xref: /openbmc/linux/mm/migrate.c (revision cb325ddd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53 #include <linux/random.h>
54 #include <linux/sched/sysctl.h>
55 
56 #include <asm/tlbflush.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/migrate.h>
60 
61 #include "internal.h"
62 
63 int isolate_movable_page(struct page *page, isolate_mode_t mode)
64 {
65 	struct address_space *mapping;
66 
67 	/*
68 	 * Avoid burning cycles with pages that are yet under __free_pages(),
69 	 * or just got freed under us.
70 	 *
71 	 * In case we 'win' a race for a movable page being freed under us and
72 	 * raise its refcount preventing __free_pages() from doing its job
73 	 * the put_page() at the end of this block will take care of
74 	 * release this page, thus avoiding a nasty leakage.
75 	 */
76 	if (unlikely(!get_page_unless_zero(page)))
77 		goto out;
78 
79 	/*
80 	 * Check PageMovable before holding a PG_lock because page's owner
81 	 * assumes anybody doesn't touch PG_lock of newly allocated page
82 	 * so unconditionally grabbing the lock ruins page's owner side.
83 	 */
84 	if (unlikely(!__PageMovable(page)))
85 		goto out_putpage;
86 	/*
87 	 * As movable pages are not isolated from LRU lists, concurrent
88 	 * compaction threads can race against page migration functions
89 	 * as well as race against the releasing a page.
90 	 *
91 	 * In order to avoid having an already isolated movable page
92 	 * being (wrongly) re-isolated while it is under migration,
93 	 * or to avoid attempting to isolate pages being released,
94 	 * lets be sure we have the page lock
95 	 * before proceeding with the movable page isolation steps.
96 	 */
97 	if (unlikely(!trylock_page(page)))
98 		goto out_putpage;
99 
100 	if (!PageMovable(page) || PageIsolated(page))
101 		goto out_no_isolated;
102 
103 	mapping = page_mapping(page);
104 	VM_BUG_ON_PAGE(!mapping, page);
105 
106 	if (!mapping->a_ops->isolate_page(page, mode))
107 		goto out_no_isolated;
108 
109 	/* Driver shouldn't use PG_isolated bit of page->flags */
110 	WARN_ON_ONCE(PageIsolated(page));
111 	SetPageIsolated(page);
112 	unlock_page(page);
113 
114 	return 0;
115 
116 out_no_isolated:
117 	unlock_page(page);
118 out_putpage:
119 	put_page(page);
120 out:
121 	return -EBUSY;
122 }
123 
124 static void putback_movable_page(struct page *page)
125 {
126 	struct address_space *mapping;
127 
128 	mapping = page_mapping(page);
129 	mapping->a_ops->putback_page(page);
130 	ClearPageIsolated(page);
131 }
132 
133 /*
134  * Put previously isolated pages back onto the appropriate lists
135  * from where they were once taken off for compaction/migration.
136  *
137  * This function shall be used whenever the isolated pageset has been
138  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
139  * and isolate_huge_page().
140  */
141 void putback_movable_pages(struct list_head *l)
142 {
143 	struct page *page;
144 	struct page *page2;
145 
146 	list_for_each_entry_safe(page, page2, l, lru) {
147 		if (unlikely(PageHuge(page))) {
148 			putback_active_hugepage(page);
149 			continue;
150 		}
151 		list_del(&page->lru);
152 		/*
153 		 * We isolated non-lru movable page so here we can use
154 		 * __PageMovable because LRU page's mapping cannot have
155 		 * PAGE_MAPPING_MOVABLE.
156 		 */
157 		if (unlikely(__PageMovable(page))) {
158 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
159 			lock_page(page);
160 			if (PageMovable(page))
161 				putback_movable_page(page);
162 			else
163 				ClearPageIsolated(page);
164 			unlock_page(page);
165 			put_page(page);
166 		} else {
167 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
168 					page_is_file_lru(page), -thp_nr_pages(page));
169 			putback_lru_page(page);
170 		}
171 	}
172 }
173 
174 /*
175  * Restore a potential migration pte to a working pte entry
176  */
177 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
178 				 unsigned long addr, void *old)
179 {
180 	struct page_vma_mapped_walk pvmw = {
181 		.page = old,
182 		.vma = vma,
183 		.address = addr,
184 		.flags = PVMW_SYNC | PVMW_MIGRATION,
185 	};
186 	struct page *new;
187 	pte_t pte;
188 	swp_entry_t entry;
189 
190 	VM_BUG_ON_PAGE(PageTail(page), page);
191 	while (page_vma_mapped_walk(&pvmw)) {
192 		if (PageKsm(page))
193 			new = page;
194 		else
195 			new = page - pvmw.page->index +
196 				linear_page_index(vma, pvmw.address);
197 
198 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
199 		/* PMD-mapped THP migration entry */
200 		if (!pvmw.pte) {
201 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
202 			remove_migration_pmd(&pvmw, new);
203 			continue;
204 		}
205 #endif
206 
207 		get_page(new);
208 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
209 		if (pte_swp_soft_dirty(*pvmw.pte))
210 			pte = pte_mksoft_dirty(pte);
211 
212 		/*
213 		 * Recheck VMA as permissions can change since migration started
214 		 */
215 		entry = pte_to_swp_entry(*pvmw.pte);
216 		if (is_writable_migration_entry(entry))
217 			pte = maybe_mkwrite(pte, vma);
218 		else if (pte_swp_uffd_wp(*pvmw.pte))
219 			pte = pte_mkuffd_wp(pte);
220 
221 		if (unlikely(is_device_private_page(new))) {
222 			if (pte_write(pte))
223 				entry = make_writable_device_private_entry(
224 							page_to_pfn(new));
225 			else
226 				entry = make_readable_device_private_entry(
227 							page_to_pfn(new));
228 			pte = swp_entry_to_pte(entry);
229 			if (pte_swp_soft_dirty(*pvmw.pte))
230 				pte = pte_swp_mksoft_dirty(pte);
231 			if (pte_swp_uffd_wp(*pvmw.pte))
232 				pte = pte_swp_mkuffd_wp(pte);
233 		}
234 
235 #ifdef CONFIG_HUGETLB_PAGE
236 		if (PageHuge(new)) {
237 			unsigned int shift = huge_page_shift(hstate_vma(vma));
238 
239 			pte = pte_mkhuge(pte);
240 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
241 			if (PageAnon(new))
242 				hugepage_add_anon_rmap(new, vma, pvmw.address);
243 			else
244 				page_dup_rmap(new, true);
245 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
246 		} else
247 #endif
248 		{
249 			if (PageAnon(new))
250 				page_add_anon_rmap(new, vma, pvmw.address, false);
251 			else
252 				page_add_file_rmap(new, false);
253 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
254 		}
255 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
256 			mlock_vma_page(new);
257 
258 		if (PageTransHuge(page) && PageMlocked(page))
259 			clear_page_mlock(page);
260 
261 		/* No need to invalidate - it was non-present before */
262 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
263 	}
264 
265 	return true;
266 }
267 
268 /*
269  * Get rid of all migration entries and replace them by
270  * references to the indicated page.
271  */
272 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
273 {
274 	struct rmap_walk_control rwc = {
275 		.rmap_one = remove_migration_pte,
276 		.arg = old,
277 	};
278 
279 	if (locked)
280 		rmap_walk_locked(new, &rwc);
281 	else
282 		rmap_walk(new, &rwc);
283 }
284 
285 /*
286  * Something used the pte of a page under migration. We need to
287  * get to the page and wait until migration is finished.
288  * When we return from this function the fault will be retried.
289  */
290 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
291 				spinlock_t *ptl)
292 {
293 	pte_t pte;
294 	swp_entry_t entry;
295 
296 	spin_lock(ptl);
297 	pte = *ptep;
298 	if (!is_swap_pte(pte))
299 		goto out;
300 
301 	entry = pte_to_swp_entry(pte);
302 	if (!is_migration_entry(entry))
303 		goto out;
304 
305 	migration_entry_wait_on_locked(entry, ptep, ptl);
306 	return;
307 out:
308 	pte_unmap_unlock(ptep, ptl);
309 }
310 
311 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
312 				unsigned long address)
313 {
314 	spinlock_t *ptl = pte_lockptr(mm, pmd);
315 	pte_t *ptep = pte_offset_map(pmd, address);
316 	__migration_entry_wait(mm, ptep, ptl);
317 }
318 
319 void migration_entry_wait_huge(struct vm_area_struct *vma,
320 		struct mm_struct *mm, pte_t *pte)
321 {
322 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
323 	__migration_entry_wait(mm, pte, ptl);
324 }
325 
326 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
327 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
328 {
329 	spinlock_t *ptl;
330 
331 	ptl = pmd_lock(mm, pmd);
332 	if (!is_pmd_migration_entry(*pmd))
333 		goto unlock;
334 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
335 	return;
336 unlock:
337 	spin_unlock(ptl);
338 }
339 #endif
340 
341 static int expected_page_refs(struct address_space *mapping, struct page *page)
342 {
343 	int expected_count = 1;
344 
345 	/*
346 	 * Device private pages have an extra refcount as they are
347 	 * ZONE_DEVICE pages.
348 	 */
349 	expected_count += is_device_private_page(page);
350 	if (mapping)
351 		expected_count += compound_nr(page) + page_has_private(page);
352 
353 	return expected_count;
354 }
355 
356 /*
357  * Replace the page in the mapping.
358  *
359  * The number of remaining references must be:
360  * 1 for anonymous pages without a mapping
361  * 2 for pages with a mapping
362  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
363  */
364 int folio_migrate_mapping(struct address_space *mapping,
365 		struct folio *newfolio, struct folio *folio, int extra_count)
366 {
367 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
368 	struct zone *oldzone, *newzone;
369 	int dirty;
370 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
371 	long nr = folio_nr_pages(folio);
372 
373 	if (!mapping) {
374 		/* Anonymous page without mapping */
375 		if (folio_ref_count(folio) != expected_count)
376 			return -EAGAIN;
377 
378 		/* No turning back from here */
379 		newfolio->index = folio->index;
380 		newfolio->mapping = folio->mapping;
381 		if (folio_test_swapbacked(folio))
382 			__folio_set_swapbacked(newfolio);
383 
384 		return MIGRATEPAGE_SUCCESS;
385 	}
386 
387 	oldzone = folio_zone(folio);
388 	newzone = folio_zone(newfolio);
389 
390 	xas_lock_irq(&xas);
391 	if (!folio_ref_freeze(folio, expected_count)) {
392 		xas_unlock_irq(&xas);
393 		return -EAGAIN;
394 	}
395 
396 	/*
397 	 * Now we know that no one else is looking at the folio:
398 	 * no turning back from here.
399 	 */
400 	newfolio->index = folio->index;
401 	newfolio->mapping = folio->mapping;
402 	folio_ref_add(newfolio, nr); /* add cache reference */
403 	if (folio_test_swapbacked(folio)) {
404 		__folio_set_swapbacked(newfolio);
405 		if (folio_test_swapcache(folio)) {
406 			folio_set_swapcache(newfolio);
407 			newfolio->private = folio_get_private(folio);
408 		}
409 	} else {
410 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
411 	}
412 
413 	/* Move dirty while page refs frozen and newpage not yet exposed */
414 	dirty = folio_test_dirty(folio);
415 	if (dirty) {
416 		folio_clear_dirty(folio);
417 		folio_set_dirty(newfolio);
418 	}
419 
420 	xas_store(&xas, newfolio);
421 
422 	/*
423 	 * Drop cache reference from old page by unfreezing
424 	 * to one less reference.
425 	 * We know this isn't the last reference.
426 	 */
427 	folio_ref_unfreeze(folio, expected_count - nr);
428 
429 	xas_unlock(&xas);
430 	/* Leave irq disabled to prevent preemption while updating stats */
431 
432 	/*
433 	 * If moved to a different zone then also account
434 	 * the page for that zone. Other VM counters will be
435 	 * taken care of when we establish references to the
436 	 * new page and drop references to the old page.
437 	 *
438 	 * Note that anonymous pages are accounted for
439 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
440 	 * are mapped to swap space.
441 	 */
442 	if (newzone != oldzone) {
443 		struct lruvec *old_lruvec, *new_lruvec;
444 		struct mem_cgroup *memcg;
445 
446 		memcg = folio_memcg(folio);
447 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
448 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
449 
450 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
451 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
452 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
453 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
454 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
455 		}
456 #ifdef CONFIG_SWAP
457 		if (folio_test_swapcache(folio)) {
458 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
459 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
460 		}
461 #endif
462 		if (dirty && mapping_can_writeback(mapping)) {
463 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
464 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
465 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
466 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
467 		}
468 	}
469 	local_irq_enable();
470 
471 	return MIGRATEPAGE_SUCCESS;
472 }
473 EXPORT_SYMBOL(folio_migrate_mapping);
474 
475 /*
476  * The expected number of remaining references is the same as that
477  * of folio_migrate_mapping().
