1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -thp_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_device_private_page(new))) { 250 entry = make_device_private_entry(new, pte_write(pte)); 251 pte = swp_entry_to_pte(entry); 252 if (pte_swp_soft_dirty(*pvmw.pte)) 253 pte = pte_swp_mksoft_dirty(pte); 254 if (pte_swp_uffd_wp(*pvmw.pte)) 255 pte = pte_swp_mkuffd_wp(pte); 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += thp_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 struct lruvec *old_lruvec, *new_lruvec; 494 struct mem_cgroup *memcg; 495 496 memcg = page_memcg(page); 497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 499 500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); 501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); 502 if (PageSwapBacked(page) && !PageSwapCache(page)) { 503 __dec_lruvec_state(old_lruvec, NR_SHMEM); 504 __inc_lruvec_state(new_lruvec, NR_SHMEM); 505 } 506 if (dirty && mapping_can_writeback(mapping)) { 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 511 } 512 } 513 local_irq_enable(); 514 515 return MIGRATEPAGE_SUCCESS; 516 } 517 EXPORT_SYMBOL(migrate_page_move_mapping); 518 519 /* 520 * The expected number of remaining references is the same as that 521 * of migrate_page_move_mapping(). 522 */ 523 int migrate_huge_page_move_mapping(struct address_space *mapping, 524 struct page *newpage, struct page *page) 525 { 526 XA_STATE(xas, &mapping->i_pages, page_index(page)); 527 int expected_count; 528 529 xas_lock_irq(&xas); 530 expected_count = 2 + page_has_private(page); 531 if (page_count(page) != expected_count || xas_load(&xas) != page) { 532 xas_unlock_irq(&xas); 533 return -EAGAIN; 534 } 535 536 if (!page_ref_freeze(page, expected_count)) { 537 xas_unlock_irq(&xas); 538 return -EAGAIN; 539 } 540 541 newpage->index = page->index; 542 newpage->mapping = page->mapping; 543 544 get_page(newpage); 545 546 xas_store(&xas, newpage); 547 548 page_ref_unfreeze(page, expected_count - 1); 549 550 xas_unlock_irq(&xas); 551 552 return MIGRATEPAGE_SUCCESS; 553 } 554 555 /* 556 * Gigantic pages are so large that we do not guarantee that page++ pointer 557 * arithmetic will work across the entire page. We need something more 558 * specialized. 559 */ 560 static void __copy_gigantic_page(struct page *dst, struct page *src, 561 int nr_pages) 562 { 563 int i; 564 struct page *dst_base = dst; 565 struct page *src_base = src; 566 567 for (i = 0; i < nr_pages; ) { 568 cond_resched(); 569 copy_highpage(dst, src); 570 571 i++; 572 dst = mem_map_next(dst, dst_base, i); 573 src = mem_map_next(src, src_base, i); 574 } 575 } 576 577 static void copy_huge_page(struct page *dst, struct page *src) 578 { 579 int i; 580 int nr_pages; 581 582 if (PageHuge(src)) { 583 /* hugetlbfs page */ 584 struct hstate *h = page_hstate(src); 585 nr_pages = pages_per_huge_page(h); 586 587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 588 __copy_gigantic_page(dst, src, nr_pages); 589 return; 590 } 591 } else { 592 /* thp page */ 593 BUG_ON(!PageTransHuge(src)); 594 nr_pages = thp_nr_pages(src); 595 } 596 597 for (i = 0; i < nr_pages; i++) { 598 cond_resched(); 599 copy_highpage(dst + i, src + i); 600 } 601 } 602 603 /* 604 * Copy the page to its new location 605 */ 606 void migrate_page_states(struct page *newpage, struct page *page) 607 { 608 int cpupid; 609 610 if (PageError(page)) 611 SetPageError(newpage); 612 if (PageReferenced(page)) 613 SetPageReferenced(newpage); 614 if (PageUptodate(page)) 615 SetPageUptodate(newpage); 616 if (TestClearPageActive(page)) { 617 VM_BUG_ON_PAGE(PageUnevictable(page), page); 618 SetPageActive(newpage); 619 } else if (TestClearPageUnevictable(page)) 620 SetPageUnevictable(newpage); 621 if (PageWorkingset(page)) 622 SetPageWorkingset(newpage); 623 if (PageChecked(page)) 624 SetPageChecked(newpage); 625 if (PageMappedToDisk(page)) 626 SetPageMappedToDisk(newpage); 627 628 /* Move dirty on pages not done by migrate_page_move_mapping() */ 629 if (PageDirty(page)) 630 SetPageDirty(newpage); 631 632 if (page_is_young(page)) 633 set_page_young(newpage); 634 if (page_is_idle(page)) 635 set_page_idle(newpage); 636 637 /* 638 * Copy NUMA information to the new page, to prevent over-eager 639 * future migrations of this same page. 640 */ 641 cpupid = page_cpupid_xchg_last(page, -1); 642 page_cpupid_xchg_last(newpage, cpupid); 643 644 ksm_migrate_page(newpage, page); 645 /* 646 * Please do not reorder this without considering how mm/ksm.c's 647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 648 */ 649 if (PageSwapCache(page)) 650 ClearPageSwapCache(page); 651 ClearPagePrivate(page); 652 set_page_private(page, 0); 653 654 /* 655 * If any waiters have accumulated on the new page then 656 * wake them up. 657 */ 658 if (PageWriteback(newpage)) 659 end_page_writeback(newpage); 660 661 /* 662 * PG_readahead shares the same bit with PG_reclaim. The above 663 * end_page_writeback() may clear PG_readahead mistakenly, so set the 664 * bit after that. 665 */ 666 if (PageReadahead(page)) 667 SetPageReadahead(newpage); 668 669 copy_page_owner(page, newpage); 670 671 if (!PageHuge(page)) 672 mem_cgroup_migrate(page, newpage); 673 } 674 EXPORT_SYMBOL(migrate_page_states); 675 676 void migrate_page_copy(struct page *newpage, struct page *page) 677 { 678 if (PageHuge(page) || PageTransHuge(page)) 679 copy_huge_page(newpage, page); 680 else 681 copy_highpage(newpage, page); 682 683 migrate_page_states(newpage, page); 684 } 685 EXPORT_SYMBOL(migrate_page_copy); 686 687 /************************************************************ 688 * Migration functions 689 ***********************************************************/ 690 691 /* 692 * Common logic to directly migrate a single LRU page suitable for 693 * pages that do not use PagePrivate/PagePrivate2. 694 * 695 * Pages are locked upon entry and exit. 696 */ 697 int migrate_page(struct address_space *mapping, 698 struct page *newpage, struct page *page, 699 enum migrate_mode mode) 700 { 701 int rc; 702 703 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 704 705 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 706 707 if (rc != MIGRATEPAGE_SUCCESS) 708 return rc; 709 710 if (mode != MIGRATE_SYNC_NO_COPY) 711 migrate_page_copy(newpage, page); 712 else 713 migrate_page_states(newpage, page); 714 return MIGRATEPAGE_SUCCESS; 715 } 716 EXPORT_SYMBOL(migrate_page); 717 718 #ifdef CONFIG_BLOCK 719 /* Returns true if all buffers are successfully locked */ 720 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 721 enum migrate_mode mode) 722 { 723 struct buffer_head *bh = head; 724 725 /* Simple case, sync compaction */ 726 if (mode != MIGRATE_ASYNC) { 727 do { 728 lock_buffer(bh); 729 bh = bh->b_this_page; 730 731 } while (bh != head); 732 733 return true; 734 } 735 736 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 737 do { 738 if (!trylock_buffer(bh)) { 739 /* 740 * We failed to lock the buffer and cannot stall in 741 * async migration. Release the taken locks 742 */ 743 struct buffer_head *failed_bh = bh; 744 bh = head; 745 while (bh != failed_bh) { 746 unlock_buffer(bh); 747 bh = bh->b_this_page; 748 } 749 return false; 750 } 751 752 bh = bh->b_this_page; 753 } while (bh != head); 754 return true; 755 } 756 757 static int __buffer_migrate_page(struct address_space *mapping, 758 struct page *newpage, struct page *page, enum migrate_mode mode, 759 bool check_refs) 760 { 761 struct buffer_head *bh, *head; 762 int rc; 763 int expected_count; 764 765 if (!page_has_buffers(page)) 766 return migrate_page(mapping, newpage, page, mode); 767 768 /* Check whether page does not have extra refs before we do more work */ 769 expected_count = expected_page_refs(mapping, page); 770 if (page_count(page) != expected_count) 771 return -EAGAIN; 772 773 head = page_buffers(page); 774 if (!buffer_migrate_lock_buffers(head, mode)) 775 return -EAGAIN; 776 777 if (check_refs) { 778 bool busy; 779 bool invalidated = false; 780 781 recheck_buffers: 782 busy = false; 783 spin_lock(&mapping->private_lock); 784 bh = head; 785 do { 786 if (atomic_read(&bh->b_count)) { 787 busy = true; 788 break; 789 } 790 bh = bh->b_this_page; 791 } while (bh != head); 792 if (busy) { 793 if (invalidated) { 794 rc = -EAGAIN; 795 goto unlock_buffers; 796 } 797 spin_unlock(&mapping->private_lock); 798 invalidate_bh_lrus(); 799 invalidated = true; 800 goto recheck_buffers; 801 } 802 } 803 804 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 805 if (rc != MIGRATEPAGE_SUCCESS) 806 goto unlock_buffers; 807 808 attach_page_private(newpage, detach_page_private(page)); 809 810 bh = head; 811 do { 812 set_bh_page(bh, newpage, bh_offset(bh)); 813 bh = bh->b_this_page; 814 815 } while (bh != head); 816 817 if (mode != MIGRATE_SYNC_NO_COPY) 818 migrate_page_copy(newpage, page); 819 else 820 migrate_page_states(newpage, page); 821 822 rc = MIGRATEPAGE_SUCCESS; 823 unlock_buffers: 824 if (check_refs) 825 spin_unlock(&mapping->private_lock); 826 bh = head; 827 do { 828 unlock_buffer(bh); 829 bh = bh->b_this_page; 830 831 } while (bh != head); 832 833 return rc; 834 } 835 836 /* 837 * Migration function for pages with buffers. This function can only be used 838 * if the underlying filesystem guarantees that no other references to "page" 839 * exist. For example attached buffer heads are accessed only under page lock. 840 */ 841 int buffer_migrate_page(struct address_space *mapping, 842 struct page *newpage, struct page *page, enum migrate_mode mode) 843 { 844 return __buffer_migrate_page(mapping, newpage, page, mode, false); 845 } 846 EXPORT_SYMBOL(buffer_migrate_page); 847 848 /* 849 * Same as above except that this variant is more careful and checks that there 850 * are also no buffer head references. This function is the right one for 851 * mappings where buffer heads are directly looked up and referenced (such as 852 * block device mappings). 