 list_safe_reset_next(page, page2, lru); 1449 goto retry; 1450 } 1451 } 1452 nr_failed++; 1453 goto out; 1454 case -EAGAIN: 1455 retry++; 1456 break; 1457 case MIGRATEPAGE_SUCCESS: 1458 nr_succeeded++; 1459 break; 1460 default: 1461 /* 1462 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1463 * unlike -EAGAIN case, the failed page is 1464 * removed from migration page list and not 1465 * retried in the next outer loop. 1466 */ 1467 nr_failed++; 1468 break; 1469 } 1470 } 1471 } 1472 nr_failed += retry; 1473 rc = nr_failed; 1474 out: 1475 if (nr_succeeded) 1476 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1477 if (nr_failed) 1478 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1479 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1480 1481 if (!swapwrite) 1482 current->flags &= ~PF_SWAPWRITE; 1483 1484 return rc; 1485 } 1486 1487 #ifdef CONFIG_NUMA 1488 1489 static int store_status(int __user *status, int start, int value, int nr) 1490 { 1491 while (nr-- > 0) { 1492 if (put_user(value, status + start)) 1493 return -EFAULT; 1494 start++; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int do_move_pages_to_node(struct mm_struct *mm, 1501 struct list_head *pagelist, int node) 1502 { 1503 int err; 1504 1505 if (list_empty(pagelist)) 1506 return 0; 1507 1508 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1509 MIGRATE_SYNC, MR_SYSCALL); 1510 if (err) 1511 putback_movable_pages(pagelist); 1512 return err; 1513 } 1514 1515 /* 1516 * Resolves the given address to a struct page, isolates it from the LRU and 1517 * puts it to the given pagelist. 1518 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1519 * queued or the page doesn't need to be migrated because it is already on 1520 * the target node 1521 */ 1522 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1523 int node, struct list_head *pagelist, bool migrate_all) 1524 { 1525 struct vm_area_struct *vma; 1526 struct page *page; 1527 unsigned int follflags; 1528 int err; 1529 1530 down_read(&mm->mmap_sem); 1531 err = -EFAULT; 1532 vma = find_vma(mm, addr); 1533 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1534 goto out; 1535 1536 /* FOLL_DUMP to ignore special (like zero) pages */ 1537 follflags = FOLL_GET | FOLL_DUMP; 1538 page = follow_page(vma, addr, follflags); 1539 1540 err = PTR_ERR(page); 1541 if (IS_ERR(page)) 1542 goto out; 1543 1544 err = -ENOENT; 1545 if (!page) 1546 goto out; 1547 1548 err = 0; 1549 if (page_to_nid(page) == node) 1550 goto out_putpage; 1551 1552 err = -EACCES; 1553 if (page_mapcount(page) > 1 && !migrate_all) 1554 goto out_putpage; 1555 1556 if (PageHuge(page)) { 1557 if (PageHead(page)) { 1558 isolate_huge_page(page, pagelist); 1559 err = 0; 1560 } 1561 } else { 1562 struct page *head; 1563 1564 head = compound_head(page); 1565 err = isolate_lru_page(head); 1566 if (err) 1567 goto out_putpage; 1568 1569 err = 0; 1570 list_add_tail(&head->lru, pagelist); 1571 mod_node_page_state(page_pgdat(head), 1572 NR_ISOLATED_ANON + page_is_file_cache(head), 1573 hpage_nr_pages(head)); 1574 } 1575 out_putpage: 1576 /* 1577 * Either remove the duplicate refcount from 1578 * isolate_lru_page() or drop the page ref if it was 1579 * not isolated. 1580 */ 1581 put_page(page); 1582 out: 1583 up_read(&mm->mmap_sem); 1584 return err; 1585 } 1586 1587 /* 1588 * Migrate an array of page address onto an array of nodes and fill 1589 * the corresponding array of status. 1590 */ 1591 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1592 unsigned long nr_pages, 1593 const void __user * __user *pages, 1594 const int __user *nodes, 1595 int __user *status, int flags) 1596 { 1597 int current_node = NUMA_NO_NODE; 1598 LIST_HEAD(pagelist); 1599 int start, i; 1600 int err = 0, err1; 1601 1602 migrate_prep(); 1603 1604 for (i = start = 0; i < nr_pages; i++) { 1605 const void __user *p; 1606 unsigned long addr; 1607 int node; 1608 1609 err = -EFAULT; 1610 if (get_user(p, pages + i)) 1611 goto out_flush; 1612 if (get_user(node, nodes + i)) 1613 goto out_flush; 1614 addr = (unsigned long)p; 1615 1616 err = -ENODEV; 1617 if (node < 0 || node >= MAX_NUMNODES) 1618 goto out_flush; 1619 if (!node_state(node, N_MEMORY)) 1620 goto out_flush; 1621 1622 err = -EACCES; 1623 if (!node_isset(node, task_nodes)) 1624 goto out_flush; 1625 1626 if (current_node == NUMA_NO_NODE) { 1627 current_node = node; 1628 start = i; 1629 } else if (node != current_node) { 1630 err = do_move_pages_to_node(mm, &pagelist, current_node); 1631 if (err) 1632 goto out; 1633 err = store_status(status, start, current_node, i - start); 1634 if (err) 1635 goto out; 1636 start = i; 1637 current_node = node; 1638 } 1639 1640 /* 1641 * Errors in the page lookup or isolation are not fatal and we simply 1642 * report them via status 1643 */ 1644 err = add_page_for_migration(mm, addr, current_node, 1645 &pagelist, flags & MPOL_MF_MOVE_ALL); 1646 if (!err) 1647 continue; 1648 1649 err = store_status(status, i, err, 1); 1650 if (err) 1651 goto out_flush; 1652 1653 err = do_move_pages_to_node(mm, &pagelist, current_node); 1654 if (err) 1655 goto out; 1656 if (i > start) { 1657 err = store_status(status, start, current_node, i - start); 1658 if (err) 1659 goto out; 1660 } 1661 current_node = NUMA_NO_NODE; 1662 } 1663 out_flush: 1664 if (list_empty(&pagelist)) 1665 return err; 1666 1667 /* Make sure we do not overwrite the existing error */ 1668 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1669 if (!err1) 1670 err1 = store_status(status, start, current_node, i - start); 1671 if (!err) 1672 err = err1; 1673 out: 1674 return err; 1675 } 1676 1677 /* 1678 * Determine the nodes of an array of pages and store it in an array of status. 