1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter <clameter@sgi.com> 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/pagevec.h> 23 #include <linux/rmap.h> 24 #include <linux/topology.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/writeback.h> 28 #include <linux/mempolicy.h> 29 #include <linux/vmalloc.h> 30 #include <linux/security.h> 31 32 #include "internal.h" 33 34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 35 36 /* 37 * Isolate one page from the LRU lists. If successful put it onto 38 * the indicated list with elevated page count. 39 * 40 * Result: 41 * -EBUSY: page not on LRU list 42 * 0: page removed from LRU list and added to the specified list. 43 */ 44 int isolate_lru_page(struct page *page, struct list_head *pagelist) 45 { 46 int ret = -EBUSY; 47 48 if (PageLRU(page)) { 49 struct zone *zone = page_zone(page); 50 51 spin_lock_irq(&zone->lru_lock); 52 if (PageLRU(page) && get_page_unless_zero(page)) { 53 ret = 0; 54 ClearPageLRU(page); 55 if (PageActive(page)) 56 del_page_from_active_list(zone, page); 57 else 58 del_page_from_inactive_list(zone, page); 59 list_add_tail(&page->lru, pagelist); 60 } 61 spin_unlock_irq(&zone->lru_lock); 62 } 63 return ret; 64 } 65 66 /* 67 * migrate_prep() needs to be called before we start compiling a list of pages 68 * to be migrated using isolate_lru_page(). 69 */ 70 int migrate_prep(void) 71 { 72 /* 73 * Clear the LRU lists so pages can be isolated. 74 * Note that pages may be moved off the LRU after we have 75 * drained them. Those pages will fail to migrate like other 76 * pages that may be busy. 77 */ 78 lru_add_drain_all(); 79 80 return 0; 81 } 82 83 static inline void move_to_lru(struct page *page) 84 { 85 if (PageActive(page)) { 86 /* 87 * lru_cache_add_active checks that 88 * the PG_active bit is off. 89 */ 90 ClearPageActive(page); 91 lru_cache_add_active(page); 92 } else { 93 lru_cache_add(page); 94 } 95 put_page(page); 96 } 97 98 /* 99 * Add isolated pages on the list back to the LRU. 100 * 101 * returns the number of pages put back. 102 */ 103 int putback_lru_pages(struct list_head *l) 104 { 105 struct page *page; 106 struct page *page2; 107 int count = 0; 108 109 list_for_each_entry_safe(page, page2, l, lru) { 110 list_del(&page->lru); 111 move_to_lru(page); 112 count++; 113 } 114 return count; 115 } 116 117 static inline int is_swap_pte(pte_t pte) 118 { 119 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte); 120 } 121 122 /* 123 * Restore a potential migration pte to a working pte entry 124 */ 125 static void remove_migration_pte(struct vm_area_struct *vma, 126 struct page *old, struct page *new) 127 { 128 struct mm_struct *mm = vma->vm_mm; 129 swp_entry_t entry; 130 pgd_t *pgd; 131 pud_t *pud; 132 pmd_t *pmd; 133 pte_t *ptep, pte; 134 spinlock_t *ptl; 135 unsigned long addr = page_address_in_vma(new, vma); 136 137 if (addr == -EFAULT) 138 return; 139 140 pgd = pgd_offset(mm, addr); 141 if (!pgd_present(*pgd)) 142 return; 143 144 pud = pud_offset(pgd, addr); 145 if (!pud_present(*pud)) 146 return; 147 148 pmd = pmd_offset(pud, addr); 149 if (!pmd_present(*pmd)) 150 return; 151 152 ptep = pte_offset_map(pmd, addr); 153 154 if (!is_swap_pte(*ptep)) { 155 pte_unmap(ptep); 156 return; 157 } 158 159 ptl = pte_lockptr(mm, pmd); 160 spin_lock(ptl); 161 pte = *ptep; 162 if (!is_swap_pte(pte)) 163 goto out; 164 165 entry = pte_to_swp_entry(pte); 166 167 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 168 goto out; 169 170 get_page(new); 171 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 172 if (is_write_migration_entry(entry)) 173 pte = pte_mkwrite(pte); 174 set_pte_at(mm, addr, ptep, pte); 175 176 if (PageAnon(new)) 177 page_add_anon_rmap(new, vma, addr); 178 else 179 page_add_file_rmap(new); 180 181 /* No need to invalidate - it was non-present before */ 182 update_mmu_cache(vma, addr, pte); 183 lazy_mmu_prot_update(pte); 184 185 out: 186 pte_unmap_unlock(ptep, ptl); 187 } 188 189 /* 190 * Note that remove_file_migration_ptes will only work on regular mappings, 191 * Nonlinear mappings do not use migration entries. 