xref: /openbmc/linux/mm/migrate.c (revision c21b37f6)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
31 
32 #include "internal.h"
33 
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
35 
36 /*
37  * Isolate one page from the LRU lists. If successful put it onto
38  * the indicated list with elevated page count.
39  *
40  * Result:
41  *  -EBUSY: page not on LRU list
42  *  0: page removed from LRU list and added to the specified list.
43  */
44 int isolate_lru_page(struct page *page, struct list_head *pagelist)
45 {
46 	int ret = -EBUSY;
47 
48 	if (PageLRU(page)) {
49 		struct zone *zone = page_zone(page);
50 
51 		spin_lock_irq(&zone->lru_lock);
52 		if (PageLRU(page) && get_page_unless_zero(page)) {
53 			ret = 0;
54 			ClearPageLRU(page);
55 			if (PageActive(page))
56 				del_page_from_active_list(zone, page);
57 			else
58 				del_page_from_inactive_list(zone, page);
59 			list_add_tail(&page->lru, pagelist);
60 		}
61 		spin_unlock_irq(&zone->lru_lock);
62 	}
63 	return ret;
64 }
65 
66 /*
67  * migrate_prep() needs to be called before we start compiling a list of pages
68  * to be migrated using isolate_lru_page().
69  */
70 int migrate_prep(void)
71 {
72 	/*
73 	 * Clear the LRU lists so pages can be isolated.
74 	 * Note that pages may be moved off the LRU after we have
75 	 * drained them. Those pages will fail to migrate like other
76 	 * pages that may be busy.
77 	 */
78 	lru_add_drain_all();
79 
80 	return 0;
81 }
82 
83 static inline void move_to_lru(struct page *page)
84 {
85 	if (PageActive(page)) {
86 		/*
87 		 * lru_cache_add_active checks that
88 		 * the PG_active bit is off.
89 		 */
90 		ClearPageActive(page);
91 		lru_cache_add_active(page);
92 	} else {
93 		lru_cache_add(page);
94 	}
95 	put_page(page);
96 }
97 
98 /*
99  * Add isolated pages on the list back to the LRU.
100  *
101  * returns the number of pages put back.
102  */
103 int putback_lru_pages(struct list_head *l)
104 {
105 	struct page *page;
106 	struct page *page2;
107 	int count = 0;
108 
109 	list_for_each_entry_safe(page, page2, l, lru) {
110 		list_del(&page->lru);
111 		move_to_lru(page);
112 		count++;
113 	}
114 	return count;
115 }
116 
117 static inline int is_swap_pte(pte_t pte)
118 {
119 	return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
120 }
121 
122 /*
123  * Restore a potential migration pte to a working pte entry
124  */
125 static void remove_migration_pte(struct vm_area_struct *vma,
126 		struct page *old, struct page *new)
127 {
128 	struct mm_struct *mm = vma->vm_mm;
129 	swp_entry_t entry;
130  	pgd_t *pgd;
131  	pud_t *pud;
132  	pmd_t *pmd;
133 	pte_t *ptep, pte;
134  	spinlock_t *ptl;
135 	unsigned long addr = page_address_in_vma(new, vma);
136 
137 	if (addr == -EFAULT)
138 		return;
139 
140  	pgd = pgd_offset(mm, addr);
141 	if (!pgd_present(*pgd))
142                 return;
143 
144 	pud = pud_offset(pgd, addr);
145 	if (!pud_present(*pud))
146                 return;
147 
148 	pmd = pmd_offset(pud, addr);
149 	if (!pmd_present(*pmd))
150 		return;
151 
152 	ptep = pte_offset_map(pmd, addr);
153 
154 	if (!is_swap_pte(*ptep)) {
155 		pte_unmap(ptep);
156  		return;
157  	}
158 
159  	ptl = pte_lockptr(mm, pmd);
160  	spin_lock(ptl);
161 	pte = *ptep;
162 	if (!is_swap_pte(pte))
163 		goto out;
164 
165 	entry = pte_to_swp_entry(pte);
166 
167 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
168 		goto out;
169 
170 	get_page(new);
171 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
172 	if (is_write_migration_entry(entry))
173 		pte = pte_mkwrite(pte);
174 	set_pte_at(mm, addr, ptep, pte);
175 
176 	if (PageAnon(new))
177 		page_add_anon_rmap(new, vma, addr);
178 	else
179 		page_add_file_rmap(new);
180 
181 	/* No need to invalidate - it was non-present before */
182 	update_mmu_cache(vma, addr, pte);
183 	lazy_mmu_prot_update(pte);
184 
185 out:
186 	pte_unmap_unlock(ptep, ptl);
187 }
188 
189 /*
190  * Note that remove_file_migration_ptes will only work on regular mappings,
191  * Nonlinear mappings do not use migration entries.
