xref: /openbmc/linux/mm/migrate.c (revision c4ee0af3)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Add isolated pages on the list back to the LRU under page lock
76  * to avoid leaking evictable pages back onto unevictable list.
77  */
78 void putback_lru_pages(struct list_head *l)
79 {
80 	struct page *page;
81 	struct page *page2;
82 
83 	list_for_each_entry_safe(page, page2, l, lru) {
84 		list_del(&page->lru);
85 		dec_zone_page_state(page, NR_ISOLATED_ANON +
86 				page_is_file_cache(page));
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /*
92  * Put previously isolated pages back onto the appropriate lists
93  * from where they were once taken off for compaction/migration.
94  *
95  * This function shall be used instead of putback_lru_pages(),
96  * whenever the isolated pageset has been built by isolate_migratepages_range()
97  */
98 void putback_movable_pages(struct list_head *l)
99 {
100 	struct page *page;
101 	struct page *page2;
102 
103 	list_for_each_entry_safe(page, page2, l, lru) {
104 		if (unlikely(PageHuge(page))) {
105 			putback_active_hugepage(page);
106 			continue;
107 		}
108 		list_del(&page->lru);
109 		dec_zone_page_state(page, NR_ISOLATED_ANON +
110 				page_is_file_cache(page));
111 		if (unlikely(isolated_balloon_page(page)))
112 			balloon_page_putback(page);
113 		else
114 			putback_lru_page(page);
115 	}
116 }
117 
118 /*
119  * Restore a potential migration pte to a working pte entry
120  */
121 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 				 unsigned long addr, void *old)
123 {
124 	struct mm_struct *mm = vma->vm_mm;
125 	swp_entry_t entry;
126  	pmd_t *pmd;
127 	pte_t *ptep, pte;
128  	spinlock_t *ptl;
129 
130 	if (unlikely(PageHuge(new))) {
131 		ptep = huge_pte_offset(mm, addr);
132 		if (!ptep)
133 			goto out;
134 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
135 	} else {
136 		pmd = mm_find_pmd(mm, addr);
137 		if (!pmd)
138 			goto out;
139 		if (pmd_trans_huge(*pmd))
140 			goto out;
141 
142 		ptep = pte_offset_map(pmd, addr);
143 
144 		/*
145 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
146 		 * can race mremap's move_ptes(), which skips anon_vma lock.
147 		 */
148 
149 		ptl = pte_lockptr(mm, pmd);
150 	}
151 
152  	spin_lock(ptl);
153 	pte = *ptep;
154 	if (!is_swap_pte(pte))
155 		goto unlock;
156 
157 	entry = pte_to_swp_entry(pte);
158 
159 	if (!is_migration_entry(entry) ||
160 	    migration_entry_to_page(entry) != old)
161 		goto unlock;
162 
163 	get_page(new);
164 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
165 	if (pte_swp_soft_dirty(*ptep))
166 		pte = pte_mksoft_dirty(pte);
167 	if (is_write_migration_entry(entry))
168 		pte = pte_mkwrite(pte);
169 #ifdef CONFIG_HUGETLB_PAGE
170 	if (PageHuge(new)) {
171 		pte = pte_mkhuge(pte);
172 		pte = arch_make_huge_pte(pte, vma, new, 0);
173 	}
174 #endif
175 	flush_dcache_page(new);
176 	set_pte_at(mm, addr, ptep, pte);
177 
178 	if (PageHuge(new)) {
179 		if (PageAnon(new))
180 			hugepage_add_anon_rmap(new, vma, addr);
181 		else
182 			page_dup_rmap(new);
183 	} else if (PageAnon(new))
184 		page_add_anon_rmap(new, vma, addr);
185 	else
186 		page_add_file_rmap(new);
187 
188 	/* No need to invalidate - it was non-present before */
189 	update_mmu_cache(vma, addr, ptep);
190 unlock:
191 	pte_unmap_unlock(ptep, ptl);
192 out:
193 	return SWAP_AGAIN;
194 }
195 
196 /*
197  * Get rid of all migration entries and replace them by
198  * references to the indicated page.
199  */
200 static void remove_migration_ptes(struct page *old, struct page *new)
201 {
202 	rmap_walk(new, remove_migration_pte, old);
203 }
204 
205 /*
206  * Something used the pte of a page under migration. We need to
207  * get to the page and wait until migration is finished.
208  * When we return from this function the fault will be retried.
209  */
210 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
211 				spinlock_t *ptl)
212 {
213 	pte_t pte;
214 	swp_entry_t entry;
215 	struct page *page;
216 
217 	spin_lock(ptl);
218 	pte = *ptep;
219 	if (!is_swap_pte(pte))
220 		goto out;
221 
222 	entry = pte_to_swp_entry(pte);
223 	if (!is_migration_entry(entry))
224 		goto out;
225 
226 	page = migration_entry_to_page(entry);
227 
228 	/*
229 	 * Once radix-tree replacement of page migration started, page_count
230 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
231 	 * against a page without get_page().
232 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
233 	 * will occur again.
234 	 */
235 	if (!get_page_unless_zero(page))
236 		goto out;
237 	pte_unmap_unlock(ptep, ptl);
238 	wait_on_page_locked(page);
239 	put_page(page);
240 	return;
241 out:
242 	pte_unmap_unlock(ptep, ptl);
243 }
244 
245 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
246 				unsigned long address)
247 {
248 	spinlock_t *ptl = pte_lockptr(mm, pmd);
249 	pte_t *ptep = pte_offset_map(pmd, address);
250 	__migration_entry_wait(mm, ptep, ptl);
251 }
252 
253 void migration_entry_wait_huge(struct vm_area_struct *vma,
254 		struct mm_struct *mm, pte_t *pte)
255 {
256 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
257 	__migration_entry_wait(mm, pte, ptl);
258 }
259 
260 #ifdef CONFIG_BLOCK
261 /* Returns true if all buffers are successfully locked */
262 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
263 							enum migrate_mode mode)
264 {
265 	struct buffer_head *bh = head;
266 
267 	/* Simple case, sync compaction */
268 	if (mode != MIGRATE_ASYNC) {
269 		do {
270 			get_bh(bh);
271 			lock_buffer(bh);
272 			bh = bh->b_this_page;
273 
274 		} while (bh != head);
275 
276 		return true;
277 	}
278 
279 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
280 	do {
281 		get_bh(bh);
282 		if (!trylock_buffer(bh)) {
283 			/*
284 			 * We failed to lock the buffer and cannot stall in
285 			 * async migration. Release the taken locks
286 			 */
287 			struct buffer_head *failed_bh = bh;
288 			put_bh(failed_bh);
289 			bh = head;
290 			while (bh != failed_bh) {
291 				unlock_buffer(bh);
292 				put_bh(bh);
293 				bh = bh->b_this_page;
294 			}
295 			return false;
296 		}
297 
298 		bh = bh->b_this_page;
299 	} while (bh != head);
300 	return true;
301 }
302 #else
303 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
304 							enum migrate_mode mode)
305 {
306 	return true;
307 }
308 #endif /* CONFIG_BLOCK */
309 
310 /*
311  * Replace the page in the mapping.