192 */ 193 static void remove_file_migration_ptes(struct page *old, struct page *new) 194 { 195 struct vm_area_struct *vma; 196 struct address_space *mapping = page_mapping(new); 197 struct prio_tree_iter iter; 198 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 199 200 if (!mapping) 201 return; 202 203 spin_lock(&mapping->i_mmap_lock); 204 205 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 206 remove_migration_pte(vma, old, new); 207 208 spin_unlock(&mapping->i_mmap_lock); 209 } 210 211 /* 212 * Must hold mmap_sem lock on at least one of the vmas containing 213 * the page so that the anon_vma cannot vanish. 214 */ 215 static void remove_anon_migration_ptes(struct page *old, struct page *new) 216 { 217 struct anon_vma *anon_vma; 218 struct vm_area_struct *vma; 219 unsigned long mapping; 220 221 mapping = (unsigned long)new->mapping; 222 223 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 224 return; 225 226 /* 227 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 228 */ 229 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 230 spin_lock(&anon_vma->lock); 231 232 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 233 remove_migration_pte(vma, old, new); 234 235 spin_unlock(&anon_vma->lock); 236 } 237 238 /* 239 * Get rid of all migration entries and replace them by 240 * references to the indicated page. 241 */ 242 static void remove_migration_ptes(struct page *old, struct page *new) 243 { 244 if (PageAnon(new)) 245 remove_anon_migration_ptes(old, new); 246 else 247 remove_file_migration_ptes(old, new); 248 } 249 250 /* 251 * Something used the pte of a page under migration. We need to 252 * get to the page and wait until migration is finished. 253 * When we return from this function the fault will be retried. 254 * 255 * This function is called from do_swap_page(). 256 */ 257 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 258 unsigned long address) 259 { 260 pte_t *ptep, pte; 261 spinlock_t *ptl; 262 swp_entry_t entry; 263 struct page *page; 264 265 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 266 pte = *ptep; 267 if (!is_swap_pte(pte)) 268 goto out; 269 270 entry = pte_to_swp_entry(pte); 271 if (!is_migration_entry(entry)) 272 goto out; 273 274 page = migration_entry_to_page(entry); 275 276 get_page(page); 277 pte_unmap_unlock(ptep, ptl); 278 wait_on_page_locked(page); 279 put_page(page); 280 return; 281 out: 282 pte_unmap_unlock(ptep, ptl); 283 } 284 285 /* 286 * Replace the page in the mapping. 287 * 288 * The number of remaining references must be: 289 * 1 for anonymous pages without a mapping 290 * 2 for pages with a mapping 291 * 3 for pages with a mapping and PagePrivate set. 292 */ 293 static int migrate_page_move_mapping(struct address_space *mapping, 294 struct page *newpage, struct page *page) 295 { 296 void **pslot; 297 298 if (!mapping) { 299 /* Anonymous page without mapping */ 300 if (page_count(page) != 1) 301 return -EAGAIN; 302 return 0; 303 } 304 305 write_lock_irq(&mapping->tree_lock); 306 307 pslot = radix_tree_lookup_slot(&mapping->page_tree, 