192  */
193 static void remove_file_migration_ptes(struct page *old, struct page *new)
194 {
195 	struct vm_area_struct *vma;
196 	struct address_space *mapping = page_mapping(new);
197 	struct prio_tree_iter iter;
198 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
199 
200 	if (!mapping)
201 		return;
202 
203 	spin_lock(&mapping->i_mmap_lock);
204 
205 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
206 		remove_migration_pte(vma, old, new);
207 
208 	spin_unlock(&mapping->i_mmap_lock);
209 }
210 
211 /*
212  * Must hold mmap_sem lock on at least one of the vmas containing
213  * the page so that the anon_vma cannot vanish.
214  */
215 static void remove_anon_migration_ptes(struct page *old, struct page *new)
216 {
217 	struct anon_vma *anon_vma;
218 	struct vm_area_struct *vma;
219 	unsigned long mapping;
220 
221 	mapping = (unsigned long)new->mapping;
222 
223 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
224 		return;
225 
226 	/*
227 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
228 	 */
229 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
230 	spin_lock(&anon_vma->lock);
231 
232 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
233 		remove_migration_pte(vma, old, new);
234 
235 	spin_unlock(&anon_vma->lock);
236 }
237 
238 /*
239  * Get rid of all migration entries and replace them by
240  * references to the indicated page.
241  */
242 static void remove_migration_ptes(struct page *old, struct page *new)
243 {
244 	if (PageAnon(new))
245 		remove_anon_migration_ptes(old, new);
246 	else
247 		remove_file_migration_ptes(old, new);
248 }
249 
250 /*
251  * Something used the pte of a page under migration. We need to
252  * get to the page and wait until migration is finished.
253  * When we return from this function the fault will be retried.
254  *
255  * This function is called from do_swap_page().
256  */
257 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
258 				unsigned long address)
259 {
260 	pte_t *ptep, pte;
261 	spinlock_t *ptl;
262 	swp_entry_t entry;
263 	struct page *page;
264 
265 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
266 	pte = *ptep;
267 	if (!is_swap_pte(pte))
268 		goto out;
269 
270 	entry = pte_to_swp_entry(pte);
271 	if (!is_migration_entry(entry))
272 		goto out;
273 
274 	page = migration_entry_to_page(entry);
275 
276 	get_page(page);
277 	pte_unmap_unlock(ptep, ptl);
278 	wait_on_page_locked(page);
279 	put_page(page);
280 	return;
281 out:
282 	pte_unmap_unlock(ptep, ptl);
283 }
284 
285 /*
286  * Replace the page in the mapping.
287  *
288  * The number of remaining references must be:
289  * 1 for anonymous pages without a mapping
290  * 2 for pages with a mapping
291  * 3 for pages with a mapping and PagePrivate set.
292  */
293 static int migrate_page_move_mapping(struct address_space *mapping,
294 		struct page *newpage, struct page *page)
295 {
296 	void **pslot;
297 
298 	if (!mapping) {
299 		/* Anonymous page without mapping */
300 		if (page_count(page) != 1)
301 			return -EAGAIN;
302 		return 0;
303 	}
304 
305 	write_lock_irq(&mapping->tree_lock);
306 
307 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
308  					page_index(page));
309 
310 	if (page_count(page) != 2 + !!PagePrivate(page) ||
311 			(struct page *)radix_tree_deref_slot(pslot) != page) {
312 		write_unlock_irq(&mapping->tree_lock);
313 		return -EAGAIN;
314 	}
315 
316 	/*
317 	 * Now we know that no one else is looking at the page.
