xref: /openbmc/linux/mm/migrate.c (revision c1d45424)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		list_del(&page->lru);
104 		dec_zone_page_state(page, NR_ISOLATED_ANON +
105 				page_is_file_cache(page));
106 		if (unlikely(balloon_page_movable(page)))
107 			balloon_page_putback(page);
108 		else
109 			putback_lru_page(page);
110 	}
111 }
112 
113 /*
114  * Restore a potential migration pte to a working pte entry
115  */
116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 				 unsigned long addr, void *old)
118 {
119 	struct mm_struct *mm = vma->vm_mm;
120 	swp_entry_t entry;
121  	pmd_t *pmd;
122 	pte_t *ptep, pte;
123  	spinlock_t *ptl;
124 
125 	if (unlikely(PageHuge(new))) {
126 		ptep = huge_pte_offset(mm, addr);
127 		if (!ptep)
128 			goto out;
129 		ptl = &mm->page_table_lock;
130 	} else {
131 		pmd = mm_find_pmd(mm, addr);
132 		if (!pmd)
133 			goto out;
134 		if (pmd_trans_huge(*pmd))
135 			goto out;
136 
137 		ptep = pte_offset_map(pmd, addr);
138 
139 		/*
140 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
141 		 * can race mremap's move_ptes(), which skips anon_vma lock.
142 		 */
143 
144 		ptl = pte_lockptr(mm, pmd);
145 	}
146 
147  	spin_lock(ptl);
148 	pte = *ptep;
149 	if (!is_swap_pte(pte))
150 		goto unlock;
151 
152 	entry = pte_to_swp_entry(pte);
153 
154 	if (!is_migration_entry(entry) ||
155 	    migration_entry_to_page(entry) != old)
156 		goto unlock;
157 
158 	get_page(new);
159 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 	if (is_write_migration_entry(entry))
161 		pte = pte_mkwrite(pte);
162 #ifdef CONFIG_HUGETLB_PAGE
163 	if (PageHuge(new)) {
164 		pte = pte_mkhuge(pte);
165 		pte = arch_make_huge_pte(pte, vma, new, 0);
166 	}
167 #endif
168 	flush_dcache_page(new);
169 	set_pte_at(mm, addr, ptep, pte);
170 
171 	if (PageHuge(new)) {
172 		if (PageAnon(new))
173 			hugepage_add_anon_rmap(new, vma, addr);
174 		else
175 			page_dup_rmap(new);
176 	} else if (PageAnon(new))
177 		page_add_anon_rmap(new, vma, addr);
178 	else
179 		page_add_file_rmap(new);
180 
181 	/* No need to invalidate - it was non-present before */
182 	update_mmu_cache(vma, addr, ptep);
183 unlock:
184 	pte_unmap_unlock(ptep, ptl);
185 out:
186 	return SWAP_AGAIN;
187 }
188 
189 /*
190  * Get rid of all migration entries and replace them by
191  * references to the indicated page.
192  */
193 static void remove_migration_ptes(struct page *old, struct page *new)
194 {
195 	rmap_walk(new, remove_migration_pte, old);
196 }
197 
198 /*
199  * Something used the pte of a page under migration. We need to
200  * get to the page and wait until migration is finished.
201  * When we return from this function the fault will be retried.
202  */
203 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 				spinlock_t *ptl)
205 {
206 	pte_t pte;
207 	swp_entry_t entry;
208 	struct page *page;
209 
210 	spin_lock(ptl);
211 	pte = *ptep;
212 	if (!is_swap_pte(pte))
213 		goto out;
214 
215 	entry = pte_to_swp_entry(pte);
216 	if (!is_migration_entry(entry))
217 		goto out;
218 
219 	page = migration_entry_to_page(entry);
220 
221 	/*
222 	 * Once radix-tree replacement of page migration started, page_count
223 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 	 * against a page without get_page().
225 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 	 * will occur again.