1679 */ 1680 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1681 const void __user **pages, int *status) 1682 { 1683 unsigned long i; 1684 1685 down_read(&mm->mmap_sem); 1686 1687 for (i = 0; i < nr_pages; i++) { 1688 unsigned long addr = (unsigned long)(*pages); 1689 struct vm_area_struct *vma; 1690 struct page *page; 1691 int err = -EFAULT; 1692 1693 vma = find_vma(mm, addr); 1694 if (!vma || addr < vma->vm_start) 1695 goto set_status; 1696 1697 /* FOLL_DUMP to ignore special (like zero) pages */ 1698 page = follow_page(vma, addr, FOLL_DUMP); 1699 1700 err = PTR_ERR(page); 1701 if (IS_ERR(page)) 1702 goto set_status; 1703 1704 err = page ? page_to_nid(page) : -ENOENT; 1705 set_status: 1706 *status = err; 1707 1708 pages++; 1709 status++; 1710 } 1711 1712 up_read(&mm->mmap_sem); 1713 } 1714 1715 /* 1716 * Determine the nodes of a user array of pages and store it in 1717 * a user array of status. 1718 */ 1719 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1720 const void __user * __user *pages, 1721 int __user *status) 1722 { 1723 #define DO_PAGES_STAT_CHUNK_NR 16 1724 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1725 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1726 1727 while (nr_pages) { 1728 unsigned long chunk_nr; 1729 1730 chunk_nr = nr_pages; 1731 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1732 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1733 1734 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1735 break; 1736 1737 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1738 1739 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1740 break; 1741 1742 pages += chunk_nr; 1743 status += chunk_nr; 1744 nr_pages -= chunk_nr; 1745 } 1746 return nr_pages ? -EFAULT : 0; 1747 } 1748 1749 /* 1750 * Move a list of pages in the address space of the currently executing 1751 * process. 1752 */ 1753 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1754 const void __user * __user *pages, 1755 const int __user *nodes, 1756 int __user *status, int flags) 1757 { 1758 struct task_struct *task; 1759 struct mm_struct *mm; 1760 int err; 1761 nodemask_t task_nodes; 1762 1763 /* Check flags */ 1764 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1765 return -EINVAL; 1766 1767 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1768 return -EPERM; 1769 1770 /* Find the mm_struct */ 1771 rcu_read_lock(); 1772 task = pid ? find_task_by_vpid(pid) : current; 1773 if (!task) { 1774 rcu_read_unlock(); 1775 return -ESRCH; 1776 } 1777 get_task_struct(task); 1778 1779 /* 1780 * Check if this process has the right to modify the specified 1781 * process. Use the regular "ptrace_may_access()" checks. 1782 */ 1783 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1784 rcu_read_unlock(); 1785 err = -EPERM; 1786 goto out; 1787 } 1788 rcu_read_unlock(); 1789 1790 err = security_task_movememory(task); 1791 if (err) 1792 goto out; 1793 1794 task_nodes = cpuset_mems_allowed(task); 1795 mm = get_task_mm(task); 1796 put_task_struct(task); 1797 1798 if (!mm) 1799 return -EINVAL; 1800 1801 if (nodes) 1802 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1803 nodes, status, flags); 1804 else 1805 err = do_pages_stat(mm, nr_pages, pages, status); 1806 1807 mmput(mm); 1808 return err; 1809 1810 out: 1811 put_task_struct(task); 1812 return err; 1813 } 1814 1815 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1816 const void __user * __user *, pages, 1817 const int __user *, nodes, 1818 int __user *, status, int, flags) 1819 { 1820 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1821 } 1822 1823 #ifdef CONFIG_COMPAT 1824 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1825 compat_uptr_t __user *, pages32, 1826 const int __user *, nodes, 1827 int __user *, status, 1828 int, flags) 1829 { 1830 const void __user * __user *pages; 1831 int i; 1832 1833 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1834 for (i = 0; i < nr_pages; i++) { 1835 compat_uptr_t p; 1836 1837 if (get_user(p, pages32 + i) || 1838 put_user(compat_ptr(p), pages + i)) 1839 return -EFAULT; 1840 } 1841 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1842 } 1843 #endif /* CONFIG_COMPAT */ 1844 1845 #ifdef CONFIG_NUMA_BALANCING 1846 /* 1847 * Returns true if this is a safe migration target node for misplaced NUMA 1848 * pages. Currently it only checks the watermarks which crude 1849 */ 1850 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1851 unsigned long nr_migrate_pages) 1852 { 1853 int z; 1854 1855 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1856 struct zone *zone = pgdat->node_zones + z; 1857 1858 if (!populated_zone(zone)) 1859 continue; 1860 1861 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1862 if (!zone_watermark_ok(zone, 0, 1863 high_wmark_pages(zone) + 1864 nr_migrate_pages, 1865 0, 0)) 1866 continue; 1867 return true; 1868 } 1869 return false; 1870 } 1871 1872 static struct page *alloc_misplaced_dst_page(struct page *page, 1873 unsigned long data) 1874 { 1875 int nid = (int) data; 1876 struct page *newpage; 1877 1878 newpage = __alloc_pages_node(nid, 1879 (GFP_HIGHUSER_MOVABLE | 1880 __GFP_THISNODE | __GFP_NOMEMALLOC | 1881 __GFP_NORETRY | __GFP_NOWARN) & 1882 ~__GFP_RECLAIM, 0); 1883 1884 return newpage; 1885 } 1886 1887 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1888 { 1889 int page_lru; 1890 1891 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1892 1893 /* Avoid migrating to a node that is nearly full */ 1894 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1895 return 0; 1896 1897 if (isolate_lru_page(page)) 1898 return 0; 1899 1900 /* 1901 * migrate_misplaced_transhuge_page() skips page migration's usual 1902 * check on page_count(), so we must do it here, now that the page 1903 * has been isolated: a GUP pin, or any other pin, prevents migration. 