312  *
313  * The number of remaining references must be:
314  * 1 for anonymous pages without a mapping
315  * 2 for pages with a mapping
316  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
317  */
318 int migrate_page_move_mapping(struct address_space *mapping,
319 		struct page *newpage, struct page *page,
320 		struct buffer_head *head, enum migrate_mode mode,
321 		int extra_count)
322 {
323 	int expected_count = 1 + extra_count;
324 	void **pslot;
325 
326 	if (!mapping) {
327 		/* Anonymous page without mapping */
328 		if (page_count(page) != expected_count)
329 			return -EAGAIN;
330 		return MIGRATEPAGE_SUCCESS;
331 	}
332 
333 	spin_lock_irq(&mapping->tree_lock);
334 
335 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
336  					page_index(page));
337 
338 	expected_count += 1 + page_has_private(page);
339 	if (page_count(page) != expected_count ||
340 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
341 		spin_unlock_irq(&mapping->tree_lock);
342 		return -EAGAIN;
343 	}
344 
345 	if (!page_freeze_refs(page, expected_count)) {
346 		spin_unlock_irq(&mapping->tree_lock);
347 		return -EAGAIN;
348 	}
349 
350 	/*
351 	 * In the async migration case of moving a page with buffers, lock the
352 	 * buffers using trylock before the mapping is moved. If the mapping
353 	 * was moved, we later failed to lock the buffers and could not move
354 	 * the mapping back due to an elevated page count, we would have to
355 	 * block waiting on other references to be dropped.
356 	 */
357 	if (mode == MIGRATE_ASYNC && head &&
358 			!buffer_migrate_lock_buffers(head, mode)) {
359 		page_unfreeze_refs(page, expected_count);
360 		spin_unlock_irq(&mapping->tree_lock);
361 		return -EAGAIN;
362 	}
363 
364 	/*
365 	 * Now we know that no one else is looking at the page.
366 	 */
367 	get_page(newpage);	/* add cache reference */
368 	if (PageSwapCache(page)) {
369 		SetPageSwapCache(newpage);
370 		set_page_private(newpage, page_private(page));
371 	}
372 
373 	radix_tree_replace_slot(pslot, newpage);
374 
375 	/*
376 	 * Drop cache reference from old page by unfreezing
377 	 * to one less reference.
378 	 * We know this isn't the last reference.
379 	 */
380 	page_unfreeze_refs(page, expected_count - 1);
381 
382 	/*
383 	 * If moved to a different zone then also account
384 	 * the page for that zone. Other VM counters will be
385 	 * taken care of when we establish references to the
386 	 * new page and drop references to the old page.
387 	 *
388 	 * Note that anonymous pages are accounted for
389 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
390 	 * are mapped to swap space.
391 	 */
392 	__dec_zone_page_state(page, NR_FILE_PAGES);
393 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
394 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
395 		__dec_zone_page_state(page, NR_SHMEM);
396 		__inc_zone_page_state(newpage, NR_SHMEM);
397 	}
398 	spin_unlock_irq(&mapping->tree_lock);
399 
400 	return MIGRATEPAGE_SUCCESS;
401 }
402 
403 /*
404  * The expected number of remaining references is the same as that
405  * of migrate_page_move_mapping().
406  */
407 int migrate_huge_page_move_mapping(struct address_space *mapping,
408 				   struct page *newpage, struct page *page)
409 {
410 	int expected_count;
411 	void **pslot;
412 
413 	if (!mapping) {
414 		if (page_count(page) != 1)
415 			return -EAGAIN;
416 		return MIGRATEPAGE_SUCCESS;
417 	}
418 
419 	spin_lock_irq(&mapping->tree_lock);
420 
421 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
422 					page_index(page));
423 
424 	expected_count = 2 + page_has_private(page);
425 	if (page_count(page) != expected_count ||
426 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
427 		spin_unlock_irq(&mapping->tree_lock);
428 		return -EAGAIN;
429 	}
430 
431 	if (!page_freeze_refs(page, expected_count)) {
432 		spin_unlock_irq(&mapping->tree_lock);
433 		return -EAGAIN;
434 	}
435 
436 	get_page(newpage);
437 
438 	radix_tree_replace_slot(pslot, newpage);
439 
440 	page_unfreeze_refs(page, expected_count - 1);
441 
442 	spin_unlock_irq(&mapping->tree_lock);
443 	return MIGRATEPAGE_SUCCESS;
444 }
445 
446 /*
447  * Gigantic pages are so large that we do not guarantee that page++ pointer
448  * arithmetic will work across the entire page.  We need something more
449  * specialized.
450  */
451 static void __copy_gigantic_page(struct page *dst, struct page *src,
452 				int nr_pages)
453 {
454 	int i;
455 	struct page *dst_base = dst;
456 	struct page *src_base = src;
457 
458 	for (i = 0; i < nr_pages; ) {
459 		cond_resched();
460 		copy_highpage(dst, src);
461 
462 		i++;
463 		dst = mem_map_next(dst, dst_base, i);
464 		src = mem_map_next(src, src_base, i);
465 	}
466 }
467 
468 static void copy_huge_page(struct page *dst, struct page *src)
469 {
470 	int i;
471 	int nr_pages;
472 
473 	if (PageHuge(src)) {
474 		/* hugetlbfs page */
475 		struct hstate *h = page_hstate(src);
476 		nr_pages = pages_per_huge_page(h);
477 
478 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
479 			__copy_gigantic_page(dst, src, nr_pages);
480 			return;
481 		}
482 	} else {
483 		/* thp page */
484 		BUG_ON(!PageTransHuge(src));
485 		nr_pages = hpage_nr_pages(src);
486 	}
487 
488 	for (i = 0; i < nr_pages; i++) {
489 		cond_resched();
490 		copy_highpage(dst + i, src + i);
491 	}
492 }
493 
494 /*
495  * Copy the page to its new location
496  */
497 void migrate_page_copy(struct page *newpage, struct page *page)
498 {
499 	int cpupid;
500 
501 	if (PageHuge(page) || PageTransHuge(page))
502 		copy_huge_page(newpage, page);
503 	else
504 		copy_highpage(newpage, page);
505 
506 	if (PageError(page))
507 		SetPageError(newpage);
508 	if (PageReferenced(page))
509 		SetPageReferenced(newpage);
510 	if (PageUptodate(page))
511 		SetPageUptodate(newpage);
512 	if (TestClearPageActive(page)) {
513 		VM_BUG_ON(PageUnevictable(page));
514 		SetPageActive(newpage);
515 	} else if (TestClearPageUnevictable(page))
516 		SetPageUnevictable(newpage);
517 	if (PageChecked(page))
518 		SetPageChecked(newpage);
519 	if (PageMappedToDisk(page))
520 		SetPageMappedToDisk(newpage);
521 
522 	if (PageDirty(page)) {
523 		clear_page_dirty_for_io(page);
524 		/*
525 		 * Want to mark the page and the radix tree as dirty, and
526 		 * redo the accounting that clear_page_dirty_for_io undid,
527 		 * but we can't use set_page_dirty because that function
528 		 * is actually a signal that all of the page has become dirty.