318 	 */
319 	get_page(newpage);	/* add cache reference */
320 #ifdef CONFIG_SWAP
321 	if (PageSwapCache(page)) {
322 		SetPageSwapCache(newpage);
323 		set_page_private(newpage, page_private(page));
324 	}
325 #endif
326 
327 	radix_tree_replace_slot(pslot, newpage);
328 
329 	/*
330 	 * Drop cache reference from old page.
331 	 * We know this isn't the last reference.
332 	 */
333 	__put_page(page);
334 
335 	/*
336 	 * If moved to a different zone then also account
337 	 * the page for that zone. Other VM counters will be
338 	 * taken care of when we establish references to the
339 	 * new page and drop references to the old page.
340 	 *
341 	 * Note that anonymous pages are accounted for
342 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
343 	 * are mapped to swap space.
344 	 */
345 	__dec_zone_page_state(page, NR_FILE_PAGES);
346 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
347 
348 	write_unlock_irq(&mapping->tree_lock);
349 
350 	return 0;
351 }
352 
353 /*
354  * Copy the page to its new location
355  */
356 static void migrate_page_copy(struct page *newpage, struct page *page)
357 {
358 	copy_highpage(newpage, page);
359 
360 	if (PageError(page))
361 		SetPageError(newpage);
362 	if (PageReferenced(page))
363 		SetPageReferenced(newpage);
364 	if (PageUptodate(page))
365 		SetPageUptodate(newpage);
366 	if (PageActive(page))
367 		SetPageActive(newpage);
368 	if (PageChecked(page))
369 		SetPageChecked(newpage);
370 	if (PageMappedToDisk(page))
371 		SetPageMappedToDisk(newpage);
372 
373 	if (PageDirty(page)) {
374 		clear_page_dirty_for_io(page);
375 		set_page_dirty(newpage);
376  	}
377 
378 #ifdef CONFIG_SWAP
379 	ClearPageSwapCache(page);
380 #endif
381 	ClearPageActive(page);
382 	ClearPagePrivate(page);
383 	set_page_private(page, 0);
384 	page->mapping = NULL;
385 
386 	/*
387 	 * If any waiters have accumulated on the new page then
388 	 * wake them up.
389 	 */
390 	if (PageWriteback(newpage))
391 		end_page_writeback(newpage);
392 }
393 
394 /************************************************************
395  *                    Migration functions
396  ***********************************************************/
397 
398 /* Always fail migration. Used for mappings that are not movable */
399 int fail_migrate_page(struct address_space *mapping,
400 			struct page *newpage, struct page *page)
401 {
402 	return -EIO;
403 }
404 EXPORT_SYMBOL(fail_migrate_page);
405 
406 /*
407  * Common logic to directly migrate a single page suitable for
408  * pages that do not use PagePrivate.
409  *
410  * Pages are locked upon entry and exit.
411  */
412 int migrate_page(struct address_space *mapping,
413 		struct page *newpage, struct page *page)
414 {
415 	int rc;
416 
417 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
418 
419 	rc = migrate_page_move_mapping(mapping, newpage, page);
420 
421 	if (rc)
422 		return rc;
423 
424 	migrate_page_copy(newpage, page);
425 	return 0;
426 }
427 EXPORT_SYMBOL(migrate_page);
428 
429 #ifdef CONFIG_BLOCK
430 /*
431  * Migration function for pages with buffers. This function can only be used
432  * if the underlying filesystem guarantees that no other references to "page"
433  * exist.
