xref: /openbmc/linux/mm/migrate.c (revision cc8bbe1a)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 
42 #include <asm/tlbflush.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
46 
47 #include "internal.h"
48 
49 /*
50  * migrate_prep() needs to be called before we start compiling a list of pages
51  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52  * undesirable, use migrate_prep_local()
53  */
54 int migrate_prep(void)
55 {
56 	/*
57 	 * Clear the LRU lists so pages can be isolated.
58 	 * Note that pages may be moved off the LRU after we have
59 	 * drained them. Those pages will fail to migrate like other
60 	 * pages that may be busy.
61 	 */
62 	lru_add_drain_all();
63 
64 	return 0;
65 }
66 
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
68 int migrate_prep_local(void)
69 {
70 	lru_add_drain();
71 
72 	return 0;
73 }
74 
75 /*
76  * Put previously isolated pages back onto the appropriate lists
77  * from where they were once taken off for compaction/migration.
78  *
79  * This function shall be used whenever the isolated pageset has been
80  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81  * and isolate_huge_page().
82  */
83 void putback_movable_pages(struct list_head *l)
84 {
85 	struct page *page;
86 	struct page *page2;
87 
88 	list_for_each_entry_safe(page, page2, l, lru) {
89 		if (unlikely(PageHuge(page))) {
90 			putback_active_hugepage(page);
91 			continue;
92 		}
93 		list_del(&page->lru);
94 		dec_zone_page_state(page, NR_ISOLATED_ANON +
95 				page_is_file_cache(page));
96 		if (unlikely(isolated_balloon_page(page)))
97 			balloon_page_putback(page);
98 		else
99 			putback_lru_page(page);
100 	}
101 }
102 
103 /*
104  * Restore a potential migration pte to a working pte entry
105  */
106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
107 				 unsigned long addr, void *old)
108 {
109 	struct mm_struct *mm = vma->vm_mm;
110 	swp_entry_t entry;
111  	pmd_t *pmd;
112 	pte_t *ptep, pte;
113  	spinlock_t *ptl;
114 
115 	if (unlikely(PageHuge(new))) {
116 		ptep = huge_pte_offset(mm, addr);
117 		if (!ptep)
118 			goto out;
119 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 	} else {
121 		pmd = mm_find_pmd(mm, addr);
122 		if (!pmd)
123 			goto out;
124 
125 		ptep = pte_offset_map(pmd, addr);
126 
127 		/*
128 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
129 		 * can race mremap's move_ptes(), which skips anon_vma lock.
130 		 */
131 
132 		ptl = pte_lockptr(mm, pmd);
133 	}
134 
135  	spin_lock(ptl);
136 	pte = *ptep;
137 	if (!is_swap_pte(pte))
138 		goto unlock;
139 
140 	entry = pte_to_swp_entry(pte);
141 
142 	if (!is_migration_entry(entry) ||
143 	    migration_entry_to_page(entry) != old)
144 		goto unlock;
145 
146 	get_page(new);
147 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
148 	if (pte_swp_soft_dirty(*ptep))
149 		pte = pte_mksoft_dirty(pte);
150 
151 	/* Recheck VMA as permissions can change since migration started  */
152 	if (is_write_migration_entry(entry))
153 		pte = maybe_mkwrite(pte, vma);
154 
155 #ifdef CONFIG_HUGETLB_PAGE
156 	if (PageHuge(new)) {
157 		pte = pte_mkhuge(pte);
158 		pte = arch_make_huge_pte(pte, vma, new, 0);
159 	}
160 #endif
161 	flush_dcache_page(new);
162 	set_pte_at(mm, addr, ptep, pte);
163 
164 	if (PageHuge(new)) {
165 		if (PageAnon(new))
166 			hugepage_add_anon_rmap(new, vma, addr);
167 		else
168 			page_dup_rmap(new, true);
169 	} else if (PageAnon(new))
170 		page_add_anon_rmap(new, vma, addr, false);
171 	else
172 		page_add_file_rmap(new);
173 
174 	if (vma->vm_flags & VM_LOCKED)
175 		mlock_vma_page(new);
176 
177 	/* No need to invalidate - it was non-present before */
178 	update_mmu_cache(vma, addr, ptep);
179 unlock:
180 	pte_unmap_unlock(ptep, ptl);
181 out:
182 	return SWAP_AGAIN;
183 }
184 
185 /*
186  * Get rid of all migration entries and replace them by
187  * references to the indicated page.
188  */
189 static void remove_migration_ptes(struct page *old, struct page *new)
190 {
191 	struct rmap_walk_control rwc = {
192 		.rmap_one = remove_migration_pte,
193 		.arg = old,
194 	};
195 
196 	rmap_walk(new, &rwc);
197 }
198 
199 /*
200  * Something used the pte of a page under migration. We need to
201  * get to the page and wait until migration is finished.
202  * When we return from this function the fault will be retried.
203  */
204 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
205 				spinlock_t *ptl)
206 {
207 	pte_t pte;
208 	swp_entry_t entry;
209 	struct page *page;
210 
211 	spin_lock(ptl);
212 	pte = *ptep;
213 	if (!is_swap_pte(pte))
214 		goto out;
215 
216 	entry = pte_to_swp_entry(pte);
217 	if (!is_migration_entry(entry))
218 		goto out;
219 
220 	page = migration_entry_to_page(entry);
221 
222 	/*
223 	 * Once radix-tree replacement of page migration started, page_count
224 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 	 * against a page without get_page().
226 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 	 * will occur again.
228 	 */
229 	if (!get_page_unless_zero(page))
230 		goto out;
231 	pte_unmap_unlock(ptep, ptl);
232 	wait_on_page_locked(page);
233 	put_page(page);
234 	return;
235 out:
236 	pte_unmap_unlock(ptep, ptl);
237 }
238 
239 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
240 				unsigned long address)
241 {
242 	spinlock_t *ptl = pte_lockptr(mm, pmd);
243 	pte_t *ptep = pte_offset_map(pmd, address);
244 	__migration_entry_wait(mm, ptep, ptl);
245 }
246 
247 void migration_entry_wait_huge(struct vm_area_struct *vma,
248 		struct mm_struct *mm, pte_t *pte)
249 {
250 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
251 	__migration_entry_wait(mm, pte, ptl);
252 }
253 
254 #ifdef CONFIG_BLOCK
255 /* Returns true if all buffers are successfully locked */
256 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
257 							enum migrate_mode mode)
258 {
259 	struct buffer_head *bh = head;
260 
261 	/* Simple case, sync compaction */
262 	if (mode != MIGRATE_ASYNC) {
263 		do {
264 			get_bh(bh);
265 			lock_buffer(bh);
266 			bh = bh->b_this_page;
267 
268 		} while (bh != head);
269 
270 		return true;
271 	}
272 
273 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
274 	do {
275 		get_bh(bh);
276 		if (!trylock_buffer(bh)) {
277 			/*
278 			 * We failed to lock the buffer and cannot stall in
279 			 * async migration. Release the taken locks
280 			 */
281 			struct buffer_head *failed_bh = bh;
282 			put_bh(failed_bh);
283 			bh = head;
284 			while (bh != failed_bh) {
285 				unlock_buffer(bh);
286 				put_bh(bh);
287 				bh = bh->b_this_page;
288 			}
289 			return false;
290 		}
291 
292 		bh = bh->b_this_page;
293 	} while (bh != head);
294 	return true;
295 }
296 #else
297 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
298 							enum migrate_mode mode)
299 {
300 	return true;
301 }
302 #endif /* CONFIG_BLOCK */
303 
304 /*
305  * Replace the page in the mapping.