529 		 * Whereas only part of our page may be dirty.
530 		 */
531 		if (PageSwapBacked(page))
532 			SetPageDirty(newpage);
533 		else
534 			__set_page_dirty_nobuffers(newpage);
535  	}
536 
537 	/*
538 	 * Copy NUMA information to the new page, to prevent over-eager
539 	 * future migrations of this same page.
540 	 */
541 	cpupid = page_cpupid_xchg_last(page, -1);
542 	page_cpupid_xchg_last(newpage, cpupid);
543 
544 	mlock_migrate_page(newpage, page);
545 	ksm_migrate_page(newpage, page);
546 	/*
547 	 * Please do not reorder this without considering how mm/ksm.c's
548 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
549 	 */
550 	ClearPageSwapCache(page);
551 	ClearPagePrivate(page);
552 	set_page_private(page, 0);
553 
554 	/*
555 	 * If any waiters have accumulated on the new page then
556 	 * wake them up.
557 	 */
558 	if (PageWriteback(newpage))
559 		end_page_writeback(newpage);
560 }
561 
562 /************************************************************
563  *                    Migration functions
564  ***********************************************************/
565 
566 /* Always fail migration. Used for mappings that are not movable */
567 int fail_migrate_page(struct address_space *mapping,
568 			struct page *newpage, struct page *page)
569 {
570 	return -EIO;
571 }
572 EXPORT_SYMBOL(fail_migrate_page);
573 
574 /*
575  * Common logic to directly migrate a single page suitable for
576  * pages that do not use PagePrivate/PagePrivate2.
577  *
578  * Pages are locked upon entry and exit.
579  */
580 int migrate_page(struct address_space *mapping,
581 		struct page *newpage, struct page *page,
582 		enum migrate_mode mode)
583 {
584 	int rc;
585 
586 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
587 
588 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
589 
590 	if (rc != MIGRATEPAGE_SUCCESS)
591 		return rc;
592 
593 	migrate_page_copy(newpage, page);
594 	return MIGRATEPAGE_SUCCESS;
595 }
596 EXPORT_SYMBOL(migrate_page);
597 
598 #ifdef CONFIG_BLOCK
599 /*
600  * Migration function for pages with buffers. This function can only be used
601  * if the underlying filesystem guarantees that no other references to "page"
602  * exist.
603  */
604 int buffer_migrate_page(struct address_space *mapping,
605 		struct page *newpage, struct page *page, enum migrate_mode mode)
606 {
607 	struct buffer_head *bh, *head;
608 	int rc;
609 
610 	if (!page_has_buffers(page))
611 		return migrate_page(mapping, newpage, page, mode);
612 
613 	head = page_buffers(page);
614 
615 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
616 
617 	if (rc != MIGRATEPAGE_SUCCESS)
618 		return rc;
619 
620 	/*
621 	 * In the async case, migrate_page_move_mapping locked the buffers
622 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
623 	 * need to be locked now
624 	 */
625 	if (mode != MIGRATE_ASYNC)
626 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
627 
628 	ClearPagePrivate(page);
629 	set_page_private(newpage, page_private(page));
630 	set_page_private(page, 0);
631 	put_page(page);
632 	get_page(newpage);
633 
634 	bh = head;
635 	do {
636 		set_bh_page(bh, newpage, bh_offset(bh));
637 		bh = bh->b_this_page;
638 
639 	} while (bh != head);
640 
641 	SetPagePrivate(newpage);
642 
643 	migrate_page_copy(newpage, page);
644 
645 	bh = head;
646 	do {
647 		unlock_buffer(bh);
648  		put_bh(bh);
649 		bh = bh->b_this_page;
650 
651 	} while (bh != head);
652 
653 	return MIGRATEPAGE_SUCCESS;
654 }
655 EXPORT_SYMBOL(buffer_migrate_page);
656 #endif
657 
658 /*
659  * Writeback a page to clean the dirty state
660  */
661 static int writeout(struct address_space *mapping, struct page *page)
662 {
663 	struct writeback_control wbc = {
664 		.sync_mode = WB_SYNC_NONE,
665 		.nr_to_write = 1,
666 		.range_start = 0,
667 		.range_end = LLONG_MAX,
668 		.for_reclaim = 1
669 	};
670 	int rc;
671 
672 	if (!mapping->a_ops->writepage)
673 		/* No write method for the address space */
674 		return -EINVAL;
675 
676 	if (!clear_page_dirty_for_io(page))
677 		/* Someone else already triggered a write */
678 		return -EAGAIN;
679 
680 	/*
681 	 * A dirty page may imply that the underlying filesystem has
682 	 * the page on some queue. So the page must be clean for
683 	 * migration. Writeout may mean we loose the lock and the
684 	 * page state is no longer what we checked for earlier.
685 	 * At this point we know that the migration attempt cannot
686 	 * be successful.
687 	 */
688 	remove_migration_ptes(page, page);
689 
690 	rc = mapping->a_ops->writepage(page, &wbc);
691 
692 	if (rc != AOP_WRITEPAGE_ACTIVATE)
693 		/* unlocked. Relock */
694 		lock_page(page);
695 
696 	return (rc < 0) ? -EIO : -EAGAIN;
697 }
698 
699 /*
700  * Default handling if a filesystem does not provide a migration function.
701  */
702 static int fallback_migrate_page(struct address_space *mapping,
703 	struct page *newpage, struct page *page, enum migrate_mode mode)
704 {
705 	if (PageDirty(page)) {
706 		/* Only writeback pages in full synchronous migration */
707 		if (mode != MIGRATE_SYNC)
708 			return -EBUSY;
709 		return writeout(mapping, page);
710 	}
711 
712 	/*
713 	 * Buffers may be managed in a filesystem specific way.
714 	 * We must have no buffers or drop them.
715 	 */
716 	if (page_has_private(page) &&
717 	    !try_to_release_page(page, GFP_KERNEL))
718 		return -EAGAIN;
719 
720 	return migrate_page(mapping, newpage, page, mode);
721 }
722 
723 /*
724  * Move a page to a newly allocated page
725  * The page is locked and all ptes have been successfully removed.
726  *
727  * The new page will have replaced the old page if this function
728  * is successful.
729  *
730  * Return value:
731  *   < 0 - error code
732  *  MIGRATEPAGE_SUCCESS - success
733  */
734 static int move_to_new_page(struct page *newpage, struct page *page,
735 				int remap_swapcache, enum migrate_mode mode)
736 {
737 	struct address_space *mapping;
738 	int rc;
739 
740 	/*
741 	 * Block others from accessing the page when we get around to
742 	 * establishing additional references. We are the only one
743 	 * holding a reference to the new page at this point.
744 	 */
745 	if (!trylock_page(newpage))
746 		BUG();
747 
748 	/* Prepare mapping for the new page.*/
749 	newpage->index = page->index;
750 	newpage->mapping = page->mapping;
751 	if (PageSwapBacked(page))
752 		SetPageSwapBacked(newpage);
753 
754 	mapping = page_mapping(page);
755 	if (!mapping)
756 		rc = migrate_page(mapping, newpage, page, mode);
757 	else if (mapping->a_ops->migratepage)
758 		/*
759 		 * Most pages have a mapping and most filesystems provide a
760 		 * migratepage callback. Anonymous pages are part of swap
761 		 * space which also has its own migratepage callback. This
762 		 * is the most common path for page migration.