1904 * The expected page count is 3: 1 for page's mapcount and 1 for the 1905 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1906 */ 1907 if (PageTransHuge(page) && page_count(page) != 3) { 1908 putback_lru_page(page); 1909 return 0; 1910 } 1911 1912 page_lru = page_is_file_cache(page); 1913 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1914 hpage_nr_pages(page)); 1915 1916 /* 1917 * Isolating the page has taken another reference, so the 1918 * caller's reference can be safely dropped without the page 1919 * disappearing underneath us during migration. 1920 */ 1921 put_page(page); 1922 return 1; 1923 } 1924 1925 bool pmd_trans_migrating(pmd_t pmd) 1926 { 1927 struct page *page = pmd_page(pmd); 1928 return PageLocked(page); 1929 } 1930 1931 /* 1932 * Attempt to migrate a misplaced page to the specified destination 1933 * node. Caller is expected to have an elevated reference count on 1934 * the page that will be dropped by this function before returning. 1935 */ 1936 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1937 int node) 1938 { 1939 pg_data_t *pgdat = NODE_DATA(node); 1940 int isolated; 1941 int nr_remaining; 1942 LIST_HEAD(migratepages); 1943 1944 /* 1945 * Don't migrate file pages that are mapped in multiple processes 1946 * with execute permissions as they are probably shared libraries. 1947 */ 1948 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1949 (vma->vm_flags & VM_EXEC)) 1950 goto out; 1951 1952 /* 1953 * Also do not migrate dirty pages as not all filesystems can move 1954 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1955 */ 1956 if (page_is_file_cache(page) && PageDirty(page)) 1957 goto out; 1958 1959 isolated = numamigrate_isolate_page(pgdat, page); 1960 if (!isolated) 1961 goto out; 1962 1963 list_add(&page->lru, &migratepages); 1964 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1965 NULL, node, MIGRATE_ASYNC, 1966 MR_NUMA_MISPLACED); 1967 if (nr_remaining) { 1968 if (!list_empty(&migratepages)) { 1969 list_del(&page->lru); 1970 dec_node_page_state(page, NR_ISOLATED_ANON + 1971 page_is_file_cache(page)); 1972 putback_lru_page(page); 1973 } 1974 isolated = 0; 1975 } else 1976 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1977 BUG_ON(!list_empty(&migratepages)); 1978 return isolated; 1979 1980 out: 1981 put_page(page); 1982 return 0; 1983 } 1984 #endif /* CONFIG_NUMA_BALANCING */ 1985 1986 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1987 /* 1988 * Migrates a THP to a given target node. page must be locked and is unlocked 1989 * before returning. 1990 */ 1991 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1992 struct vm_area_struct *vma, 1993 pmd_t *pmd, pmd_t entry, 1994 unsigned long address, 1995 struct page *page, int node) 1996 { 1997 spinlock_t *ptl; 1998 pg_data_t *pgdat = NODE_DATA(node); 1999 int isolated = 0; 2000 struct page *new_page = NULL; 2001 int page_lru = page_is_file_cache(page); 2002 unsigned long start = address & HPAGE_PMD_MASK; 2003 2004 new_page = alloc_pages_node(node, 2005 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2006 HPAGE_PMD_ORDER); 2007 if (!new_page) 2008 goto out_fail; 2009 prep_transhuge_page(new_page); 2010 2011 isolated = numamigrate_isolate_page(pgdat, page); 2012 if (!isolated) { 2013 put_page(new_page); 2014 goto out_fail; 2015 } 2016 2017 /* Prepare a page as a migration target */ 2018 __SetPageLocked(new_page); 2019 if (PageSwapBacked(page)) 2020 __SetPageSwapBacked(new_page); 2021 2022 /* anon mapping, we can simply copy page->mapping to the new page: */ 2023 new_page->mapping = page->mapping; 2024 new_page->index = page->index; 2025 /* flush the cache before copying using the kernel virtual address */ 2026 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2027 migrate_page_copy(new_page, page); 2028 WARN_ON(PageLRU(new_page)); 2029 2030 /* Recheck the target PMD */ 2031 ptl = pmd_lock(mm, pmd); 2032 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2033 spin_unlock(ptl); 2034 2035 /* Reverse changes made by migrate_page_copy() */ 2036 if (TestClearPageActive(new_page)) 2037 SetPageActive(page); 2038 if (TestClearPageUnevictable(new_page)) 2039 SetPageUnevictable(page); 2040 2041 unlock_page(new_page); 2042 put_page(new_page); /* Free it */ 2043 2044 /* Retake the callers reference and putback on LRU */ 2045 get_page(page); 2046 putback_lru_page(page); 2047 mod_node_page_state(page_pgdat(page), 2048 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2049 2050 goto out_unlock; 2051 } 2052 2053 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2054 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2055 2056 /* 2057 * Overwrite the old entry under pagetable lock and establish 2058 * the new PTE. Any parallel GUP will either observe the old 2059 * page blocking on the page lock, block on the page table 2060 * lock or observe the new page. The SetPageUptodate on the 2061 * new page and page_add_new_anon_rmap guarantee the copy is 2062 * visible before the pagetable update. 