308 page_index(page)); 309 310 if (page_count(page) != 2 + !!PagePrivate(page) || 311 (struct page *)radix_tree_deref_slot(pslot) != page) { 312 write_unlock_irq(&mapping->tree_lock); 313 return -EAGAIN; 314 } 315 316 /* 317 * Now we know that no one else is looking at the page. 318 */ 319 get_page(newpage); /* add cache reference */ 320 #ifdef CONFIG_SWAP 321 if (PageSwapCache(page)) { 322 SetPageSwapCache(newpage); 323 set_page_private(newpage, page_private(page)); 324 } 325 #endif 326 327 radix_tree_replace_slot(pslot, newpage); 328 329 /* 330 * Drop cache reference from old page. 331 * We know this isn't the last reference. 332 */ 333 __put_page(page); 334 335 /* 336 * If moved to a different zone then also account 337 * the page for that zone. Other VM counters will be 338 * taken care of when we establish references to the 339 * new page and drop references to the old page. 340 * 341 * Note that anonymous pages are accounted for 342 * via NR_FILE_PAGES and NR_ANON_PAGES if they 343 * are mapped to swap space. 344 */ 345 __dec_zone_page_state(page, NR_FILE_PAGES); 346 __inc_zone_page_state(newpage, NR_FILE_PAGES); 347 348 write_unlock_irq(&mapping->tree_lock); 349 350 return 0; 351 } 352 353 /* 354 * Copy the page to its new location 355 */ 356 static void migrate_page_copy(struct page *newpage, struct page *page) 357 { 358 copy_highpage(newpage, page); 359 360 if (PageError(page)) 361 SetPageError(newpage); 362 if (PageReferenced(page)) 363 SetPageReferenced(newpage); 364 if (PageUptodate(page)) 365 SetPageUptodate(newpage); 366 if (PageActive(page)) 367 SetPageActive(newpage); 368 if (PageChecked(page)) 369 SetPageChecked(newpage); 370 if (PageMappedToDisk(page)) 371 SetPageMappedToDisk(newpage); 372 373 if (PageDirty(page)) { 374 clear_page_dirty_for_io(page); 375 set_page_dirty(newpage); 376 } 377 378 #ifdef CONFIG_SWAP 379 ClearPageSwapCache(page); 380 #endif 381 ClearPageActive(page); 382 ClearPagePrivate(page); 383 set_page_private(page, 0); 384 page->mapping = NULL; 385 386 /* 387 * If any waiters have accumulated on the new page then 388 * wake them up. 389 */ 390 if (PageWriteback(newpage)) 391 end_page_writeback(newpage); 392 } 393 394 /************************************************************ 395 * Migration functions 396 ***********************************************************/ 397 398 /* Always fail migration. Used for mappings that are not movable */ 399 int fail_migrate_page(struct address_space *mapping, 400 struct page *newpage, struct page *page) 401 { 402 return -EIO; 403 } 404 EXPORT_SYMBOL(fail_migrate_page); 405 406 /* 407 * Common logic to directly migrate a single page suitable for 408 * pages that do not use PagePrivate. 409 * 410 * Pages are locked upon entry and exit. 411 */ 412 int migrate_page(struct address_space *mapping, 413 struct page *newpage, struct page *page) 414 { 415 int rc; 416 417 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 418 419 rc = migrate_page_move_mapping(mapping, newpage, page); 420 421 if (rc) 422 return rc; 423 424 migrate_page_copy(newpage, page); 425 return 0; 426 } 427 EXPORT_SYMBOL(migrate_page); 428 429 #ifdef CONFIG_BLOCK 430 /* 431 * Migration function for pages with buffers. This function can only be used 432 * if the underlying filesystem guarantees that no other references to "page" 433 * exist. 