763 		 */
764 		rc = mapping->a_ops->migratepage(mapping,
765 						newpage, page, mode);
766 	else
767 		rc = fallback_migrate_page(mapping, newpage, page, mode);
768 
769 	if (rc != MIGRATEPAGE_SUCCESS) {
770 		newpage->mapping = NULL;
771 	} else {
772 		if (remap_swapcache)
773 			remove_migration_ptes(page, newpage);
774 		page->mapping = NULL;
775 	}
776 
777 	unlock_page(newpage);
778 
779 	return rc;
780 }
781 
782 static int __unmap_and_move(struct page *page, struct page *newpage,
783 				int force, enum migrate_mode mode)
784 {
785 	int rc = -EAGAIN;
786 	int remap_swapcache = 1;
787 	struct mem_cgroup *mem;
788 	struct anon_vma *anon_vma = NULL;
789 
790 	if (!trylock_page(page)) {
791 		if (!force || mode == MIGRATE_ASYNC)
792 			goto out;
793 
794 		/*
795 		 * It's not safe for direct compaction to call lock_page.
796 		 * For example, during page readahead pages are added locked
797 		 * to the LRU. Later, when the IO completes the pages are
798 		 * marked uptodate and unlocked. However, the queueing
799 		 * could be merging multiple pages for one bio (e.g.
800 		 * mpage_readpages). If an allocation happens for the
801 		 * second or third page, the process can end up locking
802 		 * the same page twice and deadlocking. Rather than
803 		 * trying to be clever about what pages can be locked,
804 		 * avoid the use of lock_page for direct compaction
805 		 * altogether.
806 		 */
807 		if (current->flags & PF_MEMALLOC)
808 			goto out;
809 
810 		lock_page(page);
811 	}
812 
813 	/* charge against new page */
814 	mem_cgroup_prepare_migration(page, newpage, &mem);
815 
816 	if (PageWriteback(page)) {
817 		/*
818 		 * Only in the case of a full synchronous migration is it
819 		 * necessary to wait for PageWriteback. In the async case,
820 		 * the retry loop is too short and in the sync-light case,
821 		 * the overhead of stalling is too much
822 		 */
823 		if (mode != MIGRATE_SYNC) {
824 			rc = -EBUSY;
825 			goto uncharge;
826 		}
827 		if (!force)
828 			goto uncharge;
829 		wait_on_page_writeback(page);
830 	}
831 	/*
832 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 	 * we cannot notice that anon_vma is freed while we migrates a page.
834 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 	 * of migration. File cache pages are no problem because of page_lock()
836 	 * File Caches may use write_page() or lock_page() in migration, then,
837 	 * just care Anon page here.
838 	 */
839 	if (PageAnon(page) && !PageKsm(page)) {
840 		/*
841 		 * Only page_lock_anon_vma_read() understands the subtleties of
842 		 * getting a hold on an anon_vma from outside one of its mms.
843 		 */
844 		anon_vma = page_get_anon_vma(page);
845 		if (anon_vma) {
846 			/*
847 			 * Anon page
848 			 */
849 		} else if (PageSwapCache(page)) {
850 			/*
851 			 * We cannot be sure that the anon_vma of an unmapped
852 			 * swapcache page is safe to use because we don't
853 			 * know in advance if the VMA that this page belonged
854 			 * to still exists. If the VMA and others sharing the
855 			 * data have been freed, then the anon_vma could
856 			 * already be invalid.
857 			 *
858 			 * To avoid this possibility, swapcache pages get
859 			 * migrated but are not remapped when migration
860 			 * completes
861 			 */
862 			remap_swapcache = 0;
863 		} else {
864 			goto uncharge;
865 		}
866 	}
867 
868 	if (unlikely(balloon_page_movable(page))) {
869 		/*
870 		 * A ballooned page does not need any special attention from
871 		 * physical to virtual reverse mapping procedures.
872 		 * Skip any attempt to unmap PTEs or to remap swap cache,
873 		 * in order to avoid burning cycles at rmap level, and perform
874 		 * the page migration right away (proteced by page lock).
875 		 */
876 		rc = balloon_page_migrate(newpage, page, mode);
877 		goto uncharge;
878 	}
879 
880 	/*
881 	 * Corner case handling:
882 	 * 1. When a new swap-cache page is read into, it is added to the LRU
883 	 * and treated as swapcache but it has no rmap yet.
884 	 * Calling try_to_unmap() against a page->mapping==NULL page will
885 	 * trigger a BUG.  So handle it here.
886 	 * 2. An orphaned page (see truncate_complete_page) might have
887 	 * fs-private metadata. The page can be picked up due to memory
888 	 * offlining.  Everywhere else except page reclaim, the page is
889 	 * invisible to the vm, so the page can not be migrated.  So try to
890 	 * free the metadata, so the page can be freed.
891 	 */
892 	if (!page->mapping) {
893 		VM_BUG_ON(PageAnon(page));
894 		if (page_has_private(page)) {
895 			try_to_free_buffers(page);
896 			goto uncharge;
897 		}
898 		goto skip_unmap;
899 	}
900 
901 	/* Establish migration ptes or remove ptes */
902 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
903 
904 skip_unmap:
905 	if (!page_mapped(page))
906 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
907 
908 	if (rc && remap_swapcache)
909 		remove_migration_ptes(page, page);
910 
911 	/* Drop an anon_vma reference if we took one */
912 	if (anon_vma)
913 		put_anon_vma(anon_vma);
914 
915 uncharge:
916 	mem_cgroup_end_migration(mem, page, newpage,
917 				 (rc == MIGRATEPAGE_SUCCESS ||
918 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
919 	unlock_page(page);
920 out:
921 	return rc;
922 }
923 
924 /*
925  * Obtain the lock on page, remove all ptes and migrate the page
926  * to the newly allocated page in newpage.
927  */
928 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
929 			struct page *page, int force, enum migrate_mode mode)
930 {
931 	int rc = 0;
932 	int *result = NULL;
933 	struct page *newpage = get_new_page(page, private, &result);
934 
935 	if (!newpage)
936 		return -ENOMEM;
937 
938 	if (page_count(page) == 1) {
939 		/* page was freed from under us. So we are done. */
940 		goto out;
941 	}
942 
943 	if (unlikely(PageTransHuge(page)))
944 		if (unlikely(split_huge_page(page)))
945 			goto out;
946 
947 	rc = __unmap_and_move(page, newpage, force, mode);
948 
949 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
950 		/*
951 		 * A ballooned page has been migrated already.
952 		 * Now, it's the time to wrap-up counters,
953 		 * handle the page back to Buddy and return.
954 		 */
955 		dec_zone_page_state(page, NR_ISOLATED_ANON +
956 				    page_is_file_cache(page));
957 		balloon_page_free(page);
958 		return MIGRATEPAGE_SUCCESS;
959 	}
960 out:
961 	if (rc != -EAGAIN) {
962 		/*
963 		 * A page that has been migrated has all references
964 		 * removed and will be freed. A page that has not been
965 		 * migrated will have kepts its references and be
966 		 * restored.