478  */
479 int migrate_huge_page_move_mapping(struct address_space *mapping,
480 				   struct page *newpage, struct page *page)
481 {
482 	XA_STATE(xas, &mapping->i_pages, page_index(page));
483 	int expected_count;
484 
485 	xas_lock_irq(&xas);
486 	expected_count = 2 + page_has_private(page);
487 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
488 		xas_unlock_irq(&xas);
489 		return -EAGAIN;
490 	}
491 
492 	if (!page_ref_freeze(page, expected_count)) {
493 		xas_unlock_irq(&xas);
494 		return -EAGAIN;
495 	}
496 
497 	newpage->index = page->index;
498 	newpage->mapping = page->mapping;
499 
500 	get_page(newpage);
501 
502 	xas_store(&xas, newpage);
503 
504 	page_ref_unfreeze(page, expected_count - 1);
505 
506 	xas_unlock_irq(&xas);
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 
511 /*
512  * Copy the flags and some other ancillary information
513  */
514 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
515 {
516 	int cpupid;
517 
518 	if (folio_test_error(folio))
519 		folio_set_error(newfolio);
520 	if (folio_test_referenced(folio))
521 		folio_set_referenced(newfolio);
522 	if (folio_test_uptodate(folio))
523 		folio_mark_uptodate(newfolio);
524 	if (folio_test_clear_active(folio)) {
525 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
526 		folio_set_active(newfolio);
527 	} else if (folio_test_clear_unevictable(folio))
528 		folio_set_unevictable(newfolio);
529 	if (folio_test_workingset(folio))
530 		folio_set_workingset(newfolio);
531 	if (folio_test_checked(folio))
532 		folio_set_checked(newfolio);
533 	if (folio_test_mappedtodisk(folio))
534 		folio_set_mappedtodisk(newfolio);
535 
536 	/* Move dirty on pages not done by folio_migrate_mapping() */
537 	if (folio_test_dirty(folio))
538 		folio_set_dirty(newfolio);
539 
540 	if (folio_test_young(folio))
541 		folio_set_young(newfolio);
542 	if (folio_test_idle(folio))
543 		folio_set_idle(newfolio);
544 
545 	/*
546 	 * Copy NUMA information to the new page, to prevent over-eager
547 	 * future migrations of this same page.
548 	 */
549 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
550 	page_cpupid_xchg_last(&newfolio->page, cpupid);
551 
552 	folio_migrate_ksm(newfolio, folio);
553 	/*
554 	 * Please do not reorder this without considering how mm/ksm.c's
555 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
556 	 */
557 	if (folio_test_swapcache(folio))
558 		folio_clear_swapcache(folio);
559 	folio_clear_private(folio);
560 
561 	/* page->private contains hugetlb specific flags */
562 	if (!folio_test_hugetlb(folio))
563 		folio->private = NULL;
564 
565 	/*
566 	 * If any waiters have accumulated on the new page then
567 	 * wake them up.
568 	 */
569 	if (folio_test_writeback(newfolio))
570 		folio_end_writeback(newfolio);
571 
572 	/*
573 	 * PG_readahead shares the same bit with PG_reclaim.  The above
574 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
575 	 * bit after that.
576 	 */
577 	if (folio_test_readahead(folio))
578 		folio_set_readahead(newfolio);
579 
580 	folio_copy_owner(newfolio, folio);
581 
582 	if (!folio_test_hugetlb(folio))
583 		mem_cgroup_migrate(folio, newfolio);
584 }
585 EXPORT_SYMBOL(folio_migrate_flags);
586 
587 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
588 {
589 	folio_copy(newfolio, folio);
590 	folio_migrate_flags(newfolio, folio);
591 }
592 EXPORT_SYMBOL(folio_migrate_copy);
593 
594 /************************************************************
595  *                    Migration functions
596  ***********************************************************/
597 
598 /*
599  * Common logic to directly migrate a single LRU page suitable for
600  * pages that do not use PagePrivate/PagePrivate2.
601  *
602  * Pages are locked upon entry and exit.
603  */
604 int migrate_page(struct address_space *mapping,
605 		struct page *newpage, struct page *page,
606 		enum migrate_mode mode)
607 {
608 	struct folio *newfolio = page_folio(newpage);
609 	struct folio *folio = page_folio(page);
610 	int rc;
611 
612 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
613 
614 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
615 
616 	if (rc != MIGRATEPAGE_SUCCESS)
617 		return rc;
618 
619 	if (mode != MIGRATE_SYNC_NO_COPY)
620 		folio_migrate_copy(newfolio, folio);
621 	else
622 		folio_migrate_flags(newfolio, folio);
623 	return MIGRATEPAGE_SUCCESS;
624 }
625 EXPORT_SYMBOL(migrate_page);
626 
627 #ifdef CONFIG_BLOCK
628 /* Returns true if all buffers are successfully locked */
629 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
630 							enum migrate_mode mode)
631 {
632 	struct buffer_head *bh = head;
633 
634 	/* Simple case, sync compaction */
635 	if (mode != MIGRATE_ASYNC) {
636 		do {
637 			lock_buffer(bh);
638 			bh = bh->b_this_page;
639 
640 		} while (bh != head);
641 
642 		return true;
643 	}
644 
645 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
646 	do {
647 		if (!trylock_buffer(bh)) {
648 			/*
649 			 * We failed to lock the buffer and cannot stall in
650 			 * async migration. Release the taken locks
651 			 */
652 			struct buffer_head *failed_bh = bh;
653 			bh = head;
654 			while (bh != failed_bh) {
655 				unlock_buffer(bh);
656 				bh = bh->b_this_page;
657 			}
658 			return false;
659 		}
660 
661 		bh = bh->b_this_page;
662 	} while (bh != head);
663 	return true;
664 }
665 
666 static int __buffer_migrate_page(struct address_space *mapping,
667 		struct page *newpage, struct page *page, enum migrate_mode mode,
668 		bool check_refs)
669 {
670 	struct buffer_head *bh, *head;
671 	int rc;
672 	int expected_count;
673 
674 	if (!page_has_buffers(page))
675 		return migrate_page(mapping, newpage, page, mode);
676 
677 	/* Check whether page does not have extra refs before we do more work */
678 	expected_count = expected_page_refs(mapping, page);
679 	if (page_count(page) != expected_count)
680 		return -EAGAIN;
681 
682 	head = page_buffers(page);
683 	if (!buffer_migrate_lock_buffers(head, mode))
684 		return -EAGAIN;
685 
686 	if (check_refs) {
687 		bool busy;
688 		bool invalidated = false;
689 
690 recheck_buffers:
691 		busy = false;
692 		spin_lock(&mapping->private_lock);
693 		bh = head;
694 		do {
695 			if (atomic_read(&bh->b_count)) {
696 				busy = true;
697 				break;
698 			}
699 			bh = bh->b_this_page;
700 		} while (bh != head);
701 		if (busy) {
702 			if (invalidated) {
703 				rc = -EAGAIN;
704 				goto unlock_buffers;
705 			}
706 			spin_unlock(&mapping->private_lock);
707 			invalidate_bh_lrus();
708 			invalidated = true;
709 			goto recheck_buffers;
710 		}
711 	}
712 
713 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
714 	if (rc != MIGRATEPAGE_SUCCESS)
715 		goto unlock_buffers;
716 
717 	attach_page_private(newpage, detach_page_private(page));
718 
719 	bh = head;
720 	do {
721 		set_bh_page(bh, newpage, bh_offset(bh));
722 		bh = bh->b_this_page;
723 
724 	} while (bh != head);
725 
726 	if (mode != MIGRATE_SYNC_NO_COPY)
727 		migrate_page_copy(newpage, page);
728 	else
729 		migrate_page_states(newpage, page);
730 
731 	rc = MIGRATEPAGE_SUCCESS;
732 unlock_buffers:
733 	if (check_refs)
734 		spin_unlock(&mapping->private_lock);
735 	bh = head;
736 	do {
737 		unlock_buffer(bh);
738 		bh = bh->b_this_page;
739 
740 	} while (bh != head);
741 
742 	return rc;
743 }
744 
745 /*
746  * Migration function for pages with buffers. This function can only be used
747  * if the underlying filesystem guarantees that no other references to "page"
748  * exist. For example attached buffer heads are accessed only under page lock.
749  */
750 int buffer_migrate_page(struct address_space *mapping,
751 		struct page *newpage, struct page *page, enum migrate_mode mode)
752 {
753 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
754 }
755 EXPORT_SYMBOL(buffer_migrate_page);
756 
757 /*
758  * Same as above except that this variant is more careful and checks that there
759  * are also no buffer head references. This function is the right one for
760  * mappings where buffer heads are directly looked up and referenced (such as
761  * block device mappings).
762  */
763 int buffer_migrate_page_norefs(struct address_space *mapping,
764 		struct page *newpage, struct page *page, enum migrate_mode mode)
765 {
766 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
767 }
768 #endif
769 
770 /*
771  * Writeback a page to clean the dirty state
772  */
773 static int writeout(struct address_space *mapping, struct page *page)
774 {
775 	struct writeback_control wbc = {
776 		.sync_mode = WB_SYNC_NONE,
777 		.nr_to_write = 1,
778 		.range_start = 0,
779 		.range_end = LLONG_MAX,
780 		.for_reclaim = 1
781 	};
782 	int rc;
783 
784 	if (!mapping->a_ops->writepage)
785 		/* No write method for the address space */
786 		return -EINVAL;
787 
788 	if (!clear_page_dirty_for_io(page))
789 		/* Someone else already triggered a write */
790 		return -EAGAIN;
791 
792 	/*
793 	 * A dirty page may imply that the underlying filesystem has
794 	 * the page on some queue. So the page must be clean for
795 	 * migration. Writeout may mean we loose the lock and the
796 	 * page state is no longer what we checked for earlier.
797 	 * At this point we know that the migration attempt cannot
798 	 * be successful.
799 	 */
800 	remove_migration_ptes(page, page, false);
801 
802 	rc = mapping->a_ops->writepage(page, &wbc);
803 
804 	if (rc != AOP_WRITEPAGE_ACTIVATE)
805 		/* unlocked. Relock */
806 		lock_page(page);
807 
808 	return (rc < 0) ? -EIO : -EAGAIN;
809 }
810 
811 /*
812  * Default handling if a filesystem does not provide a migration function.
813  */
814 static int fallback_migrate_page(struct address_space *mapping,
815 	struct page *newpage, struct page *page, enum migrate_mode mode)
816 {
817 	if (PageDirty(page)) {
818 		/* Only writeback pages in full synchronous migration */
819 		switch (mode) {
820 		case MIGRATE_SYNC:
821 		case MIGRATE_SYNC_NO_COPY:
822 			break;
823 		default:
824 			return -EBUSY;
825 		}
826 		return writeout(mapping, page);
827 	}
828 
829 	/*
830 	 * Buffers may be managed in a filesystem specific way.
831 	 * We must have no buffers or drop them.
832 	 */
833 	if (page_has_private(page) &&
834 	    !try_to_release_page(page, GFP_KERNEL))
835 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
836 
837 	return migrate_page(mapping, newpage, page, mode);
838 }
839 
840 /*
841  * Move a page to a newly allocated page
842  * The page is locked and all ptes have been successfully removed.
843  *
844  * The new page will have replaced the old page if this function
845  * is successful.
846  *
847  * Return value:
848  *   < 0 - error code
849  *  MIGRATEPAGE_SUCCESS - success
850  */
851 static int move_to_new_page(struct page *newpage, struct page *page,
852 				enum migrate_mode mode)
853 {
854 	struct address_space *mapping;
855 	int rc = -EAGAIN;
856 	bool is_lru = !__PageMovable(page);
857 
858 	VM_BUG_ON_PAGE(!PageLocked(page), page);
859 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
860 
861 	mapping = page_mapping(page);
862 
863 	if (likely(is_lru)) {
864 		if (!mapping)
865 			rc = migrate_page(mapping, newpage, page, mode);
866 		else if (mapping->a_ops->migratepage)
867 			/*
868 			 * Most pages have a mapping and most filesystems
869 			 * provide a migratepage callback. Anonymous pages
870 			 * are part of swap space which also has its own
871 			 * migratepage callback. This is the most common path
872 			 * for page migration.
873 			 */
874 			rc = mapping->a_ops->migratepage(mapping, newpage,
875 							page, mode);
876 		else
877 			rc = fallback_migrate_page(mapping, newpage,
878 							page, mode);
879 	} else {
880 		/*
881 		 * In case of non-lru page, it could be released after
882 		 * isolation step. In that case, we shouldn't try migration.
883 		 */
884 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
885 		if (!PageMovable(page)) {
886 			rc = MIGRATEPAGE_SUCCESS;
887 			ClearPageIsolated(page);
888 			goto out;
889 		}
890 
891 		rc = mapping->a_ops->migratepage(mapping, newpage,
892 						page, mode);
893 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
894 			!PageIsolated(page));
895 	}
896 
897 	/*
898 	 * When successful, old pagecache page->mapping must be cleared before
899 	 * page is freed; but stats require that PageAnon be left as PageAnon.
900 	 */
901 	if (rc == MIGRATEPAGE_SUCCESS) {
902 		if (__PageMovable(page)) {
903 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
904 
905 			/*
906 			 * We clear PG_movable under page_lock so any compactor
907 			 * cannot try to migrate this page.