434 */ 435 int buffer_migrate_page(struct address_space *mapping, 436 struct page *newpage, struct page *page) 437 { 438 struct buffer_head *bh, *head; 439 int rc; 440 441 if (!page_has_buffers(page)) 442 return migrate_page(mapping, newpage, page); 443 444 head = page_buffers(page); 445 446 rc = migrate_page_move_mapping(mapping, newpage, page); 447 448 if (rc) 449 return rc; 450 451 bh = head; 452 do { 453 get_bh(bh); 454 lock_buffer(bh); 455 bh = bh->b_this_page; 456 457 } while (bh != head); 458 459 ClearPagePrivate(page); 460 set_page_private(newpage, page_private(page)); 461 set_page_private(page, 0); 462 put_page(page); 463 get_page(newpage); 464 465 bh = head; 466 do { 467 set_bh_page(bh, newpage, bh_offset(bh)); 468 bh = bh->b_this_page; 469 470 } while (bh != head); 471 472 SetPagePrivate(newpage); 473 474 migrate_page_copy(newpage, page); 475 476 bh = head; 477 do { 478 unlock_buffer(bh); 479 put_bh(bh); 480 bh = bh->b_this_page; 481 482 } while (bh != head); 483 484 return 0; 485 } 486 EXPORT_SYMBOL(buffer_migrate_page); 487 #endif 488 489 /* 490 * Writeback a page to clean the dirty state 491 */ 492 static int writeout(struct address_space *mapping, struct page *page) 493 { 494 struct writeback_control wbc = { 495 .sync_mode = WB_SYNC_NONE, 496 .nr_to_write = 1, 497 .range_start = 0, 498 .range_end = LLONG_MAX, 499 .nonblocking = 1, 500 .for_reclaim = 1 501 }; 502 int rc; 503 504 if (!mapping->a_ops->writepage) 505 /* No write method for the address space */ 506 return -EINVAL; 507 508 if (!clear_page_dirty_for_io(page)) 509 /* Someone else already triggered a write */ 510 return -EAGAIN; 511 512 /* 513 * A dirty page may imply that the underlying filesystem has 514 * the page on some queue. So the page must be clean for 515 * migration. Writeout may mean we loose the lock and the 516 * page state is no longer what we checked for earlier. 517 * At this point we know that the migration attempt cannot 518 * be successful. 519 */ 520 remove_migration_ptes(page, page); 521 522 rc = mapping->a_ops->writepage(page, &wbc); 523 if (rc < 0) 524 /* I/O Error writing */ 525 return -EIO; 526 527 if (rc != AOP_WRITEPAGE_ACTIVATE) 528 /* unlocked. Relock */ 529 lock_page(page); 530 531 return -EAGAIN; 532 } 533 534 /* 535 * Default handling if a filesystem does not provide a migration function. 536 */ 537 static int fallback_migrate_page(struct address_space *mapping, 538 struct page *newpage, struct page *page) 539 { 540 if (PageDirty(page)) 541 return writeout(mapping, page); 542 543 /* 544 * Buffers may be managed in a filesystem specific way. 545 * We must have no buffers or drop them. 546 */ 547 if (PagePrivate(page) && 548 !try_to_release_page(page, GFP_KERNEL)) 549 return -EAGAIN; 550 551 return migrate_page(mapping, newpage, page); 552 } 553 554 /* 555 * Move a page to a newly allocated page 556 * The page is locked and all ptes have been successfully removed. 557 * 558 * The new page will have replaced the old page if this function 559 * is successful. 560 */ 561 static int move_to_new_page(struct page *newpage, struct page *page) 562 { 563 struct address_space *mapping; 564 int rc; 565 566 /* 567 * Block others from accessing the page when we get around to 568 * establishing additional references. We are the only one 569 * holding a reference to the new page at this point. 570 */ 571 if (TestSetPageLocked(newpage)) 572 BUG(); 573 574 /* Prepare mapping for the new page.*/ 575 newpage->index = page->index; 576 newpage->mapping = page->mapping; 577 578 mapping = page_mapping(page); 579 if (!mapping) 580 rc = migrate_page(mapping, newpage, page); 581 else if (mapping->a_ops->migratepage) 582 /* 583 * Most pages have a mapping and most filesystems 584 * should provide a migration function. Anonymous 585 * pages are part of swap space which also has its 586 * own migration function. This is the most common 587 * path for page migration. 