967 		 */
968 		list_del(&page->lru);
969 		dec_zone_page_state(page, NR_ISOLATED_ANON +
970 				page_is_file_cache(page));
971 		putback_lru_page(page);
972 	}
973 	/*
974 	 * Move the new page to the LRU. If migration was not successful
975 	 * then this will free the page.
976 	 */
977 	putback_lru_page(newpage);
978 	if (result) {
979 		if (rc)
980 			*result = rc;
981 		else
982 			*result = page_to_nid(newpage);
983 	}
984 	return rc;
985 }
986 
987 /*
988  * Counterpart of unmap_and_move_page() for hugepage migration.
989  *
990  * This function doesn't wait the completion of hugepage I/O
991  * because there is no race between I/O and migration for hugepage.
992  * Note that currently hugepage I/O occurs only in direct I/O
993  * where no lock is held and PG_writeback is irrelevant,
994  * and writeback status of all subpages are counted in the reference
995  * count of the head page (i.e. if all subpages of a 2MB hugepage are
996  * under direct I/O, the reference of the head page is 512 and a bit more.)
997  * This means that when we try to migrate hugepage whose subpages are
998  * doing direct I/O, some references remain after try_to_unmap() and
999  * hugepage migration fails without data corruption.
1000  *
1001  * There is also no race when direct I/O is issued on the page under migration,
1002  * because then pte is replaced with migration swap entry and direct I/O code
1003  * will wait in the page fault for migration to complete.
1004  */
1005 static int unmap_and_move_huge_page(new_page_t get_new_page,
1006 				unsigned long private, struct page *hpage,
1007 				int force, enum migrate_mode mode)
1008 {
1009 	int rc = 0;
1010 	int *result = NULL;
1011 	struct page *new_hpage = get_new_page(hpage, private, &result);
1012 	struct anon_vma *anon_vma = NULL;
1013 
1014 	/*
1015 	 * Movability of hugepages depends on architectures and hugepage size.
1016 	 * This check is necessary because some callers of hugepage migration
1017 	 * like soft offline and memory hotremove don't walk through page
1018 	 * tables or check whether the hugepage is pmd-based or not before
1019 	 * kicking migration.
1020 	 */
1021 	if (!hugepage_migration_support(page_hstate(hpage)))
1022 		return -ENOSYS;
1023 
1024 	if (!new_hpage)
1025 		return -ENOMEM;
1026 
1027 	rc = -EAGAIN;
1028 
1029 	if (!trylock_page(hpage)) {
1030 		if (!force || mode != MIGRATE_SYNC)
1031 			goto out;
1032 		lock_page(hpage);
1033 	}
1034 
1035 	if (PageAnon(hpage))
1036 		anon_vma = page_get_anon_vma(hpage);
1037 
1038 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1039 
1040 	if (!page_mapped(hpage))
1041 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1042 
1043 	if (rc)
1044 		remove_migration_ptes(hpage, hpage);
1045 
1046 	if (anon_vma)
1047 		put_anon_vma(anon_vma);
1048 
1049 	if (!rc)
1050 		hugetlb_cgroup_migrate(hpage, new_hpage);
1051 
1052 	unlock_page(hpage);
1053 out:
1054 	if (rc != -EAGAIN)
1055 		putback_active_hugepage(hpage);
1056 	put_page(new_hpage);
1057 	if (result) {
1058 		if (rc)
1059 			*result = rc;
1060 		else
1061 			*result = page_to_nid(new_hpage);
1062 	}
1063 	return rc;
1064 }
1065 
1066 /*
1067  * migrate_pages - migrate the pages specified in a list, to the free pages
1068  *		   supplied as the target for the page migration
1069  *
1070  * @from:		The list of pages to be migrated.
1071  * @get_new_page:	The function used to allocate free pages to be used
1072  *			as the target of the page migration.
1073  * @private:		Private data to be passed on to get_new_page()
1074  * @mode:		The migration mode that specifies the constraints for
1075  *			page migration, if any.
1076  * @reason:		The reason for page migration.
1077  *
1078  * The function returns after 10 attempts or if no pages are movable any more
1079  * because the list has become empty or no retryable pages exist any more.
1080  * The caller should call putback_lru_pages() to return pages to the LRU
1081  * or free list only if ret != 0.
1082  *
1083  * Returns the number of pages that were not migrated, or an error code.
1084  */
1085 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1086 		unsigned long private, enum migrate_mode mode, int reason)
1087 {
1088 	int retry = 1;
1089 	int nr_failed = 0;
1090 	int nr_succeeded = 0;
1091 	int pass = 0;
1092 	struct page *page;
1093 	struct page *page2;
1094 	int swapwrite = current->flags & PF_SWAPWRITE;
1095 	int rc;
1096 
1097 	if (!swapwrite)
1098 		current->flags |= PF_SWAPWRITE;
1099 
1100 	for(pass = 0; pass < 10 && retry; pass++) {
1101 		retry = 0;
1102 
1103 		list_for_each_entry_safe(page, page2, from, lru) {
1104 			cond_resched();
1105 
1106 			if (PageHuge(page))
1107 				rc = unmap_and_move_huge_page(get_new_page,
1108 						private, page, pass > 2, mode);
1109 			else
1110 				rc = unmap_and_move(get_new_page, private,
1111 						page, pass > 2, mode);
1112 
1113 			switch(rc) {
1114 			case -ENOMEM:
1115 				goto out;
1116 			case -EAGAIN:
1117 				retry++;
1118 				break;
1119 			case MIGRATEPAGE_SUCCESS:
1120 				nr_succeeded++;
1121 				break;
1122 			default:
1123 				/* Permanent failure */
1124 				nr_failed++;
1125 				break;
1126 			}
1127 		}
1128 	}
1129 	rc = nr_failed + retry;
1130 out:
1131 	if (nr_succeeded)
1132 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1133 	if (nr_failed)
1134 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1135 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1136 
1137 	if (!swapwrite)
1138 		current->flags &= ~PF_SWAPWRITE;
1139 
1140 	return rc;
1141 }
1142 
1143 #ifdef CONFIG_NUMA
1144 /*
1145  * Move a list of individual pages
1146  */
1147 struct page_to_node {
1148 	unsigned long addr;
1149 	struct page *page;
1150 	int node;
1151 	int status;
1152 };
1153 
1154 static struct page *new_page_node(struct page *p, unsigned long private,
1155 		int **result)
1156 {
1157 	struct page_to_node *pm = (struct page_to_node *)private;
1158 
1159 	while (pm->node != MAX_NUMNODES && pm->page != p)
1160 		pm++;
1161 
1162 	if (pm->node == MAX_NUMNODES)
1163 		return NULL;
1164 
1165 	*result = &pm->status;
1166 
1167 	if (PageHuge(p))
1168 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1169 					pm->node);
1170 	else
1171 		return alloc_pages_exact_node(pm->node,
1172 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1173 }
1174 
1175 /*
1176  * Move a set of pages as indicated in the pm array. The addr
1177  * field must be set to the virtual address of the page to be moved
1178  * and the node number must contain a valid target node.