908 			 */
909 			ClearPageIsolated(page);
910 		}
911 
912 		/*
913 		 * Anonymous and movable page->mapping will be cleared by
914 		 * free_pages_prepare so don't reset it here for keeping
915 		 * the type to work PageAnon, for example.
916 		 */
917 		if (!PageMappingFlags(page))
918 			page->mapping = NULL;
919 
920 		if (likely(!is_zone_device_page(newpage)))
921 			flush_dcache_folio(page_folio(newpage));
922 	}
923 out:
924 	return rc;
925 }
926 
927 static int __unmap_and_move(struct page *page, struct page *newpage,
928 				int force, enum migrate_mode mode)
929 {
930 	int rc = -EAGAIN;
931 	bool page_was_mapped = false;
932 	struct anon_vma *anon_vma = NULL;
933 	bool is_lru = !__PageMovable(page);
934 
935 	if (!trylock_page(page)) {
936 		if (!force || mode == MIGRATE_ASYNC)
937 			goto out;
938 
939 		/*
940 		 * It's not safe for direct compaction to call lock_page.
941 		 * For example, during page readahead pages are added locked
942 		 * to the LRU. Later, when the IO completes the pages are
943 		 * marked uptodate and unlocked. However, the queueing
944 		 * could be merging multiple pages for one bio (e.g.
945 		 * mpage_readahead). If an allocation happens for the
946 		 * second or third page, the process can end up locking
947 		 * the same page twice and deadlocking. Rather than
948 		 * trying to be clever about what pages can be locked,
949 		 * avoid the use of lock_page for direct compaction
950 		 * altogether.
951 		 */
952 		if (current->flags & PF_MEMALLOC)
953 			goto out;
954 
955 		lock_page(page);
956 	}
957 
958 	if (PageWriteback(page)) {
959 		/*
960 		 * Only in the case of a full synchronous migration is it
961 		 * necessary to wait for PageWriteback. In the async case,
962 		 * the retry loop is too short and in the sync-light case,
963 		 * the overhead of stalling is too much
964 		 */
965 		switch (mode) {
966 		case MIGRATE_SYNC:
967 		case MIGRATE_SYNC_NO_COPY:
968 			break;
969 		default:
970 			rc = -EBUSY;
971 			goto out_unlock;
972 		}
973 		if (!force)
974 			goto out_unlock;
975 		wait_on_page_writeback(page);
976 	}
977 
978 	/*
979 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
980 	 * we cannot notice that anon_vma is freed while we migrates a page.
981 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
982 	 * of migration. File cache pages are no problem because of page_lock()
983 	 * File Caches may use write_page() or lock_page() in migration, then,
984 	 * just care Anon page here.
985 	 *
986 	 * Only page_get_anon_vma() understands the subtleties of
987 	 * getting a hold on an anon_vma from outside one of its mms.
988 	 * But if we cannot get anon_vma, then we won't need it anyway,
989 	 * because that implies that the anon page is no longer mapped
990 	 * (and cannot be remapped so long as we hold the page lock).
991 	 */
992 	if (PageAnon(page) && !PageKsm(page))
993 		anon_vma = page_get_anon_vma(page);
994 
995 	/*
996 	 * Block others from accessing the new page when we get around to
997 	 * establishing additional references. We are usually the only one
998 	 * holding a reference to newpage at this point. We used to have a BUG
999 	 * here if trylock_page(newpage) fails, but would like to allow for
1000 	 * cases where there might be a race with the previous use of newpage.
1001 	 * This is much like races on refcount of oldpage: just don't BUG().
1002 	 */
1003 	if (unlikely(!trylock_page(newpage)))
1004 		goto out_unlock;
1005 
1006 	if (unlikely(!is_lru)) {
1007 		rc = move_to_new_page(newpage, page, mode);
1008 		goto out_unlock_both;
1009 	}
1010 
1011 	/*
1012 	 * Corner case handling:
1013 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1014 	 * and treated as swapcache but it has no rmap yet.
1015 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1016 	 * trigger a BUG.  So handle it here.
1017 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1018 	 * fs-private metadata. The page can be picked up due to memory
1019 	 * offlining.  Everywhere else except page reclaim, the page is
1020 	 * invisible to the vm, so the page can not be migrated.  So try to
1021 	 * free the metadata, so the page can be freed.
1022 	 */
1023 	if (!page->mapping) {
1024 		VM_BUG_ON_PAGE(PageAnon(page), page);
1025 		if (page_has_private(page)) {
1026 			try_to_free_buffers(page);
1027 			goto out_unlock_both;
1028 		}
1029 	} else if (page_mapped(page)) {
1030 		/* Establish migration ptes */
1031 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1032 				page);
1033 		try_to_migrate(page, 0);
1034 		page_was_mapped = true;
1035 	}
1036 
1037 	if (!page_mapped(page))
1038 		rc = move_to_new_page(newpage, page, mode);
1039 
1040 	if (page_was_mapped)
1041 		remove_migration_ptes(page,
1042 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1043 
1044 out_unlock_both:
1045 	unlock_page(newpage);
1046 out_unlock:
1047 	/* Drop an anon_vma reference if we took one */
1048 	if (anon_vma)
1049 		put_anon_vma(anon_vma);
1050 	unlock_page(page);
1051 out:
1052 	/*
1053 	 * If migration is successful, decrease refcount of the newpage
1054 	 * which will not free the page because new page owner increased
1055 	 * refcounter. As well, if it is LRU page, add the page to LRU
1056 	 * list in here. Use the old state of the isolated source page to
1057 	 * determine if we migrated a LRU page. newpage was already unlocked
1058 	 * and possibly modified by its owner - don't rely on the page
1059 	 * state.
1060 	 */
1061 	if (rc == MIGRATEPAGE_SUCCESS) {
1062 		if (unlikely(!is_lru))
1063 			put_page(newpage);
1064 		else
1065 			putback_lru_page(newpage);
1066 	}
1067 
1068 	return rc;
1069 }
1070 
1071 /*
1072  * Obtain the lock on page, remove all ptes and migrate the page
1073  * to the newly allocated page in newpage.
1074  */
1075 static int unmap_and_move(new_page_t get_new_page,
1076 				   free_page_t put_new_page,
1077 				   unsigned long private, struct page *page,
1078 				   int force, enum migrate_mode mode,
1079 				   enum migrate_reason reason,
1080 				   struct list_head *ret)
1081 {
1082 	int rc = MIGRATEPAGE_SUCCESS;
1083 	struct page *newpage = NULL;
1084 
1085 	if (!thp_migration_supported() && PageTransHuge(page))
1086 		return -ENOSYS;
1087 
1088 	if (page_count(page) == 1) {
1089 		/* page was freed from under us. So we are done. */
1090 		ClearPageActive(page);
1091 		ClearPageUnevictable(page);
1092 		if (unlikely(__PageMovable(page))) {
1093 			lock_page(page);
1094 			if (!PageMovable(page))
1095 				ClearPageIsolated(page);
1096 			unlock_page(page);
1097 		}
1098 		goto out;
1099 	}
1100 
1101 	newpage = get_new_page(page, private);
1102 	if (!newpage)
1103 		return -ENOMEM;
1104 
1105 	rc = __unmap_and_move(page, newpage, force, mode);
1106 	if (rc == MIGRATEPAGE_SUCCESS)
1107 		set_page_owner_migrate_reason(newpage, reason);
1108 
1109 out:
1110 	if (rc != -EAGAIN) {
1111 		/*
1112 		 * A page that has been migrated has all references
1113 		 * removed and will be freed. A page that has not been
1114 		 * migrated will have kept its references and be restored.
1115 		 */
1116 		list_del(&page->lru);
1117 	}
1118 
1119 	/*
1120 	 * If migration is successful, releases reference grabbed during
1121 	 * isolation. Otherwise, restore the page to right list unless
1122 	 * we want to retry.
1123 	 */
1124 	if (rc == MIGRATEPAGE_SUCCESS) {
1125 		/*
1126 		 * Compaction can migrate also non-LRU pages which are
1127 		 * not accounted to NR_ISOLATED_*. They can be recognized
1128 		 * as __PageMovable
1129 		 */
1130 		if (likely(!__PageMovable(page)))
1131 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1132 					page_is_file_lru(page), -thp_nr_pages(page));
1133 
1134 		if (reason != MR_MEMORY_FAILURE)
1135 			/*
1136 			 * We release the page in page_handle_poison.
1137 			 */
1138 			put_page(page);
1139 	} else {
1140 		if (rc != -EAGAIN)
1141 			list_add_tail(&page->lru, ret);
1142 
1143 		if (put_new_page)
1144 			put_new_page(newpage, private);
1145 		else
1146 			put_page(newpage);
1147 	}
1148 
1149 	return rc;
1150 }
1151 
1152 /*
1153  * Counterpart of unmap_and_move_page() for hugepage migration.
1154  *
1155  * This function doesn't wait the completion of hugepage I/O
1156  * because there is no race between I/O and migration for hugepage.
1157  * Note that currently hugepage I/O occurs only in direct I/O
1158  * where no lock is held and PG_writeback is irrelevant,
1159  * and writeback status of all subpages are counted in the reference
1160  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1161  * under direct I/O, the reference of the head page is 512 and a bit more.)
1162  * This means that when we try to migrate hugepage whose subpages are
1163  * doing direct I/O, some references remain after try_to_unmap() and
1164  * hugepage migration fails without data corruption.
1165  *
1166  * There is also no race when direct I/O is issued on the page under migration,
1167  * because then pte is replaced with migration swap entry and direct I/O code
1168  * will wait in the page fault for migration to complete.
1169  */
1170 static int unmap_and_move_huge_page(new_page_t get_new_page,
1171 				free_page_t put_new_page, unsigned long private,
1172 				struct page *hpage, int force,
1173 				enum migrate_mode mode, int reason,
1174 				struct list_head *ret)
1175 {
1176 	int rc = -EAGAIN;
1177 	int page_was_mapped = 0;
1178 	struct page *new_hpage;
1179 	struct anon_vma *anon_vma = NULL;
1180 	struct address_space *mapping = NULL;
1181 
1182 	/*
1183 	 * Migratability of hugepages depends on architectures and their size.
1184 	 * This check is necessary because some callers of hugepage migration
1185 	 * like soft offline and memory hotremove don't walk through page
1186 	 * tables or check whether the hugepage is pmd-based or not before
1187 	 * kicking migration.
1188 	 */
1189 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1190 		list_move_tail(&hpage->lru, ret);
1191 		return -ENOSYS;
1192 	}
1193 
1194 	if (page_count(hpage) == 1) {
1195 		/* page was freed from under us. So we are done. */
1196 		putback_active_hugepage(hpage);
1197 		return MIGRATEPAGE_SUCCESS;
1198 	}
1199 
1200 	new_hpage = get_new_page(hpage, private);
1201 	if (!new_hpage)
1202 		return -ENOMEM;
1203 
1204 	if (!trylock_page(hpage)) {
1205 		if (!force)
1206 			goto out;
1207 		switch (mode) {
1208 		case MIGRATE_SYNC:
1209 		case MIGRATE_SYNC_NO_COPY:
1210 			break;
1211 		default:
1212 			goto out;
1213 		}
1214 		lock_page(hpage);
1215 	}
1216 
1217 	/*
1218 	 * Check for pages which are in the process of being freed.  Without
1219 	 * page_mapping() set, hugetlbfs specific move page routine will not
1220 	 * be called and we could leak usage counts for subpools.
1221 	 */
1222 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1223 		rc = -EBUSY;
1224 		goto out_unlock;
1225 	}
1226 
1227 	if (PageAnon(hpage))
1228 		anon_vma = page_get_anon_vma(hpage);
1229 
1230 	if (unlikely(!trylock_page(new_hpage)))
1231 		goto put_anon;
1232 
1233 	if (page_mapped(hpage)) {
1234 		bool mapping_locked = false;
1235 		enum ttu_flags ttu = 0;
1236 
1237 		if (!PageAnon(hpage)) {
1238 			/*
1239 			 * In shared mappings, try_to_unmap could potentially
1240 			 * call huge_pmd_unshare.  Because of this, take
1241 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1242 			 * to let lower levels know we have taken the lock.
1243 			 */
1244 			mapping = hugetlb_page_mapping_lock_write(hpage);
1245 			if (unlikely(!mapping))
1246 				goto unlock_put_anon;
1247 
1248 			mapping_locked = true;
1249 			ttu |= TTU_RMAP_LOCKED;
1250 		}
1251 
1252 		try_to_migrate(hpage, ttu);
1253 		page_was_mapped = 1;
1254 
1255 		if (mapping_locked)
1256 			i_mmap_unlock_write(mapping);
1257 	}
1258 
1259 	if (!page_mapped(hpage))
1260 		rc = move_to_new_page(new_hpage, hpage, mode);
1261 
1262 	if (page_was_mapped)
1263 		remove_migration_ptes(hpage,
1264 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1265 
1266 unlock_put_anon:
1267 	unlock_page(new_hpage);
1268 
1269 put_anon:
1270 	if (anon_vma)
1271 		put_anon_vma(anon_vma);
1272 
1273 	if (rc == MIGRATEPAGE_SUCCESS) {
1274 		move_hugetlb_state(hpage, new_hpage, reason);
1275 		put_new_page = NULL;
1276 	}
1277 
1278 out_unlock:
1279 	unlock_page(hpage);
1280 out:
1281 	if (rc == MIGRATEPAGE_SUCCESS)
1282 		putback_active_hugepage(hpage);
1283 	else if (rc != -EAGAIN)
1284 		list_move_tail(&hpage->lru, ret);
1285 
1286 	/*
1287 	 * If migration was not successful and there's a freeing callback, use
1288 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1289 	 * isolation.