434  */
435 int buffer_migrate_page(struct address_space *mapping,
436 		struct page *newpage, struct page *page)
437 {
438 	struct buffer_head *bh, *head;
439 	int rc;
440 
441 	if (!page_has_buffers(page))
442 		return migrate_page(mapping, newpage, page);
443 
444 	head = page_buffers(page);
445 
446 	rc = migrate_page_move_mapping(mapping, newpage, page);
447 
448 	if (rc)
449 		return rc;
450 
451 	bh = head;
452 	do {
453 		get_bh(bh);
454 		lock_buffer(bh);
455 		bh = bh->b_this_page;
456 
457 	} while (bh != head);
458 
459 	ClearPagePrivate(page);
460 	set_page_private(newpage, page_private(page));
461 	set_page_private(page, 0);
462 	put_page(page);
463 	get_page(newpage);
464 
465 	bh = head;
466 	do {
467 		set_bh_page(bh, newpage, bh_offset(bh));
468 		bh = bh->b_this_page;
469 
470 	} while (bh != head);
471 
472 	SetPagePrivate(newpage);
473 
474 	migrate_page_copy(newpage, page);
475 
476 	bh = head;
477 	do {
478 		unlock_buffer(bh);
479  		put_bh(bh);
480 		bh = bh->b_this_page;
481 
482 	} while (bh != head);
483 
484 	return 0;
485 }
486 EXPORT_SYMBOL(buffer_migrate_page);
487 #endif
488 
489 /*
490  * Writeback a page to clean the dirty state
491  */
492 static int writeout(struct address_space *mapping, struct page *page)
493 {
494 	struct writeback_control wbc = {
495 		.sync_mode = WB_SYNC_NONE,
496 		.nr_to_write = 1,
497 		.range_start = 0,
498 		.range_end = LLONG_MAX,
499 		.nonblocking = 1,
500 		.for_reclaim = 1
501 	};
502 	int rc;
503 
504 	if (!mapping->a_ops->writepage)
505 		/* No write method for the address space */
506 		return -EINVAL;
507 
508 	if (!clear_page_dirty_for_io(page))
509 		/* Someone else already triggered a write */
510 		return -EAGAIN;
511 
512 	/*
513 	 * A dirty page may imply that the underlying filesystem has
514 	 * the page on some queue. So the page must be clean for
515 	 * migration. Writeout may mean we loose the lock and the
516 	 * page state is no longer what we checked for earlier.
517 	 * At this point we know that the migration attempt cannot
518 	 * be successful.
519 	 */
520 	remove_migration_ptes(page, page);
521 
522 	rc = mapping->a_ops->writepage(page, &wbc);
523 	if (rc < 0)
524 		/* I/O Error writing */
525 		return -EIO;
526 
527 	if (rc != AOP_WRITEPAGE_ACTIVATE)
528 		/* unlocked. Relock */
529 		lock_page(page);
530 
531 	return -EAGAIN;
532 }
533 
534 /*
535  * Default handling if a filesystem does not provide a migration function.
536  */
537 static int fallback_migrate_page(struct address_space *mapping,
538 	struct page *newpage, struct page *page)
539 {
540 	if (PageDirty(page))
541 		return writeout(mapping, page);
542 
543 	/*
544 	 * Buffers may be managed in a filesystem specific way.
545 	 * We must have no buffers or drop them.
546 	 */
547 	if (PagePrivate(page) &&
548 	    !try_to_release_page(page, GFP_KERNEL))
549 		return -EAGAIN;
550 
551 	return migrate_page(mapping, newpage, page);
552 }
553 
554 /*
555  * Move a page to a newly allocated page
556  * The page is locked and all ptes have been successfully removed.
557  *
558  * The new page will have replaced the old page if this function
559  * is successful.
560  */
561 static int move_to_new_page(struct page *newpage, struct page *page)
562 {
563 	struct address_space *mapping;
564 	int rc;
565 
566 	/*
567 	 * Block others from accessing the page when we get around to
568 	 * establishing additional references. We are the only one
569 	 * holding a reference to the new page at this point.
570 	 */
571 	if (TestSetPageLocked(newpage))
572 		BUG();
573 
574 	/* Prepare mapping for the new page.*/
575 	newpage->index = page->index;
576 	newpage->mapping = page->mapping;
577 
578 	mapping = page_mapping(page);
579 	if (!mapping)
580 		rc = migrate_page(mapping, newpage, page);
581 	else if (mapping->a_ops->migratepage)
582 		/*
583 		 * Most pages have a mapping and most filesystems
584 		 * should provide a migration function. Anonymous
585 		 * pages are part of swap space which also has its
586 		 * own migration function. This is the most common
587 		 * path for page migration.