853 */ 854 int buffer_migrate_page_norefs(struct address_space *mapping, 855 struct page *newpage, struct page *page, enum migrate_mode mode) 856 { 857 return __buffer_migrate_page(mapping, newpage, page, mode, true); 858 } 859 #endif 860 861 /* 862 * Writeback a page to clean the dirty state 863 */ 864 static int writeout(struct address_space *mapping, struct page *page) 865 { 866 struct writeback_control wbc = { 867 .sync_mode = WB_SYNC_NONE, 868 .nr_to_write = 1, 869 .range_start = 0, 870 .range_end = LLONG_MAX, 871 .for_reclaim = 1 872 }; 873 int rc; 874 875 if (!mapping->a_ops->writepage) 876 /* No write method for the address space */ 877 return -EINVAL; 878 879 if (!clear_page_dirty_for_io(page)) 880 /* Someone else already triggered a write */ 881 return -EAGAIN; 882 883 /* 884 * A dirty page may imply that the underlying filesystem has 885 * the page on some queue. So the page must be clean for 886 * migration. Writeout may mean we loose the lock and the 887 * page state is no longer what we checked for earlier. 888 * At this point we know that the migration attempt cannot 889 * be successful. 890 */ 891 remove_migration_ptes(page, page, false); 892 893 rc = mapping->a_ops->writepage(page, &wbc); 894 895 if (rc != AOP_WRITEPAGE_ACTIVATE) 896 /* unlocked. Relock */ 897 lock_page(page); 898 899 return (rc < 0) ? -EIO : -EAGAIN; 900 } 901 902 /* 903 * Default handling if a filesystem does not provide a migration function. 904 */ 905 static int fallback_migrate_page(struct address_space *mapping, 906 struct page *newpage, struct page *page, enum migrate_mode mode) 907 { 908 if (PageDirty(page)) { 909 /* Only writeback pages in full synchronous migration */ 910 switch (mode) { 911 case MIGRATE_SYNC: 912 case MIGRATE_SYNC_NO_COPY: 913 break; 914 default: 915 return -EBUSY; 916 } 917 return writeout(mapping, page); 918 } 919 920 /* 921 * Buffers may be managed in a filesystem specific way. 922 * We must have no buffers or drop them. 923 */ 924 if (page_has_private(page) && 925 !try_to_release_page(page, GFP_KERNEL)) 926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 927 928 return migrate_page(mapping, newpage, page, mode); 929 } 930 931 /* 932 * Move a page to a newly allocated page 933 * The page is locked and all ptes have been successfully removed. 934 * 935 * The new page will have replaced the old page if this function 936 * is successful. 937 * 938 * Return value: 939 * < 0 - error code 940 * MIGRATEPAGE_SUCCESS - success 941 */ 942 static int move_to_new_page(struct page *newpage, struct page *page, 943 enum migrate_mode mode) 944 { 945 struct address_space *mapping; 946 int rc = -EAGAIN; 947 bool is_lru = !__PageMovable(page); 948 949 VM_BUG_ON_PAGE(!PageLocked(page), page); 950 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 951 952 mapping = page_mapping(page); 953 954 if (likely(is_lru)) { 955 if (!mapping) 956 rc = migrate_page(mapping, newpage, page, mode); 957 else if (mapping->a_ops->migratepage) 958 /* 959 * Most pages have a mapping and most filesystems 960 * provide a migratepage callback. Anonymous pages 961 * are part of swap space which also has its own 962 * migratepage callback. This is the most common path 963 * for page migration. 964 */ 965 rc = mapping->a_ops->migratepage(mapping, newpage, 966 page, mode); 967 else 968 rc = fallback_migrate_page(mapping, newpage, 969 page, mode); 970 } else { 971 /* 972 * In case of non-lru page, it could be released after 973 * isolation step. In that case, we shouldn't try migration. 974 */ 975 VM_BUG_ON_PAGE(!PageIsolated(page), page); 976 if (!PageMovable(page)) { 977 rc = MIGRATEPAGE_SUCCESS; 978 __ClearPageIsolated(page); 979 goto out; 980 } 981 982 rc = mapping->a_ops->migratepage(mapping, newpage, 983 page, mode); 984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 985 !PageIsolated(page)); 986 } 987 988 /* 989 * When successful, old pagecache page->mapping must be cleared before 990 * page is freed; but stats require that PageAnon be left as PageAnon. 991 */ 992 if (rc == MIGRATEPAGE_SUCCESS) { 993 if (__PageMovable(page)) { 994 VM_BUG_ON_PAGE(!PageIsolated(page), page); 995 996 /* 997 * We clear PG_movable under page_lock so any compactor 998 * cannot try to migrate this page. 999 */ 1000 __ClearPageIsolated(page); 1001 } 1002 1003 /* 1004 * Anonymous and movable page->mapping will be cleared by 1005 * free_pages_prepare so don't reset it here for keeping 1006 * the type to work PageAnon, for example. 1007 */ 1008 if (!PageMappingFlags(page)) 1009 page->mapping = NULL; 1010 1011 if (likely(!is_zone_device_page(newpage))) 1012 flush_dcache_page(newpage); 1013 1014 } 1015 out: 1016 return rc; 1017 } 1018 1019 static int __unmap_and_move(struct page *page, struct page *newpage, 1020 int force, enum migrate_mode mode) 1021 { 1022 int rc = -EAGAIN; 1023 int page_was_mapped = 0; 1024 struct anon_vma *anon_vma = NULL; 1025 bool is_lru = !__PageMovable(page); 1026 1027 if (!trylock_page(page)) { 1028 if (!force || mode == MIGRATE_ASYNC) 1029 goto out; 1030 1031 /* 1032 * It's not safe for direct compaction to call lock_page. 1033 * For example, during page readahead pages are added locked 1034 * to the LRU. Later, when the IO completes the pages are 1035 * marked uptodate and unlocked. However, the queueing 1036 * could be merging multiple pages for one bio (e.g. 1037 * mpage_readahead). If an allocation happens for the 1038 * second or third page, the process can end up locking 1039 * the same page twice and deadlocking. Rather than 1040 * trying to be clever about what pages can be locked, 1041 * avoid the use of lock_page for direct compaction 1042 * altogether. 1043 */ 1044 if (current->flags & PF_MEMALLOC) 1045 goto out; 1046 1047 lock_page(page); 1048 } 1049 1050 if (PageWriteback(page)) { 1051 /* 1052 * Only in the case of a full synchronous migration is it 1053 * necessary to wait for PageWriteback. In the async case, 1054 * the retry loop is too short and in the sync-light case, 1055 * the overhead of stalling is too much 1056 */ 1057 switch (mode) { 1058 case MIGRATE_SYNC: 1059 case MIGRATE_SYNC_NO_COPY: 1060 break; 1061 default: 1062 rc = -EBUSY; 1063 goto out_unlock; 1064 } 1065 if (!force) 1066 goto out_unlock; 1067 wait_on_page_writeback(page); 1068 } 1069 1070 /* 1071 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1072 * we cannot notice that anon_vma is freed while we migrates a page. 1073 * This get_anon_vma() delays freeing anon_vma pointer until the end 1074 * of migration. File cache pages are no problem because of page_lock() 1075 * File Caches may use write_page() or lock_page() in migration, then, 1076 * just care Anon page here. 1077 * 1078 * Only page_get_anon_vma() understands the subtleties of 1079 * getting a hold on an anon_vma from outside one of its mms. 1080 * But if we cannot get anon_vma, then we won't need it anyway, 1081 * because that implies that the anon page is no longer mapped 1082 * (and cannot be remapped so long as we hold the page lock). 1083 */ 1084 if (PageAnon(page) && !PageKsm(page)) 1085 anon_vma = page_get_anon_vma(page); 1086 1087 /* 1088 * Block others from accessing the new page when we get around to 1089 * establishing additional references. We are usually the only one 1090 * holding a reference to newpage at this point. We used to have a BUG 1091 * here if trylock_page(newpage) fails, but would like to allow for 1092 * cases where there might be a race with the previous use of newpage. 1093 * This is much like races on refcount of oldpage: just don't BUG(). 1094 */ 1095 if (unlikely(!trylock_page(newpage))) 1096 goto out_unlock; 1097 1098 if (unlikely(!is_lru)) { 1099 rc = move_to_new_page(newpage, page, mode); 1100 goto out_unlock_both; 1101 } 1102 1103 /* 1104 * Corner case handling: 1105 * 1. When a new swap-cache page is read into, it is added to the LRU 1106 * and treated as swapcache but it has no rmap yet. 1107 * Calling try_to_unmap() against a page->mapping==NULL page will 1108 * trigger a BUG. So handle it here. 1109 * 2. An orphaned page (see truncate_complete_page) might have 1110 * fs-private metadata. The page can be picked up due to memory 1111 * offlining. Everywhere else except page reclaim, the page is 1112 * invisible to the vm, so the page can not be migrated. So try to 1113 * free the metadata, so the page can be freed. 1114 */ 1115 if (!page->mapping) { 1116 VM_BUG_ON_PAGE(PageAnon(page), page); 1117 if (page_has_private(page)) { 1118 try_to_free_buffers(page); 1119 goto out_unlock_both; 1120 } 1121 } else if (page_mapped(page)) { 1122 /* Establish migration ptes */ 1123 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1124 page); 1125 try_to_unmap(page, 1126 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1127 page_was_mapped = 1; 1128 } 1129 1130 if (!page_mapped(page)) 1131 rc = move_to_new_page(newpage, page, mode); 1132 1133 if (page_was_mapped) 1134 remove_migration_ptes(page, 1135 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1136 1137 out_unlock_both: 1138 unlock_page(newpage); 1139 out_unlock: 1140 /* Drop an anon_vma reference if we took one */ 1141 if (anon_vma) 1142 put_anon_vma(anon_vma); 1143 unlock_page(page); 1144 out: 1145 /* 1146 * If migration is successful, decrease refcount of the newpage 1147 * which will not free the page because new page owner increased 1148 * refcounter. As well, if it is LRU page, add the page to LRU 1149 * list in here. Use the old state of the isolated source page to 1150 * determine if we migrated a LRU page. newpage was already unlocked 1151 * and possibly modified by its owner - don't rely on the page 1152 * state. 