2063 */ 2064 page_add_anon_rmap(new_page, vma, start, true); 2065 /* 2066 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2067 * has already been flushed globally. So no TLB can be currently 2068 * caching this non present pmd mapping. There's no need to clear the 2069 * pmd before doing set_pmd_at(), nor to flush the TLB after 2070 * set_pmd_at(). Clearing the pmd here would introduce a race 2071 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2072 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2073 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2074 * pmd. 2075 */ 2076 set_pmd_at(mm, start, pmd, entry); 2077 update_mmu_cache_pmd(vma, address, &entry); 2078 2079 page_ref_unfreeze(page, 2); 2080 mlock_migrate_page(new_page, page); 2081 page_remove_rmap(page, true); 2082 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2083 2084 spin_unlock(ptl); 2085 2086 /* Take an "isolate" reference and put new page on the LRU. */ 2087 get_page(new_page); 2088 putback_lru_page(new_page); 2089 2090 unlock_page(new_page); 2091 unlock_page(page); 2092 put_page(page); /* Drop the rmap reference */ 2093 put_page(page); /* Drop the LRU isolation reference */ 2094 2095 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2096 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2097 2098 mod_node_page_state(page_pgdat(page), 2099 NR_ISOLATED_ANON + page_lru, 2100 -HPAGE_PMD_NR); 2101 return isolated; 2102 2103 out_fail: 2104 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2105 ptl = pmd_lock(mm, pmd); 2106 if (pmd_same(*pmd, entry)) { 2107 entry = pmd_modify(entry, vma->vm_page_prot); 2108 set_pmd_at(mm, start, pmd, entry); 2109 update_mmu_cache_pmd(vma, address, &entry); 2110 } 2111 spin_unlock(ptl); 2112 2113 out_unlock: 2114 unlock_page(page); 2115 put_page(page); 2116 return 0; 2117 } 2118 #endif /* CONFIG_NUMA_BALANCING */ 2119 2120 #endif /* CONFIG_NUMA */ 2121 2122 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2123 struct migrate_vma { 2124 struct vm_area_struct *vma; 2125 unsigned long *dst; 2126 unsigned long *src; 2127 unsigned long cpages; 2128 unsigned long npages; 2129 unsigned long start; 2130 unsigned long end; 2131 }; 2132 2133 static int migrate_vma_collect_hole(unsigned long start, 2134 unsigned long end, 2135 struct mm_walk *walk) 2136 { 2137 struct migrate_vma *migrate = walk->private; 2138 unsigned long addr; 2139 2140 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2141 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2142 migrate->dst[migrate->npages] = 0; 2143 migrate->npages++; 2144 migrate->cpages++; 2145 } 2146 2147 return 0; 2148 } 2149 2150 static int migrate_vma_collect_skip(unsigned long start, 2151 unsigned long end, 2152 struct mm_walk *walk) 2153 { 2154 struct migrate_vma *migrate = walk->private; 2155 unsigned long addr; 2156 2157 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2158 migrate->dst[migrate->npages] = 0; 2159 migrate->src[migrate->npages++] = 0; 2160 } 2161 2162 return 0; 2163 } 2164 2165 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2166 unsigned long start, 2167 unsigned long end, 2168 struct mm_walk *walk) 2169 { 2170 struct migrate_vma *migrate = walk->private; 2171 struct vm_area_struct *vma = walk->vma; 2172 struct mm_struct *mm = vma->vm_mm; 2173 unsigned long addr = start, unmapped = 0; 2174 spinlock_t *ptl; 2175 pte_t *ptep; 2176 2177 again: 2178 if (pmd_none(*pmdp)) 2179 return migrate_vma_collect_hole(start, end, walk); 2180 2181 if (pmd_trans_huge(*pmdp)) { 2182 struct page *page; 2183 2184 ptl = pmd_lock(mm, pmdp); 2185 if (unlikely(!pmd_trans_huge(*pmdp))) { 2186 spin_unlock(ptl); 2187 goto again; 2188 } 2189 2190 page = pmd_page(*pmdp); 2191 if (is_huge_zero_page(page)) { 2192 spin_unlock(ptl); 2193 split_huge_pmd(vma, pmdp, addr); 2194 if (pmd_trans_unstable(pmdp)) 2195 return migrate_vma_collect_skip(start, end, 2196 walk); 2197 } else { 2198 int ret; 2199 2200 get_page(page); 2201 spin_unlock(ptl); 2202 if (unlikely(!trylock_page(page))) 2203 return migrate_vma_collect_skip(start, end, 2204 walk); 2205 ret = split_huge_page(page); 2206 unlock_page(page); 2207 put_page(page); 2208 if (ret) 2209 return migrate_vma_collect_skip(start, end, 2210 walk); 2211 if (pmd_none(*pmdp)) 2212 return migrate_vma_collect_hole(start, end, 2213 walk); 2214 } 2215 } 2216 2217 if (unlikely(pmd_bad(*pmdp))) 2218 return migrate_vma_collect_skip(start, end, walk); 2219 2220 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2221 arch_enter_lazy_mmu_mode(); 2222 2223 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2224 unsigned long mpfn, pfn; 2225 struct page *page; 2226 swp_entry_t entry; 2227 pte_t pte; 2228 2229 pte = *ptep; 2230 pfn = pte_pfn(pte); 2231 2232 if (pte_none(pte)) { 2233 mpfn = MIGRATE_PFN_MIGRATE; 2234 migrate->cpages++; 2235 pfn = 0; 2236 goto next; 2237 } 2238 2239 if (!pte_present(pte)) { 2240 mpfn = pfn = 0; 2241 2242 /* 2243 * Only care about unaddressable device page special 2244 * page table entry. Other special swap entries are not 2245 * migratable, and we ignore regular swapped page. 2246 */ 2247 entry = pte_to_swp_entry(pte); 2248 if (!is_device_private_entry(entry)) 2249 goto next; 2250 2251 page = device_private_entry_to_page(entry); 2252 mpfn = migrate_pfn(page_to_pfn(page))| 2253 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2254 