588 		 */
589 		rc = mapping->a_ops->migratepage(mapping,
590 						newpage, page);
591 	else
592 		rc = fallback_migrate_page(mapping, newpage, page);
593 
594 	if (!rc)
595 		remove_migration_ptes(page, newpage);
596 	else
597 		newpage->mapping = NULL;
598 
599 	unlock_page(newpage);
600 
601 	return rc;
602 }
603 
604 /*
605  * Obtain the lock on page, remove all ptes and migrate the page
606  * to the newly allocated page in newpage.
607  */
608 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
609 			struct page *page, int force)
610 {
611 	int rc = 0;
612 	int *result = NULL;
613 	struct page *newpage = get_new_page(page, private, &result);
614 
615 	if (!newpage)
616 		return -ENOMEM;
617 
618 	if (page_count(page) == 1)
619 		/* page was freed from under us. So we are done. */
620 		goto move_newpage;
621 
622 	rc = -EAGAIN;
623 	if (TestSetPageLocked(page)) {
624 		if (!force)
625 			goto move_newpage;
626 		lock_page(page);
627 	}
628 
629 	if (PageWriteback(page)) {
630 		if (!force)
631 			goto unlock;
632 		wait_on_page_writeback(page);
633 	}
634 	/*
635 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
636 	 * we cannot notice that anon_vma is freed while we migrates a page.
637 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
638 	 * of migration. File cache pages are no problem because of page_lock()
639 	 */
640 	rcu_read_lock();
641 	/*
642 	 * This is a corner case handling.
643 	 * When a new swap-cache is read into, it is linked to LRU
644 	 * and treated as swapcache but has no rmap yet.
645 	 * Calling try_to_unmap() against a page->mapping==NULL page is
646 	 * BUG. So handle it here.
647 	 */
648 	if (!page->mapping)
649 		goto rcu_unlock;
650 	/* Establish migration ptes or remove ptes */
651 	try_to_unmap(page, 1);
652 
653 	if (!page_mapped(page))
654 		rc = move_to_new_page(newpage, page);
655 
656 	if (rc)
657 		remove_migration_ptes(page, page);
658 rcu_unlock:
659 	rcu_read_unlock();
660 
661 unlock:
662 
663 	unlock_page(page);
664 
665 	if (rc != -EAGAIN) {
666  		/*
667  		 * A page that has been migrated has all references
668  		 * removed and will be freed. A page that has not been
669  		 * migrated will have kepts its references and be
670  		 * restored.
671  		 */
672  		list_del(&page->lru);
673  		move_to_lru(page);
674 	}
675 
676 move_newpage:
677 	/*
678 	 * Move the new page to the LRU. If migration was not successful
679 	 * then this will free the page.
680 	 */
681 	move_to_lru(newpage);
682 	if (result) {
683 		if (rc)
684 			*result = rc;
685 		else
686 			*result = page_to_nid(newpage);
687 	}
688 	return rc;
689 }
690 
691 /*
692  * migrate_pages
693  *
694  * The function takes one list of pages to migrate and a function
695  * that determines from the page to be migrated and the private data
696  * the target of the move and allocates the page.
697  *
698  * The function returns after 10 attempts or if no pages
699  * are movable anymore because to has become empty
700  * or no retryable pages exist anymore. All pages will be
701  * retruned to the LRU or freed.
702  *
703  * Return: Number of pages not migrated or error code.