1179  * The pm array ends with node = MAX_NUMNODES.
1180  */
1181 static int do_move_page_to_node_array(struct mm_struct *mm,
1182 				      struct page_to_node *pm,
1183 				      int migrate_all)
1184 {
1185 	int err;
1186 	struct page_to_node *pp;
1187 	LIST_HEAD(pagelist);
1188 
1189 	down_read(&mm->mmap_sem);
1190 
1191 	/*
1192 	 * Build a list of pages to migrate
1193 	 */
1194 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1195 		struct vm_area_struct *vma;
1196 		struct page *page;
1197 
1198 		err = -EFAULT;
1199 		vma = find_vma(mm, pp->addr);
1200 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1201 			goto set_status;
1202 
1203 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1204 
1205 		err = PTR_ERR(page);
1206 		if (IS_ERR(page))
1207 			goto set_status;
1208 
1209 		err = -ENOENT;
1210 		if (!page)
1211 			goto set_status;
1212 
1213 		/* Use PageReserved to check for zero page */
1214 		if (PageReserved(page))
1215 			goto put_and_set;
1216 
1217 		pp->page = page;
1218 		err = page_to_nid(page);
1219 
1220 		if (err == pp->node)
1221 			/*
1222 			 * Node already in the right place
1223 			 */
1224 			goto put_and_set;
1225 
1226 		err = -EACCES;
1227 		if (page_mapcount(page) > 1 &&
1228 				!migrate_all)
1229 			goto put_and_set;
1230 
1231 		if (PageHuge(page)) {
1232 			isolate_huge_page(page, &pagelist);
1233 			goto put_and_set;
1234 		}
1235 
1236 		err = isolate_lru_page(page);
1237 		if (!err) {
1238 			list_add_tail(&page->lru, &pagelist);
1239 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1240 					    page_is_file_cache(page));
1241 		}
1242 put_and_set:
1243 		/*
1244 		 * Either remove the duplicate refcount from
1245 		 * isolate_lru_page() or drop the page ref if it was
1246 		 * not isolated.
1247 		 */
1248 		put_page(page);
1249 set_status:
1250 		pp->status = err;
1251 	}
1252 
1253 	err = 0;
1254 	if (!list_empty(&pagelist)) {
1255 		err = migrate_pages(&pagelist, new_page_node,
1256 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1257 		if (err)
1258 			putback_movable_pages(&pagelist);
1259 	}
1260 
1261 	up_read(&mm->mmap_sem);
1262 	return err;
1263 }
1264 
1265 /*
1266  * Migrate an array of page address onto an array of nodes and fill
1267  * the corresponding array of status.
1268  */
1269 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1270 			 unsigned long nr_pages,
1271 			 const void __user * __user *pages,
1272 			 const int __user *nodes,
1273 			 int __user *status, int flags)
1274 {
1275 	struct page_to_node *pm;
1276 	unsigned long chunk_nr_pages;
1277 	unsigned long chunk_start;
1278 	int err;
1279 
1280 	err = -ENOMEM;
1281 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1282 	if (!pm)
1283 		goto out;
1284 
1285 	migrate_prep();
1286 
1287 	/*
1288 	 * Store a chunk of page_to_node array in a page,
1289 	 * but keep the last one as a marker
1290 	 */
1291 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1292 
1293 	for (chunk_start = 0;
1294 	     chunk_start < nr_pages;
1295 	     chunk_start += chunk_nr_pages) {
1296 		int j;
1297 
1298 		if (chunk_start + chunk_nr_pages > nr_pages)
1299 			chunk_nr_pages = nr_pages - chunk_start;
1300 
1301 		/* fill the chunk pm with addrs and nodes from user-space */
1302 		for (j = 0; j < chunk_nr_pages; j++) {
1303 			const void __user *p;
1304 			int node;
1305 
1306 			err = -EFAULT;
1307 			if (get_user(p, pages + j + chunk_start))
1308 				goto out_pm;
1309 			pm[j].addr = (unsigned long) p;
1310 
1311 			if (get_user(node, nodes + j + chunk_start))
1312 				goto out_pm;
1313 
1314 			err = -ENODEV;
1315 			if (node < 0 || node >= MAX_NUMNODES)
1316 				goto out_pm;
1317 
1318 			if (!node_state(node, N_MEMORY))
1319 				goto out_pm;
1320 
1321 			err = -EACCES;
1322 			if (!node_isset(node, task_nodes))
1323 				goto out_pm;
1324 
1325 			pm[j].node = node;
1326 		}
1327 
1328 		/* End marker for this chunk */
1329 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1330 
1331 		/* Migrate this chunk */
1332 		err = do_move_page_to_node_array(mm, pm,
1333 						 flags & MPOL_MF_MOVE_ALL);
1334 		if (err < 0)
1335 			goto out_pm;
1336 
1337 		/* Return status information */
1338 		for (j = 0; j < chunk_nr_pages; j++)
1339 			if (put_user(pm[j].status, status + j + chunk_start)) {
1340 				err = -EFAULT;
1341 				goto out_pm;
1342 			}
1343 	}
1344 	err = 0;
1345 
1346 out_pm:
1347 	free_page((unsigned long)pm);
1348 out:
1349 	return err;
1350 }
1351 
1352 /*
1353  * Determine the nodes of an array of pages and store it in an array of status.
1354  */
1355 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1356 				const void __user **pages, int *status)
1357 {
1358 	unsigned long i;
1359 
1360 	down_read(&mm->mmap_sem);
1361 
1362 	for (i = 0; i < nr_pages; i++) {
1363 		unsigned long addr = (unsigned long)(*pages);
1364 		struct vm_area_struct *vma;
1365 		struct page *page;
1366 		int err = -EFAULT;
1367 
1368 		vma = find_vma(mm, addr);
1369 		if (!vma || addr < vma->vm_start)
1370 			goto set_status;
1371 
1372 		page = follow_page(vma, addr, 0);
1373 
1374 		err = PTR_ERR(page);
1375 		if (IS_ERR(page))
1376 			goto set_status;
1377 
1378 		err = -ENOENT;
1379 		/* Use PageReserved to check for zero page */
1380 		if (!page || PageReserved(page))
1381 			goto set_status;
1382 
1383 		err = page_to_nid(page);
1384 set_status:
1385 		*status = err;
1386 
1387 		pages++;
1388 		status++;
1389 	}
1390 
1391 	up_read(&mm->mmap_sem);
1392 }
1393 
1394 /*
1395  * Determine the nodes of a user array of pages and store it in
1396  * a user array of status.
1397  */
1398 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1399 			 const void __user * __user *pages,
1400 			 int __user *status)
1401 {
1402 #define DO_PAGES_STAT_CHUNK_NR 16
1403 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1404 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1405 
1406 	while (nr_pages) {
1407 		unsigned long chunk_nr;
1408 
1409 		chunk_nr = nr_pages;
1410 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1411 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1412 
1413 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1414 			break;
1415 
1416 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1417 
1418 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1419 			break;
1420 
1421 		pages += chunk_nr;
1422 		status += chunk_nr;
1423 		nr_pages -= chunk_nr;
1424 	}
1425 	return nr_pages ? -EFAULT : 0;
1426 }
1427 
1428 /*
1429  * Move a list of pages in the address space of the currently executing
1430  * process.