1153 */ 1154 if (rc == MIGRATEPAGE_SUCCESS) { 1155 if (unlikely(!is_lru)) 1156 put_page(newpage); 1157 else 1158 putback_lru_page(newpage); 1159 } 1160 1161 return rc; 1162 } 1163 1164 /* 1165 * Obtain the lock on page, remove all ptes and migrate the page 1166 * to the newly allocated page in newpage. 1167 */ 1168 static int unmap_and_move(new_page_t get_new_page, 1169 free_page_t put_new_page, 1170 unsigned long private, struct page *page, 1171 int force, enum migrate_mode mode, 1172 enum migrate_reason reason) 1173 { 1174 int rc = MIGRATEPAGE_SUCCESS; 1175 struct page *newpage = NULL; 1176 1177 if (!thp_migration_supported() && PageTransHuge(page)) 1178 return -ENOMEM; 1179 1180 if (page_count(page) == 1) { 1181 /* page was freed from under us. So we are done. */ 1182 ClearPageActive(page); 1183 ClearPageUnevictable(page); 1184 if (unlikely(__PageMovable(page))) { 1185 lock_page(page); 1186 if (!PageMovable(page)) 1187 __ClearPageIsolated(page); 1188 unlock_page(page); 1189 } 1190 goto out; 1191 } 1192 1193 newpage = get_new_page(page, private); 1194 if (!newpage) 1195 return -ENOMEM; 1196 1197 rc = __unmap_and_move(page, newpage, force, mode); 1198 if (rc == MIGRATEPAGE_SUCCESS) 1199 set_page_owner_migrate_reason(newpage, reason); 1200 1201 out: 1202 if (rc != -EAGAIN) { 1203 /* 1204 * A page that has been migrated has all references 1205 * removed and will be freed. A page that has not been 1206 * migrated will have kept its references and be restored. 1207 */ 1208 list_del(&page->lru); 1209 1210 /* 1211 * Compaction can migrate also non-LRU pages which are 1212 * not accounted to NR_ISOLATED_*. They can be recognized 1213 * as __PageMovable 1214 */ 1215 if (likely(!__PageMovable(page))) 1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1217 page_is_file_lru(page), -thp_nr_pages(page)); 1218 } 1219 1220 /* 1221 * If migration is successful, releases reference grabbed during 1222 * isolation. Otherwise, restore the page to right list unless 1223 * we want to retry. 1224 */ 1225 if (rc == MIGRATEPAGE_SUCCESS) { 1226 if (reason != MR_MEMORY_FAILURE) 1227 /* 1228 * We release the page in page_handle_poison. 1229 */ 1230 put_page(page); 1231 } else { 1232 if (rc != -EAGAIN) { 1233 if (likely(!__PageMovable(page))) { 1234 putback_lru_page(page); 1235 goto put_new; 1236 } 1237 1238 lock_page(page); 1239 if (PageMovable(page)) 1240 putback_movable_page(page); 1241 else 1242 __ClearPageIsolated(page); 1243 unlock_page(page); 1244 put_page(page); 1245 } 1246 put_new: 1247 if (put_new_page) 1248 put_new_page(newpage, private); 1249 else 1250 put_page(newpage); 1251 } 1252 1253 return rc; 1254 } 1255 1256 /* 1257 * Counterpart of unmap_and_move_page() for hugepage migration. 1258 * 1259 * This function doesn't wait the completion of hugepage I/O 1260 * because there is no race between I/O and migration for hugepage. 1261 * Note that currently hugepage I/O occurs only in direct I/O 1262 * where no lock is held and PG_writeback is irrelevant, 1263 * and writeback status of all subpages are counted in the reference 1264 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1265 * under direct I/O, the reference of the head page is 512 and a bit more.) 1266 * This means that when we try to migrate hugepage whose subpages are 1267 * doing direct I/O, some references remain after try_to_unmap() and 1268 * hugepage migration fails without data corruption. 1269 * 1270 * There is also no race when direct I/O is issued on the page under migration, 1271 * because then pte is replaced with migration swap entry and direct I/O code 1272 * will wait in the page fault for migration to complete. 1273 */ 1274 static int unmap_and_move_huge_page(new_page_t get_new_page, 1275 free_page_t put_new_page, unsigned long private, 1276 struct page *hpage, int force, 1277 enum migrate_mode mode, int reason) 1278 { 1279 int rc = -EAGAIN; 1280 int page_was_mapped = 0; 1281 struct page *new_hpage; 1282 struct anon_vma *anon_vma = NULL; 1283 struct address_space *mapping = NULL; 1284 1285 /* 1286 * Migratability of hugepages depends on architectures and their size. 1287 * This check is necessary because some callers of hugepage migration 1288 * like soft offline and memory hotremove don't walk through page 1289 * tables or check whether the hugepage is pmd-based or not before 1290 * kicking migration. 1291 */ 1292 if (!hugepage_migration_supported(page_hstate(hpage))) { 1293 putback_active_hugepage(hpage); 1294 return -ENOSYS; 1295 } 1296 1297 new_hpage = get_new_page(hpage, private); 1298 if (!new_hpage) 1299 return -ENOMEM; 1300 1301 if (!trylock_page(hpage)) { 1302 if (!force) 1303 goto out; 1304 switch (mode) { 1305 case MIGRATE_SYNC: 1306 case MIGRATE_SYNC_NO_COPY: 1307 break; 1308 default: 1309 goto out; 1310 } 1311 lock_page(hpage); 1312 } 1313 1314 /* 1315 * Check for pages which are in the process of being freed. Without 1316 * page_mapping() set, hugetlbfs specific move page routine will not 1317 * be called and we could leak usage counts for subpools. 1318 */ 1319 if (page_private(hpage) && !page_mapping(hpage)) { 1320 rc = -EBUSY; 1321 goto out_unlock; 1322 } 1323 1324 if (PageAnon(hpage)) 1325 anon_vma = page_get_anon_vma(hpage); 1326 1327 if (unlikely(!trylock_page(new_hpage))) 1328 goto put_anon; 1329 1330 if (page_mapped(hpage)) { 1331 bool mapping_locked = false; 1332 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK| 1333 TTU_IGNORE_ACCESS; 1334 1335 if (!PageAnon(hpage)) { 1336 /* 1337 * In shared mappings, try_to_unmap could potentially 1338 * call huge_pmd_unshare. Because of this, take 1339 * semaphore in write mode here and set TTU_RMAP_LOCKED 1340 * to let lower levels know we have taken the lock. 1341 */ 1342 mapping = hugetlb_page_mapping_lock_write(hpage); 1343 if (unlikely(!mapping)) 1344 goto unlock_put_anon; 1345 1346 mapping_locked = true; 1347 ttu |= TTU_RMAP_LOCKED; 1348 } 1349 1350 try_to_unmap(hpage, ttu); 1351 page_was_mapped = 1; 1352 1353 if (mapping_locked) 1354 i_mmap_unlock_write(mapping); 1355 } 1356 1357 if (!page_mapped(hpage)) 1358 rc = move_to_new_page(new_hpage, hpage, mode); 1359 1360 if (page_was_mapped) 1361 remove_migration_ptes(hpage, 1362 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1363 1364 unlock_put_anon: 1365 unlock_page(new_hpage); 1366 1367 put_anon: 1368 if (anon_vma) 1369 put_anon_vma(anon_vma); 1370 1371 if (rc == MIGRATEPAGE_SUCCESS) { 1372 move_hugetlb_state(hpage, new_hpage, reason); 1373 put_new_page = NULL; 1374 } 1375 1376 out_unlock: 1377 unlock_page(hpage); 1378 out: 1379 if (rc != -EAGAIN) 1380 putback_active_hugepage(hpage); 1381 1382 /* 1383 * If migration was not successful and there's a freeing callback, use 1384 * it. Otherwise, put_page() will drop the reference grabbed during 1385 * isolation. 1386 */ 1387 if (put_new_page) 1388 put_new_page(new_hpage, private); 1389 else 1390 putback_active_hugepage(new_hpage); 1391 1392 return rc; 1393 } 1394 1395 /* 1396 * migrate_pages - migrate the pages specified in a list, to the free pages 1397 * supplied as the target for the page migration 1398 * 1399 * @from: The list of pages to be migrated. 1400 * @get_new_page: The function used to allocate free pages to be used 1401 * as the target of the page migration. 1402 * @put_new_page: The function used to free target pages if migration 1403 * fails, or NULL if no special handling is necessary. 1404 * @private: Private data to be passed on to get_new_page() 1405 * @mode: The migration mode that specifies the constraints for 1406 * page migration, if any. 1407 * @reason: The reason for page migration. 1408 * 1409 * The function returns after 10 attempts or if no pages are movable any more 1410 * because the list has become empty or no retryable pages exist any more. 1411 * The caller should call putback_movable_pages() to return pages to the LRU 1412 * or free list only if ret != 0. 1413 * 1414 * Returns the number of pages that were not migrated, or an error code. 1415 */ 1416 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1417 free_page_t put_new_page, unsigned long private, 1418 enum migrate_mode mode, int reason) 1419 { 1420 int retry = 1; 1421 int thp_retry = 1; 1422 int nr_failed = 0; 1423 int nr_succeeded = 0; 1424 int nr_thp_succeeded = 0; 1425 int nr_thp_failed = 0; 1426 int nr_thp_split = 0; 1427 int pass = 0; 1428 bool is_thp = false; 1429 struct page *page; 1430 struct page *page2; 1431 int swapwrite = current->flags & PF_SWAPWRITE; 1432 int rc, nr_subpages; 1433 1434 if (!swapwrite) 1435 current->flags |= PF_SWAPWRITE; 1436 1437 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1438 retry = 0; 1439 thp_retry = 0; 1440 1441 list_for_each_entry_safe(page, page2, from, lru) { 1442 retry: 1443 /* 1444 * THP statistics is based on the source huge page. 1445 * Capture required information that might get lost 1446 * during migration. 1447 */ 1448 is_thp = PageTransHuge(page) && !PageHuge(page); 1449 nr_subpages = thp_nr_pages(page); 1450 cond_resched(); 1451 1452 if (PageHuge(page)) 1453 rc = unmap_and_move_huge_page(get_new_page, 1454 put_new_page, private, page, 1455 pass > 2, mode, reason); 1456 else 1457 rc = unmap_and_move(get_new_page, put_new_page, 1458 private, page, pass > 2, mode, 1459 reason); 1460 1461 switch(rc) { 1462 case -ENOMEM: 1463 /* 1464 * THP migration might be unsupported or the 1465 * allocation could've failed so we should 1466 * retry on the same page with the THP split 1467 * to base pages. 