306  *
307  * The number of remaining references must be:
308  * 1 for anonymous pages without a mapping
309  * 2 for pages with a mapping
310  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
311  */
312 int migrate_page_move_mapping(struct address_space *mapping,
313 		struct page *newpage, struct page *page,
314 		struct buffer_head *head, enum migrate_mode mode,
315 		int extra_count)
316 {
317 	struct zone *oldzone, *newzone;
318 	int dirty;
319 	int expected_count = 1 + extra_count;
320 	void **pslot;
321 
322 	if (!mapping) {
323 		/* Anonymous page without mapping */
324 		if (page_count(page) != expected_count)
325 			return -EAGAIN;
326 
327 		/* No turning back from here */
328 		set_page_memcg(newpage, page_memcg(page));
329 		newpage->index = page->index;
330 		newpage->mapping = page->mapping;
331 		if (PageSwapBacked(page))
332 			SetPageSwapBacked(newpage);
333 
334 		return MIGRATEPAGE_SUCCESS;
335 	}
336 
337 	oldzone = page_zone(page);
338 	newzone = page_zone(newpage);
339 
340 	spin_lock_irq(&mapping->tree_lock);
341 
342 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
343  					page_index(page));
344 
345 	expected_count += 1 + page_has_private(page);
346 	if (page_count(page) != expected_count ||
347 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
348 		spin_unlock_irq(&mapping->tree_lock);
349 		return -EAGAIN;
350 	}
351 
352 	if (!page_freeze_refs(page, expected_count)) {
353 		spin_unlock_irq(&mapping->tree_lock);
354 		return -EAGAIN;
355 	}
356 
357 	/*
358 	 * In the async migration case of moving a page with buffers, lock the
359 	 * buffers using trylock before the mapping is moved. If the mapping
360 	 * was moved, we later failed to lock the buffers and could not move
361 	 * the mapping back due to an elevated page count, we would have to
362 	 * block waiting on other references to be dropped.
363 	 */
364 	if (mode == MIGRATE_ASYNC && head &&
365 			!buffer_migrate_lock_buffers(head, mode)) {
366 		page_unfreeze_refs(page, expected_count);
367 		spin_unlock_irq(&mapping->tree_lock);
368 		return -EAGAIN;
369 	}
370 
371 	/*
372 	 * Now we know that no one else is looking at the page:
373 	 * no turning back from here.
374 	 */
375 	set_page_memcg(newpage, page_memcg(page));
376 	newpage->index = page->index;
377 	newpage->mapping = page->mapping;
378 	if (PageSwapBacked(page))
379 		SetPageSwapBacked(newpage);
380 
381 	get_page(newpage);	/* add cache reference */
382 	if (PageSwapCache(page)) {
383 		SetPageSwapCache(newpage);
384 		set_page_private(newpage, page_private(page));
385 	}
386 
387 	/* Move dirty while page refs frozen and newpage not yet exposed */
388 	dirty = PageDirty(page);
389 	if (dirty) {
390 		ClearPageDirty(page);
391 		SetPageDirty(newpage);
392 	}
393 
394 	radix_tree_replace_slot(pslot, newpage);
395 
396 	/*
397 	 * Drop cache reference from old page by unfreezing
398 	 * to one less reference.
399 	 * We know this isn't the last reference.
400 	 */
401 	page_unfreeze_refs(page, expected_count - 1);
402 
403 	spin_unlock(&mapping->tree_lock);
404 	/* Leave irq disabled to prevent preemption while updating stats */
405 
406 	/*
407 	 * If moved to a different zone then also account
408 	 * the page for that zone. Other VM counters will be
409 	 * taken care of when we establish references to the
410 	 * new page and drop references to the old page.
411 	 *
412 	 * Note that anonymous pages are accounted for
413 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
414 	 * are mapped to swap space.
415 	 */
416 	if (newzone != oldzone) {
417 		__dec_zone_state(oldzone, NR_FILE_PAGES);
418 		__inc_zone_state(newzone, NR_FILE_PAGES);
419 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
420 			__dec_zone_state(oldzone, NR_SHMEM);
421 			__inc_zone_state(newzone, NR_SHMEM);
422 		}
423 		if (dirty && mapping_cap_account_dirty(mapping)) {
424 			__dec_zone_state(oldzone, NR_FILE_DIRTY);
425 			__inc_zone_state(newzone, NR_FILE_DIRTY);
426 		}
427 	}
428 	local_irq_enable();
429 
430 	return MIGRATEPAGE_SUCCESS;
431 }
432 
433 /*
434  * The expected number of remaining references is the same as that
435  * of migrate_page_move_mapping().
436  */
437 int migrate_huge_page_move_mapping(struct address_space *mapping,
438 				   struct page *newpage, struct page *page)
439 {
440 	int expected_count;
441 	void **pslot;
442 
443 	spin_lock_irq(&mapping->tree_lock);
444 
445 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
446 					page_index(page));
447 
448 	expected_count = 2 + page_has_private(page);
449 	if (page_count(page) != expected_count ||
450 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
451 		spin_unlock_irq(&mapping->tree_lock);
452 		return -EAGAIN;
453 	}
454 
455 	if (!page_freeze_refs(page, expected_count)) {
456 		spin_unlock_irq(&mapping->tree_lock);
457 		return -EAGAIN;
458 	}
459 
460 	set_page_memcg(newpage, page_memcg(page));
461 	newpage->index = page->index;
462 	newpage->mapping = page->mapping;
463 	get_page(newpage);
464 
465 	radix_tree_replace_slot(pslot, newpage);
466 
467 	page_unfreeze_refs(page, expected_count - 1);
468 
469 	spin_unlock_irq(&mapping->tree_lock);
470 	return MIGRATEPAGE_SUCCESS;
471 }
472 
473 /*
474  * Gigantic pages are so large that we do not guarantee that page++ pointer
475  * arithmetic will work across the entire page.  We need something more
476  * specialized.