if (is_write_device_private_entry(entry)) 2255 mpfn |= MIGRATE_PFN_WRITE; 2256 } else { 2257 if (is_zero_pfn(pfn)) { 2258 mpfn = MIGRATE_PFN_MIGRATE; 2259 migrate->cpages++; 2260 pfn = 0; 2261 goto next; 2262 } 2263 page = vm_normal_page(migrate->vma, addr, pte); 2264 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2265 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2266 } 2267 2268 /* FIXME support THP */ 2269 if (!page || !page->mapping || PageTransCompound(page)) { 2270 mpfn = pfn = 0; 2271 goto next; 2272 } 2273 pfn = page_to_pfn(page); 2274 2275 /* 2276 * By getting a reference on the page we pin it and that blocks 2277 * any kind of migration. Side effect is that it "freezes" the 2278 * pte. 2279 * 2280 * We drop this reference after isolating the page from the lru 2281 * for non device page (device page are not on the lru and thus 2282 * can't be dropped from it). 2283 */ 2284 get_page(page); 2285 migrate->cpages++; 2286 2287 /* 2288 * Optimize for the common case where page is only mapped once 2289 * in one process. If we can lock the page, then we can safely 2290 * set up a special migration page table entry now. 2291 */ 2292 if (trylock_page(page)) { 2293 pte_t swp_pte; 2294 2295 mpfn |= MIGRATE_PFN_LOCKED; 2296 ptep_get_and_clear(mm, addr, ptep); 2297 2298 /* Setup special migration page table entry */ 2299 entry = make_migration_entry(page, mpfn & 2300 MIGRATE_PFN_WRITE); 2301 swp_pte = swp_entry_to_pte(entry); 2302 if (pte_soft_dirty(pte)) 2303 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2304 set_pte_at(mm, addr, ptep, swp_pte); 2305 2306 /* 2307 * This is like regular unmap: we remove the rmap and 2308 * drop page refcount. Page won't be freed, as we took 2309 * a reference just above. 2310 */ 2311 page_remove_rmap(page, false); 2312 put_page(page); 2313 2314 if (pte_present(pte)) 2315 unmapped++; 2316 } 2317 2318 next: 2319 migrate->dst[migrate->npages] = 0; 2320 migrate->src[migrate->npages++] = mpfn; 2321 } 2322 arch_leave_lazy_mmu_mode(); 2323 pte_unmap_unlock(ptep - 1, ptl); 2324 2325 /* Only flush the TLB if we actually modified any entries */ 2326 if (unmapped) 2327 flush_tlb_range(walk->vma, start, end); 2328 2329 return 0; 2330 } 2331 2332 /* 2333 * migrate_vma_collect() - collect pages over a range of virtual addresses 2334 * @migrate: migrate struct containing all migration information 2335 * 2336 * This will walk the CPU page table. For each virtual address backed by a 2337 * valid page, it updates the src array and takes a reference on the page, in 2338 * order to pin the page until we lock it and unmap it. 2339 */ 2340 static void migrate_vma_collect(struct migrate_vma *migrate) 2341 { 2342 struct mmu_notifier_range range; 2343 struct mm_walk mm_walk = { 2344 .pmd_entry = migrate_vma_collect_pmd, 2345 .pte_hole = migrate_vma_collect_hole, 2346 .vma = migrate->vma, 2347 .mm = migrate->vma->vm_mm, 2348 .private = migrate, 2349 }; 2350 2351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm, 2352 migrate->start, 2353 migrate->end); 2354 mmu_notifier_invalidate_range_start(&range); 2355 walk_page_range(migrate->start, migrate->end, &mm_walk); 2356 mmu_notifier_invalidate_range_end(&range); 2357 2358 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2359 } 2360 2361 /* 2362 * migrate_vma_check_page() - check if page is pinned or not 2363 * @page: struct page to check 2364 * 2365 * Pinned pages cannot be migrated. This is the same test as in 2366 * migrate_page_move_mapping(), except that here we allow migration of a 2367 * ZONE_DEVICE page. 2368 */ 2369 static bool migrate_vma_check_page(struct page *page) 2370 { 2371 /* 2372 * One extra ref because caller holds an extra reference, either from 2373 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2374 * a device page. 2375 */ 2376 int extra = 1; 2377 2378 /* 2379 * FIXME support THP (transparent huge page), it is bit more complex to 2380 * check them than regular pages, because they can be mapped with a pmd 2381 * or with a pte (split pte mapping). 2382 */ 2383 if (PageCompound(page)) 2384 return false; 2385 2386 /* Page from ZONE_DEVICE have one extra reference */ 2387 if (is_zone_device_page(page)) { 2388 /* 2389 * Private page can never be pin as they have no valid pte and 2390 * GUP will fail for those. Yet if there is a pending migration 2391 * a thread might try to wait on the pte migration entry and 2392 * will bump the page reference count. Sadly there is no way to 2393 * differentiate a regular pin from migration wait. Hence to 2394 * avoid 2 racing thread trying to migrate back to CPU to enter 2395 * infinite loop (one stoping migration because the other is 2396 * waiting on pte migration entry). We always return true here. 2397 * 2398 * FIXME proper solution is to rework migration_entry_wait() so 2399 * it does not need to take a reference on page. 2400 */ 2401 return is_device_private_page(page); 2402 } 2403 2404 /* For file back page */ 2405 if (page_mapping(page)) 2406 extra += 1 + page_has_private(page); 2407 2408 if ((page_count(page) - extra) > page_mapcount(page)) 2409 return false; 2410 2411 return true; 2412 } 2413 2414 /* 2415 * migrate_vma_prepare() - lock pages and isolate them from the lru 2416 * @migrate: migrate struct containing all migration information 2417 * 2418 * This locks pages that have been collected by migrate_vma_collect(). Once each 2419 * page is locked it is isolated from the lru (for non-device pages). Finally, 2420 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2421 * migrated by concurrent kernel threads. 