704  */
705 int migrate_pages(struct list_head *from,
706 		new_page_t get_new_page, unsigned long private)
707 {
708 	int retry = 1;
709 	int nr_failed = 0;
710 	int pass = 0;
711 	struct page *page;
712 	struct page *page2;
713 	int swapwrite = current->flags & PF_SWAPWRITE;
714 	int rc;
715 
716 	if (!swapwrite)
717 		current->flags |= PF_SWAPWRITE;
718 
719 	for(pass = 0; pass < 10 && retry; pass++) {
720 		retry = 0;
721 
722 		list_for_each_entry_safe(page, page2, from, lru) {
723 			cond_resched();
724 
725 			rc = unmap_and_move(get_new_page, private,
726 						page, pass > 2);
727 
728 			switch(rc) {
729 			case -ENOMEM:
730 				goto out;
731 			case -EAGAIN:
732 				retry++;
733 				break;
734 			case 0:
735 				break;
736 			default:
737 				/* Permanent failure */
738 				nr_failed++;
739 				break;
740 			}
741 		}
742 	}
743 	rc = 0;
744 out:
745 	if (!swapwrite)
746 		current->flags &= ~PF_SWAPWRITE;
747 
748 	putback_lru_pages(from);
749 
750 	if (rc)
751 		return rc;
752 
753 	return nr_failed + retry;
754 }
755 
756 #ifdef CONFIG_NUMA
757 /*
758  * Move a list of individual pages
759  */
760 struct page_to_node {
761 	unsigned long addr;
762 	struct page *page;
763 	int node;
764 	int status;
765 };
766 
767 static struct page *new_page_node(struct page *p, unsigned long private,
768 		int **result)
769 {
770 	struct page_to_node *pm = (struct page_to_node *)private;
771 
772 	while (pm->node != MAX_NUMNODES && pm->page != p)
773 		pm++;
774 
775 	if (pm->node == MAX_NUMNODES)
776 		return NULL;
777 
778 	*result = &pm->status;
779 
780 	return alloc_pages_node(pm->node,
781 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
782 }
783 
784 /*
785  * Move a set of pages as indicated in the pm array. The addr
786  * field must be set to the virtual address of the page to be moved
787  * and the node number must contain a valid target node.
788  */
789 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
790 				int migrate_all)
791 {
792 	int err;
793 	struct page_to_node *pp;
794 	LIST_HEAD(pagelist);
795 
796 	down_read(&mm->mmap_sem);
797 
798 	/*
799 	 * Build a list of pages to migrate
800 	 */
801 	migrate_prep();
802 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
803 		struct vm_area_struct *vma;
804 		struct page *page;
805 
806 		/*
807 		 * A valid page pointer that will not match any of the
808 		 * pages that will be moved.
809 		 */
810 		pp->page = ZERO_PAGE(0);
811 
812 		err = -EFAULT;
813 		vma = find_vma(mm, pp->addr);
814 		if (!vma || !vma_migratable(vma))
815 			goto set_status;
816 
817 		page = follow_page(vma, pp->addr, FOLL_GET);
818 		err = -ENOENT;
819 		if (!page)
820 			goto set_status;
821 
822 		if (PageReserved(page))		/* Check for zero page */
823 			goto put_and_set;
824 
825 		pp->page = page;
826 		err = page_to_nid(page);
827 
828 		if (err == pp->node)
829 			/*
830 			 * Node already in the right place
831 			 */
832 			goto put_and_set;
833 
834 		err = -EACCES;
835 		if (page_mapcount(page) > 1 &&
836 				!migrate_all)
837 			goto put_and_set;
838 
839 		err = isolate_lru_page(page, &pagelist);
840 put_and_set:
841 		/*
842 		 * Either remove the duplicate refcount from
843 		 * isolate_lru_page() or drop the page ref if it was
844 		 * not isolated.
845 		 */
846 		put_page(page);
847 set_status:
848 		pp->status = err;
849 	}
850 
851 	if (!list_empty(&pagelist))
852 		err = migrate_pages(&pagelist, new_page_node,
853 				(unsigned long)pm);
854 	else
855 		err = -ENOENT;
856 
857 	up_read(&mm->mmap_sem);
858 	return err;
859 }
860 
861 /*
862  * Determine the nodes of a list of pages. The addr in the pm array
863  * must have been set to the virtual address of which we want to determine
864  * the node number.
865  */
866 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
867 {
868 	down_read(&mm->mmap_sem);
869 
870 	for ( ; pm->node != MAX_NUMNODES; pm++) {
871 		struct vm_area_struct *vma;
872 		struct page *page;
873 		int err;
874 
875 		err = -EFAULT;
876 		vma = find_vma(mm, pm->addr);
877 		if (!vma)
878 			goto set_status;
879 
880 		page = follow_page(vma, pm->addr, 0);
881 		err = -ENOENT;
882 		/* Use PageReserved to check for zero page */
883 		if (!page || PageReserved(page))
884 			goto set_status;
885 
886 		err = page_to_nid(page);
887 set_status:
888 		pm->status = err;
889 	}
890 
891 	up_read(&mm->mmap_sem);
892 	return 0;
893 }
894 
895 /*
896  * Move a list of pages in the address space of the currently executing
897  * process.