1468 * 1469 * Head page is retried immediately and tail 1470 * pages are added to the tail of the list so 1471 * we encounter them after the rest of the list 1472 * is processed. 1473 */ 1474 if (is_thp) { 1475 lock_page(page); 1476 rc = split_huge_page_to_list(page, from); 1477 unlock_page(page); 1478 if (!rc) { 1479 list_safe_reset_next(page, page2, lru); 1480 nr_thp_split++; 1481 goto retry; 1482 } 1483 1484 nr_thp_failed++; 1485 nr_failed += nr_subpages; 1486 goto out; 1487 } 1488 nr_failed++; 1489 goto out; 1490 case -EAGAIN: 1491 if (is_thp) { 1492 thp_retry++; 1493 break; 1494 } 1495 retry++; 1496 break; 1497 case MIGRATEPAGE_SUCCESS: 1498 if (is_thp) { 1499 nr_thp_succeeded++; 1500 nr_succeeded += nr_subpages; 1501 break; 1502 } 1503 nr_succeeded++; 1504 break; 1505 default: 1506 /* 1507 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1508 * unlike -EAGAIN case, the failed page is 1509 * removed from migration page list and not 1510 * retried in the next outer loop. 1511 */ 1512 if (is_thp) { 1513 nr_thp_failed++; 1514 nr_failed += nr_subpages; 1515 break; 1516 } 1517 nr_failed++; 1518 break; 1519 } 1520 } 1521 } 1522 nr_failed += retry + thp_retry; 1523 nr_thp_failed += thp_retry; 1524 rc = nr_failed; 1525 out: 1526 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1527 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1528 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1529 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1530 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1531 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1532 nr_thp_failed, nr_thp_split, mode, reason); 1533 1534 if (!swapwrite) 1535 current->flags &= ~PF_SWAPWRITE; 1536 1537 return rc; 1538 } 1539 1540 struct page *alloc_migration_target(struct page *page, unsigned long private) 1541 { 1542 struct migration_target_control *mtc; 1543 gfp_t gfp_mask; 1544 unsigned int order = 0; 1545 struct page *new_page = NULL; 1546 int nid; 1547 int zidx; 1548 1549 mtc = (struct migration_target_control *)private; 1550 gfp_mask = mtc->gfp_mask; 1551 nid = mtc->nid; 1552 if (nid == NUMA_NO_NODE) 1553 nid = page_to_nid(page); 1554 1555 if (PageHuge(page)) { 1556 struct hstate *h = page_hstate(compound_head(page)); 1557 1558 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1559 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1560 } 1561 1562 if (PageTransHuge(page)) { 1563 /* 1564 * clear __GFP_RECLAIM to make the migration callback 1565 * consistent with regular THP allocations. 1566 */ 1567 gfp_mask &= ~__GFP_RECLAIM; 1568 gfp_mask |= GFP_TRANSHUGE; 1569 order = HPAGE_PMD_ORDER; 1570 } 1571 zidx = zone_idx(page_zone(page)); 1572 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1573 gfp_mask |= __GFP_HIGHMEM; 1574 1575 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1576 1577 if (new_page && PageTransHuge(new_page)) 1578 prep_transhuge_page(new_page); 1579 1580 return new_page; 1581 } 1582 1583 #ifdef CONFIG_NUMA 1584 1585 static int store_status(int __user *status, int start, int value, int nr) 1586 { 1587 while (nr-- > 0) { 1588 if (put_user(value, status + start)) 1589 return -EFAULT; 1590 start++; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static int do_move_pages_to_node(struct mm_struct *mm, 1597 struct list_head *pagelist, int node) 1598 { 1599 int err; 1600 struct migration_target_control mtc = { 1601 .nid = node, 1602 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1603 }; 1604 1605 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1606 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1607 if (err) 1608 putback_movable_pages(pagelist); 1609 return err; 1610 } 1611 1612 /* 1613 * Resolves the given address to a struct page, isolates it from the LRU and 1614 * puts it to the given pagelist. 1615 * Returns: 1616 * errno - if the page cannot be found/isolated 1617 * 0 - when it doesn't have to be migrated because it is already on the 1618 * target node 1619 * 1 - when it has been queued 1620 */ 1621 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1622 int node, struct list_head *pagelist, bool migrate_all) 1623 { 1624 struct vm_area_struct *vma; 1625 struct page *page; 1626 unsigned int follflags; 1627 int err; 1628 1629 mmap_read_lock(mm); 1630 err = -EFAULT; 1631 vma = find_vma(mm, addr); 1632 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1633 goto out; 1634 1635 /* FOLL_DUMP to ignore special (like zero) pages */ 1636 follflags = FOLL_GET | FOLL_DUMP; 1637 page = follow_page(vma, addr, follflags); 1638 1639 err = PTR_ERR(page); 1640 if (IS_ERR(page)) 1641 goto out; 1642 1643 err = -ENOENT; 1644 if (!page) 1645 goto out; 1646 1647 err = 0; 1648 if (page_to_nid(page) == node) 1649 goto out_putpage; 1650 1651 err = -EACCES; 1652 if (page_mapcount(page) > 1 && !migrate_all) 1653 goto out_putpage; 1654 1655 if (PageHuge(page)) { 1656 if (PageHead(page)) { 1657 isolate_huge_page(page, pagelist); 1658 err = 1; 1659 } 1660 } else { 1661 struct page *head; 1662 1663 head = compound_head(page); 1664 err = isolate_lru_page(head); 1665 if (err) 1666 goto out_putpage; 1667 1668 err = 1; 1669 list_add_tail(&head->lru, pagelist); 1670 mod_node_page_state(page_pgdat(head), 1671 NR_ISOLATED_ANON + page_is_file_lru(head), 1672 thp_nr_pages(head)); 1673 } 1674 out_putpage: 1675 /* 1676 * Either remove the duplicate refcount from 1677 * isolate_lru_page() or drop the page ref if it was 1678 * not isolated. 1679 */ 1680 put_page(page); 1681 out: 1682 mmap_read_unlock(mm); 1683 return err; 1684 } 1685 1686 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1687 struct list_head *pagelist, int __user *status, 1688 int start, int i, unsigned long nr_pages) 1689 { 1690 int err; 1691 1692 if (list_empty(pagelist)) 1693 return 0; 1694 1695 err = do_move_pages_to_node(mm, pagelist, node); 1696 if (err) { 1697 /* 1698 * Positive err means the number of failed 1699 * pages to migrate. Since we are going to 1700 * abort and return the number of non-migrated 1701 * pages, so need to incude the rest of the 1702 * nr_pages that have not been attempted as 1703 * well. 1704 */ 1705 if (err > 0) 1706 err += nr_pages - i - 1; 1707 return err; 1708 } 1709 return store_status(status, start, node, i - start); 1710 } 1711 1712 /* 1713 * Migrate an array of page address onto an array of nodes and fill 1714 * the corresponding array of status. 1715 */ 1716 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1717 unsigned long nr_pages, 1718 const void __user * __user *pages, 1719 const int __user *nodes, 1720 int __user *status, int flags) 1721 { 1722 int current_node = NUMA_NO_NODE; 1723 LIST_HEAD(pagelist); 1724 int start, i; 1725 int err = 0, err1; 1726 1727 migrate_prep(); 1728 1729 for (i = start = 0; i < nr_pages; i++) { 1730 const void __user *p; 1731 unsigned long addr; 1732 int node; 1733 1734 err = -EFAULT; 1735 if (get_user(p, pages + i)) 1736 goto out_flush; 1737 if (get_user(node, nodes + i)) 1738 goto out_flush; 1739 addr = (unsigned long)untagged_addr(p); 1740 1741 err = -ENODEV; 1742 if (node < 0 || node >= MAX_NUMNODES) 1743 goto out_flush; 1744 if (!node_state(node, N_MEMORY)) 1745 goto out_flush; 1746 1747 err = -EACCES; 1748 if (!node_isset(node, task_nodes)) 1749 goto out_flush; 1750 1751 if (current_node == NUMA_NO_NODE) { 1752 current_node = node; 1753 start = i; 1754 } else if (node != current_node) { 1755 err = move_pages_and_store_status(mm, current_node, 1756 &pagelist, status, start, i, nr_pages); 1757 if (err) 1758 goto out; 1759 start = i; 1760 current_node = node; 1761 } 1762 1763 /* 1764 * Errors in the page lookup or isolation are not fatal and we simply 1765 * report them via status 1766 */ 1767 err = add_page_for_migration(mm, addr, current_node, 1768 &pagelist, flags & MPOL_MF_MOVE_ALL); 1769 1770 if (err > 0) { 1771 /* The page is successfully queued for migration */ 1772 continue; 1773 } 1774 1775 /* 1776 * If the page is already on the target node (!err), store the 1777 * node, otherwise, store the err. 1778 */ 1779 err = store_status(status, i, err ? : current_node, 1); 1780 if (err) 1781 goto out_flush; 1782 1783 err = move_pages_and_store_status(mm, current_node, &pagelist, 1784 status, start, i, nr_pages); 1785 if (err) 1786 goto out; 1787 current_node = NUMA_NO_NODE; 1788 } 1789 out_flush: 1790 /* Make sure we do not overwrite the existing error */ 1791 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1792 status, start, i, nr_pages); 1793 if (err >= 0) 1794 err = err1; 1795 out: 1796 return err; 1797 } 1798 1799 /* 1800 * Determine the nodes of an array of pages and store it in an array of status. 1801 */ 1802 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1803 const void __user **pages, int *status) 1804 { 1805 unsigned long i; 1806 1807 mmap_read_lock(mm); 1808 1809 for (i = 0; i < nr_pages; i++) { 1810 unsigned long addr = (unsigned long)(*pages); 1811 struct vm_area_struct *vma; 1812 struct page *page; 1813 int err = -EFAULT; 1814 1815 vma = find_vma(mm, addr); 1816 if (!vma || addr < vma->vm_start) 1817 goto set_status; 1818 1819 /* FOLL_DUMP to ignore special (like zero) pages */ 1820 page = follow_page(vma, addr, FOLL_DUMP); 1821 1822 err = PTR_ERR(page); 1823 if (IS_ERR(page)) 1824 goto set_status; 1825 1826 err = page ? page_to_nid(page) : -ENOENT; 1827 set_status: 1828 *status = err; 1829 1830 pages++; 1831 status++; 1832 } 1833 1834 mmap_read_unlock(mm); 1835 } 1836 1837 /* 1838 * Determine the nodes of a user array of pages and store it in 1839 * a user array of status. 