477  */
478 static void __copy_gigantic_page(struct page *dst, struct page *src,
479 				int nr_pages)
480 {
481 	int i;
482 	struct page *dst_base = dst;
483 	struct page *src_base = src;
484 
485 	for (i = 0; i < nr_pages; ) {
486 		cond_resched();
487 		copy_highpage(dst, src);
488 
489 		i++;
490 		dst = mem_map_next(dst, dst_base, i);
491 		src = mem_map_next(src, src_base, i);
492 	}
493 }
494 
495 static void copy_huge_page(struct page *dst, struct page *src)
496 {
497 	int i;
498 	int nr_pages;
499 
500 	if (PageHuge(src)) {
501 		/* hugetlbfs page */
502 		struct hstate *h = page_hstate(src);
503 		nr_pages = pages_per_huge_page(h);
504 
505 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
506 			__copy_gigantic_page(dst, src, nr_pages);
507 			return;
508 		}
509 	} else {
510 		/* thp page */
511 		BUG_ON(!PageTransHuge(src));
512 		nr_pages = hpage_nr_pages(src);
513 	}
514 
515 	for (i = 0; i < nr_pages; i++) {
516 		cond_resched();
517 		copy_highpage(dst + i, src + i);
518 	}
519 }
520 
521 /*
522  * Copy the page to its new location
523  */
524 void migrate_page_copy(struct page *newpage, struct page *page)
525 {
526 	int cpupid;
527 
528 	if (PageHuge(page) || PageTransHuge(page))
529 		copy_huge_page(newpage, page);
530 	else
531 		copy_highpage(newpage, page);
532 
533 	if (PageError(page))
534 		SetPageError(newpage);
535 	if (PageReferenced(page))
536 		SetPageReferenced(newpage);
537 	if (PageUptodate(page))
538 		SetPageUptodate(newpage);
539 	if (TestClearPageActive(page)) {
540 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
541 		SetPageActive(newpage);
542 	} else if (TestClearPageUnevictable(page))
543 		SetPageUnevictable(newpage);
544 	if (PageChecked(page))
545 		SetPageChecked(newpage);
546 	if (PageMappedToDisk(page))
547 		SetPageMappedToDisk(newpage);
548 
549 	/* Move dirty on pages not done by migrate_page_move_mapping() */
550 	if (PageDirty(page))
551 		SetPageDirty(newpage);
552 
553 	if (page_is_young(page))
554 		set_page_young(newpage);
555 	if (page_is_idle(page))
556 		set_page_idle(newpage);
557 
558 	/*
559 	 * Copy NUMA information to the new page, to prevent over-eager
560 	 * future migrations of this same page.
561 	 */
562 	cpupid = page_cpupid_xchg_last(page, -1);
563 	page_cpupid_xchg_last(newpage, cpupid);
564 
565 	ksm_migrate_page(newpage, page);
566 	/*
567 	 * Please do not reorder this without considering how mm/ksm.c's
568 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 	 */
570 	if (PageSwapCache(page))
571 		ClearPageSwapCache(page);
572 	ClearPagePrivate(page);
573 	set_page_private(page, 0);
574 
575 	/*
576 	 * If any waiters have accumulated on the new page then
577 	 * wake them up.
578 	 */
579 	if (PageWriteback(newpage))
580 		end_page_writeback(newpage);
581 }
582 
583 /************************************************************
584  *                    Migration functions
585  ***********************************************************/
586 
587 /*
588  * Common logic to directly migrate a single page suitable for
589  * pages that do not use PagePrivate/PagePrivate2.
590  *
591  * Pages are locked upon entry and exit.
592  */
593 int migrate_page(struct address_space *mapping,
594 		struct page *newpage, struct page *page,
595 		enum migrate_mode mode)
596 {
597 	int rc;
598 
599 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
600 
601 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
602 
603 	if (rc != MIGRATEPAGE_SUCCESS)
604 		return rc;
605 
606 	migrate_page_copy(newpage, page);
607 	return MIGRATEPAGE_SUCCESS;
608 }
609 EXPORT_SYMBOL(migrate_page);
610 
611 #ifdef CONFIG_BLOCK
612 /*
613  * Migration function for pages with buffers. This function can only be used
614  * if the underlying filesystem guarantees that no other references to "page"
615  * exist.
616  */
617 int buffer_migrate_page(struct address_space *mapping,
618 		struct page *newpage, struct page *page, enum migrate_mode mode)
619 {
620 	struct buffer_head *bh, *head;
621 	int rc;
622 
623 	if (!page_has_buffers(page))
624 		return migrate_page(mapping, newpage, page, mode);
625 
626 	head = page_buffers(page);
627 
628 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
629 
630 	if (rc != MIGRATEPAGE_SUCCESS)
631 		return rc;
632 
633 	/*
634 	 * In the async case, migrate_page_move_mapping locked the buffers
635 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
636 	 * need to be locked now
637 	 */
638 	if (mode != MIGRATE_ASYNC)
639 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
640 
641 	ClearPagePrivate(page);
642 	set_page_private(newpage, page_private(page));
643 	set_page_private(page, 0);
644 	put_page(page);
645 	get_page(newpage);
646 
647 	bh = head;
648 	do {
649 		set_bh_page(bh, newpage, bh_offset(bh));
650 		bh = bh->b_this_page;
651 
652 	} while (bh != head);
653 
654 	SetPagePrivate(newpage);
655 
656 	migrate_page_copy(newpage, page);
657 
658 	bh = head;
659 	do {
660 		unlock_buffer(bh);
661  		put_bh(bh);
662 		bh = bh->b_this_page;
663 
664 	} while (bh != head);
665 
666 	return MIGRATEPAGE_SUCCESS;
667 }
668 EXPORT_SYMBOL(buffer_migrate_page);
669 #endif
670 
671 /*
672  * Writeback a page to clean the dirty state
673  */
674 static int writeout(struct address_space *mapping, struct page *page)
675 {
676 	struct writeback_control wbc = {
677 		.sync_mode = WB_SYNC_NONE,
678 		.nr_to_write = 1,
679 		.range_start = 0,
680 		.range_end = LLONG_MAX,
681 		.for_reclaim = 1
682 	};
683 	int rc;
684 
685 	if (!mapping->a_ops->writepage)
686 		/* No write method for the address space */
687 		return -EINVAL;
688 
689 	if (!clear_page_dirty_for_io(page))
690 		/* Someone else already triggered a write */
691 		return -EAGAIN;
692 
693 	/*
694 	 * A dirty page may imply that the underlying filesystem has
695 	 * the page on some queue. So the page must be clean for
696 	 * migration. Writeout may mean we loose the lock and the
697 	 * page state is no longer what we checked for earlier.
698 	 * At this point we know that the migration attempt cannot
699 	 * be successful.
700 	 */
701 	remove_migration_ptes(page, page);
702 
703 	rc = mapping->a_ops->writepage(page, &wbc);
704 
705 	if (rc != AOP_WRITEPAGE_ACTIVATE)
706 		/* unlocked. Relock */
707 		lock_page(page);
708 
709 	return (rc < 0) ? -EIO : -EAGAIN;
710 }
711 
712 /*
713  * Default handling if a filesystem does not provide a migration function.
714  */
715 static int fallback_migrate_page(struct address_space *mapping,
716 	struct page *newpage, struct page *page, enum migrate_mode mode)
717 {
718 	if (PageDirty(page)) {
719 		/* Only writeback pages in full synchronous migration */
720 		if (mode != MIGRATE_SYNC)
721 			return -EBUSY;
722 		return writeout(mapping, page);
723 	}
724 
725 	/*
726 	 * Buffers may be managed in a filesystem specific way.
727 	 * We must have no buffers or drop them.
728 	 */
729 	if (page_has_private(page) &&
730 	    !try_to_release_page(page, GFP_KERNEL))
731 		return -EAGAIN;
732 
733 	return migrate_page(mapping, newpage, page, mode);
734 }
735 
736 /*
737  * Move a page to a newly allocated page
738  * The page is locked and all ptes have been successfully removed.
739  *
740  * The new page will have replaced the old page if this function
741  * is successful.