2422 */ 2423 static void migrate_vma_prepare(struct migrate_vma *migrate) 2424 { 2425 const unsigned long npages = migrate->npages; 2426 const unsigned long start = migrate->start; 2427 unsigned long addr, i, restore = 0; 2428 bool allow_drain = true; 2429 2430 lru_add_drain(); 2431 2432 for (i = 0; (i < npages) && migrate->cpages; i++) { 2433 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2434 bool remap = true; 2435 2436 if (!page) 2437 continue; 2438 2439 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2440 /* 2441 * Because we are migrating several pages there can be 2442 * a deadlock between 2 concurrent migration where each 2443 * are waiting on each other page lock. 2444 * 2445 * Make migrate_vma() a best effort thing and backoff 2446 * for any page we can not lock right away. 2447 */ 2448 if (!trylock_page(page)) { 2449 migrate->src[i] = 0; 2450 migrate->cpages--; 2451 put_page(page); 2452 continue; 2453 } 2454 remap = false; 2455 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2456 } 2457 2458 /* ZONE_DEVICE pages are not on LRU */ 2459 if (!is_zone_device_page(page)) { 2460 if (!PageLRU(page) && allow_drain) { 2461 /* Drain CPU's pagevec */ 2462 lru_add_drain_all(); 2463 allow_drain = false; 2464 } 2465 2466 if (isolate_lru_page(page)) { 2467 if (remap) { 2468 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2469 migrate->cpages--; 2470 restore++; 2471 } else { 2472 migrate->src[i] = 0; 2473 unlock_page(page); 2474 migrate->cpages--; 2475 put_page(page); 2476 } 2477 continue; 2478 } 2479 2480 /* Drop the reference we took in collect */ 2481 put_page(page); 2482 } 2483 2484 if (!migrate_vma_check_page(page)) { 2485 if (remap) { 2486 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2487 migrate->cpages--; 2488 restore++; 2489 2490 if (!is_zone_device_page(page)) { 2491 get_page(page); 2492 putback_lru_page(page); 2493 } 2494 } else { 2495 migrate->src[i] = 0; 2496 unlock_page(page); 2497 migrate->cpages--; 2498 2499 if (!is_zone_device_page(page)) 2500 putback_lru_page(page); 2501 else 2502 put_page(page); 2503 } 2504 } 2505 } 2506 2507 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2508 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2509 2510 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2511 continue; 2512 2513 remove_migration_pte(page, migrate->vma, addr, page); 2514 2515 migrate->src[i] = 0; 2516 unlock_page(page); 2517 put_page(page); 2518 restore--; 2519 } 2520 } 2521 2522 /* 2523 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2524 * @migrate: migrate struct containing all migration information 2525 * 2526 * Replace page mapping (CPU page table pte) with a special migration pte entry 2527 * and check again if it has been pinned. Pinned pages are restored because we 2528 * cannot migrate them. 2529 * 2530 * This is the last step before we call the device driver callback to allocate 2531 * destination memory and copy contents of original page over to new page. 2532 */ 2533 static void migrate_vma_unmap(struct migrate_vma *migrate) 2534 { 2535 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2536 const unsigned long npages = migrate->npages; 2537 const unsigned long start = migrate->start; 2538 unsigned long addr, i, restore = 0; 2539 2540 for (i = 0; i < npages; i++) { 2541 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2542 2543 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2544 continue; 2545 2546 if (page_mapped(page)) { 2547 try_to_unmap(page, flags); 2548 if (page_mapped(page)) 2549 goto restore; 2550 } 2551 2552 if (migrate_vma_check_page(page)) 2553 continue; 2554 2555 restore: 2556 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2557 migrate->cpages--; 2558 restore++; 2559 } 2560 2561 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2562 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2563 2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2565 continue; 2566 2567 remove_migration_ptes(page, page, false); 2568 2569 migrate->src[i] = 0; 2570 unlock_page(page); 2571 restore--; 2572 2573 if (is_zone_device_page(page)) 2574 put_page(page); 2575 else 2576 putback_lru_page(page); 2577 } 2578 } 2579 2580 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2581 unsigned long addr, 2582 struct page *page, 2583 unsigned long *src, 2584 unsigned long *dst) 2585 { 2586 struct vm_area_struct *vma = migrate->vma; 2587 struct mm_struct *mm = vma->vm_mm; 2588 struct mem_cgroup *memcg; 2589 bool flush = false; 2590 spinlock_t *ptl; 2591 pte_t entry; 2592 pgd_t *pgdp; 2593 p4d_t *p4dp; 2594 pud_t *pudp; 2595 pmd_t *pmdp; 2596 pte_t *ptep; 2597 2598 /* Only allow populating anonymous memory */ 2599 if (!vma_is_anonymous(vma)) 2600 goto abort; 2601 2602 pgdp = pgd_offset(mm, addr); 2603 p4dp = p4d_alloc(mm, pgdp, addr); 2604 if (!p4dp) 2605 goto abort; 2606 pudp = pud_alloc(mm, p4dp, addr); 2607 if (!pudp) 2608 goto abort; 2609 pmdp = pmd_alloc(mm, pudp, addr); 2610 if (!pmdp) 2611 goto abort; 2612 2613 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2614 goto abort; 2615 2616 /* 2617 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2618 * pte_offset_map() on pmds where a huge pmd might be created 2619 * from a different thread. 2620 * 2621 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2622 * parallel threads are excluded by other means. 