1840 */ 1841 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1842 const void __user * __user *pages, 1843 int __user *status) 1844 { 1845 #define DO_PAGES_STAT_CHUNK_NR 16 1846 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1847 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1848 1849 while (nr_pages) { 1850 unsigned long chunk_nr; 1851 1852 chunk_nr = nr_pages; 1853 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1854 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1855 1856 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1857 break; 1858 1859 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1860 1861 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1862 break; 1863 1864 pages += chunk_nr; 1865 status += chunk_nr; 1866 nr_pages -= chunk_nr; 1867 } 1868 return nr_pages ? -EFAULT : 0; 1869 } 1870 1871 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1872 { 1873 struct task_struct *task; 1874 struct mm_struct *mm; 1875 1876 /* 1877 * There is no need to check if current process has the right to modify 1878 * the specified process when they are same. 1879 */ 1880 if (!pid) { 1881 mmget(current->mm); 1882 *mem_nodes = cpuset_mems_allowed(current); 1883 return current->mm; 1884 } 1885 1886 /* Find the mm_struct */ 1887 rcu_read_lock(); 1888 task = find_task_by_vpid(pid); 1889 if (!task) { 1890 rcu_read_unlock(); 1891 return ERR_PTR(-ESRCH); 1892 } 1893 get_task_struct(task); 1894 1895 /* 1896 * Check if this process has the right to modify the specified 1897 * process. Use the regular "ptrace_may_access()" checks. 1898 */ 1899 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1900 rcu_read_unlock(); 1901 mm = ERR_PTR(-EPERM); 1902 goto out; 1903 } 1904 rcu_read_unlock(); 1905 1906 mm = ERR_PTR(security_task_movememory(task)); 1907 if (IS_ERR(mm)) 1908 goto out; 1909 *mem_nodes = cpuset_mems_allowed(task); 1910 mm = get_task_mm(task); 1911 out: 1912 put_task_struct(task); 1913 if (!mm) 1914 mm = ERR_PTR(-EINVAL); 1915 return mm; 1916 } 1917 1918 /* 1919 * Move a list of pages in the address space of the currently executing 1920 * process. 1921 */ 1922 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1923 const void __user * __user *pages, 1924 const int __user *nodes, 1925 int __user *status, int flags) 1926 { 1927 struct mm_struct *mm; 1928 int err; 1929 nodemask_t task_nodes; 1930 1931 /* Check flags */ 1932 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1933 return -EINVAL; 1934 1935 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1936 return -EPERM; 1937 1938 mm = find_mm_struct(pid, &task_nodes); 1939 if (IS_ERR(mm)) 1940 return PTR_ERR(mm); 1941 1942 if (nodes) 1943 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1944 nodes, status, flags); 1945 else 1946 err = do_pages_stat(mm, nr_pages, pages, status); 1947 1948 mmput(mm); 1949 return err; 1950 } 1951 1952 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1953 const void __user * __user *, pages, 1954 const int __user *, nodes, 1955 int __user *, status, int, flags) 1956 { 1957 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1958 } 1959 1960 #ifdef CONFIG_COMPAT 1961 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1962 compat_uptr_t __user *, pages32, 1963 const int __user *, nodes, 1964 int __user *, status, 1965 int, flags) 1966 { 1967 const void __user * __user *pages; 1968 int i; 1969 1970 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1971 for (i = 0; i < nr_pages; i++) { 1972 compat_uptr_t p; 1973 1974 if (get_user(p, pages32 + i) || 1975 put_user(compat_ptr(p), pages + i)) 1976 return -EFAULT; 1977 } 1978 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1979 } 1980 #endif /* CONFIG_COMPAT */ 1981 1982 #ifdef CONFIG_NUMA_BALANCING 1983 /* 1984 * Returns true if this is a safe migration target node for misplaced NUMA 1985 * pages. Currently it only checks the watermarks which crude 1986 */ 1987 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1988 unsigned long nr_migrate_pages) 1989 { 1990 int z; 1991 1992 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1993 struct zone *zone = pgdat->node_zones + z; 1994 1995 if (!populated_zone(zone)) 1996 continue; 1997 1998 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1999 if (!zone_watermark_ok(zone, 0, 2000 high_wmark_pages(zone) + 2001 nr_migrate_pages, 2002 ZONE_MOVABLE, 0)) 2003 continue; 2004 return true; 2005 } 2006 return false; 2007 } 2008 2009 static struct page *alloc_misplaced_dst_page(struct page *page, 2010 unsigned long data) 2011 { 2012 int nid = (int) data; 2013 struct page *newpage; 2014 2015 newpage = __alloc_pages_node(nid, 2016 (GFP_HIGHUSER_MOVABLE | 2017 __GFP_THISNODE | __GFP_NOMEMALLOC | 2018 __GFP_NORETRY | __GFP_NOWARN) & 2019 ~__GFP_RECLAIM, 0); 2020 2021 return newpage; 2022 } 2023 2024 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2025 { 2026 int page_lru; 2027 2028 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2029 2030 /* Avoid migrating to a node that is nearly full */ 2031 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2032 return 0; 2033 2034 if (isolate_lru_page(page)) 2035 return 0; 2036 2037 /* 2038 * migrate_misplaced_transhuge_page() skips page migration's usual 2039 * check on page_count(), so we must do it here, now that the page 2040 * has been isolated: a GUP pin, or any other pin, prevents migration. 2041 * The expected page count is 3: 1 for page's mapcount and 1 for the 2042 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2043 */ 2044 if (PageTransHuge(page) && page_count(page) != 3) { 2045 putback_lru_page(page); 2046 return 0; 2047 } 2048 2049 page_lru = page_is_file_lru(page); 2050 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2051 thp_nr_pages(page)); 2052 2053 /* 2054 * Isolating the page has taken another reference, so the 2055 * caller's reference can be safely dropped without the page 2056 * disappearing underneath us during migration. 2057 */ 2058 put_page(page); 2059 return 1; 2060 } 2061 2062 bool pmd_trans_migrating(pmd_t pmd) 2063 { 2064 struct page *page = pmd_page(pmd); 2065 return PageLocked(page); 2066 } 2067 2068 /* 2069 * Attempt to migrate a misplaced page to the specified destination 2070 * node. Caller is expected to have an elevated reference count on 2071 * the page that will be dropped by this function before returning. 2072 */ 2073 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2074 int node) 2075 { 2076 pg_data_t *pgdat = NODE_DATA(node); 2077 int isolated; 2078 int nr_remaining; 2079 LIST_HEAD(migratepages); 2080 2081 /* 2082 * Don't migrate file pages that are mapped in multiple processes 2083 * with execute permissions as they are probably shared libraries. 2084 */ 2085 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2086 (vma->vm_flags & VM_EXEC)) 2087 goto out; 2088 2089 /* 2090 * Also do not migrate dirty pages as not all filesystems can move 2091 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2092 */ 2093 if (page_is_file_lru(page) && PageDirty(page)) 2094 goto out; 2095 2096 isolated = numamigrate_isolate_page(pgdat, page); 2097 if (!isolated) 2098 goto out; 2099 2100 list_add(&page->lru, &migratepages); 2101 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2102 NULL, node, MIGRATE_ASYNC, 2103 MR_NUMA_MISPLACED); 2104 if (nr_remaining) { 2105 if (!list_empty(&migratepages)) { 2106 list_del(&page->lru); 2107 dec_node_page_state(page, NR_ISOLATED_ANON + 2108 page_is_file_lru(page)); 2109 putback_lru_page(page); 2110 } 2111 isolated = 0; 2112 } else 2113 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2114 BUG_ON(!list_empty(&migratepages)); 2115 return isolated; 2116 2117 out: 2118 put_page(page); 2119 return 0; 2120 } 2121 #endif /* CONFIG_NUMA_BALANCING */ 2122 2123 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2124 /* 2125 * Migrates a THP to a given target node. page must be locked and is unlocked 2126 * before returning. 2127 */ 2128 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2129 struct vm_area_struct *vma, 2130 pmd_t *pmd, pmd_t entry, 2131 unsigned long address, 2132 struct page *page, int node) 2133 { 2134 spinlock_t *ptl; 2135 pg_data_t *pgdat = NODE_DATA(node); 2136 int isolated = 0; 2137 struct page *new_page = NULL; 2138 int page_lru = page_is_file_lru(page); 2139 unsigned long start = address & HPAGE_PMD_MASK; 2140 2141 new_page = alloc_pages_node(node, 2142 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2143 HPAGE_PMD_ORDER); 2144 if (!new_page) 2145 goto out_fail; 2146 prep_transhuge_page(new_page); 2147 2148 isolated = numamigrate_isolate_page(pgdat, page); 2149 if (!isolated) { 2150 put_page(new_page); 2151 goto out_fail; 2152 } 2153 2154 /* Prepare a page as a migration target */ 2155 __SetPageLocked(new_page); 2156 if (PageSwapBacked(page)) 2157 __SetPageSwapBacked(new_page); 2158 2159 /* anon mapping, we can simply copy page->mapping to the new page: */ 2160 new_page->mapping = page->mapping; 2161 new_page->index = page->index; 2162 /* flush the cache before copying using the kernel virtual address */ 2163 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2164 migrate_page_copy(new_page, page); 2165 WARN_ON(PageLRU(new_page)); 2166 2167 /* Recheck the target PMD */ 2168 ptl = pmd_lock(mm, pmd); 2169 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2170 spin_unlock(ptl); 2171 2172 /* Reverse changes made by migrate_page_copy() */ 2173 if (TestClearPageActive(new_page)) 2174 SetPageActive(page); 2175 if (TestClearPageUnevictable(new_page)) 2176 SetPageUnevictable(page); 2177 2178 unlock_page(new_page); 2179 put_page(new_page); /* Free it */ 2180 2181 /* Retake the callers reference and putback on LRU */ 2182 get_page(page); 2183 putback_lru_page(page); 2184 mod_node_page_state(page_pgdat(page), 2185 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2186 2187 goto out_unlock; 2188 } 2189 2190 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2191 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2192 2193 /* 2194 * Overwrite the old entry under pagetable lock and establish 2195 * the new PTE. Any parallel GUP will either observe the old 2196 * page blocking on the page lock, block on the page table 2197 * lock or observe the new page. The SetPageUptodate on the 2198 * new page and page_add_new_anon_rmap guarantee the copy is 2199 * visible before the pagetable update. 