1431  */
1432 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1433 		const void __user * __user *, pages,
1434 		const int __user *, nodes,
1435 		int __user *, status, int, flags)
1436 {
1437 	const struct cred *cred = current_cred(), *tcred;
1438 	struct task_struct *task;
1439 	struct mm_struct *mm;
1440 	int err;
1441 	nodemask_t task_nodes;
1442 
1443 	/* Check flags */
1444 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1445 		return -EINVAL;
1446 
1447 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1448 		return -EPERM;
1449 
1450 	/* Find the mm_struct */
1451 	rcu_read_lock();
1452 	task = pid ? find_task_by_vpid(pid) : current;
1453 	if (!task) {
1454 		rcu_read_unlock();
1455 		return -ESRCH;
1456 	}
1457 	get_task_struct(task);
1458 
1459 	/*
1460 	 * Check if this process has the right to modify the specified
1461 	 * process. The right exists if the process has administrative
1462 	 * capabilities, superuser privileges or the same
1463 	 * userid as the target process.
1464 	 */
1465 	tcred = __task_cred(task);
1466 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1467 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1468 	    !capable(CAP_SYS_NICE)) {
1469 		rcu_read_unlock();
1470 		err = -EPERM;
1471 		goto out;
1472 	}
1473 	rcu_read_unlock();
1474 
1475  	err = security_task_movememory(task);
1476  	if (err)
1477 		goto out;
1478 
1479 	task_nodes = cpuset_mems_allowed(task);
1480 	mm = get_task_mm(task);
1481 	put_task_struct(task);
1482 
1483 	if (!mm)
1484 		return -EINVAL;
1485 
1486 	if (nodes)
1487 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1488 				    nodes, status, flags);
1489 	else
1490 		err = do_pages_stat(mm, nr_pages, pages, status);
1491 
1492 	mmput(mm);
1493 	return err;
1494 
1495 out:
1496 	put_task_struct(task);
1497 	return err;
1498 }
1499 
1500 /*
1501  * Call migration functions in the vma_ops that may prepare
1502  * memory in a vm for migration. migration functions may perform
1503  * the migration for vmas that do not have an underlying page struct.
1504  */
1505 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1506 	const nodemask_t *from, unsigned long flags)
1507 {
1508  	struct vm_area_struct *vma;
1509  	int err = 0;
1510 
1511 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1512  		if (vma->vm_ops && vma->vm_ops->migrate) {
1513  			err = vma->vm_ops->migrate(vma, to, from, flags);
1514  			if (err)
1515  				break;
1516  		}
1517  	}
1518  	return err;
1519 }
1520 
1521 #ifdef CONFIG_NUMA_BALANCING
1522 /*
1523  * Returns true if this is a safe migration target node for misplaced NUMA
1524  * pages. Currently it only checks the watermarks which crude
1525  */
1526 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1527 				   unsigned long nr_migrate_pages)
1528 {
1529 	int z;
1530 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1531 		struct zone *zone = pgdat->node_zones + z;
1532 
1533 		if (!populated_zone(zone))
1534 			continue;
1535 
1536 		if (!zone_reclaimable(zone))
1537 			continue;
1538 
1539 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1540 		if (!zone_watermark_ok(zone, 0,
1541 				       high_wmark_pages(zone) +
1542 				       nr_migrate_pages,
1543 				       0, 0))
1544 			continue;
1545 		return true;
1546 	}
1547 	return false;
1548 }
1549 
1550 static struct page *alloc_misplaced_dst_page(struct page *page,
1551 					   unsigned long data,
1552 					   int **result)
1553 {
1554 	int nid = (int) data;
1555 	struct page *newpage;
1556 
1557 	newpage = alloc_pages_exact_node(nid,
1558 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1559 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1560 					  __GFP_NOWARN) &
1561 					 ~GFP_IOFS, 0);
1562 	if (newpage)
1563 		page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1564 
1565 	return newpage;
1566 }
1567 
1568 /*
1569  * page migration rate limiting control.
1570  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1571  * window of time. Default here says do not migrate more than 1280M per second.
1572  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1573  * as it is faults that reset the window, pte updates will happen unconditionally
1574  * if there has not been a fault since @pteupdate_interval_millisecs after the
1575  * throttle window closed.
1576  */
1577 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1578 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1579 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1580 
1581 /* Returns true if NUMA migration is currently rate limited */
1582 bool migrate_ratelimited(int node)
1583 {
1584 	pg_data_t *pgdat = NODE_DATA(node);
1585 
1586 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1587 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1588 		return false;
1589 
1590 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1591 		return false;
1592 
1593 	return true;
1594 }
1595 
1596 /* Returns true if the node is migrate rate-limited after the update */
1597 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1598 {
1599 	bool rate_limited = false;
1600 
1601 	/*
1602 	 * Rate-limit the amount of data that is being migrated to a node.
1603 	 * Optimal placement is no good if the memory bus is saturated and
1604 	 * all the time is being spent migrating!
1605 	 */
1606 	spin_lock(&pgdat->numabalancing_migrate_lock);
1607 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1608 		pgdat->numabalancing_migrate_nr_pages = 0;
1609 		pgdat->numabalancing_migrate_next_window = jiffies +
1610 			msecs_to_jiffies(migrate_interval_millisecs);
1611 	}
1612 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1613 		rate_limited = true;
1614 	else
1615 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1616 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1617 
1618 	return rate_limited;
1619 }
1620 
1621 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1622 {
1623 	int page_lru;
1624 
1625 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1626 
1627 	/* Avoid migrating to a node that is nearly full */
1628 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1629 		return 0;
1630 
1631 	if (isolate_lru_page(page))
1632 		return 0;
1633 
1634 	/*
1635 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1636 	 * check on page_count(), so we must do it here, now that the page
1637 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1638 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1639 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1640 	 */
1641 	if (PageTransHuge(page) && page_count(page) != 3) {
1642 		putback_lru_page(page);
1643 		return 0;
1644 	}
1645 
1646 	page_lru = page_is_file_cache(page);
1647 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1648 				hpage_nr_pages(page));
1649 
1650 	/*
1651 	 * Isolating the page has taken another reference, so the
1652 	 * caller's reference can be safely dropped without the page
1653 	 * disappearing underneath us during migration.
1654 	 */
1655 	put_page(page);
1656 	return 1;
1657 }
1658 
1659 bool pmd_trans_migrating(pmd_t pmd)
1660 {
1661 	struct page *page = pmd_page(pmd);
1662 	return PageLocked(page);
1663 }
1664 
1665 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1666 {
1667 	struct page *page = pmd_page(*pmd);
1668 	wait_on_page_locked(page);
1669 }
1670 
1671 /*
1672  * Attempt to migrate a misplaced page to the specified destination
1673  * node. Caller is expected to have an elevated reference count on
1674  * the page that will be dropped by this function before returning.