588 */ 589 rc = mapping->a_ops->migratepage(mapping, 590 newpage, page); 591 else 592 rc = fallback_migrate_page(mapping, newpage, page); 593 594 if (!rc) 595 remove_migration_ptes(page, newpage); 596 else 597 newpage->mapping = NULL; 598 599 unlock_page(newpage); 600 601 return rc; 602 } 603 604 /* 605 * Obtain the lock on page, remove all ptes and migrate the page 606 * to the newly allocated page in newpage. 607 */ 608 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 609 struct page *page, int force) 610 { 611 int rc = 0; 612 int *result = NULL; 613 struct page *newpage = get_new_page(page, private, &result); 614 615 if (!newpage) 616 return -ENOMEM; 617 618 if (page_count(page) == 1) 619 /* page was freed from under us. So we are done. */ 620 goto move_newpage; 621 622 rc = -EAGAIN; 623 if (TestSetPageLocked(page)) { 624 if (!force) 625 goto move_newpage; 626 lock_page(page); 627 } 628 629 if (PageWriteback(page)) { 630 if (!force) 631 goto unlock; 632 wait_on_page_writeback(page); 633 } 634 /* 635 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 636 * we cannot notice that anon_vma is freed while we migrates a page. 637 * This rcu_read_lock() delays freeing anon_vma pointer until the end 638 * of migration. File cache pages are no problem because of page_lock() 639 */ 640 rcu_read_lock(); 641 /* 642 * This is a corner case handling. 643 * When a new swap-cache is read into, it is linked to LRU 644 * and treated as swapcache but has no rmap yet. 645 * Calling try_to_unmap() against a page->mapping==NULL page is 646 * BUG. So handle it here. 647 */ 648 if (!page->mapping) 649 goto rcu_unlock; 650 /* Establish migration ptes or remove ptes */ 651 try_to_unmap(page, 1); 652 653 if (!page_mapped(page)) 654 rc = move_to_new_page(newpage, page); 655 656 if (rc) 657 remove_migration_ptes(page, page); 658 rcu_unlock: 659 rcu_read_unlock(); 660 661 unlock: 662 663 unlock_page(page); 664 665 if (rc != -EAGAIN) { 666 /* 667 * A page that has been migrated has all references 668 * removed and will be freed. A page that has not been 669 * migrated will have kepts its references and be 670 * restored. 671 */ 672 list_del(&page->lru); 673 move_to_lru(page); 674 } 675 676 move_newpage: 677 /* 678 * Move the new page to the LRU. If migration was not successful 679 * then this will free the page. 680 */ 681 move_to_lru(newpage); 682 if (result) { 683 if (rc) 684 *result = rc; 685 else 686 *result = page_to_nid(newpage); 687 } 688 return rc; 689 } 690 691 /* 692 * migrate_pages 693 * 694 * The function takes one list of pages to migrate and a function 695 * that determines from the page to be migrated and the private data 696 * the target of the move and allocates the page. 697 * 698 * The function returns after 10 attempts or if no pages 699 * are movable anymore because to has become empty 700 * or no retryable pages exist anymore. All pages will be 701 * retruned to the LRU or freed. 