2200 */ 2201 page_add_anon_rmap(new_page, vma, start, true); 2202 /* 2203 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2204 * has already been flushed globally. So no TLB can be currently 2205 * caching this non present pmd mapping. There's no need to clear the 2206 * pmd before doing set_pmd_at(), nor to flush the TLB after 2207 * set_pmd_at(). Clearing the pmd here would introduce a race 2208 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2209 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2210 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2211 * pmd. 2212 */ 2213 set_pmd_at(mm, start, pmd, entry); 2214 update_mmu_cache_pmd(vma, address, &entry); 2215 2216 page_ref_unfreeze(page, 2); 2217 mlock_migrate_page(new_page, page); 2218 page_remove_rmap(page, true); 2219 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2220 2221 spin_unlock(ptl); 2222 2223 /* Take an "isolate" reference and put new page on the LRU. */ 2224 get_page(new_page); 2225 putback_lru_page(new_page); 2226 2227 unlock_page(new_page); 2228 unlock_page(page); 2229 put_page(page); /* Drop the rmap reference */ 2230 put_page(page); /* Drop the LRU isolation reference */ 2231 2232 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2233 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2234 2235 mod_node_page_state(page_pgdat(page), 2236 NR_ISOLATED_ANON + page_lru, 2237 -HPAGE_PMD_NR); 2238 return isolated; 2239 2240 out_fail: 2241 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2242 ptl = pmd_lock(mm, pmd); 2243 if (pmd_same(*pmd, entry)) { 2244 entry = pmd_modify(entry, vma->vm_page_prot); 2245 set_pmd_at(mm, start, pmd, entry); 2246 update_mmu_cache_pmd(vma, address, &entry); 2247 } 2248 spin_unlock(ptl); 2249 2250 out_unlock: 2251 unlock_page(page); 2252 put_page(page); 2253 return 0; 2254 } 2255 #endif /* CONFIG_NUMA_BALANCING */ 2256 2257 #endif /* CONFIG_NUMA */ 2258 2259 #ifdef CONFIG_DEVICE_PRIVATE 2260 static int migrate_vma_collect_hole(unsigned long start, 2261 unsigned long end, 2262 __always_unused int depth, 2263 struct mm_walk *walk) 2264 { 2265 struct migrate_vma *migrate = walk->private; 2266 unsigned long addr; 2267 2268 /* Only allow populating anonymous memory. */ 2269 if (!vma_is_anonymous(walk->vma)) { 2270 for (addr = start; addr < end; addr += PAGE_SIZE) { 2271 migrate->src[migrate->npages] = 0; 2272 migrate->dst[migrate->npages] = 0; 2273 migrate->npages++; 2274 } 2275 return 0; 2276 } 2277 2278 for (addr = start; addr < end; addr += PAGE_SIZE) { 2279 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2280 migrate->dst[migrate->npages] = 0; 2281 migrate->npages++; 2282 migrate->cpages++; 2283 } 2284 2285 return 0; 2286 } 2287 2288 static int migrate_vma_collect_skip(unsigned long start, 2289 unsigned long end, 2290 struct mm_walk *walk) 2291 { 2292 struct migrate_vma *migrate = walk->private; 2293 unsigned long addr; 2294 2295 for (addr = start; addr < end; addr += PAGE_SIZE) { 2296 migrate->dst[migrate->npages] = 0; 2297 migrate->src[migrate->npages++] = 0; 2298 } 2299 2300 return 0; 2301 } 2302 2303 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2304 unsigned long start, 2305 unsigned long end, 2306 struct mm_walk *walk) 2307 { 2308 struct migrate_vma *migrate = walk->private; 2309 struct vm_area_struct *vma = walk->vma; 2310 struct mm_struct *mm = vma->vm_mm; 2311 unsigned long addr = start, unmapped = 0; 2312 spinlock_t *ptl; 2313 pte_t *ptep; 2314 2315 again: 2316 if (pmd_none(*pmdp)) 2317 return migrate_vma_collect_hole(start, end, -1, walk); 2318 2319 if (pmd_trans_huge(*pmdp)) { 2320 struct page *page; 2321 2322 ptl = pmd_lock(mm, pmdp); 2323 if (unlikely(!pmd_trans_huge(*pmdp))) { 2324 spin_unlock(ptl); 2325 goto again; 2326 } 2327 2328 page = pmd_page(*pmdp); 2329 if (is_huge_zero_page(page)) { 2330 spin_unlock(ptl); 2331 split_huge_pmd(vma, pmdp, addr); 2332 if (pmd_trans_unstable(pmdp)) 2333 return migrate_vma_collect_skip(start, end, 2334 walk); 2335 } else { 2336 int ret; 2337 2338 get_page(page); 2339 spin_unlock(ptl); 2340 if (unlikely(!trylock_page(page))) 2341 return migrate_vma_collect_skip(start, end, 2342 walk); 2343 ret = split_huge_page(page); 2344 unlock_page(page); 2345 put_page(page); 2346 if (ret) 2347 return migrate_vma_collect_skip(start, end, 2348 walk); 2349 if (pmd_none(*pmdp)) 2350 return migrate_vma_collect_hole(start, end, -1, 2351 walk); 2352 } 2353 } 2354 2355 if (unlikely(pmd_bad(*pmdp))) 2356 return migrate_vma_collect_skip(start, end, walk); 2357 2358 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2359 arch_enter_lazy_mmu_mode(); 2360 2361 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2362 unsigned long mpfn = 0, pfn; 2363 struct page *page; 2364 swp_entry_t entry; 2365 pte_t pte; 2366 2367 pte = *ptep; 2368 2369 if (pte_none(pte)) { 2370 if (vma_is_anonymous(vma)) { 2371 mpfn = MIGRATE_PFN_MIGRATE; 2372 migrate->cpages++; 2373 } 2374 goto next; 2375 } 2376 2377 if (!pte_present(pte)) { 2378 /* 2379 * Only care about unaddressable device page special 2380 * page table entry. Other special swap entries are not 2381 * migratable, and we ignore regular swapped page. 2382 */ 2383 entry = pte_to_swp_entry(pte); 2384 if (!is_device_private_entry(entry)) 2385 goto next; 2386 2387 page = device_private_entry_to_page(entry); 2388 if (!(migrate->flags & 2389 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2390 page->pgmap->owner != migrate->pgmap_owner) 2391 goto next; 2392 2393 mpfn = migrate_pfn(page_to_pfn(page)) | 2394 MIGRATE_PFN_MIGRATE; 2395 if (is_write_device_private_entry(entry)) 2396 mpfn |= MIGRATE_PFN_WRITE; 2397 } else { 2398 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2399 goto next; 2400 pfn = pte_pfn(pte); 2401 if (is_zero_pfn(pfn)) { 2402 mpfn = MIGRATE_PFN_MIGRATE; 2403 migrate->cpages++; 2404 goto next; 2405 } 2406 page = vm_normal_page(migrate->vma, addr, pte); 2407 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2408 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2409 } 2410 2411 /* FIXME support THP */ 2412 if (!page || !page->mapping || PageTransCompound(page)) { 2413 mpfn = 0; 2414 goto next; 2415 } 2416 2417 /* 2418 * By getting a reference on the page we pin it and that blocks 2419 * any kind of migration. Side effect is that it "freezes" the 2420 * pte. 2421 * 2422 * We drop this reference after isolating the page from the lru 2423 * for non device page (device page are not on the lru and thus 2424 * can't be dropped from it). 2425 */ 2426 get_page(page); 2427 migrate->cpages++; 2428 2429 /* 2430 * Optimize for the common case where page is only mapped once 2431 * in one process. If we can lock the page, then we can safely 2432 * set up a special migration page table entry now. 2433 */ 2434 if (trylock_page(page)) { 2435 pte_t swp_pte; 2436 2437 mpfn |= MIGRATE_PFN_LOCKED; 2438 ptep_get_and_clear(mm, addr, ptep); 2439 2440 /* Setup special migration page table entry */ 2441 entry = make_migration_entry(page, mpfn & 2442 MIGRATE_PFN_WRITE); 2443 swp_pte = swp_entry_to_pte(entry); 2444 if (pte_present(pte)) { 2445 if (pte_soft_dirty(pte)) 2446 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2447 if (pte_uffd_wp(pte)) 2448 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2449 } else { 2450 if (pte_swp_soft_dirty(pte)) 2451 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2452 if (pte_swp_uffd_wp(pte)) 2453 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2454 } 2455 set_pte_at(mm, addr, ptep, swp_pte); 2456 2457 /* 2458 * This is like regular unmap: we remove the rmap and 2459 * drop page refcount. Page won't be freed, as we took 2460 * a reference just above. 2461 */ 2462 page_remove_rmap(page, false); 2463 put_page(page); 2464 2465 if (pte_present(pte)) 2466 unmapped++; 2467 } 2468 2469 next: 2470 migrate->dst[migrate->npages] = 0; 2471 migrate->src[migrate->npages++] = mpfn; 2472 } 2473 arch_leave_lazy_mmu_mode(); 2474 pte_unmap_unlock(ptep - 1, ptl); 2475 2476 /* Only flush the TLB if we actually modified any entries */ 2477 if (unmapped) 2478 flush_tlb_range(walk->vma, start, end); 2479 2480 return 0; 2481 } 2482 2483 static const struct mm_walk_ops migrate_vma_walk_ops = { 2484 .pmd_entry = migrate_vma_collect_pmd, 2485 .pte_hole = migrate_vma_collect_hole, 2486 }; 2487 2488 /* 2489 * migrate_vma_collect() - collect pages over a range of virtual addresses 2490 * @migrate: migrate struct containing all migration information 2491 * 2492 * This will walk the CPU page table. For each virtual address backed by a 2493 * valid page, it updates the src array and takes a reference on the page, in 2494 * order to pin the page until we lock it and unmap it. 2495 */ 2496 static void migrate_vma_collect(struct migrate_vma *migrate) 2497 { 2498 struct mmu_notifier_range range; 2499 2500 /* 2501 * Note that the pgmap_owner is passed to the mmu notifier callback so 2502 * that the registered device driver can skip invalidating device 2503 * private page mappings that won't be migrated. 