742  *
743  * Return value:
744  *   < 0 - error code
745  *  MIGRATEPAGE_SUCCESS - success
746  */
747 static int move_to_new_page(struct page *newpage, struct page *page,
748 				enum migrate_mode mode)
749 {
750 	struct address_space *mapping;
751 	int rc;
752 
753 	VM_BUG_ON_PAGE(!PageLocked(page), page);
754 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
755 
756 	mapping = page_mapping(page);
757 	if (!mapping)
758 		rc = migrate_page(mapping, newpage, page, mode);
759 	else if (mapping->a_ops->migratepage)
760 		/*
761 		 * Most pages have a mapping and most filesystems provide a
762 		 * migratepage callback. Anonymous pages are part of swap
763 		 * space which also has its own migratepage callback. This
764 		 * is the most common path for page migration.
765 		 */
766 		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
767 	else
768 		rc = fallback_migrate_page(mapping, newpage, page, mode);
769 
770 	/*
771 	 * When successful, old pagecache page->mapping must be cleared before
772 	 * page is freed; but stats require that PageAnon be left as PageAnon.
773 	 */
774 	if (rc == MIGRATEPAGE_SUCCESS) {
775 		set_page_memcg(page, NULL);
776 		if (!PageAnon(page))
777 			page->mapping = NULL;
778 	}
779 	return rc;
780 }
781 
782 static int __unmap_and_move(struct page *page, struct page *newpage,
783 				int force, enum migrate_mode mode)
784 {
785 	int rc = -EAGAIN;
786 	int page_was_mapped = 0;
787 	struct anon_vma *anon_vma = NULL;
788 
789 	if (!trylock_page(page)) {
790 		if (!force || mode == MIGRATE_ASYNC)
791 			goto out;
792 
793 		/*
794 		 * It's not safe for direct compaction to call lock_page.
795 		 * For example, during page readahead pages are added locked
796 		 * to the LRU. Later, when the IO completes the pages are
797 		 * marked uptodate and unlocked. However, the queueing
798 		 * could be merging multiple pages for one bio (e.g.
799 		 * mpage_readpages). If an allocation happens for the
800 		 * second or third page, the process can end up locking
801 		 * the same page twice and deadlocking. Rather than
802 		 * trying to be clever about what pages can be locked,
803 		 * avoid the use of lock_page for direct compaction
804 		 * altogether.
805 		 */
806 		if (current->flags & PF_MEMALLOC)
807 			goto out;
808 
809 		lock_page(page);
810 	}
811 
812 	if (PageWriteback(page)) {
813 		/*
814 		 * Only in the case of a full synchronous migration is it
815 		 * necessary to wait for PageWriteback. In the async case,
816 		 * the retry loop is too short and in the sync-light case,
817 		 * the overhead of stalling is too much
818 		 */
819 		if (mode != MIGRATE_SYNC) {
820 			rc = -EBUSY;
821 			goto out_unlock;
822 		}
823 		if (!force)
824 			goto out_unlock;
825 		wait_on_page_writeback(page);
826 	}
827 
828 	/*
829 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
830 	 * we cannot notice that anon_vma is freed while we migrates a page.
831 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
832 	 * of migration. File cache pages are no problem because of page_lock()
833 	 * File Caches may use write_page() or lock_page() in migration, then,
834 	 * just care Anon page here.
835 	 *
836 	 * Only page_get_anon_vma() understands the subtleties of
837 	 * getting a hold on an anon_vma from outside one of its mms.
838 	 * But if we cannot get anon_vma, then we won't need it anyway,
839 	 * because that implies that the anon page is no longer mapped
840 	 * (and cannot be remapped so long as we hold the page lock).
841 	 */
842 	if (PageAnon(page) && !PageKsm(page))
843 		anon_vma = page_get_anon_vma(page);
844 
845 	/*
846 	 * Block others from accessing the new page when we get around to
847 	 * establishing additional references. We are usually the only one
848 	 * holding a reference to newpage at this point. We used to have a BUG
849 	 * here if trylock_page(newpage) fails, but would like to allow for
850 	 * cases where there might be a race with the previous use of newpage.
851 	 * This is much like races on refcount of oldpage: just don't BUG().
852 	 */
853 	if (unlikely(!trylock_page(newpage)))
854 		goto out_unlock;
855 
856 	if (unlikely(isolated_balloon_page(page))) {
857 		/*
858 		 * A ballooned page does not need any special attention from
859 		 * physical to virtual reverse mapping procedures.
860 		 * Skip any attempt to unmap PTEs or to remap swap cache,
861 		 * in order to avoid burning cycles at rmap level, and perform
862 		 * the page migration right away (proteced by page lock).
863 		 */
864 		rc = balloon_page_migrate(newpage, page, mode);
865 		goto out_unlock_both;
866 	}
867 
868 	/*
869 	 * Corner case handling:
870 	 * 1. When a new swap-cache page is read into, it is added to the LRU
871 	 * and treated as swapcache but it has no rmap yet.
872 	 * Calling try_to_unmap() against a page->mapping==NULL page will
873 	 * trigger a BUG.  So handle it here.
874 	 * 2. An orphaned page (see truncate_complete_page) might have
875 	 * fs-private metadata. The page can be picked up due to memory
876 	 * offlining.  Everywhere else except page reclaim, the page is
877 	 * invisible to the vm, so the page can not be migrated.  So try to
878 	 * free the metadata, so the page can be freed.
879 	 */
880 	if (!page->mapping) {
881 		VM_BUG_ON_PAGE(PageAnon(page), page);
882 		if (page_has_private(page)) {
883 			try_to_free_buffers(page);
884 			goto out_unlock_both;
885 		}
886 	} else if (page_mapped(page)) {
887 		/* Establish migration ptes */
888 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
889 				page);
890 		try_to_unmap(page,
891 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
892 		page_was_mapped = 1;
893 	}
894 
895 	if (!page_mapped(page))
896 		rc = move_to_new_page(newpage, page, mode);
897 
898 	if (page_was_mapped)
899 		remove_migration_ptes(page,
900 			rc == MIGRATEPAGE_SUCCESS ? newpage : page);
901 
902 out_unlock_both:
903 	unlock_page(newpage);
904 out_unlock:
905 	/* Drop an anon_vma reference if we took one */
906 	if (anon_vma)
907 		put_anon_vma(anon_vma);
908 	unlock_page(page);
909 out:
910 	return rc;
911 }
912 
913 /*
914  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
915  * around it.
916  */
917 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
918 #define ICE_noinline noinline
919 #else
920 #define ICE_noinline
921 #endif
922 
923 /*
924  * Obtain the lock on page, remove all ptes and migrate the page
925  * to the newly allocated page in newpage.
926  */
927 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
928 				   free_page_t put_new_page,
929 				   unsigned long private, struct page *page,
930 				   int force, enum migrate_mode mode,
931 				   enum migrate_reason reason)
932 {
933 	int rc = MIGRATEPAGE_SUCCESS;
934 	int *result = NULL;
935 	struct page *newpage;
936 
937 	newpage = get_new_page(page, private, &result);
938 	if (!newpage)
939 		return -ENOMEM;
940 
941 	if (page_count(page) == 1) {
942 		/* page was freed from under us. So we are done. */
943 		goto out;
944 	}
945 
946 	if (unlikely(PageTransHuge(page))) {
947 		lock_page(page);
948 		rc = split_huge_page(page);
949 		unlock_page(page);
950 		if (rc)
951 			goto out;
952 	}
953 
954 	rc = __unmap_and_move(page, newpage, force, mode);
955 	if (rc == MIGRATEPAGE_SUCCESS)
956 		put_new_page = NULL;
957 
958 out:
959 	if (rc != -EAGAIN) {
960 		/*
961 		 * A page that has been migrated has all references
962 		 * removed and will be freed. A page that has not been
963 		 * migrated will have kepts its references and be
964 		 * restored.