702 * 703 * Return: Number of pages not migrated or error code. 704 */ 705 int migrate_pages(struct list_head *from, 706 new_page_t get_new_page, unsigned long private) 707 { 708 int retry = 1; 709 int nr_failed = 0; 710 int pass = 0; 711 struct page *page; 712 struct page *page2; 713 int swapwrite = current->flags & PF_SWAPWRITE; 714 int rc; 715 716 if (!swapwrite) 717 current->flags |= PF_SWAPWRITE; 718 719 for(pass = 0; pass < 10 && retry; pass++) { 720 retry = 0; 721 722 list_for_each_entry_safe(page, page2, from, lru) { 723 cond_resched(); 724 725 rc = unmap_and_move(get_new_page, private, 726 page, pass > 2); 727 728 switch(rc) { 729 case -ENOMEM: 730 goto out; 731 case -EAGAIN: 732 retry++; 733 break; 734 case 0: 735 break; 736 default: 737 /* Permanent failure */ 738 nr_failed++; 739 break; 740 } 741 } 742 } 743 rc = 0; 744 out: 745 if (!swapwrite) 746 current->flags &= ~PF_SWAPWRITE; 747 748 putback_lru_pages(from); 749 750 if (rc) 751 return rc; 752 753 return nr_failed + retry; 754 } 755 756 #ifdef CONFIG_NUMA 757 /* 758 * Move a list of individual pages 759 */ 760 struct page_to_node { 761 unsigned long addr; 762 struct page *page; 763 int node; 764 int status; 765 }; 766 767 static struct page *new_page_node(struct page *p, unsigned long private, 768 int **result) 769 { 770 struct page_to_node *pm = (struct page_to_node *)private; 771 772 while (pm->node != MAX_NUMNODES && pm->page != p) 773 pm++; 774 775 if (pm->node == MAX_NUMNODES) 776 return NULL; 777 778 *result = &pm->status; 779 780 return alloc_pages_node(pm->node, 781 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 782 } 783 784 /* 785 * Move a set of pages as indicated in the pm array. The addr 786 * field must be set to the virtual address of the page to be moved 787 * and the node number must contain a valid target node. 788 */ 789 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, 790 int migrate_all) 791 { 792 int err; 793 struct page_to_node *pp; 794 LIST_HEAD(pagelist); 795 796 down_read(&mm->mmap_sem); 797 798 /* 799 * Build a list of pages to migrate 800 */ 801 migrate_prep(); 802 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 803 struct vm_area_struct *vma; 804 struct page *page; 805 806 /* 807 * A valid page pointer that will not match any of the 808 * pages that will be moved. 809 */ 810 pp->page = ZERO_PAGE(0); 811 812 err = -EFAULT; 813 vma = find_vma(mm, pp->addr); 814 if (!vma || !vma_migratable(vma)) 815 goto set_status; 816 817 page = follow_page(vma, pp->addr, FOLL_GET); 818 err = -ENOENT; 819 if (!page) 820 goto set_status; 821 822 if (PageReserved(page)) /* Check for zero page */ 823 goto put_and_set; 824 825 pp->page = page; 826 err = page_to_nid(page); 827 828 if (err == pp->node) 829 /* 830 * Node already in the right place 831 */ 832 goto put_and_set; 833 834 err = -EACCES; 835 if (page_mapcount(page) > 1 && 836 !migrate_all) 837 goto put_and_set; 838 839 err = isolate_lru_page(page, &pagelist); 840 put_and_set: 841 /* 842 * Either remove the duplicate refcount from 843 * isolate_lru_page() or drop the page ref if it was 844 * not isolated. 845 */ 846 put_page(page); 847 set_status: 848 pp->status = err; 849 } 850 851 if (!list_empty(&pagelist)) 852 err = migrate_pages(&pagelist, new_page_node, 853 (unsigned long)pm); 854 else 855 err = -ENOENT; 856 857 up_read(&mm->mmap_sem); 858 return err; 859 } 860 861 /* 862 * Determine the nodes of a list of pages. The addr in the pm array 863 * must have been set to the virtual address of which we want to determine 864 * the node number. 865 */ 866 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) 867 { 868 down_read(&mm->mmap_sem); 869 870 for ( ; pm->node != MAX_NUMNODES; pm++) { 871 struct vm_area_struct *vma; 872 struct page *page; 873 int err; 874 875 err = -EFAULT; 876 vma = find_vma(mm, pm->addr); 877 if (!vma) 878 goto set_status; 879 880 page = follow_page(vma, pm->addr, 0); 881 err = -ENOENT; 882 /* Use PageReserved to check for zero page */ 883 if (!page || PageReserved(page)) 884 goto set_status; 885 886 err = page_to_nid(page); 887 set_status: 888 pm->status = err; 889 } 890 891 up_read(&mm->mmap_sem); 892 return 0; 893 } 894 895 /* 896 * Move a list of pages in the address space of the currently executing 897 * process. 