1675  */
1676 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1677 			   int node)
1678 {
1679 	pg_data_t *pgdat = NODE_DATA(node);
1680 	int isolated;
1681 	int nr_remaining;
1682 	LIST_HEAD(migratepages);
1683 
1684 	/*
1685 	 * Don't migrate file pages that are mapped in multiple processes
1686 	 * with execute permissions as they are probably shared libraries.
1687 	 */
1688 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1689 	    (vma->vm_flags & VM_EXEC))
1690 		goto out;
1691 
1692 	/*
1693 	 * Rate-limit the amount of data that is being migrated to a node.
1694 	 * Optimal placement is no good if the memory bus is saturated and
1695 	 * all the time is being spent migrating!
1696 	 */
1697 	if (numamigrate_update_ratelimit(pgdat, 1))
1698 		goto out;
1699 
1700 	isolated = numamigrate_isolate_page(pgdat, page);
1701 	if (!isolated)
1702 		goto out;
1703 
1704 	list_add(&page->lru, &migratepages);
1705 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1706 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1707 	if (nr_remaining) {
1708 		putback_lru_pages(&migratepages);
1709 		isolated = 0;
1710 	} else
1711 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1712 	BUG_ON(!list_empty(&migratepages));
1713 	return isolated;
1714 
1715 out:
1716 	put_page(page);
1717 	return 0;
1718 }
1719 #endif /* CONFIG_NUMA_BALANCING */
1720 
1721 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1722 /*
1723  * Migrates a THP to a given target node. page must be locked and is unlocked
1724  * before returning.
1725  */
1726 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1727 				struct vm_area_struct *vma,
1728 				pmd_t *pmd, pmd_t entry,
1729 				unsigned long address,
1730 				struct page *page, int node)
1731 {
1732 	spinlock_t *ptl;
1733 	pg_data_t *pgdat = NODE_DATA(node);
1734 	int isolated = 0;
1735 	struct page *new_page = NULL;
1736 	struct mem_cgroup *memcg = NULL;
1737 	int page_lru = page_is_file_cache(page);
1738 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1739 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1740 	pmd_t orig_entry;
1741 
1742 	/*
1743 	 * Rate-limit the amount of data that is being migrated to a node.
1744 	 * Optimal placement is no good if the memory bus is saturated and
1745 	 * all the time is being spent migrating!
1746 	 */
1747 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1748 		goto out_dropref;
1749 
1750 	new_page = alloc_pages_node(node,
1751 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1752 	if (!new_page)
1753 		goto out_fail;
1754 
1755 	page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1756 
1757 	isolated = numamigrate_isolate_page(pgdat, page);
1758 	if (!isolated) {
1759 		put_page(new_page);
1760 		goto out_fail;
1761 	}
1762 
1763 	if (mm_tlb_flush_pending(mm))
1764 		flush_tlb_range(vma, mmun_start, mmun_end);
1765 
1766 	/* Prepare a page as a migration target */
1767 	__set_page_locked(new_page);
1768 	SetPageSwapBacked(new_page);
1769 
1770 	/* anon mapping, we can simply copy page->mapping to the new page: */
1771 	new_page->mapping = page->mapping;
1772 	new_page->index = page->index;
1773 	migrate_page_copy(new_page, page);
1774 	WARN_ON(PageLRU(new_page));
1775 
1776 	/* Recheck the target PMD */
1777 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1778 	ptl = pmd_lock(mm, pmd);
1779 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1780 fail_putback:
1781 		spin_unlock(ptl);
1782 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1783 
1784 		/* Reverse changes made by migrate_page_copy() */
1785 		if (TestClearPageActive(new_page))
1786 			SetPageActive(page);
1787 		if (TestClearPageUnevictable(new_page))
1788 			SetPageUnevictable(page);
1789 		mlock_migrate_page(page, new_page);
1790 
1791 		unlock_page(new_page);
1792 		put_page(new_page);		/* Free it */
1793 
1794 		/* Retake the callers reference and putback on LRU */
1795 		get_page(page);
1796 		putback_lru_page(page);
1797 		mod_zone_page_state(page_zone(page),
1798 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1799 
1800 		goto out_unlock;
1801 	}
1802 
1803 	/*
1804 	 * Traditional migration needs to prepare the memcg charge
1805 	 * transaction early to prevent the old page from being
1806 	 * uncharged when installing migration entries.  Here we can
1807 	 * save the potential rollback and start the charge transfer
1808 	 * only when migration is already known to end successfully.
1809 	 */
1810 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1811 
1812 	orig_entry = *pmd;
1813 	entry = mk_pmd(new_page, vma->vm_page_prot);
1814 	entry = pmd_mkhuge(entry);
1815 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1816 
1817 	/*
1818 	 * Clear the old entry under pagetable lock and establish the new PTE.
1819 	 * Any parallel GUP will either observe the old page blocking on the
1820 	 * page lock, block on the page table lock or observe the new page.
1821 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1822 	 * guarantee the copy is visible before the pagetable update.
1823 	 */
1824 	flush_cache_range(vma, mmun_start, mmun_end);
1825 	page_add_new_anon_rmap(new_page, vma, mmun_start);
1826 	pmdp_clear_flush(vma, mmun_start, pmd);
1827 	set_pmd_at(mm, mmun_start, pmd, entry);
1828 	flush_tlb_range(vma, mmun_start, mmun_end);
1829 	update_mmu_cache_pmd(vma, address, &entry);
1830 
1831 	if (page_count(page) != 2) {
1832 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1833 		flush_tlb_range(vma, mmun_start, mmun_end);
1834 		update_mmu_cache_pmd(vma, address, &entry);
1835 		page_remove_rmap(new_page);
1836 		goto fail_putback;
1837 	}
1838 
1839 	page_remove_rmap(page);
1840 
1841 	/*
1842 	 * Finish the charge transaction under the page table lock to
1843 	 * prevent split_huge_page() from dividing up the charge
1844 	 * before it's fully transferred to the new page.
1845 	 */
1846 	mem_cgroup_end_migration(memcg, page, new_page, true);
1847 	spin_unlock(ptl);
1848 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1849 
1850 	unlock_page(new_page);
1851 	unlock_page(page);
1852 	put_page(page);			/* Drop the rmap reference */
1853 	put_page(page);			/* Drop the LRU isolation reference */
1854 
1855 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1856 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1857 
1858 	mod_zone_page_state(page_zone(page),
1859 			NR_ISOLATED_ANON + page_lru,
1860 			-HPAGE_PMD_NR);
1861 	return isolated;
1862 
1863 out_fail:
1864 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1865 out_dropref:
1866 	ptl = pmd_lock(mm, pmd);
1867 	if (pmd_same(*pmd, entry)) {
1868 		entry = pmd_mknonnuma(entry);
1869 		set_pmd_at(mm, mmun_start, pmd, entry);
1870 		update_mmu_cache_pmd(vma, address, &entry);
1871 	}
1872 	spin_unlock(ptl);
1873 
1874 out_unlock:
1875 	unlock_page(page);
1876 	put_page(page);
1877 	return 0;
1878 }
1879 #endif /* CONFIG_NUMA_BALANCING */
1880 
1881 #endif /* CONFIG_NUMA */
1882