1290 	 */
1291 	if (put_new_page)
1292 		put_new_page(new_hpage, private);
1293 	else
1294 		putback_active_hugepage(new_hpage);
1295 
1296 	return rc;
1297 }
1298 
1299 static inline int try_split_thp(struct page *page, struct page **page2,
1300 				struct list_head *from)
1301 {
1302 	int rc = 0;
1303 
1304 	lock_page(page);
1305 	rc = split_huge_page_to_list(page, from);
1306 	unlock_page(page);
1307 	if (!rc)
1308 		list_safe_reset_next(page, *page2, lru);
1309 
1310 	return rc;
1311 }
1312 
1313 /*
1314  * migrate_pages - migrate the pages specified in a list, to the free pages
1315  *		   supplied as the target for the page migration
1316  *
1317  * @from:		The list of pages to be migrated.
1318  * @get_new_page:	The function used to allocate free pages to be used
1319  *			as the target of the page migration.
1320  * @put_new_page:	The function used to free target pages if migration
1321  *			fails, or NULL if no special handling is necessary.
1322  * @private:		Private data to be passed on to get_new_page()
1323  * @mode:		The migration mode that specifies the constraints for
1324  *			page migration, if any.
1325  * @reason:		The reason for page migration.
1326  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1327  *			the caller passes a non-NULL pointer.
1328  *
1329  * The function returns after 10 attempts or if no pages are movable any more
1330  * because the list has become empty or no retryable pages exist any more.
1331  * It is caller's responsibility to call putback_movable_pages() to return pages
1332  * to the LRU or free list only if ret != 0.
1333  *
1334  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1335  * an error code. The number of THP splits will be considered as the number of
1336  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1337  */
1338 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1339 		free_page_t put_new_page, unsigned long private,
1340 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1341 {
1342 	int retry = 1;
1343 	int thp_retry = 1;
1344 	int nr_failed = 0;
1345 	int nr_failed_pages = 0;
1346 	int nr_succeeded = 0;
1347 	int nr_thp_succeeded = 0;
1348 	int nr_thp_failed = 0;
1349 	int nr_thp_split = 0;
1350 	int pass = 0;
1351 	bool is_thp = false;
1352 	struct page *page;
1353 	struct page *page2;
1354 	int rc, nr_subpages;
1355 	LIST_HEAD(ret_pages);
1356 	LIST_HEAD(thp_split_pages);
1357 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1358 	bool no_subpage_counting = false;
1359 
1360 	trace_mm_migrate_pages_start(mode, reason);
1361 
1362 thp_subpage_migration:
1363 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1364 		retry = 0;
1365 		thp_retry = 0;
1366 
1367 		list_for_each_entry_safe(page, page2, from, lru) {
1368 retry:
1369 			/*
1370 			 * THP statistics is based on the source huge page.
1371 			 * Capture required information that might get lost
1372 			 * during migration.
1373 			 */
1374 			is_thp = PageTransHuge(page) && !PageHuge(page);
1375 			nr_subpages = compound_nr(page);
1376 			cond_resched();
1377 
1378 			if (PageHuge(page))
1379 				rc = unmap_and_move_huge_page(get_new_page,
1380 						put_new_page, private, page,
1381 						pass > 2, mode, reason,
1382 						&ret_pages);
1383 			else
1384 				rc = unmap_and_move(get_new_page, put_new_page,
1385 						private, page, pass > 2, mode,
1386 						reason, &ret_pages);
1387 			/*
1388 			 * The rules are:
1389 			 *	Success: non hugetlb page will be freed, hugetlb
1390 			 *		 page will be put back
1391 			 *	-EAGAIN: stay on the from list
1392 			 *	-ENOMEM: stay on the from list
1393 			 *	Other errno: put on ret_pages list then splice to
1394 			 *		     from list
1395 			 */
1396 			switch(rc) {
1397 			/*
1398 			 * THP migration might be unsupported or the
1399 			 * allocation could've failed so we should
1400 			 * retry on the same page with the THP split
1401 			 * to base pages.
1402 			 *
1403 			 * Head page is retried immediately and tail
1404 			 * pages are added to the tail of the list so
1405 			 * we encounter them after the rest of the list
1406 			 * is processed.
1407 			 */
1408 			case -ENOSYS:
1409 				/* THP migration is unsupported */
1410 				if (is_thp) {
1411 					nr_thp_failed++;
1412 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1413 						nr_thp_split++;
1414 						goto retry;
1415 					}
1416 
1417 					nr_failed_pages += nr_subpages;
1418 					break;
1419 				}
1420 
1421 				/* Hugetlb migration is unsupported */
1422 				if (!no_subpage_counting)
1423 					nr_failed++;
1424 				nr_failed_pages += nr_subpages;
1425 				break;
1426 			case -ENOMEM:
1427 				/*
1428 				 * When memory is low, don't bother to try to migrate
1429 				 * other pages, just exit.
1430 				 * THP NUMA faulting doesn't split THP to retry.
1431 				 */
1432 				if (is_thp && !nosplit) {
1433 					nr_thp_failed++;
1434 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1435 						nr_thp_split++;
1436 						goto retry;
1437 					}
1438 
1439 					nr_failed_pages += nr_subpages;
1440 					goto out;
1441 				}
1442 
1443 				if (!no_subpage_counting)
1444 					nr_failed++;
1445 				nr_failed_pages += nr_subpages;
1446 				goto out;
1447 			case -EAGAIN:
1448 				if (is_thp) {
1449 					thp_retry++;
1450 					break;
1451 				}
1452 				retry++;
1453 				break;
1454 			case MIGRATEPAGE_SUCCESS:
1455 				nr_succeeded += nr_subpages;
1456 				if (is_thp) {
1457 					nr_thp_succeeded++;
1458 					break;
1459 				}
1460 				break;
1461 			default:
1462 				/*
1463 				 * Permanent failure (-EBUSY, etc.):
1464 				 * unlike -EAGAIN case, the failed page is
1465 				 * removed from migration page list and not
1466 				 * retried in the next outer loop.
1467 				 */
1468 				if (is_thp) {
1469 					nr_thp_failed++;
1470 					nr_failed_pages += nr_subpages;
1471 					break;
1472 				}
1473 
1474 				if (!no_subpage_counting)
1475 					nr_failed++;
1476 				nr_failed_pages += nr_subpages;
1477 				break;
1478 			}
1479 		}
1480 	}
1481 	nr_failed += retry;
1482 	nr_thp_failed += thp_retry;
1483 	/*
1484 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1485 	 * counting in this round, since all subpages of a THP is counted
1486 	 * as 1 failure in the first round.
1487 	 */
1488 	if (!list_empty(&thp_split_pages)) {
1489 		/*
1490 		 * Move non-migrated pages (after 10 retries) to ret_pages
1491 		 * to avoid migrating them again.
1492 		 */
1493 		list_splice_init(from, &ret_pages);
1494 		list_splice_init(&thp_split_pages, from);
1495 		no_subpage_counting = true;
1496 		retry = 1;
1497 		goto thp_subpage_migration;
1498 	}
1499 
1500 	rc = nr_failed + nr_thp_failed;
1501 out:
1502 	/*
1503 	 * Put the permanent failure page back to migration list, they
1504 	 * will be put back to the right list by the caller.
1505 	 */
1506 	list_splice(&ret_pages, from);
1507 
1508 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1509 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1510 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1511 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1512 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1513 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1514 			       nr_thp_failed, nr_thp_split, mode, reason);
1515 
1516 	if (ret_succeeded)
1517 		*ret_succeeded = nr_succeeded;
1518 
1519 	return rc;
1520 }
1521 
1522 struct page *alloc_migration_target(struct page *page, unsigned long private)
1523 {
1524 	struct migration_target_control *mtc;
1525 	gfp_t gfp_mask;
1526 	unsigned int order = 0;
1527 	struct page *new_page = NULL;
1528 	int nid;
1529 	int zidx;
1530 
1531 	mtc = (struct migration_target_control *)private;
1532 	gfp_mask = mtc->gfp_mask;
1533 	nid = mtc->nid;
1534 	if (nid == NUMA_NO_NODE)
1535 		nid = page_to_nid(page);
1536 
1537 	if (PageHuge(page)) {
1538 		struct hstate *h = page_hstate(compound_head(page));
1539 
1540 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1541 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1542 	}
1543 
1544 	if (PageTransHuge(page)) {
1545 		/*
1546 		 * clear __GFP_RECLAIM to make the migration callback
1547 		 * consistent with regular THP allocations.
1548 		 */
1549 		gfp_mask &= ~__GFP_RECLAIM;
1550 		gfp_mask |= GFP_TRANSHUGE;
1551 		order = HPAGE_PMD_ORDER;
1552 	}
1553 	zidx = zone_idx(page_zone(page));
1554 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1555 		gfp_mask |= __GFP_HIGHMEM;
1556 
1557 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1558 
1559 	if (new_page && PageTransHuge(new_page))
1560 		prep_transhuge_page(new_page);
1561 
1562 	return new_page;
1563 }
1564 
1565 #ifdef CONFIG_NUMA
1566 
1567 static int store_status(int __user *status, int start, int value, int nr)
1568 {
1569 	while (nr-- > 0) {
1570 		if (put_user(value, status + start))
1571 			return -EFAULT;
1572 		start++;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 static int do_move_pages_to_node(struct mm_struct *mm,
1579 		struct list_head *pagelist, int node)
1580 {
1581 	int err;
1582 	struct migration_target_control mtc = {
1583 		.nid = node,
1584 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1585 	};
1586 
1587 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1588 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1589 	if (err)
1590 		putback_movable_pages(pagelist);
1591 	return err;
1592 }
1593 
1594 /*
1595  * Resolves the given address to a struct page, isolates it from the LRU and
1596  * puts it to the given pagelist.
1597  * Returns:
1598  *     errno - if the page cannot be found/isolated
1599  *     0 - when it doesn't have to be migrated because it is already on the
1600  *         target node
1601  *     1 - when it has been queued
1602  */
1603 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1604 		int node, struct list_head *pagelist, bool migrate_all)
1605 {
1606 	struct vm_area_struct *vma;
1607 	struct page *page;
1608 	int err;
1609 
1610 	mmap_read_lock(mm);
1611 	err = -EFAULT;
1612 	vma = find_vma(mm, addr);
1613 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1614 		goto out;
1615 
1616 	/* FOLL_DUMP to ignore special (like zero) pages */
1617 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1618 
1619 	err = PTR_ERR(page);
1620 	if (IS_ERR(page))
1621 		goto out;
1622 
1623 	err = -ENOENT;
1624 	if (!page)
1625 		goto out;
1626 
1627 	err = 0;
1628 	if (page_to_nid(page) == node)
1629 		goto out_putpage;
1630 
1631 	err = -EACCES;
1632 	if (page_mapcount(page) > 1 && !migrate_all)
1633 		goto out_putpage;
1634 
1635 	if (PageHuge(page)) {
1636 		if (PageHead(page)) {
1637 			isolate_huge_page(page, pagelist);
1638 			err = 1;
1639 		}
1640 	} else {
1641 		struct page *head;
1642 
1643 		head = compound_head(page);
1644 		err = isolate_lru_page(head);
1645 		if (err)
1646 			goto out_putpage;
1647 
1648 		err = 1;
1649 		list_add_tail(&head->lru, pagelist);
1650 		mod_node_page_state(page_pgdat(head),
1651 			NR_ISOLATED_ANON + page_is_file_lru(head),
1652 			thp_nr_pages(head));
1653 	}
1654 out_putpage:
1655 	/*
1656 	 * Either remove the duplicate refcount from
1657 	 * isolate_lru_page() or drop the page ref if it was
1658 	 * not isolated.
1659 	 */
1660 	put_page(page);
1661 out:
1662 	mmap_read_unlock(mm);
1663 	return err;
1664 }
1665 
1666 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1667 		struct list_head *pagelist, int __user *status,
1668 		int start, int i, unsigned long nr_pages)
1669 {
1670 	int err;
1671 
1672 	if (list_empty(pagelist))
1673 		return 0;
1674 
1675 	err = do_move_pages_to_node(mm, pagelist, node);
1676 	if (err) {
1677 		/*
1678 		 * Positive err means the number of failed
1679 		 * pages to migrate.  Since we are going to
1680 		 * abort and return the number of non-migrated
1681 		 * pages, so need to include the rest of the
1682 		 * nr_pages that have not been attempted as
1683 		 * well.