898  */
899 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
900 			const void __user * __user *pages,
901 			const int __user *nodes,
902 			int __user *status, int flags)
903 {
904 	int err = 0;
905 	int i;
906 	struct task_struct *task;
907 	nodemask_t task_nodes;
908 	struct mm_struct *mm;
909 	struct page_to_node *pm = NULL;
910 
911 	/* Check flags */
912 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
913 		return -EINVAL;
914 
915 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
916 		return -EPERM;
917 
918 	/* Find the mm_struct */
919 	read_lock(&tasklist_lock);
920 	task = pid ? find_task_by_pid(pid) : current;
921 	if (!task) {
922 		read_unlock(&tasklist_lock);
923 		return -ESRCH;
924 	}
925 	mm = get_task_mm(task);
926 	read_unlock(&tasklist_lock);
927 
928 	if (!mm)
929 		return -EINVAL;
930 
931 	/*
932 	 * Check if this process has the right to modify the specified
933 	 * process. The right exists if the process has administrative
934 	 * capabilities, superuser privileges or the same
935 	 * userid as the target process.
936 	 */
937 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
938 	    (current->uid != task->suid) && (current->uid != task->uid) &&
939 	    !capable(CAP_SYS_NICE)) {
940 		err = -EPERM;
941 		goto out2;
942 	}
943 
944  	err = security_task_movememory(task);
945  	if (err)
946  		goto out2;
947 
948 
949 	task_nodes = cpuset_mems_allowed(task);
950 
951 	/* Limit nr_pages so that the multiplication may not overflow */
952 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
953 		err = -E2BIG;
954 		goto out2;
955 	}
956 
957 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
958 	if (!pm) {
959 		err = -ENOMEM;
960 		goto out2;
961 	}
962 
963 	/*
964 	 * Get parameters from user space and initialize the pm
965 	 * array. Return various errors if the user did something wrong.
966 	 */
967 	for (i = 0; i < nr_pages; i++) {
968 		const void *p;
969 
970 		err = -EFAULT;
971 		if (get_user(p, pages + i))
972 			goto out;
973 
974 		pm[i].addr = (unsigned long)p;
975 		if (nodes) {
976 			int node;
977 
978 			if (get_user(node, nodes + i))
979 				goto out;
980 
981 			err = -ENODEV;
982 			if (!node_online(node))
983 				goto out;
984 
985 			err = -EACCES;
986 			if (!node_isset(node, task_nodes))
987 				goto out;
988 
989 			pm[i].node = node;
990 		} else
991 			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
992 	}
993 	/* End marker */
994 	pm[nr_pages].node = MAX_NUMNODES;
995 
996 	if (nodes)
997 		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
998 	else
999 		err = do_pages_stat(mm, pm);
1000 
1001 	if (err >= 0)
1002 		/* Return status information */
1003 		for (i = 0; i < nr_pages; i++)
1004 			if (put_user(pm[i].status, status + i))
1005 				err = -EFAULT;
1006 
1007 out:
1008 	vfree(pm);
1009 out2:
1010 	mmput(mm);
1011 	return err;
1012 }
1013 #endif
1014 
1015 /*
1016  * Call migration functions in the vma_ops that may prepare
1017  * memory in a vm for migration. migration functions may perform
1018  * the migration for vmas that do not have an underlying page struct.
1019  */
1020 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1021 	const nodemask_t *from, unsigned long flags)
1022 {
1023  	struct vm_area_struct *vma;
1024  	int err = 0;
1025 
1026  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1027  		if (vma->vm_ops && vma->vm_ops->migrate) {
1028  			err = vma->vm_ops->migrate(vma, to, from, flags);
1029  			if (err)
1030  				break;
1031  		}
1032  	}
1033  	return err;
1034 }
1035