2623 * 2624 * Here we only have down_read(mmap_sem). 2625 */ 2626 if (pte_alloc(mm, pmdp)) 2627 goto abort; 2628 2629 /* See the comment in pte_alloc_one_map() */ 2630 if (unlikely(pmd_trans_unstable(pmdp))) 2631 goto abort; 2632 2633 if (unlikely(anon_vma_prepare(vma))) 2634 goto abort; 2635 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2636 goto abort; 2637 2638 /* 2639 * The memory barrier inside __SetPageUptodate makes sure that 2640 * preceding stores to the page contents become visible before 2641 * the set_pte_at() write. 2642 */ 2643 __SetPageUptodate(page); 2644 2645 if (is_zone_device_page(page)) { 2646 if (is_device_private_page(page)) { 2647 swp_entry_t swp_entry; 2648 2649 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2650 entry = swp_entry_to_pte(swp_entry); 2651 } 2652 } else { 2653 entry = mk_pte(page, vma->vm_page_prot); 2654 if (vma->vm_flags & VM_WRITE) 2655 entry = pte_mkwrite(pte_mkdirty(entry)); 2656 } 2657 2658 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2659 2660 if (pte_present(*ptep)) { 2661 unsigned long pfn = pte_pfn(*ptep); 2662 2663 if (!is_zero_pfn(pfn)) { 2664 pte_unmap_unlock(ptep, ptl); 2665 mem_cgroup_cancel_charge(page, memcg, false); 2666 goto abort; 2667 } 2668 flush = true; 2669 } else if (!pte_none(*ptep)) { 2670 pte_unmap_unlock(ptep, ptl); 2671 mem_cgroup_cancel_charge(page, memcg, false); 2672 goto abort; 2673 } 2674 2675 /* 2676 * Check for usefaultfd but do not deliver the fault. Instead, 2677 * just back off. 2678 */ 2679 if (userfaultfd_missing(vma)) { 2680 pte_unmap_unlock(ptep, ptl); 2681 mem_cgroup_cancel_charge(page, memcg, false); 2682 goto abort; 2683 } 2684 2685 inc_mm_counter(mm, MM_ANONPAGES); 2686 page_add_new_anon_rmap(page, vma, addr, false); 2687 mem_cgroup_commit_charge(page, memcg, false, false); 2688 if (!is_zone_device_page(page)) 2689 lru_cache_add_active_or_unevictable(page, vma); 2690 get_page(page); 2691 2692 if (flush) { 2693 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2694 ptep_clear_flush_notify(vma, addr, ptep); 2695 set_pte_at_notify(mm, addr, ptep, entry); 2696 update_mmu_cache(vma, addr, ptep); 2697 } else { 2698 /* No need to invalidate - it was non-present before */ 2699 set_pte_at(mm, addr, ptep, entry); 2700 update_mmu_cache(vma, addr, ptep); 2701 } 2702 2703 pte_unmap_unlock(ptep, ptl); 2704 *src = MIGRATE_PFN_MIGRATE; 2705 return; 2706 2707 abort: 2708 *src &= ~MIGRATE_PFN_MIGRATE; 2709 } 2710 2711 /* 2712 * migrate_vma_pages() - migrate meta-data from src page to dst page 2713 * @migrate: migrate struct containing all migration information 2714 * 2715 * This migrates struct page meta-data from source struct page to destination 2716 * struct page. This effectively finishes the migration from source page to the 2717 * destination page. 2718 */ 2719 static void migrate_vma_pages(struct migrate_vma *migrate) 2720 { 2721 const unsigned long npages = migrate->npages; 2722 const unsigned long start = migrate->start; 2723 struct mmu_notifier_range range; 2724 unsigned long addr, i; 2725 bool notified = false; 2726 2727 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2728 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2729 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2730 struct address_space *mapping; 2731 int r; 2732 2733 if (!newpage) { 2734 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2735 continue; 2736 } 2737 2738 if (!page) { 2739 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2740 continue; 2741 } 2742 if (!notified) { 2743 notified = true; 2744 2745 mmu_notifier_range_init(&range, 2746 MMU_NOTIFY_CLEAR, 0, 2747 NULL, 2748 migrate->vma->vm_mm, 2749 addr, migrate->end); 2750 mmu_notifier_invalidate_range_start(&range); 2751 } 2752 migrate_vma_insert_page(migrate, addr, newpage, 2753 &migrate->src[i], 2754 &migrate->dst[i]); 2755 continue; 2756 } 2757 2758 mapping = page_mapping(page); 2759 2760 if (is_zone_device_page(newpage)) { 2761 if (is_device_private_page(newpage)) { 2762 /* 2763 * For now only support private anonymous when 2764 * migrating to un-addressable device memory. 2765 */ 2766 if (mapping) { 2767 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2768 continue; 2769 } 2770 } else { 2771 /* 2772 * Other types of ZONE_DEVICE page are not 2773 * supported. 2774 */ 2775 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2776 continue; 2777 } 2778 } 2779 2780 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2781 if (r != MIGRATEPAGE_SUCCESS) 2782 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2783 } 2784 2785 /* 2786 * No need to double call mmu_notifier->invalidate_range() callback as 2787 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2788 * did already call it. 2789 */ 2790 if (notified) 2791 mmu_notifier_invalidate_range_only_end(&range); 2792 } 2793 2794 /* 2795 * migrate_vma_finalize() - restore CPU page table entry 2796 * @migrate: migrate struct containing all migration information 2797 * 2798 * This replaces the special migration pte entry with either a mapping to the 2799 * new page if migration was successful for that page, or to the original page 2800 * otherwise. 2801 * 2802 * This also unlocks the pages and puts them back on the lru, or drops the extra 2803 * refcount, for device pages. 