1684 		 */
1685 		if (err > 0)
1686 			err += nr_pages - i - 1;
1687 		return err;
1688 	}
1689 	return store_status(status, start, node, i - start);
1690 }
1691 
1692 /*
1693  * Migrate an array of page address onto an array of nodes and fill
1694  * the corresponding array of status.
1695  */
1696 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1697 			 unsigned long nr_pages,
1698 			 const void __user * __user *pages,
1699 			 const int __user *nodes,
1700 			 int __user *status, int flags)
1701 {
1702 	int current_node = NUMA_NO_NODE;
1703 	LIST_HEAD(pagelist);
1704 	int start, i;
1705 	int err = 0, err1;
1706 
1707 	lru_cache_disable();
1708 
1709 	for (i = start = 0; i < nr_pages; i++) {
1710 		const void __user *p;
1711 		unsigned long addr;
1712 		int node;
1713 
1714 		err = -EFAULT;
1715 		if (get_user(p, pages + i))
1716 			goto out_flush;
1717 		if (get_user(node, nodes + i))
1718 			goto out_flush;
1719 		addr = (unsigned long)untagged_addr(p);
1720 
1721 		err = -ENODEV;
1722 		if (node < 0 || node >= MAX_NUMNODES)
1723 			goto out_flush;
1724 		if (!node_state(node, N_MEMORY))
1725 			goto out_flush;
1726 
1727 		err = -EACCES;
1728 		if (!node_isset(node, task_nodes))
1729 			goto out_flush;
1730 
1731 		if (current_node == NUMA_NO_NODE) {
1732 			current_node = node;
1733 			start = i;
1734 		} else if (node != current_node) {
1735 			err = move_pages_and_store_status(mm, current_node,
1736 					&pagelist, status, start, i, nr_pages);
1737 			if (err)
1738 				goto out;
1739 			start = i;
1740 			current_node = node;
1741 		}
1742 
1743 		/*
1744 		 * Errors in the page lookup or isolation are not fatal and we simply
1745 		 * report them via status
1746 		 */
1747 		err = add_page_for_migration(mm, addr, current_node,
1748 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1749 
1750 		if (err > 0) {
1751 			/* The page is successfully queued for migration */
1752 			continue;
1753 		}
1754 
1755 		/*
1756 		 * The move_pages() man page does not have an -EEXIST choice, so
1757 		 * use -EFAULT instead.
1758 		 */
1759 		if (err == -EEXIST)
1760 			err = -EFAULT;
1761 
1762 		/*
1763 		 * If the page is already on the target node (!err), store the
1764 		 * node, otherwise, store the err.
1765 		 */
1766 		err = store_status(status, i, err ? : current_node, 1);
1767 		if (err)
1768 			goto out_flush;
1769 
1770 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1771 				status, start, i, nr_pages);
1772 		if (err)
1773 			goto out;
1774 		current_node = NUMA_NO_NODE;
1775 	}
1776 out_flush:
1777 	/* Make sure we do not overwrite the existing error */
1778 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1779 				status, start, i, nr_pages);
1780 	if (err >= 0)
1781 		err = err1;
1782 out:
1783 	lru_cache_enable();
1784 	return err;
1785 }
1786 
1787 /*
1788  * Determine the nodes of an array of pages and store it in an array of status.
1789  */
1790 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1791 				const void __user **pages, int *status)
1792 {
1793 	unsigned long i;
1794 
1795 	mmap_read_lock(mm);
1796 
1797 	for (i = 0; i < nr_pages; i++) {
1798 		unsigned long addr = (unsigned long)(*pages);
1799 		struct vm_area_struct *vma;
1800 		struct page *page;
1801 		int err = -EFAULT;
1802 
1803 		vma = vma_lookup(mm, addr);
1804 		if (!vma)
1805 			goto set_status;
1806 
1807 		/* FOLL_DUMP to ignore special (like zero) pages */
1808 		page = follow_page(vma, addr, FOLL_DUMP);
1809 
1810 		err = PTR_ERR(page);
1811 		if (IS_ERR(page))
1812 			goto set_status;
1813 
1814 		err = page ? page_to_nid(page) : -ENOENT;
1815 set_status:
1816 		*status = err;
1817 
1818 		pages++;
1819 		status++;
1820 	}
1821 
1822 	mmap_read_unlock(mm);
1823 }
1824 
1825 static int get_compat_pages_array(const void __user *chunk_pages[],
1826 				  const void __user * __user *pages,
1827 				  unsigned long chunk_nr)
1828 {
1829 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1830 	compat_uptr_t p;
1831 	int i;
1832 
1833 	for (i = 0; i < chunk_nr; i++) {
1834 		if (get_user(p, pages32 + i))
1835 			return -EFAULT;
1836 		chunk_pages[i] = compat_ptr(p);
1837 	}
1838 
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Determine the nodes of a user array of pages and store it in
1844  * a user array of status.
1845  */
1846 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1847 			 const void __user * __user *pages,
1848 			 int __user *status)
1849 {
1850 #define DO_PAGES_STAT_CHUNK_NR 16
1851 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1852 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1853 
1854 	while (nr_pages) {
1855 		unsigned long chunk_nr;
1856 
1857 		chunk_nr = nr_pages;
1858 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1859 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1860 
1861 		if (in_compat_syscall()) {
1862 			if (get_compat_pages_array(chunk_pages, pages,
1863 						   chunk_nr))
1864 				break;
1865 		} else {
1866 			if (copy_from_user(chunk_pages, pages,
1867 				      chunk_nr * sizeof(*chunk_pages)))
1868 				break;
1869 		}
1870 
1871 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1872 
1873 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1874 			break;
1875 
1876 		pages += chunk_nr;
1877 		status += chunk_nr;
1878 		nr_pages -= chunk_nr;
1879 	}
1880 	return nr_pages ? -EFAULT : 0;
1881 }
1882 
1883 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1884 {
1885 	struct task_struct *task;
1886 	struct mm_struct *mm;
1887 
1888 	/*
1889 	 * There is no need to check if current process has the right to modify
1890 	 * the specified process when they are same.
1891 	 */
1892 	if (!pid) {
1893 		mmget(current->mm);
1894 		*mem_nodes = cpuset_mems_allowed(current);
1895 		return current->mm;
1896 	}
1897 
1898 	/* Find the mm_struct */
1899 	rcu_read_lock();
1900 	task = find_task_by_vpid(pid);
1901 	if (!task) {
1902 		rcu_read_unlock();
1903 		return ERR_PTR(-ESRCH);
1904 	}
1905 	get_task_struct(task);
1906 
1907 	/*
1908 	 * Check if this process has the right to modify the specified
1909 	 * process. Use the regular "ptrace_may_access()" checks.
1910 	 */
1911 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1912 		rcu_read_unlock();
1913 		mm = ERR_PTR(-EPERM);
1914 		goto out;
1915 	}
1916 	rcu_read_unlock();
1917 
1918 	mm = ERR_PTR(security_task_movememory(task));
1919 	if (IS_ERR(mm))
1920 		goto out;
1921 	*mem_nodes = cpuset_mems_allowed(task);
1922 	mm = get_task_mm(task);
1923 out:
1924 	put_task_struct(task);
1925 	if (!mm)
1926 		mm = ERR_PTR(-EINVAL);
1927 	return mm;
1928 }
1929 
1930 /*
1931  * Move a list of pages in the address space of the currently executing
1932  * process.
1933  */
1934 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1935 			     const void __user * __user *pages,
1936 			     const int __user *nodes,
1937 			     int __user *status, int flags)
1938 {
1939 	struct mm_struct *mm;
1940 	int err;
1941 	nodemask_t task_nodes;
1942 
1943 	/* Check flags */
1944 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1945 		return -EINVAL;
1946 
1947 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1948 		return -EPERM;
1949 
1950 	mm = find_mm_struct(pid, &task_nodes);
1951 	if (IS_ERR(mm))
1952 		return PTR_ERR(mm);
1953 
1954 	if (nodes)
1955 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1956 				    nodes, status, flags);
1957 	else
1958 		err = do_pages_stat(mm, nr_pages, pages, status);
1959 
1960 	mmput(mm);
1961 	return err;
1962 }
1963 
1964 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1965 		const void __user * __user *, pages,
1966 		const int __user *, nodes,
1967 		int __user *, status, int, flags)
1968 {
1969 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1970 }
1971 
1972 #ifdef CONFIG_NUMA_BALANCING
1973 /*
1974  * Returns true if this is a safe migration target node for misplaced NUMA
1975  * pages. Currently it only checks the watermarks which crude
1976  */
1977 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1978 				   unsigned long nr_migrate_pages)
1979 {
1980 	int z;
1981 
1982 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1983 		struct zone *zone = pgdat->node_zones + z;
1984 
1985 		if (!populated_zone(zone))
1986 			continue;
1987 
1988 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1989 		if (!zone_watermark_ok(zone, 0,
1990 				       high_wmark_pages(zone) +
1991 				       nr_migrate_pages,
1992 				       ZONE_MOVABLE, 0))
1993 			continue;
1994 		return true;
1995 	}
1996 	return false;
1997 }
1998 
1999 static struct page *alloc_misplaced_dst_page(struct page *page,
2000 					   unsigned long data)
2001 {
2002 	int nid = (int) data;
2003 	struct page *newpage;
2004 
2005 	newpage = __alloc_pages_node(nid,
2006 					 (GFP_HIGHUSER_MOVABLE |
2007 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2008 					  __GFP_NORETRY | __GFP_NOWARN) &
2009 					 ~__GFP_RECLAIM, 0);
2010 
2011 	return newpage;
2012 }
2013 
2014 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2015 						 unsigned long data)
2016 {
2017 	int nid = (int) data;
2018 	struct page *newpage;
2019 
2020 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2021 				   HPAGE_PMD_ORDER);
2022 	if (!newpage)
2023 		goto out;
2024 
2025 	prep_transhuge_page(newpage);
2026 
2027 out:
2028 	return newpage;
2029 }
2030 
2031 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2032 {
2033 	int page_lru;
2034 	int nr_pages = thp_nr_pages(page);
2035 	int order = compound_order(page);
2036 
2037 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2038 
2039 	/* Do not migrate THP mapped by multiple processes */
2040 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2041 		return 0;
2042 
2043 	/* Avoid migrating to a node that is nearly full */
2044 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2045 		int z;
2046 
2047 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2048 			return 0;
2049 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2050 			if (populated_zone(pgdat->node_zones + z))
2051 				break;
2052 		}
2053 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2054 		return 0;
2055 	}
2056 
2057 	if (isolate_lru_page(page))
2058 		return 0;
2059 
2060 	page_lru = page_is_file_lru(page);
2061 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2062 			    nr_pages);
2063 
2064 	/*
2065 	 * Isolating the page has taken another reference, so the
2066 	 * caller's reference can be safely dropped without the page
2067 	 * disappearing underneath us during migration.
2068 	 */
2069 	put_page(page);
2070 	return 1;
2071 }
2072 
2073 /*
2074  * Attempt to migrate a misplaced page to the specified destination
2075  * node. Caller is expected to have an elevated reference count on
2076  * the page that will be dropped by this function before returning.
2077  */
2078 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2079 			   int node)
2080 {
2081 	pg_data_t *pgdat = NODE_DATA(node);
2082 	int isolated;
2083 	int nr_remaining;
2084 	unsigned int nr_succeeded;
2085 	LIST_HEAD(migratepages);
2086 	new_page_t *new;
2087 	bool compound;
2088 	int nr_pages = thp_nr_pages(page);
2089 
2090 	/*
2091 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2092 	 * be either base page or THP.  And it must be head page if it is
2093 	 * THP.
2094 	 */
2095 	compound = PageTransHuge(page);
2096 
2097 	if (compound)
2098 		new = alloc_misplaced_dst_page_thp;
2099 	else
2100 		new = alloc_misplaced_dst_page;
2101 
2102 	/*
2103 	 * Don't migrate file pages that are mapped in multiple processes
2104 	 * with execute permissions as they are probably shared libraries.