965 		 */
966 		list_del(&page->lru);
967 		dec_zone_page_state(page, NR_ISOLATED_ANON +
968 				page_is_file_cache(page));
969 		/* Soft-offlined page shouldn't go through lru cache list */
970 		if (reason == MR_MEMORY_FAILURE) {
971 			put_page(page);
972 			if (!test_set_page_hwpoison(page))
973 				num_poisoned_pages_inc();
974 		} else
975 			putback_lru_page(page);
976 	}
977 
978 	/*
979 	 * If migration was not successful and there's a freeing callback, use
980 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
981 	 * during isolation.
982 	 */
983 	if (put_new_page)
984 		put_new_page(newpage, private);
985 	else if (unlikely(__is_movable_balloon_page(newpage))) {
986 		/* drop our reference, page already in the balloon */
987 		put_page(newpage);
988 	} else
989 		putback_lru_page(newpage);
990 
991 	if (result) {
992 		if (rc)
993 			*result = rc;
994 		else
995 			*result = page_to_nid(newpage);
996 	}
997 	return rc;
998 }
999 
1000 /*
1001  * Counterpart of unmap_and_move_page() for hugepage migration.
1002  *
1003  * This function doesn't wait the completion of hugepage I/O
1004  * because there is no race between I/O and migration for hugepage.
1005  * Note that currently hugepage I/O occurs only in direct I/O
1006  * where no lock is held and PG_writeback is irrelevant,
1007  * and writeback status of all subpages are counted in the reference
1008  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009  * under direct I/O, the reference of the head page is 512 and a bit more.)
1010  * This means that when we try to migrate hugepage whose subpages are
1011  * doing direct I/O, some references remain after try_to_unmap() and
1012  * hugepage migration fails without data corruption.
1013  *
1014  * There is also no race when direct I/O is issued on the page under migration,
1015  * because then pte is replaced with migration swap entry and direct I/O code
1016  * will wait in the page fault for migration to complete.
1017  */
1018 static int unmap_and_move_huge_page(new_page_t get_new_page,
1019 				free_page_t put_new_page, unsigned long private,
1020 				struct page *hpage, int force,
1021 				enum migrate_mode mode)
1022 {
1023 	int rc = -EAGAIN;
1024 	int *result = NULL;
1025 	int page_was_mapped = 0;
1026 	struct page *new_hpage;
1027 	struct anon_vma *anon_vma = NULL;
1028 
1029 	/*
1030 	 * Movability of hugepages depends on architectures and hugepage size.
1031 	 * This check is necessary because some callers of hugepage migration
1032 	 * like soft offline and memory hotremove don't walk through page
1033 	 * tables or check whether the hugepage is pmd-based or not before
1034 	 * kicking migration.
1035 	 */
1036 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1037 		putback_active_hugepage(hpage);
1038 		return -ENOSYS;
1039 	}
1040 
1041 	new_hpage = get_new_page(hpage, private, &result);
1042 	if (!new_hpage)
1043 		return -ENOMEM;
1044 
1045 	if (!trylock_page(hpage)) {
1046 		if (!force || mode != MIGRATE_SYNC)
1047 			goto out;
1048 		lock_page(hpage);
1049 	}
1050 
1051 	if (PageAnon(hpage))
1052 		anon_vma = page_get_anon_vma(hpage);
1053 
1054 	if (unlikely(!trylock_page(new_hpage)))
1055 		goto put_anon;
1056 
1057 	if (page_mapped(hpage)) {
1058 		try_to_unmap(hpage,
1059 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1060 		page_was_mapped = 1;
1061 	}
1062 
1063 	if (!page_mapped(hpage))
1064 		rc = move_to_new_page(new_hpage, hpage, mode);
1065 
1066 	if (page_was_mapped)
1067 		remove_migration_ptes(hpage,
1068 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1069 
1070 	unlock_page(new_hpage);
1071 
1072 put_anon:
1073 	if (anon_vma)
1074 		put_anon_vma(anon_vma);
1075 
1076 	if (rc == MIGRATEPAGE_SUCCESS) {
1077 		hugetlb_cgroup_migrate(hpage, new_hpage);
1078 		put_new_page = NULL;
1079 	}
1080 
1081 	unlock_page(hpage);
1082 out:
1083 	if (rc != -EAGAIN)
1084 		putback_active_hugepage(hpage);
1085 
1086 	/*
1087 	 * If migration was not successful and there's a freeing callback, use
1088 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1089 	 * isolation.
1090 	 */
1091 	if (put_new_page)
1092 		put_new_page(new_hpage, private);
1093 	else
1094 		putback_active_hugepage(new_hpage);
1095 
1096 	if (result) {
1097 		if (rc)
1098 			*result = rc;
1099 		else
1100 			*result = page_to_nid(new_hpage);
1101 	}
1102 	return rc;
1103 }
1104 
1105 /*
1106  * migrate_pages - migrate the pages specified in a list, to the free pages
1107  *		   supplied as the target for the page migration
1108  *
1109  * @from:		The list of pages to be migrated.
1110  * @get_new_page:	The function used to allocate free pages to be used
1111  *			as the target of the page migration.
1112  * @put_new_page:	The function used to free target pages if migration
1113  *			fails, or NULL if no special handling is necessary.
1114  * @private:		Private data to be passed on to get_new_page()
1115  * @mode:		The migration mode that specifies the constraints for
1116  *			page migration, if any.
1117  * @reason:		The reason for page migration.
1118  *
1119  * The function returns after 10 attempts or if no pages are movable any more
1120  * because the list has become empty or no retryable pages exist any more.
1121  * The caller should call putback_movable_pages() to return pages to the LRU
1122  * or free list only if ret != 0.
1123  *
1124  * Returns the number of pages that were not migrated, or an error code.
1125  */
1126 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1127 		free_page_t put_new_page, unsigned long private,
1128 		enum migrate_mode mode, int reason)
1129 {
1130 	int retry = 1;
1131 	int nr_failed = 0;
1132 	int nr_succeeded = 0;
1133 	int pass = 0;
1134 	struct page *page;
1135 	struct page *page2;
1136 	int swapwrite = current->flags & PF_SWAPWRITE;
1137 	int rc;
1138 
1139 	if (!swapwrite)
1140 		current->flags |= PF_SWAPWRITE;
1141 
1142 	for(pass = 0; pass < 10 && retry; pass++) {
1143 		retry = 0;
1144 
1145 		list_for_each_entry_safe(page, page2, from, lru) {
1146 			cond_resched();
1147 
1148 			if (PageHuge(page))
1149 				rc = unmap_and_move_huge_page(get_new_page,
1150 						put_new_page, private, page,
1151 						pass > 2, mode);
1152 			else
1153 				rc = unmap_and_move(get_new_page, put_new_page,
1154 						private, page, pass > 2, mode,
1155 						reason);
1156 
1157 			switch(rc) {
1158 			case -ENOMEM:
1159 				goto out;
1160 			case -EAGAIN:
1161 				retry++;
1162 				break;
1163 			case MIGRATEPAGE_SUCCESS:
1164 				nr_succeeded++;
1165 				break;
1166 			default:
1167 				/*
1168 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1169 				 * unlike -EAGAIN case, the failed page is
1170 				 * removed from migration page list and not
1171 				 * retried in the next outer loop.