2504 */ 2505 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2506 migrate->vma->vm_mm, migrate->start, migrate->end, 2507 migrate->pgmap_owner); 2508 mmu_notifier_invalidate_range_start(&range); 2509 2510 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2511 &migrate_vma_walk_ops, migrate); 2512 2513 mmu_notifier_invalidate_range_end(&range); 2514 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2515 } 2516 2517 /* 2518 * migrate_vma_check_page() - check if page is pinned or not 2519 * @page: struct page to check 2520 * 2521 * Pinned pages cannot be migrated. This is the same test as in 2522 * migrate_page_move_mapping(), except that here we allow migration of a 2523 * ZONE_DEVICE page. 2524 */ 2525 static bool migrate_vma_check_page(struct page *page) 2526 { 2527 /* 2528 * One extra ref because caller holds an extra reference, either from 2529 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2530 * a device page. 2531 */ 2532 int extra = 1; 2533 2534 /* 2535 * FIXME support THP (transparent huge page), it is bit more complex to 2536 * check them than regular pages, because they can be mapped with a pmd 2537 * or with a pte (split pte mapping). 2538 */ 2539 if (PageCompound(page)) 2540 return false; 2541 2542 /* Page from ZONE_DEVICE have one extra reference */ 2543 if (is_zone_device_page(page)) { 2544 /* 2545 * Private page can never be pin as they have no valid pte and 2546 * GUP will fail for those. Yet if there is a pending migration 2547 * a thread might try to wait on the pte migration entry and 2548 * will bump the page reference count. Sadly there is no way to 2549 * differentiate a regular pin from migration wait. Hence to 2550 * avoid 2 racing thread trying to migrate back to CPU to enter 2551 * infinite loop (one stoping migration because the other is 2552 * waiting on pte migration entry). We always return true here. 2553 * 2554 * FIXME proper solution is to rework migration_entry_wait() so 2555 * it does not need to take a reference on page. 2556 */ 2557 return is_device_private_page(page); 2558 } 2559 2560 /* For file back page */ 2561 if (page_mapping(page)) 2562 extra += 1 + page_has_private(page); 2563 2564 if ((page_count(page) - extra) > page_mapcount(page)) 2565 return false; 2566 2567 return true; 2568 } 2569 2570 /* 2571 * migrate_vma_prepare() - lock pages and isolate them from the lru 2572 * @migrate: migrate struct containing all migration information 2573 * 2574 * This locks pages that have been collected by migrate_vma_collect(). Once each 2575 * page is locked it is isolated from the lru (for non-device pages). Finally, 2576 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2577 * migrated by concurrent kernel threads. 2578 */ 2579 static void migrate_vma_prepare(struct migrate_vma *migrate) 2580 { 2581 const unsigned long npages = migrate->npages; 2582 const unsigned long start = migrate->start; 2583 unsigned long addr, i, restore = 0; 2584 bool allow_drain = true; 2585 2586 lru_add_drain(); 2587 2588 for (i = 0; (i < npages) && migrate->cpages; i++) { 2589 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2590 bool remap = true; 2591 2592 if (!page) 2593 continue; 2594 2595 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2596 /* 2597 * Because we are migrating several pages there can be 2598 * a deadlock between 2 concurrent migration where each 2599 * are waiting on each other page lock. 2600 * 2601 * Make migrate_vma() a best effort thing and backoff 2602 * for any page we can not lock right away. 2603 */ 2604 if (!trylock_page(page)) { 2605 migrate->src[i] = 0; 2606 migrate->cpages--; 2607 put_page(page); 2608 continue; 2609 } 2610 remap = false; 2611 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2612 } 2613 2614 /* ZONE_DEVICE pages are not on LRU */ 2615 if (!is_zone_device_page(page)) { 2616 if (!PageLRU(page) && allow_drain) { 2617 /* Drain CPU's pagevec */ 2618 lru_add_drain_all(); 2619 allow_drain = false; 2620 } 2621 2622 if (isolate_lru_page(page)) { 2623 if (remap) { 2624 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2625 migrate->cpages--; 2626 restore++; 2627 } else { 2628 migrate->src[i] = 0; 2629 unlock_page(page); 2630 migrate->cpages--; 2631 put_page(page); 2632 } 2633 continue; 2634 } 2635 2636 /* Drop the reference we took in collect */ 2637 put_page(page); 2638 } 2639 2640 if (!migrate_vma_check_page(page)) { 2641 if (remap) { 2642 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2643 migrate->cpages--; 2644 restore++; 2645 2646 if (!is_zone_device_page(page)) { 2647 get_page(page); 2648 putback_lru_page(page); 2649 } 2650 } else { 2651 migrate->src[i] = 0; 2652 unlock_page(page); 2653 migrate->cpages--; 2654 2655 if (!is_zone_device_page(page)) 2656 putback_lru_page(page); 2657 else 2658 put_page(page); 2659 } 2660 } 2661 } 2662 2663 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2664 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2665 2666 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2667 continue; 2668 2669 remove_migration_pte(page, migrate->vma, addr, page); 2670 2671 migrate->src[i] = 0; 2672 unlock_page(page); 2673 put_page(page); 2674 restore--; 2675 } 2676 } 2677 2678 /* 2679 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2680 * @migrate: migrate struct containing all migration information 2681 * 2682 * Replace page mapping (CPU page table pte) with a special migration pte entry 2683 * and check again if it has been pinned. Pinned pages are restored because we 2684 * cannot migrate them. 2685 * 2686 * This is the last step before we call the device driver callback to allocate 2687 * destination memory and copy contents of original page over to new page. 2688 */ 2689 static void migrate_vma_unmap(struct migrate_vma *migrate) 2690 { 2691 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2692 const unsigned long npages = migrate->npages; 2693 const unsigned long start = migrate->start; 2694 unsigned long addr, i, restore = 0; 2695 2696 for (i = 0; i < npages; i++) { 2697 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2698 2699 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2700 continue; 2701 2702 if (page_mapped(page)) { 2703 try_to_unmap(page, flags); 2704 if (page_mapped(page)) 2705 goto restore; 2706 } 2707 2708 if (migrate_vma_check_page(page)) 2709 continue; 2710 2711 restore: 2712 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2713 migrate->cpages--; 2714 restore++; 2715 } 2716 2717 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2718 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2719 2720 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2721 continue; 2722 2723 remove_migration_ptes(page, page, false); 2724 2725 migrate->src[i] = 0; 2726 unlock_page(page); 2727 restore--; 2728 2729 if (is_zone_device_page(page)) 2730 put_page(page); 2731 else 2732 putback_lru_page(page); 2733 } 2734 } 2735 2736 /** 2737 * migrate_vma_setup() - prepare to migrate a range of memory 2738 * @args: contains the vma, start, and pfns arrays for the migration 2739 * 2740 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2741 * without an error. 2742 * 2743 * Prepare to migrate a range of memory virtual address range by collecting all 2744 * the pages backing each virtual address in the range, saving them inside the 2745 * src array. Then lock those pages and unmap them. Once the pages are locked 2746 * and unmapped, check whether each page is pinned or not. Pages that aren't 2747 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2748 * corresponding src array entry. Then restores any pages that are pinned, by 2749 * remapping and unlocking those pages. 2750 * 2751 * The caller should then allocate destination memory and copy source memory to 2752 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2753 * flag set). Once these are allocated and copied, the caller must update each 2754 * corresponding entry in the dst array with the pfn value of the destination 2755 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2756 * (destination pages must have their struct pages locked, via lock_page()). 2757 * 2758 * Note that the caller does not have to migrate all the pages that are marked 2759 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2760 * device memory to system memory. If the caller cannot migrate a device page 2761 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2762 * consequences for the userspace process, so it must be avoided if at all 2763 * possible. 2764 * 2765 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2766 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2767 * allowing the caller to allocate device memory for those unback virtual 2768 * address. For this the caller simply has to allocate device memory and 2769 * properly set the destination entry like for regular migration. Note that 2770 * this can still fails and thus inside the device driver must check if the 2771 * migration was successful for those entries after calling migrate_vma_pages() 2772 * just like for regular migration. 2773 * 2774 * After that, the callers must call migrate_vma_pages() to go over each entry 2775 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2776 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2777 * then migrate_vma_pages() to migrate struct page information from the source 2778 * struct page to the destination struct page. If it fails to migrate the 2779 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2780 * src array. 