2105 	 */
2106 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2107 	    (vma->vm_flags & VM_EXEC))
2108 		goto out;
2109 
2110 	/*
2111 	 * Also do not migrate dirty pages as not all filesystems can move
2112 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2113 	 */
2114 	if (page_is_file_lru(page) && PageDirty(page))
2115 		goto out;
2116 
2117 	isolated = numamigrate_isolate_page(pgdat, page);
2118 	if (!isolated)
2119 		goto out;
2120 
2121 	list_add(&page->lru, &migratepages);
2122 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2123 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED,
2124 				     &nr_succeeded);
2125 	if (nr_remaining) {
2126 		if (!list_empty(&migratepages)) {
2127 			list_del(&page->lru);
2128 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2129 					page_is_file_lru(page), -nr_pages);
2130 			putback_lru_page(page);
2131 		}
2132 		isolated = 0;
2133 	}
2134 	if (nr_succeeded) {
2135 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2136 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2137 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2138 					    nr_succeeded);
2139 	}
2140 	BUG_ON(!list_empty(&migratepages));
2141 	return isolated;
2142 
2143 out:
2144 	put_page(page);
2145 	return 0;
2146 }
2147 #endif /* CONFIG_NUMA_BALANCING */
2148 #endif /* CONFIG_NUMA */
2149 
2150 #ifdef CONFIG_DEVICE_PRIVATE
2151 static int migrate_vma_collect_skip(unsigned long start,
2152 				    unsigned long end,
2153 				    struct mm_walk *walk)
2154 {
2155 	struct migrate_vma *migrate = walk->private;
2156 	unsigned long addr;
2157 
2158 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2159 		migrate->dst[migrate->npages] = 0;
2160 		migrate->src[migrate->npages++] = 0;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static int migrate_vma_collect_hole(unsigned long start,
2167 				    unsigned long end,
2168 				    __always_unused int depth,
2169 				    struct mm_walk *walk)
2170 {
2171 	struct migrate_vma *migrate = walk->private;
2172 	unsigned long addr;
2173 
2174 	/* Only allow populating anonymous memory. */
2175 	if (!vma_is_anonymous(walk->vma))
2176 		return migrate_vma_collect_skip(start, end, walk);
2177 
2178 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2179 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2180 		migrate->dst[migrate->npages] = 0;
2181 		migrate->npages++;
2182 		migrate->cpages++;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2189 				   unsigned long start,
2190 				   unsigned long end,
2191 				   struct mm_walk *walk)
2192 {
2193 	struct migrate_vma *migrate = walk->private;
2194 	struct vm_area_struct *vma = walk->vma;
2195 	struct mm_struct *mm = vma->vm_mm;
2196 	unsigned long addr = start, unmapped = 0;
2197 	spinlock_t *ptl;
2198 	pte_t *ptep;
2199 
2200 again:
2201 	if (pmd_none(*pmdp))
2202 		return migrate_vma_collect_hole(start, end, -1, walk);
2203 
2204 	if (pmd_trans_huge(*pmdp)) {
2205 		struct page *page;
2206 
2207 		ptl = pmd_lock(mm, pmdp);
2208 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2209 			spin_unlock(ptl);
2210 			goto again;
2211 		}
2212 
2213 		page = pmd_page(*pmdp);
2214 		if (is_huge_zero_page(page)) {
2215 			spin_unlock(ptl);
2216 			split_huge_pmd(vma, pmdp, addr);
2217 			if (pmd_trans_unstable(pmdp))
2218 				return migrate_vma_collect_skip(start, end,
2219 								walk);
2220 		} else {
2221 			int ret;
2222 
2223 			get_page(page);
2224 			spin_unlock(ptl);
2225 			if (unlikely(!trylock_page(page)))
2226 				return migrate_vma_collect_skip(start, end,
2227 								walk);
2228 			ret = split_huge_page(page);
2229 			unlock_page(page);
2230 			put_page(page);
2231 			if (ret)
2232 				return migrate_vma_collect_skip(start, end,
2233 								walk);
2234 			if (pmd_none(*pmdp))
2235 				return migrate_vma_collect_hole(start, end, -1,
2236 								walk);
2237 		}
2238 	}
2239 
2240 	if (unlikely(pmd_bad(*pmdp)))
2241 		return migrate_vma_collect_skip(start, end, walk);
2242 
2243 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2244 	arch_enter_lazy_mmu_mode();
2245 
2246 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2247 		unsigned long mpfn = 0, pfn;
2248 		struct page *page;
2249 		swp_entry_t entry;
2250 		pte_t pte;
2251 
2252 		pte = *ptep;
2253 
2254 		if (pte_none(pte)) {
2255 			if (vma_is_anonymous(vma)) {
2256 				mpfn = MIGRATE_PFN_MIGRATE;
2257 				migrate->cpages++;
2258 			}
2259 			goto next;
2260 		}
2261 
2262 		if (!pte_present(pte)) {
2263 			/*
2264 			 * Only care about unaddressable device page special
2265 			 * page table entry. Other special swap entries are not
2266 			 * migratable, and we ignore regular swapped page.
2267 			 */
2268 			entry = pte_to_swp_entry(pte);
2269 			if (!is_device_private_entry(entry))
2270 				goto next;
2271 
2272 			page = pfn_swap_entry_to_page(entry);
2273 			if (!(migrate->flags &
2274 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2275 			    page->pgmap->owner != migrate->pgmap_owner)
2276 				goto next;
2277 
2278 			mpfn = migrate_pfn(page_to_pfn(page)) |
2279 					MIGRATE_PFN_MIGRATE;
2280 			if (is_writable_device_private_entry(entry))
2281 				mpfn |= MIGRATE_PFN_WRITE;
2282 		} else {
2283 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2284 				goto next;
2285 			pfn = pte_pfn(pte);
2286 			if (is_zero_pfn(pfn)) {
2287 				mpfn = MIGRATE_PFN_MIGRATE;
2288 				migrate->cpages++;
2289 				goto next;
2290 			}
2291 			page = vm_normal_page(migrate->vma, addr, pte);
2292 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2293 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2294 		}
2295 
2296 		/* FIXME support THP */
2297 		if (!page || !page->mapping || PageTransCompound(page)) {
2298 			mpfn = 0;
2299 			goto next;
2300 		}
2301 
2302 		/*
2303 		 * By getting a reference on the page we pin it and that blocks
2304 		 * any kind of migration. Side effect is that it "freezes" the
2305 		 * pte.
2306 		 *
2307 		 * We drop this reference after isolating the page from the lru
2308 		 * for non device page (device page are not on the lru and thus
2309 		 * can't be dropped from it).
2310 		 */
2311 		get_page(page);
2312 
2313 		/*
2314 		 * Optimize for the common case where page is only mapped once
2315 		 * in one process. If we can lock the page, then we can safely
2316 		 * set up a special migration page table entry now.
2317 		 */
2318 		if (trylock_page(page)) {
2319 			pte_t swp_pte;
2320 
2321 			migrate->cpages++;
2322 			ptep_get_and_clear(mm, addr, ptep);
2323 
2324 			/* Setup special migration page table entry */
2325 			if (mpfn & MIGRATE_PFN_WRITE)
2326 				entry = make_writable_migration_entry(
2327 							page_to_pfn(page));
2328 			else
2329 				entry = make_readable_migration_entry(
2330 							page_to_pfn(page));
2331 			swp_pte = swp_entry_to_pte(entry);
2332 			if (pte_present(pte)) {
2333 				if (pte_soft_dirty(pte))
2334 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2335 				if (pte_uffd_wp(pte))
2336 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2337 			} else {
2338 				if (pte_swp_soft_dirty(pte))
2339 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2340 				if (pte_swp_uffd_wp(pte))
2341 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2342 			}
2343 			set_pte_at(mm, addr, ptep, swp_pte);
2344 
2345 			/*
2346 			 * This is like regular unmap: we remove the rmap and
2347 			 * drop page refcount. Page won't be freed, as we took
2348 			 * a reference just above.
2349 			 */
2350 			page_remove_rmap(page, false);
2351 			put_page(page);
2352 
2353 			if (pte_present(pte))
2354 				unmapped++;
2355 		} else {
2356 			put_page(page);
2357 			mpfn = 0;
2358 		}
2359 
2360 next:
2361 		migrate->dst[migrate->npages] = 0;
2362 		migrate->src[migrate->npages++] = mpfn;
2363 	}
2364 	arch_leave_lazy_mmu_mode();
2365 	pte_unmap_unlock(ptep - 1, ptl);
2366 
2367 	/* Only flush the TLB if we actually modified any entries */
2368 	if (unmapped)
2369 		flush_tlb_range(walk->vma, start, end);
2370 
2371 	return 0;
2372 }
2373 
2374 static const struct mm_walk_ops migrate_vma_walk_ops = {
2375 	.pmd_entry		= migrate_vma_collect_pmd,
2376 	.pte_hole		= migrate_vma_collect_hole,
2377 };
2378 
2379 /*
2380  * migrate_vma_collect() - collect pages over a range of virtual addresses
2381  * @migrate: migrate struct containing all migration information
2382  *
2383  * This will walk the CPU page table. For each virtual address backed by a
2384  * valid page, it updates the src array and takes a reference on the page, in
2385  * order to pin the page until we lock it and unmap it.
2386  */
2387 static void migrate_vma_collect(struct migrate_vma *migrate)
2388 {
2389 	struct mmu_notifier_range range;
2390 
2391 	/*
2392 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2393 	 * that the registered device driver can skip invalidating device
2394 	 * private page mappings that won't be migrated.
2395 	 */
2396 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2397 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2398 		migrate->pgmap_owner);
2399 	mmu_notifier_invalidate_range_start(&range);
2400 
2401 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2402 			&migrate_vma_walk_ops, migrate);
2403 
2404 	mmu_notifier_invalidate_range_end(&range);
2405 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2406 }
2407 
2408 /*
2409  * migrate_vma_check_page() - check if page is pinned or not
2410  * @page: struct page to check
2411  *
2412  * Pinned pages cannot be migrated. This is the same test as in
2413  * folio_migrate_mapping(), except that here we allow migration of a
2414  * ZONE_DEVICE page.
2415  */
2416 static bool migrate_vma_check_page(struct page *page)
2417 {
2418 	/*
2419 	 * One extra ref because caller holds an extra reference, either from
2420 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2421 	 * a device page.
2422 	 */
2423 	int extra = 1;
2424 
2425 	/*
2426 	 * FIXME support THP (transparent huge page), it is bit more complex to
2427 	 * check them than regular pages, because they can be mapped with a pmd
2428 	 * or with a pte (split pte mapping).
2429 	 */
2430 	if (PageCompound(page))
2431 		return false;
2432 
2433 	/* Page from ZONE_DEVICE have one extra reference */
2434 	if (is_zone_device_page(page))
2435 		extra++;
2436 
2437 	/* For file back page */
2438 	if (page_mapping(page))
2439 		extra += 1 + page_has_private(page);
2440 
2441 	if ((page_count(page) - extra) > page_mapcount(page))
2442 		return false;
2443 
2444 	return true;
2445 }
2446 
2447 /*
2448  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2449  * @migrate: migrate struct containing all migration information
2450  *
2451  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
2452  * special migration pte entry and check if it has been pinned. Pinned pages are
2453  * restored because we cannot migrate them.
2454  *
2455  * This is the last step before we call the device driver callback to allocate
2456  * destination memory and copy contents of original page over to new page.
2457  */
2458 static void migrate_vma_unmap(struct migrate_vma *migrate)
2459 {
2460 	const unsigned long npages = migrate->npages;
2461 	unsigned long i, restore = 0;
2462 	bool allow_drain = true;
2463 
2464 	lru_add_drain();
2465 
2466 	for (i = 0; i < npages; i++) {
2467 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2468 
2469 		if (!page)
2470 			continue;
2471 
2472 		/* ZONE_DEVICE pages are not on LRU */
2473 		if (!is_zone_device_page(page)) {
2474 			if (!PageLRU(page) && allow_drain) {
2475 				/* Drain CPU's pagevec */
2476 				lru_add_drain_all();
2477 				allow_drain = false;
2478 			}
2479 
2480 			if (isolate_lru_page(page)) {
2481 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2482 				migrate->cpages--;
2483 				restore++;
2484 				continue;
2485 			}
2486 
2487 			/* Drop the reference we took in collect */
2488 			put_page(page);
2489 		}
2490 
2491 		if (page_mapped(page))
2492 			try_to_migrate(page, 0);
2493 
2494 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
2495 			if (!is_zone_device_page(page)) {
2496 				get_page(page);
2497 				putback_lru_page(page);
2498 			}
2499 
2500 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2501 			migrate->cpages--;
2502 			restore++;
2503 			continue;
2504 		}
2505 	}
2506 
2507 	for (i = 0; i < npages && restore; i++) {
2508 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2509 
2510 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2511 			continue;
2512 
2513 		remove_migration_ptes(page, page, false);
2514 
2515 		migrate->src[i] = 0;
2516 		unlock_page(page);
2517 		put_page(page);
2518 		restore--;
2519 	}
2520 }
2521 
2522 /**
2523  * migrate_vma_setup() - prepare to migrate a range of memory
2524  * @args: contains the vma, start, and pfns arrays for the migration
2525  *
2526  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2527  * without an error.
2528  *
2529  * Prepare to migrate a range of memory virtual address range by collecting all
2530  * the pages backing each virtual address in the range, saving them inside the
2531  * src array.  Then lock those pages and unmap them. Once the pages are locked
2532  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2533  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2534  * corresponding src array entry.  Then restores any pages that are pinned, by
2535  * remapping and unlocking those pages.
2536  *
2537  * The caller should then allocate destination memory and copy source memory to
2538  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2539  * flag set).  Once these are allocated and copied, the caller must update each
2540  * corresponding entry in the dst array with the pfn value of the destination
2541  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
2542  * lock_page().
2543  *
2544  * Note that the caller does not have to migrate all the pages that are marked
2545  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2546  * device memory to system memory.  If the caller cannot migrate a device page
2547  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2548  * consequences for the userspace process, so it must be avoided if at all
2549  * possible.