1172 				 */
1173 				nr_failed++;
1174 				break;
1175 			}
1176 		}
1177 	}
1178 	nr_failed += retry;
1179 	rc = nr_failed;
1180 out:
1181 	if (nr_succeeded)
1182 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1183 	if (nr_failed)
1184 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1185 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1186 
1187 	if (!swapwrite)
1188 		current->flags &= ~PF_SWAPWRITE;
1189 
1190 	return rc;
1191 }
1192 
1193 #ifdef CONFIG_NUMA
1194 /*
1195  * Move a list of individual pages
1196  */
1197 struct page_to_node {
1198 	unsigned long addr;
1199 	struct page *page;
1200 	int node;
1201 	int status;
1202 };
1203 
1204 static struct page *new_page_node(struct page *p, unsigned long private,
1205 		int **result)
1206 {
1207 	struct page_to_node *pm = (struct page_to_node *)private;
1208 
1209 	while (pm->node != MAX_NUMNODES && pm->page != p)
1210 		pm++;
1211 
1212 	if (pm->node == MAX_NUMNODES)
1213 		return NULL;
1214 
1215 	*result = &pm->status;
1216 
1217 	if (PageHuge(p))
1218 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1219 					pm->node);
1220 	else
1221 		return __alloc_pages_node(pm->node,
1222 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1223 }
1224 
1225 /*
1226  * Move a set of pages as indicated in the pm array. The addr
1227  * field must be set to the virtual address of the page to be moved
1228  * and the node number must contain a valid target node.
1229  * The pm array ends with node = MAX_NUMNODES.
1230  */
1231 static int do_move_page_to_node_array(struct mm_struct *mm,
1232 				      struct page_to_node *pm,
1233 				      int migrate_all)
1234 {
1235 	int err;
1236 	struct page_to_node *pp;
1237 	LIST_HEAD(pagelist);
1238 
1239 	down_read(&mm->mmap_sem);
1240 
1241 	/*
1242 	 * Build a list of pages to migrate
1243 	 */
1244 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1245 		struct vm_area_struct *vma;
1246 		struct page *page;
1247 
1248 		err = -EFAULT;
1249 		vma = find_vma(mm, pp->addr);
1250 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1251 			goto set_status;
1252 
1253 		/* FOLL_DUMP to ignore special (like zero) pages */
1254 		page = follow_page(vma, pp->addr,
1255 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1256 
1257 		err = PTR_ERR(page);
1258 		if (IS_ERR(page))
1259 			goto set_status;
1260 
1261 		err = -ENOENT;
1262 		if (!page)
1263 			goto set_status;
1264 
1265 		pp->page = page;
1266 		err = page_to_nid(page);
1267 
1268 		if (err == pp->node)
1269 			/*
1270 			 * Node already in the right place
1271 			 */
1272 			goto put_and_set;
1273 
1274 		err = -EACCES;
1275 		if (page_mapcount(page) > 1 &&
1276 				!migrate_all)
1277 			goto put_and_set;
1278 
1279 		if (PageHuge(page)) {
1280 			if (PageHead(page))
1281 				isolate_huge_page(page, &pagelist);
1282 			goto put_and_set;
1283 		}
1284 
1285 		err = isolate_lru_page(page);
1286 		if (!err) {
1287 			list_add_tail(&page->lru, &pagelist);
1288 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1289 					    page_is_file_cache(page));
1290 		}
1291 put_and_set:
1292 		/*
1293 		 * Either remove the duplicate refcount from
1294 		 * isolate_lru_page() or drop the page ref if it was
1295 		 * not isolated.
1296 		 */
1297 		put_page(page);
1298 set_status:
1299 		pp->status = err;
1300 	}
1301 
1302 	err = 0;
1303 	if (!list_empty(&pagelist)) {
1304 		err = migrate_pages(&pagelist, new_page_node, NULL,
1305 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1306 		if (err)
1307 			putback_movable_pages(&pagelist);
1308 	}
1309 
1310 	up_read(&mm->mmap_sem);
1311 	return err;
1312 }
1313 
1314 /*
1315  * Migrate an array of page address onto an array of nodes and fill
1316  * the corresponding array of status.
1317  */
1318 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1319 			 unsigned long nr_pages,
1320 			 const void __user * __user *pages,
1321 			 const int __user *nodes,
1322 			 int __user *status, int flags)
1323 {
1324 	struct page_to_node *pm;
1325 	unsigned long chunk_nr_pages;
1326 	unsigned long chunk_start;
1327 	int err;
1328 
1329 	err = -ENOMEM;
1330 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1331 	if (!pm)
1332 		goto out;
1333 
1334 	migrate_prep();
1335 
1336 	/*
1337 	 * Store a chunk of page_to_node array in a page,
1338 	 * but keep the last one as a marker
1339 	 */
1340 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1341 
1342 	for (chunk_start = 0;
1343 	     chunk_start < nr_pages;
1344 	     chunk_start += chunk_nr_pages) {
1345 		int j;
1346 
1347 		if (chunk_start + chunk_nr_pages > nr_pages)
1348 			chunk_nr_pages = nr_pages - chunk_start;
1349 
1350 		/* fill the chunk pm with addrs and nodes from user-space */
1351 		for (j = 0; j < chunk_nr_pages; j++) {
1352 			const void __user *p;
1353 			int node;
1354 
1355 			err = -EFAULT;
1356 			if (get_user(p, pages + j + chunk_start))
1357 				goto out_pm;
1358 			pm[j].addr = (unsigned long) p;
1359 
1360 			if (get_user(node, nodes + j + chunk_start))
1361 				goto out_pm;
1362 
1363 			err = -ENODEV;
1364 			if (node < 0 || node >= MAX_NUMNODES)
1365 				goto out_pm;
1366 
1367 			if (!node_state(node, N_MEMORY))
1368 				goto out_pm;
1369 
1370 			err = -EACCES;
1371 			if (!node_isset(node, task_nodes))
1372 				goto out_pm;
1373 
1374 			pm[j].node = node;
1375 		}
1376 
1377 		/* End marker for this chunk */
1378 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1379 
1380 		/* Migrate this chunk */
1381 		err = do_move_page_to_node_array(mm, pm,
1382 						 flags & MPOL_MF_MOVE_ALL);
1383 		if (err < 0)
1384 			goto out_pm;
1385 
1386 		/* Return status information */
1387 		for (j = 0; j < chunk_nr_pages; j++)
1388 			if (put_user(pm[j].status, status + j + chunk_start)) {
1389 				err = -EFAULT;
1390 				goto out_pm;
1391 			}
1392 	}
1393 	err = 0;
1394 
1395 out_pm:
1396 	free_page((unsigned long)pm);
1397 out:
1398 	return err;
1399 }
1400 
1401 /*
1402  * Determine the nodes of an array of pages and store it in an array of status.