2804 */ 2805 static void migrate_vma_finalize(struct migrate_vma *migrate) 2806 { 2807 const unsigned long npages = migrate->npages; 2808 unsigned long i; 2809 2810 for (i = 0; i < npages; i++) { 2811 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2812 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2813 2814 if (!page) { 2815 if (newpage) { 2816 unlock_page(newpage); 2817 put_page(newpage); 2818 } 2819 continue; 2820 } 2821 2822 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2823 if (newpage) { 2824 unlock_page(newpage); 2825 put_page(newpage); 2826 } 2827 newpage = page; 2828 } 2829 2830 remove_migration_ptes(page, newpage, false); 2831 unlock_page(page); 2832 migrate->cpages--; 2833 2834 if (is_zone_device_page(page)) 2835 put_page(page); 2836 else 2837 putback_lru_page(page); 2838 2839 if (newpage != page) { 2840 unlock_page(newpage); 2841 if (is_zone_device_page(newpage)) 2842 put_page(newpage); 2843 else 2844 putback_lru_page(newpage); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * migrate_vma() - migrate a range of memory inside vma 2851 * 2852 * @ops: migration callback for allocating destination memory and copying 2853 * @vma: virtual memory area containing the range to be migrated 2854 * @start: start address of the range to migrate (inclusive) 2855 * @end: end address of the range to migrate (exclusive) 2856 * @src: array of hmm_pfn_t containing source pfns 2857 * @dst: array of hmm_pfn_t containing destination pfns 2858 * @private: pointer passed back to each of the callback 2859 * Returns: 0 on success, error code otherwise 2860 * 2861 * This function tries to migrate a range of memory virtual address range, using 2862 * callbacks to allocate and copy memory from source to destination. First it 2863 * collects all the pages backing each virtual address in the range, saving this 2864 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2865 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2866 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2867 * in the corresponding src array entry. It then restores any pages that are 2868 * pinned, by remapping and unlocking those pages. 2869 * 2870 * At this point it calls the alloc_and_copy() callback. For documentation on 2871 * what is expected from that callback, see struct migrate_vma_ops comments in 2872 * include/linux/migrate.h 2873 * 2874 * After the alloc_and_copy() callback, this function goes over each entry in 2875 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2876 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2877 * then the function tries to migrate struct page information from the source 2878 * struct page to the destination struct page. If it fails to migrate the struct 2879 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2880 * array. 2881 * 2882 * At this point all successfully migrated pages have an entry in the src 2883 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2884 * array entry with MIGRATE_PFN_VALID flag set. 2885 * 2886 * It then calls the finalize_and_map() callback. See comments for "struct 2887 * migrate_vma_ops", in include/linux/migrate.h for details about 2888 * finalize_and_map() behavior. 2889 * 2890 * After the finalize_and_map() callback, for successfully migrated pages, this 2891 * function updates the CPU page table to point to new pages, otherwise it 2892 * restores the CPU page table to point to the original source pages. 2893 * 2894 * Function returns 0 after the above steps, even if no pages were migrated 2895 * (The function only returns an error if any of the arguments are invalid.) 2896 * 2897 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2898 * unsigned long entries. 2899 */ 2900 int migrate_vma(const struct migrate_vma_ops *ops, 2901 struct vm_area_struct *vma, 2902 unsigned long start, 2903 unsigned long end, 2904 unsigned long *src, 2905 unsigned long *dst, 2906 void *private) 2907 { 2908 struct migrate_vma migrate; 2909 2910 /* Sanity check the arguments */ 2911 start &= PAGE_MASK; 2912 end &= PAGE_MASK; 2913 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2914 vma_is_dax(vma)) 2915 return -EINVAL; 2916 if (start < vma->vm_start || start >= vma->vm_end) 2917 return -EINVAL; 2918 if (end <= vma->vm_start || end > vma->vm_end) 2919 return -EINVAL; 2920 if (!ops || !src || !dst || start >= end) 2921 return -EINVAL; 2922 2923 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2924 migrate.src = src; 2925 migrate.dst = dst; 2926 migrate.start = start; 2927 migrate.npages = 0; 2928 migrate.cpages = 0; 2929 migrate.end = end; 2930 migrate.vma = vma; 2931 2932 /* Collect, and try to unmap source pages */ 2933 migrate_vma_collect(&migrate); 2934 if (!migrate.cpages) 2935 return 0; 2936 2937 /* Lock and isolate page */ 2938 migrate_vma_prepare(&migrate); 2939 if (!migrate.cpages) 2940 return 0; 2941 2942 /* Unmap pages */ 2943 migrate_vma_unmap(&migrate); 2944 if (!migrate.cpages) 2945 return 0; 2946 2947 /* 2948 * At this point pages are locked and unmapped, and thus they have 2949 * stable content and can safely be copied to destination memory that 2950 * is allocated by the callback. 2951 * 2952 * Note that migration can fail in migrate_vma_struct_page() for each 2953 * individual page. 2954 */ 2955 ops->alloc_and_copy(vma, src, dst, start, end, private); 2956 2957 /* This does the real migration of struct page */ 2958 migrate_vma_pages(&migrate); 2959 2960 ops->finalize_and_map(vma, src, dst, start, end, private); 2961 2962 /* Unlock and remap pages */ 2963 migrate_vma_finalize(&migrate); 2964 2965 return 0; 2966 } 2967 EXPORT_SYMBOL(migrate_vma); 2968 #endif /* defined(MIGRATE_VMA_HELPER) */ 2969