2550  *
2551  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2552  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2553  * allowing the caller to allocate device memory for those unbacked virtual
2554  * addresses.  For this the caller simply has to allocate device memory and
2555  * properly set the destination entry like for regular migration.  Note that
2556  * this can still fail, and thus inside the device driver you must check if the
2557  * migration was successful for those entries after calling migrate_vma_pages(),
2558  * just like for regular migration.
2559  *
2560  * After that, the callers must call migrate_vma_pages() to go over each entry
2561  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2562  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2563  * then migrate_vma_pages() to migrate struct page information from the source
2564  * struct page to the destination struct page.  If it fails to migrate the
2565  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2566  * src array.
2567  *
2568  * At this point all successfully migrated pages have an entry in the src
2569  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2570  * array entry with MIGRATE_PFN_VALID flag set.
2571  *
2572  * Once migrate_vma_pages() returns the caller may inspect which pages were
2573  * successfully migrated, and which were not.  Successfully migrated pages will
2574  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2575  *
2576  * It is safe to update device page table after migrate_vma_pages() because
2577  * both destination and source page are still locked, and the mmap_lock is held
2578  * in read mode (hence no one can unmap the range being migrated).
2579  *
2580  * Once the caller is done cleaning up things and updating its page table (if it
2581  * chose to do so, this is not an obligation) it finally calls
2582  * migrate_vma_finalize() to update the CPU page table to point to new pages
2583  * for successfully migrated pages or otherwise restore the CPU page table to
2584  * point to the original source pages.
2585  */
2586 int migrate_vma_setup(struct migrate_vma *args)
2587 {
2588 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2589 
2590 	args->start &= PAGE_MASK;
2591 	args->end &= PAGE_MASK;
2592 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2593 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2594 		return -EINVAL;
2595 	if (nr_pages <= 0)
2596 		return -EINVAL;
2597 	if (args->start < args->vma->vm_start ||
2598 	    args->start >= args->vma->vm_end)
2599 		return -EINVAL;
2600 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2601 		return -EINVAL;
2602 	if (!args->src || !args->dst)
2603 		return -EINVAL;
2604 
2605 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2606 	args->cpages = 0;
2607 	args->npages = 0;
2608 
2609 	migrate_vma_collect(args);
2610 
2611 	if (args->cpages)
2612 		migrate_vma_unmap(args);
2613 
2614 	/*
2615 	 * At this point pages are locked and unmapped, and thus they have
2616 	 * stable content and can safely be copied to destination memory that
2617 	 * is allocated by the drivers.
2618 	 */
2619 	return 0;
2620 
2621 }
2622 EXPORT_SYMBOL(migrate_vma_setup);
2623 
2624 /*
2625  * This code closely matches the code in:
2626  *   __handle_mm_fault()
2627  *     handle_pte_fault()
2628  *       do_anonymous_page()
2629  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2630  * private page.
2631  */
2632 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2633 				    unsigned long addr,
2634 				    struct page *page,
2635 				    unsigned long *src)
2636 {
2637 	struct vm_area_struct *vma = migrate->vma;
2638 	struct mm_struct *mm = vma->vm_mm;
2639 	bool flush = false;
2640 	spinlock_t *ptl;
2641 	pte_t entry;
2642 	pgd_t *pgdp;
2643 	p4d_t *p4dp;
2644 	pud_t *pudp;
2645 	pmd_t *pmdp;
2646 	pte_t *ptep;
2647 
2648 	/* Only allow populating anonymous memory */
2649 	if (!vma_is_anonymous(vma))
2650 		goto abort;
2651 
2652 	pgdp = pgd_offset(mm, addr);
2653 	p4dp = p4d_alloc(mm, pgdp, addr);
2654 	if (!p4dp)
2655 		goto abort;
2656 	pudp = pud_alloc(mm, p4dp, addr);
2657 	if (!pudp)
2658 		goto abort;
2659 	pmdp = pmd_alloc(mm, pudp, addr);
2660 	if (!pmdp)
2661 		goto abort;
2662 
2663 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2664 		goto abort;
2665 
2666 	/*
2667 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2668 	 * pte_offset_map() on pmds where a huge pmd might be created
2669 	 * from a different thread.
2670 	 *
2671 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2672 	 * parallel threads are excluded by other means.
2673 	 *
2674 	 * Here we only have mmap_read_lock(mm).
2675 	 */
2676 	if (pte_alloc(mm, pmdp))
2677 		goto abort;
2678 
2679 	/* See the comment in pte_alloc_one_map() */
2680 	if (unlikely(pmd_trans_unstable(pmdp)))
2681 		goto abort;
2682 
2683 	if (unlikely(anon_vma_prepare(vma)))
2684 		goto abort;
2685 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
2686 		goto abort;
2687 
2688 	/*
2689 	 * The memory barrier inside __SetPageUptodate makes sure that
2690 	 * preceding stores to the page contents become visible before
2691 	 * the set_pte_at() write.
2692 	 */
2693 	__SetPageUptodate(page);
2694 
2695 	if (is_zone_device_page(page)) {
2696 		if (is_device_private_page(page)) {
2697 			swp_entry_t swp_entry;
2698 
2699 			if (vma->vm_flags & VM_WRITE)
2700 				swp_entry = make_writable_device_private_entry(
2701 							page_to_pfn(page));
2702 			else
2703 				swp_entry = make_readable_device_private_entry(
2704 							page_to_pfn(page));
2705 			entry = swp_entry_to_pte(swp_entry);
2706 		} else {
2707 			/*
2708 			 * For now we only support migrating to un-addressable
2709 			 * device memory.
2710 			 */
2711 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2712 			goto abort;
2713 		}
2714 	} else {
2715 		entry = mk_pte(page, vma->vm_page_prot);
2716 		if (vma->vm_flags & VM_WRITE)
2717 			entry = pte_mkwrite(pte_mkdirty(entry));
2718 	}
2719 
2720 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2721 
2722 	if (check_stable_address_space(mm))
2723 		goto unlock_abort;
2724 
2725 	if (pte_present(*ptep)) {
2726 		unsigned long pfn = pte_pfn(*ptep);
2727 
2728 		if (!is_zero_pfn(pfn))
2729 			goto unlock_abort;
2730 		flush = true;
2731 	} else if (!pte_none(*ptep))
2732 		goto unlock_abort;
2733 
2734 	/*
2735 	 * Check for userfaultfd but do not deliver the fault. Instead,
2736 	 * just back off.
2737 	 */
2738 	if (userfaultfd_missing(vma))
2739 		goto unlock_abort;
2740 
2741 	inc_mm_counter(mm, MM_ANONPAGES);
2742 	page_add_new_anon_rmap(page, vma, addr, false);
2743 	if (!is_zone_device_page(page))
2744 		lru_cache_add_inactive_or_unevictable(page, vma);
2745 	get_page(page);
2746 
2747 	if (flush) {
2748 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2749 		ptep_clear_flush_notify(vma, addr, ptep);
2750 		set_pte_at_notify(mm, addr, ptep, entry);
2751 		update_mmu_cache(vma, addr, ptep);
2752 	} else {
2753 		/* No need to invalidate - it was non-present before */
2754 		set_pte_at(mm, addr, ptep, entry);
2755 		update_mmu_cache(vma, addr, ptep);
2756 	}
2757 
2758 	pte_unmap_unlock(ptep, ptl);
2759 	*src = MIGRATE_PFN_MIGRATE;
2760 	return;
2761 
2762 unlock_abort:
2763 	pte_unmap_unlock(ptep, ptl);
2764 abort:
2765 	*src &= ~MIGRATE_PFN_MIGRATE;
2766 }
2767 
2768 /**
2769  * migrate_vma_pages() - migrate meta-data from src page to dst page
2770  * @migrate: migrate struct containing all migration information
2771  *
2772  * This migrates struct page meta-data from source struct page to destination
2773  * struct page. This effectively finishes the migration from source page to the
2774  * destination page.
2775  */
2776 void migrate_vma_pages(struct migrate_vma *migrate)
2777 {
2778 	const unsigned long npages = migrate->npages;
2779 	const unsigned long start = migrate->start;
2780 	struct mmu_notifier_range range;
2781 	unsigned long addr, i;
2782 	bool notified = false;
2783 
2784 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2785 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2786 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2787 		struct address_space *mapping;
2788 		int r;
2789 
2790 		if (!newpage) {
2791 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2792 			continue;
2793 		}
2794 
2795 		if (!page) {
2796 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2797 				continue;
2798 			if (!notified) {
2799 				notified = true;
2800 
2801 				mmu_notifier_range_init_owner(&range,
2802 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2803 					migrate->vma->vm_mm, addr, migrate->end,
2804 					migrate->pgmap_owner);
2805 				mmu_notifier_invalidate_range_start(&range);
2806 			}
2807 			migrate_vma_insert_page(migrate, addr, newpage,
2808 						&migrate->src[i]);
2809 			continue;
2810 		}
2811 
2812 		mapping = page_mapping(page);
2813 
2814 		if (is_zone_device_page(newpage)) {
2815 			if (is_device_private_page(newpage)) {
2816 				/*
2817 				 * For now only support private anonymous when
2818 				 * migrating to un-addressable device memory.
2819 				 */
2820 				if (mapping) {
2821 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2822 					continue;
2823 				}
2824 			} else {
2825 				/*
2826 				 * Other types of ZONE_DEVICE page are not
2827 				 * supported.
2828 				 */
2829 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2830 				continue;
2831 			}
2832 		}
2833 
2834 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2835 		if (r != MIGRATEPAGE_SUCCESS)
2836 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2837 	}
2838 
2839 	/*
2840 	 * No need to double call mmu_notifier->invalidate_range() callback as
2841 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2842 	 * did already call it.
2843 	 */
2844 	if (notified)
2845 		mmu_notifier_invalidate_range_only_end(&range);
2846 }
2847 EXPORT_SYMBOL(migrate_vma_pages);
2848 
2849 /**
2850  * migrate_vma_finalize() - restore CPU page table entry
2851  * @migrate: migrate struct containing all migration information
2852  *
2853  * This replaces the special migration pte entry with either a mapping to the
2854  * new page if migration was successful for that page, or to the original page
2855  * otherwise.
2856  *
2857  * This also unlocks the pages and puts them back on the lru, or drops the extra
2858  * refcount, for device pages.
2859  */
2860 void migrate_vma_finalize(struct migrate_vma *migrate)
2861 {
2862 	const unsigned long npages = migrate->npages;
2863 	unsigned long i;
2864 
2865 	for (i = 0; i < npages; i++) {
2866 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868 
2869 		if (!page) {
2870 			if (newpage) {
2871 				unlock_page(newpage);
2872 				put_page(newpage);
2873 			}
2874 			continue;
2875 		}
2876 
2877 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2878 			if (newpage) {
2879 				unlock_page(newpage);
2880 				put_page(newpage);
2881 			}
2882 			newpage = page;
2883 		}
2884 
2885 		remove_migration_ptes(page, newpage, false);
2886 		unlock_page(page);
2887 
2888 		if (is_zone_device_page(page))
2889 			put_page(page);
2890 		else
2891 			putback_lru_page(page);
2892 
2893 		if (newpage != page) {
2894 			unlock_page(newpage);
2895 			if (is_zone_device_page(newpage))
2896 				put_page(newpage);
2897 			else
2898 				putback_lru_page(newpage);
2899 		}
2900 	}
2901 }
2902 EXPORT_SYMBOL(migrate_vma_finalize);
2903 #endif /* CONFIG_DEVICE_PRIVATE */
2904 
2905 /*
2906  * node_demotion[] example:
2907  *
2908  * Consider a system with two sockets.  Each socket has
2909  * three classes of memory attached: fast, medium and slow.
2910  * Each memory class is placed in its own NUMA node.  The
2911  * CPUs are placed in the node with the "fast" memory.  The
2912  * 6 NUMA nodes (0-5) might be split among the sockets like
2913  * this:
2914  *
2915  *	Socket A: 0, 1, 2
2916  *	Socket B: 3, 4, 5
2917  *
2918  * When Node 0 fills up, its memory should be migrated to
2919  * Node 1.  When Node 1 fills up, it should be migrated to
2920  * Node 2.  The migration path start on the nodes with the
2921  * processors (since allocations default to this node) and
2922  * fast memory, progress through medium and end with the
2923  * slow memory:
2924  *
2925  *	0 -> 1 -> 2 -> stop
2926  *	3 -> 4 -> 5 -> stop
2927  *
2928  * This is represented in the node_demotion[] like this:
2929  *
2930  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2931  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2932  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2933  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2934  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2935  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2936  *
2937  * Moreover some systems may have multiple slow memory nodes.
2938  * Suppose a system has one socket with 3 memory nodes, node 0
2939  * is fast memory type, and node 1/2 both are slow memory
2940  * type, and the distance between fast memory node and slow
2941  * memory node is same. So the migration path should be:
2942  *
2943  *	0 -> 1/2 -> stop
2944  *
2945  * This is represented in the node_demotion[] like this:
2946  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2947  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2948  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2949  */
2950 
2951 /*
2952  * Writes to this array occur without locking.  Cycles are
2953  * not allowed: Node X demotes to Y which demotes to X...