1403  */
1404 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1405 				const void __user **pages, int *status)
1406 {
1407 	unsigned long i;
1408 
1409 	down_read(&mm->mmap_sem);
1410 
1411 	for (i = 0; i < nr_pages; i++) {
1412 		unsigned long addr = (unsigned long)(*pages);
1413 		struct vm_area_struct *vma;
1414 		struct page *page;
1415 		int err = -EFAULT;
1416 
1417 		vma = find_vma(mm, addr);
1418 		if (!vma || addr < vma->vm_start)
1419 			goto set_status;
1420 
1421 		/* FOLL_DUMP to ignore special (like zero) pages */
1422 		page = follow_page(vma, addr, FOLL_DUMP);
1423 
1424 		err = PTR_ERR(page);
1425 		if (IS_ERR(page))
1426 			goto set_status;
1427 
1428 		err = page ? page_to_nid(page) : -ENOENT;
1429 set_status:
1430 		*status = err;
1431 
1432 		pages++;
1433 		status++;
1434 	}
1435 
1436 	up_read(&mm->mmap_sem);
1437 }
1438 
1439 /*
1440  * Determine the nodes of a user array of pages and store it in
1441  * a user array of status.
1442  */
1443 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1444 			 const void __user * __user *pages,
1445 			 int __user *status)
1446 {
1447 #define DO_PAGES_STAT_CHUNK_NR 16
1448 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1449 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1450 
1451 	while (nr_pages) {
1452 		unsigned long chunk_nr;
1453 
1454 		chunk_nr = nr_pages;
1455 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1456 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1457 
1458 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1459 			break;
1460 
1461 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1462 
1463 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1464 			break;
1465 
1466 		pages += chunk_nr;
1467 		status += chunk_nr;
1468 		nr_pages -= chunk_nr;
1469 	}
1470 	return nr_pages ? -EFAULT : 0;
1471 }
1472 
1473 /*
1474  * Move a list of pages in the address space of the currently executing
1475  * process.
1476  */
1477 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1478 		const void __user * __user *, pages,
1479 		const int __user *, nodes,
1480 		int __user *, status, int, flags)
1481 {
1482 	const struct cred *cred = current_cred(), *tcred;
1483 	struct task_struct *task;
1484 	struct mm_struct *mm;
1485 	int err;
1486 	nodemask_t task_nodes;
1487 
1488 	/* Check flags */
1489 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1490 		return -EINVAL;
1491 
1492 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1493 		return -EPERM;
1494 
1495 	/* Find the mm_struct */
1496 	rcu_read_lock();
1497 	task = pid ? find_task_by_vpid(pid) : current;
1498 	if (!task) {
1499 		rcu_read_unlock();
1500 		return -ESRCH;
1501 	}
1502 	get_task_struct(task);
1503 
1504 	/*
1505 	 * Check if this process has the right to modify the specified
1506 	 * process. The right exists if the process has administrative
1507 	 * capabilities, superuser privileges or the same
1508 	 * userid as the target process.
1509 	 */
1510 	tcred = __task_cred(task);
1511 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1512 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1513 	    !capable(CAP_SYS_NICE)) {
1514 		rcu_read_unlock();
1515 		err = -EPERM;
1516 		goto out;
1517 	}
1518 	rcu_read_unlock();
1519 
1520  	err = security_task_movememory(task);
1521  	if (err)
1522 		goto out;
1523 
1524 	task_nodes = cpuset_mems_allowed(task);
1525 	mm = get_task_mm(task);
1526 	put_task_struct(task);
1527 
1528 	if (!mm)
1529 		return -EINVAL;
1530 
1531 	if (nodes)
1532 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1533 				    nodes, status, flags);
1534 	else
1535 		err = do_pages_stat(mm, nr_pages, pages, status);
1536 
1537 	mmput(mm);
1538 	return err;
1539 
1540 out:
1541 	put_task_struct(task);
1542 	return err;
1543 }
1544 
1545 #ifdef CONFIG_NUMA_BALANCING
1546 /*
1547  * Returns true if this is a safe migration target node for misplaced NUMA
1548  * pages. Currently it only checks the watermarks which crude
1549  */
1550 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1551 				   unsigned long nr_migrate_pages)
1552 {
1553 	int z;
1554 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1555 		struct zone *zone = pgdat->node_zones + z;
1556 
1557 		if (!populated_zone(zone))
1558 			continue;
1559 
1560 		if (!zone_reclaimable(zone))
1561 			continue;
1562 
1563 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1564 		if (!zone_watermark_ok(zone, 0,
1565 				       high_wmark_pages(zone) +
1566 				       nr_migrate_pages,
1567 				       0, 0))
1568 			continue;
1569 		return true;
1570 	}
1571 	return false;
1572 }
1573 
1574 static struct page *alloc_misplaced_dst_page(struct page *page,
1575 					   unsigned long data,
1576 					   int **result)
1577 {
1578 	int nid = (int) data;
1579 	struct page *newpage;
1580 
1581 	newpage = __alloc_pages_node(nid,
1582 					 (GFP_HIGHUSER_MOVABLE |
1583 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1584 					  __GFP_NORETRY | __GFP_NOWARN) &
1585 					 ~(__GFP_IO | __GFP_FS), 0);
1586 
1587 	return newpage;
1588 }
1589 
1590 /*
1591  * page migration rate limiting control.
1592  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1593  * window of time. Default here says do not migrate more than 1280M per second.
1594  */
1595 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1596 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1597 
1598 /* Returns true if the node is migrate rate-limited after the update */
1599 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1600 					unsigned long nr_pages)
1601 {
1602 	/*
1603 	 * Rate-limit the amount of data that is being migrated to a node.
1604 	 * Optimal placement is no good if the memory bus is saturated and
1605 	 * all the time is being spent migrating!
1606 	 */
1607 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1608 		spin_lock(&pgdat->numabalancing_migrate_lock);
1609 		pgdat->numabalancing_migrate_nr_pages = 0;
1610 		pgdat->numabalancing_migrate_next_window = jiffies +
1611 			msecs_to_jiffies(migrate_interval_millisecs);
1612 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1613 	}
1614 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1615 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1616 								nr_pages);
1617 		return true;
1618 	}
1619 
1620 	/*
1621 	 * This is an unlocked non-atomic update so errors are possible.
1622 	 * The consequences are failing to migrate when we potentiall should
1623 	 * have which is not severe enough to warrant locking. If it is ever
1624 	 * a problem, it can be converted to a per-cpu counter.
1625 	 */
1626 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1627 	return false;
1628 }
1629 
1630 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1631 {
1632 	int page_lru;
1633 
1634 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1635 
1636 	/* Avoid migrating to a node that is nearly full */
1637 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1638 		return 0;
1639 
1640 	if (isolate_lru_page(page))
1641 		return 0;
1642 
1643 	/*
1644 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1645 	 * check on page_count(), so we must do it here, now that the page
1646 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1647 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1648 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1649 	 */
1650 	if (PageTransHuge(page) && page_count(page) != 3) {
1651 		putback_lru_page(page);
1652 		return 0;
1653 	}
1654 
1655 	page_lru = page_is_file_cache(page);
1656 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1657 				hpage_nr_pages(page));
1658 
1659 	/*
1660 	 * Isolating the page has taken another reference, so the
1661 	 * caller's reference can be safely dropped without the page
1662 	 * disappearing underneath us during migration.