2781 * 2782 * At this point all successfully migrated pages have an entry in the src 2783 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2784 * array entry with MIGRATE_PFN_VALID flag set. 2785 * 2786 * Once migrate_vma_pages() returns the caller may inspect which pages were 2787 * successfully migrated, and which were not. Successfully migrated pages will 2788 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2789 * 2790 * It is safe to update device page table after migrate_vma_pages() because 2791 * both destination and source page are still locked, and the mmap_lock is held 2792 * in read mode (hence no one can unmap the range being migrated). 2793 * 2794 * Once the caller is done cleaning up things and updating its page table (if it 2795 * chose to do so, this is not an obligation) it finally calls 2796 * migrate_vma_finalize() to update the CPU page table to point to new pages 2797 * for successfully migrated pages or otherwise restore the CPU page table to 2798 * point to the original source pages. 2799 */ 2800 int migrate_vma_setup(struct migrate_vma *args) 2801 { 2802 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2803 2804 args->start &= PAGE_MASK; 2805 args->end &= PAGE_MASK; 2806 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2807 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2808 return -EINVAL; 2809 if (nr_pages <= 0) 2810 return -EINVAL; 2811 if (args->start < args->vma->vm_start || 2812 args->start >= args->vma->vm_end) 2813 return -EINVAL; 2814 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2815 return -EINVAL; 2816 if (!args->src || !args->dst) 2817 return -EINVAL; 2818 2819 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2820 args->cpages = 0; 2821 args->npages = 0; 2822 2823 migrate_vma_collect(args); 2824 2825 if (args->cpages) 2826 migrate_vma_prepare(args); 2827 if (args->cpages) 2828 migrate_vma_unmap(args); 2829 2830 /* 2831 * At this point pages are locked and unmapped, and thus they have 2832 * stable content and can safely be copied to destination memory that 2833 * is allocated by the drivers. 2834 */ 2835 return 0; 2836 2837 } 2838 EXPORT_SYMBOL(migrate_vma_setup); 2839 2840 /* 2841 * This code closely matches the code in: 2842 * __handle_mm_fault() 2843 * handle_pte_fault() 2844 * do_anonymous_page() 2845 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2846 * private page. 2847 */ 2848 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2849 unsigned long addr, 2850 struct page *page, 2851 unsigned long *src, 2852 unsigned long *dst) 2853 { 2854 struct vm_area_struct *vma = migrate->vma; 2855 struct mm_struct *mm = vma->vm_mm; 2856 bool flush = false; 2857 spinlock_t *ptl; 2858 pte_t entry; 2859 pgd_t *pgdp; 2860 p4d_t *p4dp; 2861 pud_t *pudp; 2862 pmd_t *pmdp; 2863 pte_t *ptep; 2864 2865 /* Only allow populating anonymous memory */ 2866 if (!vma_is_anonymous(vma)) 2867 goto abort; 2868 2869 pgdp = pgd_offset(mm, addr); 2870 p4dp = p4d_alloc(mm, pgdp, addr); 2871 if (!p4dp) 2872 goto abort; 2873 pudp = pud_alloc(mm, p4dp, addr); 2874 if (!pudp) 2875 goto abort; 2876 pmdp = pmd_alloc(mm, pudp, addr); 2877 if (!pmdp) 2878 goto abort; 2879 2880 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2881 goto abort; 2882 2883 /* 2884 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2885 * pte_offset_map() on pmds where a huge pmd might be created 2886 * from a different thread. 2887 * 2888 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2889 * parallel threads are excluded by other means. 2890 * 2891 * Here we only have mmap_read_lock(mm). 2892 */ 2893 if (pte_alloc(mm, pmdp)) 2894 goto abort; 2895 2896 /* See the comment in pte_alloc_one_map() */ 2897 if (unlikely(pmd_trans_unstable(pmdp))) 2898 goto abort; 2899 2900 if (unlikely(anon_vma_prepare(vma))) 2901 goto abort; 2902 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2903 goto abort; 2904 2905 /* 2906 * The memory barrier inside __SetPageUptodate makes sure that 2907 * preceding stores to the page contents become visible before 2908 * the set_pte_at() write. 2909 */ 2910 __SetPageUptodate(page); 2911 2912 if (is_zone_device_page(page)) { 2913 if (is_device_private_page(page)) { 2914 swp_entry_t swp_entry; 2915 2916 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2917 entry = swp_entry_to_pte(swp_entry); 2918 } 2919 } else { 2920 entry = mk_pte(page, vma->vm_page_prot); 2921 if (vma->vm_flags & VM_WRITE) 2922 entry = pte_mkwrite(pte_mkdirty(entry)); 2923 } 2924 2925 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2926 2927 if (check_stable_address_space(mm)) 2928 goto unlock_abort; 2929 2930 if (pte_present(*ptep)) { 2931 unsigned long pfn = pte_pfn(*ptep); 2932 2933 if (!is_zero_pfn(pfn)) 2934 goto unlock_abort; 2935 flush = true; 2936 } else if (!pte_none(*ptep)) 2937 goto unlock_abort; 2938 2939 /* 2940 * Check for userfaultfd but do not deliver the fault. Instead, 2941 * just back off. 2942 */ 2943 if (userfaultfd_missing(vma)) 2944 goto unlock_abort; 2945 2946 inc_mm_counter(mm, MM_ANONPAGES); 2947 page_add_new_anon_rmap(page, vma, addr, false); 2948 if (!is_zone_device_page(page)) 2949 lru_cache_add_inactive_or_unevictable(page, vma); 2950 get_page(page); 2951 2952 if (flush) { 2953 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2954 ptep_clear_flush_notify(vma, addr, ptep); 2955 set_pte_at_notify(mm, addr, ptep, entry); 2956 update_mmu_cache(vma, addr, ptep); 2957 } else { 2958 /* No need to invalidate - it was non-present before */ 2959 set_pte_at(mm, addr, ptep, entry); 2960 update_mmu_cache(vma, addr, ptep); 2961 } 2962 2963 pte_unmap_unlock(ptep, ptl); 2964 *src = MIGRATE_PFN_MIGRATE; 2965 return; 2966 2967 unlock_abort: 2968 pte_unmap_unlock(ptep, ptl); 2969 abort: 2970 *src &= ~MIGRATE_PFN_MIGRATE; 2971 } 2972 2973 /** 2974 * migrate_vma_pages() - migrate meta-data from src page to dst page 2975 * @migrate: migrate struct containing all migration information 2976 * 2977 * This migrates struct page meta-data from source struct page to destination 2978 * struct page. This effectively finishes the migration from source page to the 2979 * destination page. 2980 */ 2981 void migrate_vma_pages(struct migrate_vma *migrate) 2982 { 2983 const unsigned long npages = migrate->npages; 2984 const unsigned long start = migrate->start; 2985 struct mmu_notifier_range range; 2986 unsigned long addr, i; 2987 bool notified = false; 2988 2989 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2990 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2991 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2992 struct address_space *mapping; 2993 int r; 2994 2995 if (!newpage) { 2996 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2997 continue; 2998 } 2999 3000 if (!page) { 3001 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3002 continue; 3003 if (!notified) { 3004 notified = true; 3005 3006 mmu_notifier_range_init(&range, 3007 MMU_NOTIFY_CLEAR, 0, 3008 NULL, 3009 migrate->vma->vm_mm, 3010 addr, migrate->end); 3011 mmu_notifier_invalidate_range_start(&range); 3012 } 3013 migrate_vma_insert_page(migrate, addr, newpage, 3014 &migrate->src[i], 3015 &migrate->dst[i]); 3016 continue; 3017 } 3018 3019 mapping = page_mapping(page); 3020 3021 if (is_zone_device_page(newpage)) { 3022 if (is_device_private_page(newpage)) { 3023 /* 3024 * For now only support private anonymous when 3025 * migrating to un-addressable device memory. 3026 */ 3027 if (mapping) { 3028 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3029 continue; 3030 } 3031 } else { 3032 /* 3033 * Other types of ZONE_DEVICE page are not 3034 * supported. 3035 */ 3036 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3037 continue; 3038 } 3039 } 3040 3041 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3042 if (r != MIGRATEPAGE_SUCCESS) 3043 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3044 } 3045 3046 /* 3047 * No need to double call mmu_notifier->invalidate_range() callback as 3048 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3049 * did already call it. 3050 */ 3051 if (notified) 3052 mmu_notifier_invalidate_range_only_end(&range); 3053 } 3054 EXPORT_SYMBOL(migrate_vma_pages); 3055 3056 /** 3057 * migrate_vma_finalize() - restore CPU page table entry 3058 * @migrate: migrate struct containing all migration information 3059 * 3060 * This replaces the special migration pte entry with either a mapping to the 3061 * new page if migration was successful for that page, or to the original page 3062 * otherwise. 3063 * 3064 * This also unlocks the pages and puts them back on the lru, or drops the extra 3065 * refcount, for device pages. 3066 */ 3067 void migrate_vma_finalize(struct migrate_vma *migrate) 3068 { 3069 const unsigned long npages = migrate->npages; 3070 unsigned long i; 3071 3072 for (i = 0; i < npages; i++) { 3073 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3074 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3075 3076 if (!page) { 3077 if (newpage) { 3078 unlock_page(newpage); 3079 put_page(newpage); 3080 } 3081 continue; 3082 } 3083 3084 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3085 if (newpage) { 3086 unlock_page(newpage); 3087 put_page(newpage); 3088 } 3089 newpage = page; 3090 } 3091 3092 remove_migration_ptes(page, newpage, false); 3093 unlock_page(page); 3094 3095 if (is_zone_device_page(page)) 3096 put_page(page); 3097 else 3098 putback_lru_page(page); 3099 3100 if (newpage != page) { 3101 unlock_page(newpage); 3102 if (is_zone_device_page(newpage)) 3103 put_page(newpage); 3104 else 3105 putback_lru_page(newpage); 3106 } 3107 } 3108 } 3109 EXPORT_SYMBOL(migrate_vma_finalize); 3110 #endif /* CONFIG_DEVICE_PRIVATE */ 3111