2954  *
2955  * If multiple reads are performed, a single rcu_read_lock()
2956  * must be held over all reads to ensure that no cycles are
2957  * observed.
2958  */
2959 #define DEFAULT_DEMOTION_TARGET_NODES 15
2960 
2961 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2962 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2963 #else
2964 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2965 #endif
2966 
2967 struct demotion_nodes {
2968 	unsigned short nr;
2969 	short nodes[DEMOTION_TARGET_NODES];
2970 };
2971 
2972 static struct demotion_nodes *node_demotion __read_mostly;
2973 
2974 /**
2975  * next_demotion_node() - Get the next node in the demotion path
2976  * @node: The starting node to lookup the next node
2977  *
2978  * Return: node id for next memory node in the demotion path hierarchy
2979  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2980  * @node online or guarantee that it *continues* to be the next demotion
2981  * target.
2982  */
2983 int next_demotion_node(int node)
2984 {
2985 	struct demotion_nodes *nd;
2986 	unsigned short target_nr, index;
2987 	int target;
2988 
2989 	if (!node_demotion)
2990 		return NUMA_NO_NODE;
2991 
2992 	nd = &node_demotion[node];
2993 
2994 	/*
2995 	 * node_demotion[] is updated without excluding this
2996 	 * function from running.  RCU doesn't provide any
2997 	 * compiler barriers, so the READ_ONCE() is required
2998 	 * to avoid compiler reordering or read merging.
2999 	 *
3000 	 * Make sure to use RCU over entire code blocks if
3001 	 * node_demotion[] reads need to be consistent.
3002 	 */
3003 	rcu_read_lock();
3004 	target_nr = READ_ONCE(nd->nr);
3005 
3006 	switch (target_nr) {
3007 	case 0:
3008 		target = NUMA_NO_NODE;
3009 		goto out;
3010 	case 1:
3011 		index = 0;
3012 		break;
3013 	default:
3014 		/*
3015 		 * If there are multiple target nodes, just select one
3016 		 * target node randomly.
3017 		 *
3018 		 * In addition, we can also use round-robin to select
3019 		 * target node, but we should introduce another variable
3020 		 * for node_demotion[] to record last selected target node,
3021 		 * that may cause cache ping-pong due to the changing of
3022 		 * last target node. Or introducing per-cpu data to avoid
3023 		 * caching issue, which seems more complicated. So selecting
3024 		 * target node randomly seems better until now.
3025 		 */
3026 		index = get_random_int() % target_nr;
3027 		break;
3028 	}
3029 
3030 	target = READ_ONCE(nd->nodes[index]);
3031 
3032 out:
3033 	rcu_read_unlock();
3034 	return target;
3035 }
3036 
3037 #if defined(CONFIG_HOTPLUG_CPU)
3038 /* Disable reclaim-based migration. */
3039 static void __disable_all_migrate_targets(void)
3040 {
3041 	int node, i;
3042 
3043 	if (!node_demotion)
3044 		return;
3045 
3046 	for_each_online_node(node) {
3047 		node_demotion[node].nr = 0;
3048 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
3049 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
3050 	}
3051 }
3052 
3053 static void disable_all_migrate_targets(void)
3054 {
3055 	__disable_all_migrate_targets();
3056 
3057 	/*
3058 	 * Ensure that the "disable" is visible across the system.
3059 	 * Readers will see either a combination of before+disable
3060 	 * state or disable+after.  They will never see before and
3061 	 * after state together.
3062 	 *
3063 	 * The before+after state together might have cycles and
3064 	 * could cause readers to do things like loop until this
3065 	 * function finishes.  This ensures they can only see a
3066 	 * single "bad" read and would, for instance, only loop
3067 	 * once.
3068 	 */
3069 	synchronize_rcu();
3070 }
3071 
3072 /*
3073  * Find an automatic demotion target for 'node'.
3074  * Failing here is OK.  It might just indicate
3075  * being at the end of a chain.
3076  */
3077 static int establish_migrate_target(int node, nodemask_t *used,
3078 				    int best_distance)
3079 {
3080 	int migration_target, index, val;
3081 	struct demotion_nodes *nd;
3082 
3083 	if (!node_demotion)
3084 		return NUMA_NO_NODE;
3085 
3086 	nd = &node_demotion[node];
3087 
3088 	migration_target = find_next_best_node(node, used);
3089 	if (migration_target == NUMA_NO_NODE)
3090 		return NUMA_NO_NODE;
3091 
3092 	/*
3093 	 * If the node has been set a migration target node before,
3094 	 * which means it's the best distance between them. Still
3095 	 * check if this node can be demoted to other target nodes
3096 	 * if they have a same best distance.
3097 	 */
3098 	if (best_distance != -1) {
3099 		val = node_distance(node, migration_target);
3100 		if (val > best_distance)
3101 			goto out_clear;
3102 	}
3103 
3104 	index = nd->nr;
3105 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
3106 		      "Exceeds maximum demotion target nodes\n"))
3107 		goto out_clear;
3108 
3109 	nd->nodes[index] = migration_target;
3110 	nd->nr++;
3111 
3112 	return migration_target;
3113 out_clear:
3114 	node_clear(migration_target, *used);
3115 	return NUMA_NO_NODE;
3116 }
3117 
3118 /*
3119  * When memory fills up on a node, memory contents can be
3120  * automatically migrated to another node instead of
3121  * discarded at reclaim.
3122  *
3123  * Establish a "migration path" which will start at nodes
3124  * with CPUs and will follow the priorities used to build the
3125  * page allocator zonelists.
3126  *
3127  * The difference here is that cycles must be avoided.  If
3128  * node0 migrates to node1, then neither node1, nor anything
3129  * node1 migrates to can migrate to node0. Also one node can
3130  * be migrated to multiple nodes if the target nodes all have
3131  * a same best-distance against the source node.
3132  *
3133  * This function can run simultaneously with readers of
3134  * node_demotion[].  However, it can not run simultaneously
3135  * with itself.  Exclusion is provided by memory hotplug events
3136  * being single-threaded.
3137  */
3138 static void __set_migration_target_nodes(void)
3139 {
3140 	nodemask_t next_pass	= NODE_MASK_NONE;
3141 	nodemask_t this_pass	= NODE_MASK_NONE;
3142 	nodemask_t used_targets = NODE_MASK_NONE;
3143 	int node, best_distance;
3144 
3145 	/*
3146 	 * Avoid any oddities like cycles that could occur
3147 	 * from changes in the topology.  This will leave
3148 	 * a momentary gap when migration is disabled.
3149 	 */
3150 	disable_all_migrate_targets();
3151 
3152 	/*
3153 	 * Allocations go close to CPUs, first.  Assume that
3154 	 * the migration path starts at the nodes with CPUs.
3155 	 */
3156 	next_pass = node_states[N_CPU];
3157 again:
3158 	this_pass = next_pass;
3159 	next_pass = NODE_MASK_NONE;
3160 	/*
3161 	 * To avoid cycles in the migration "graph", ensure
3162 	 * that migration sources are not future targets by
3163 	 * setting them in 'used_targets'.  Do this only
3164 	 * once per pass so that multiple source nodes can
3165 	 * share a target node.
3166 	 *
3167 	 * 'used_targets' will become unavailable in future
3168 	 * passes.  This limits some opportunities for
3169 	 * multiple source nodes to share a destination.
3170 	 */
3171 	nodes_or(used_targets, used_targets, this_pass);
3172 
3173 	for_each_node_mask(node, this_pass) {
3174 		best_distance = -1;
3175 
3176 		/*
3177 		 * Try to set up the migration path for the node, and the target
3178 		 * migration nodes can be multiple, so doing a loop to find all
3179 		 * the target nodes if they all have a best node distance.
3180 		 */
3181 		do {
3182 			int target_node =
3183 				establish_migrate_target(node, &used_targets,
3184 							 best_distance);
3185 
3186 			if (target_node == NUMA_NO_NODE)
3187 				break;
3188 
3189 			if (best_distance == -1)
3190 				best_distance = node_distance(node, target_node);
3191 
3192 			/*
3193 			 * Visit targets from this pass in the next pass.
3194 			 * Eventually, every node will have been part of
3195 			 * a pass, and will become set in 'used_targets'.
3196 			 */
3197 			node_set(target_node, next_pass);
3198 		} while (1);
3199 	}
3200 	/*
3201 	 * 'next_pass' contains nodes which became migration
3202 	 * targets in this pass.  Make additional passes until
3203 	 * no more migrations targets are available.
3204 	 */
3205 	if (!nodes_empty(next_pass))
3206 		goto again;
3207 }
3208 
3209 /*
3210  * For callers that do not hold get_online_mems() already.
3211  */
3212 void set_migration_target_nodes(void)
3213 {
3214 	get_online_mems();
3215 	__set_migration_target_nodes();
3216 	put_online_mems();
3217 }
3218 
3219 /*
3220  * This leaves migrate-on-reclaim transiently disabled between
3221  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
3222  * whether reclaim-based migration is enabled or not, which
3223  * ensures that the user can turn reclaim-based migration at
3224  * any time without needing to recalculate migration targets.
3225  *
3226  * These callbacks already hold get_online_mems().  That is why
3227  * __set_migration_target_nodes() can be used as opposed to
3228  * set_migration_target_nodes().
3229  */
3230 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3231 						 unsigned long action, void *_arg)
3232 {
3233 	struct memory_notify *arg = _arg;
3234 
3235 	/*
3236 	 * Only update the node migration order when a node is
3237 	 * changing status, like online->offline.  This avoids
3238 	 * the overhead of synchronize_rcu() in most cases.
3239 	 */
3240 	if (arg->status_change_nid < 0)
3241 		return notifier_from_errno(0);
3242 
3243 	switch (action) {
3244 	case MEM_GOING_OFFLINE:
3245 		/*
3246 		 * Make sure there are not transient states where
3247 		 * an offline node is a migration target.  This
3248 		 * will leave migration disabled until the offline
3249 		 * completes and the MEM_OFFLINE case below runs.
3250 		 */
3251 		disable_all_migrate_targets();
3252 		break;
3253 	case MEM_OFFLINE:
3254 	case MEM_ONLINE:
3255 		/*
3256 		 * Recalculate the target nodes once the node
3257 		 * reaches its final state (online or offline).
3258 		 */
3259 		__set_migration_target_nodes();
3260 		break;
3261 	case MEM_CANCEL_OFFLINE:
3262 		/*
3263 		 * MEM_GOING_OFFLINE disabled all the migration
3264 		 * targets.  Reenable them.
3265 		 */
3266 		__set_migration_target_nodes();
3267 		break;
3268 	case MEM_GOING_ONLINE:
3269 	case MEM_CANCEL_ONLINE:
3270 		break;
3271 	}
3272 
3273 	return notifier_from_errno(0);
3274 }
3275 
3276 void __init migrate_on_reclaim_init(void)
3277 {
3278 	node_demotion = kmalloc_array(nr_node_ids,
3279 				      sizeof(struct demotion_nodes),
3280 				      GFP_KERNEL);
3281 	WARN_ON(!node_demotion);
3282 
3283 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3284 	/*
3285 	 * At this point, all numa nodes with memory/CPus have their state
3286 	 * properly set, so we can build the demotion order now.
3287 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
3288 	 * CPU hotplug events during boot.
3289 	 */
3290 	cpus_read_lock();
3291 	set_migration_target_nodes();
3292 	cpus_read_unlock();
3293 }
3294 #endif /* CONFIG_HOTPLUG_CPU */
3295 
3296 bool numa_demotion_enabled = false;
3297 
3298 #ifdef CONFIG_SYSFS
3299 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3300 					  struct kobj_attribute *attr, char *buf)
3301 {
3302 	return sysfs_emit(buf, "%s\n",
3303 			  numa_demotion_enabled ? "true" : "false");
3304 }
3305 
3306 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3307 					   struct kobj_attribute *attr,
3308 					   const char *buf, size_t count)
3309 {
3310 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3311 		numa_demotion_enabled = true;
3312 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3313 		numa_demotion_enabled = false;
3314 	else
3315 		return -EINVAL;
3316 
3317 	return count;
3318 }
3319 
3320 static struct kobj_attribute numa_demotion_enabled_attr =
3321 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3322 	       numa_demotion_enabled_store);
3323 
3324 static struct attribute *numa_attrs[] = {
3325 	&numa_demotion_enabled_attr.attr,
3326 	NULL,
3327 };
3328 
3329 static const struct attribute_group numa_attr_group = {
3330 	.attrs = numa_attrs,
3331 };
3332 
3333 static int __init numa_init_sysfs(void)
3334 {
3335 	int err;
3336 	struct kobject *numa_kobj;
3337 
3338 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
3339 	if (!numa_kobj) {
3340 		pr_err("failed to create numa kobject\n");
3341 		return -ENOMEM;
3342 	}
3343 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
3344 	if (err) {
3345 		pr_err("failed to register numa group\n");
3346 		goto delete_obj;
3347 	}
3348 	return 0;
3349 
3350 delete_obj:
3351 	kobject_put(numa_kobj);
3352 	return err;
3353 }
3354 subsys_initcall(numa_init_sysfs);
3355 #endif
3356