1663 	 */
1664 	put_page(page);
1665 	return 1;
1666 }
1667 
1668 bool pmd_trans_migrating(pmd_t pmd)
1669 {
1670 	struct page *page = pmd_page(pmd);
1671 	return PageLocked(page);
1672 }
1673 
1674 /*
1675  * Attempt to migrate a misplaced page to the specified destination
1676  * node. Caller is expected to have an elevated reference count on
1677  * the page that will be dropped by this function before returning.
1678  */
1679 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1680 			   int node)
1681 {
1682 	pg_data_t *pgdat = NODE_DATA(node);
1683 	int isolated;
1684 	int nr_remaining;
1685 	LIST_HEAD(migratepages);
1686 
1687 	/*
1688 	 * Don't migrate file pages that are mapped in multiple processes
1689 	 * with execute permissions as they are probably shared libraries.
1690 	 */
1691 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1692 	    (vma->vm_flags & VM_EXEC))
1693 		goto out;
1694 
1695 	/*
1696 	 * Rate-limit the amount of data that is being migrated to a node.
1697 	 * Optimal placement is no good if the memory bus is saturated and
1698 	 * all the time is being spent migrating!
1699 	 */
1700 	if (numamigrate_update_ratelimit(pgdat, 1))
1701 		goto out;
1702 
1703 	isolated = numamigrate_isolate_page(pgdat, page);
1704 	if (!isolated)
1705 		goto out;
1706 
1707 	list_add(&page->lru, &migratepages);
1708 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1709 				     NULL, node, MIGRATE_ASYNC,
1710 				     MR_NUMA_MISPLACED);
1711 	if (nr_remaining) {
1712 		if (!list_empty(&migratepages)) {
1713 			list_del(&page->lru);
1714 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1715 					page_is_file_cache(page));
1716 			putback_lru_page(page);
1717 		}
1718 		isolated = 0;
1719 	} else
1720 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1721 	BUG_ON(!list_empty(&migratepages));
1722 	return isolated;
1723 
1724 out:
1725 	put_page(page);
1726 	return 0;
1727 }
1728 #endif /* CONFIG_NUMA_BALANCING */
1729 
1730 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1731 /*
1732  * Migrates a THP to a given target node. page must be locked and is unlocked
1733  * before returning.
1734  */
1735 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1736 				struct vm_area_struct *vma,
1737 				pmd_t *pmd, pmd_t entry,
1738 				unsigned long address,
1739 				struct page *page, int node)
1740 {
1741 	spinlock_t *ptl;
1742 	pg_data_t *pgdat = NODE_DATA(node);
1743 	int isolated = 0;
1744 	struct page *new_page = NULL;
1745 	int page_lru = page_is_file_cache(page);
1746 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1747 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1748 	pmd_t orig_entry;
1749 
1750 	/*
1751 	 * Rate-limit the amount of data that is being migrated to a node.
1752 	 * Optimal placement is no good if the memory bus is saturated and
1753 	 * all the time is being spent migrating!
1754 	 */
1755 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1756 		goto out_dropref;
1757 
1758 	new_page = alloc_pages_node(node,
1759 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1760 		HPAGE_PMD_ORDER);
1761 	if (!new_page)
1762 		goto out_fail;
1763 	prep_transhuge_page(new_page);
1764 
1765 	isolated = numamigrate_isolate_page(pgdat, page);
1766 	if (!isolated) {
1767 		put_page(new_page);
1768 		goto out_fail;
1769 	}
1770 
1771 	if (mm_tlb_flush_pending(mm))
1772 		flush_tlb_range(vma, mmun_start, mmun_end);
1773 
1774 	/* Prepare a page as a migration target */
1775 	__SetPageLocked(new_page);
1776 	SetPageSwapBacked(new_page);
1777 
1778 	/* anon mapping, we can simply copy page->mapping to the new page: */
1779 	new_page->mapping = page->mapping;
1780 	new_page->index = page->index;
1781 	migrate_page_copy(new_page, page);
1782 	WARN_ON(PageLRU(new_page));
1783 
1784 	/* Recheck the target PMD */
1785 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1786 	ptl = pmd_lock(mm, pmd);
1787 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1788 fail_putback:
1789 		spin_unlock(ptl);
1790 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1791 
1792 		/* Reverse changes made by migrate_page_copy() */
1793 		if (TestClearPageActive(new_page))
1794 			SetPageActive(page);
1795 		if (TestClearPageUnevictable(new_page))
1796 			SetPageUnevictable(page);
1797 
1798 		unlock_page(new_page);
1799 		put_page(new_page);		/* Free it */
1800 
1801 		/* Retake the callers reference and putback on LRU */
1802 		get_page(page);
1803 		putback_lru_page(page);
1804 		mod_zone_page_state(page_zone(page),
1805 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1806 
1807 		goto out_unlock;
1808 	}
1809 
1810 	orig_entry = *pmd;
1811 	entry = mk_pmd(new_page, vma->vm_page_prot);
1812 	entry = pmd_mkhuge(entry);
1813 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1814 
1815 	/*
1816 	 * Clear the old entry under pagetable lock and establish the new PTE.
1817 	 * Any parallel GUP will either observe the old page blocking on the
1818 	 * page lock, block on the page table lock or observe the new page.
1819 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1820 	 * guarantee the copy is visible before the pagetable update.
1821 	 */
1822 	flush_cache_range(vma, mmun_start, mmun_end);
1823 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1824 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1825 	set_pmd_at(mm, mmun_start, pmd, entry);
1826 	flush_tlb_range(vma, mmun_start, mmun_end);
1827 	update_mmu_cache_pmd(vma, address, &entry);
1828 
1829 	if (page_count(page) != 2) {
1830 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1831 		flush_tlb_range(vma, mmun_start, mmun_end);
1832 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1833 		update_mmu_cache_pmd(vma, address, &entry);
1834 		page_remove_rmap(new_page, true);
1835 		goto fail_putback;
1836 	}
1837 
1838 	mlock_migrate_page(new_page, page);
1839 	set_page_memcg(new_page, page_memcg(page));
1840 	set_page_memcg(page, NULL);
1841 	page_remove_rmap(page, true);
1842 
1843 	spin_unlock(ptl);
1844 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1845 
1846 	/* Take an "isolate" reference and put new page on the LRU. */
1847 	get_page(new_page);
1848 	putback_lru_page(new_page);
1849 
1850 	unlock_page(new_page);
1851 	unlock_page(page);
1852 	put_page(page);			/* Drop the rmap reference */
1853 	put_page(page);			/* Drop the LRU isolation reference */
1854 
1855 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1856 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1857 
1858 	mod_zone_page_state(page_zone(page),
1859 			NR_ISOLATED_ANON + page_lru,
1860 			-HPAGE_PMD_NR);
1861 	return isolated;
1862 
1863 out_fail:
1864 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1865 out_dropref:
1866 	ptl = pmd_lock(mm, pmd);
1867 	if (pmd_same(*pmd, entry)) {
1868 		entry = pmd_modify(entry, vma->vm_page_prot);
1869 		set_pmd_at(mm, mmun_start, pmd, entry);
1870 		update_mmu_cache_pmd(vma, address, &entry);
1871 	}
1872 	spin_unlock(ptl);
1873 
1874 out_unlock:
1875 	unlock_page(page);
1876 	put_page(page);
1877 	return 0;
1878 }
1879 #endif /* CONFIG_NUMA_BALANCING */
1880 
1881 #endif /* CONFIG_NUMA */
1882