898 */ 899 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 900 const void __user * __user *pages, 901 const int __user *nodes, 902 int __user *status, int flags) 903 { 904 int err = 0; 905 int i; 906 struct task_struct *task; 907 nodemask_t task_nodes; 908 struct mm_struct *mm; 909 struct page_to_node *pm = NULL; 910 911 /* Check flags */ 912 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 913 return -EINVAL; 914 915 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 916 return -EPERM; 917 918 /* Find the mm_struct */ 919 read_lock(&tasklist_lock); 920 task = pid ? find_task_by_pid(pid) : current; 921 if (!task) { 922 read_unlock(&tasklist_lock); 923 return -ESRCH; 924 } 925 mm = get_task_mm(task); 926 read_unlock(&tasklist_lock); 927 928 if (!mm) 929 return -EINVAL; 930 931 /* 932 * Check if this process has the right to modify the specified 933 * process. The right exists if the process has administrative 934 * capabilities, superuser privileges or the same 935 * userid as the target process. 936 */ 937 if ((current->euid != task->suid) && (current->euid != task->uid) && 938 (current->uid != task->suid) && (current->uid != task->uid) && 939 !capable(CAP_SYS_NICE)) { 940 err = -EPERM; 941 goto out2; 942 } 943 944 err = security_task_movememory(task); 945 if (err) 946 goto out2; 947 948 949 task_nodes = cpuset_mems_allowed(task); 950 951 /* Limit nr_pages so that the multiplication may not overflow */ 952 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 953 err = -E2BIG; 954 goto out2; 955 } 956 957 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 958 if (!pm) { 959 err = -ENOMEM; 960 goto out2; 961 } 962 963 /* 964 * Get parameters from user space and initialize the pm 965 * array. Return various errors if the user did something wrong. 966 */ 967 for (i = 0; i < nr_pages; i++) { 968 const void *p; 969 970 err = -EFAULT; 971 if (get_user(p, pages + i)) 972 goto out; 973 974 pm[i].addr = (unsigned long)p; 975 if (nodes) { 976 int node; 977 978 if (get_user(node, nodes + i)) 979 goto out; 980 981 err = -ENODEV; 982 if (!node_online(node)) 983 goto out; 984 985 err = -EACCES; 986 if (!node_isset(node, task_nodes)) 987 goto out; 988 989 pm[i].node = node; 990 } else 991 pm[i].node = 0; /* anything to not match MAX_NUMNODES */ 992 } 993 /* End marker */ 994 pm[nr_pages].node = MAX_NUMNODES; 995 996 if (nodes) 997 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); 998 else 999 err = do_pages_stat(mm, pm); 1000 1001 if (err >= 0) 1002 /* Return status information */ 1003 for (i = 0; i < nr_pages; i++) 1004 if (put_user(pm[i].status, status + i)) 1005 err = -EFAULT; 1006 1007 out: 1008 vfree(pm); 1009 out2: 1010 mmput(mm); 1011 return err; 1012 } 1013 #endif 1014 1015 /* 1016 * Call migration functions in the vma_ops that may prepare 1017 * memory in a vm for migration. migration functions may perform 1018 * the migration for vmas that do not have an underlying page struct. 1019 */ 1020 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1021 const nodemask_t *from, unsigned long flags) 1022 { 1023 struct vm_area_struct *vma; 1024 int err = 0; 1025 1026 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 1027 if (vma->vm_ops && vma->vm_ops->migrate) { 1028 err = vma->vm_ops->migrate(vma, to, from, flags); 1029 if (err) 1030 break; 1031 } 1032 } 1033 return err; 1034 } 1035