227 	 */
228 	if (!get_page_unless_zero(page))
229 		goto out;
230 	pte_unmap_unlock(ptep, ptl);
231 	wait_on_page_locked(page);
232 	put_page(page);
233 	return;
234 out:
235 	pte_unmap_unlock(ptep, ptl);
236 }
237 
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 				unsigned long address)
240 {
241 	spinlock_t *ptl = pte_lockptr(mm, pmd);
242 	pte_t *ptep = pte_offset_map(pmd, address);
243 	__migration_entry_wait(mm, ptep, ptl);
244 }
245 
246 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
247 {
248 	spinlock_t *ptl = &(mm)->page_table_lock;
249 	__migration_entry_wait(mm, pte, ptl);
250 }
251 
252 #ifdef CONFIG_BLOCK
253 /* Returns true if all buffers are successfully locked */
254 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
255 							enum migrate_mode mode)
256 {
257 	struct buffer_head *bh = head;
258 
259 	/* Simple case, sync compaction */
260 	if (mode != MIGRATE_ASYNC) {
261 		do {
262 			get_bh(bh);
263 			lock_buffer(bh);
264 			bh = bh->b_this_page;
265 
266 		} while (bh != head);
267 
268 		return true;
269 	}
270 
271 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
272 	do {
273 		get_bh(bh);
274 		if (!trylock_buffer(bh)) {
275 			/*
276 			 * We failed to lock the buffer and cannot stall in
277 			 * async migration. Release the taken locks
278 			 */
279 			struct buffer_head *failed_bh = bh;
280 			put_bh(failed_bh);
281 			bh = head;
282 			while (bh != failed_bh) {
283 				unlock_buffer(bh);
284 				put_bh(bh);
285 				bh = bh->b_this_page;
286 			}
287 			return false;
288 		}
289 
290 		bh = bh->b_this_page;
291 	} while (bh != head);
292 	return true;
293 }
294 #else
295 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
296 							enum migrate_mode mode)
297 {
298 	return true;
299 }
300 #endif /* CONFIG_BLOCK */
301 
302 /*
303  * Replace the page in the mapping.
304  *
305  * The number of remaining references must be:
306  * 1 for anonymous pages without a mapping
307  * 2 for pages with a mapping
308  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
309  */
310 static int migrate_page_move_mapping(struct address_space *mapping,
311 		struct page *newpage, struct page *page,
312 		struct buffer_head *head, enum migrate_mode mode)
313 {
314 	int expected_count = 0;
315 	void **pslot;
316 
317 	if (!mapping) {
318 		/* Anonymous page without mapping */
319 		if (page_count(page) != 1)
320 			return -EAGAIN;
321 		return MIGRATEPAGE_SUCCESS;
322 	}
323 
324 	spin_lock_irq(&mapping->tree_lock);
325 
326 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
327  					page_index(page));
328 
329 	expected_count = 2 + page_has_private(page);
330 	if (page_count(page) != expected_count ||
331 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
332 		spin_unlock_irq(&mapping->tree_lock);
333 		return -EAGAIN;
334 	}
335 
336 	if (!page_freeze_refs(page, expected_count)) {
337 		spin_unlock_irq(&mapping->tree_lock);
338 		return -EAGAIN;
339 	}
340 
341 	/*
342 	 * In the async migration case of moving a page with buffers, lock the
343 	 * buffers using trylock before the mapping is moved. If the mapping
344 	 * was moved, we later failed to lock the buffers and could not move
345 	 * the mapping back due to an elevated page count, we would have to
346 	 * block waiting on other references to be dropped.
347 	 */
348 	if (mode == MIGRATE_ASYNC && head &&
349 			!buffer_migrate_lock_buffers(head, mode)) {
350 		page_unfreeze_refs(page, expected_count);
351 		spin_unlock_irq(&mapping->tree_lock);
352 		return -EAGAIN;
353 	}
354 
355 	/*
356 	 * Now we know that no one else is looking at the page.
357 	 */
358 	get_page(newpage);	/* add cache reference */
359 	if (PageSwapCache(page)) {
360 		SetPageSwapCache(newpage);
361 		set_page_private(newpage, page_private(page));
362 	}
363 
364 	radix_tree_replace_slot(pslot, newpage);
365 
366 	/*
367 	 * Drop cache reference from old page by unfreezing
368 	 * to one less reference.
369 	 * We know this isn't the last reference.
370 	 */
371 	page_unfreeze_refs(page, expected_count - 1);
372 
373 	/*
374 	 * If moved to a different zone then also account
375 	 * the page for that zone. Other VM counters will be
376 	 * taken care of when we establish references to the
377 	 * new page and drop references to the old page.
378 	 *
379 	 * Note that anonymous pages are accounted for
380 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 	 * are mapped to swap space.
382 	 */
383 	__dec_zone_page_state(page, NR_FILE_PAGES);
384 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
385 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
386 		__dec_zone_page_state(page, NR_SHMEM);
387 		__inc_zone_page_state(newpage, NR_SHMEM);
388 	}
389 	spin_unlock_irq(&mapping->tree_lock);
390 
391 	return MIGRATEPAGE_SUCCESS;
392 }
393 
394 /*
395  * The expected number of remaining references is the same as that
396  * of migrate_page_move_mapping().
397  */
398 int migrate_huge_page_move_mapping(struct address_space *mapping,
399 				   struct page *newpage, struct page *page)
400 {
401 	int expected_count;
402 	void **pslot;
403 
404 	if (!mapping) {
405 		if (page_count(page) != 1)
406 			return -EAGAIN;
407 		return MIGRATEPAGE_SUCCESS;
408 	}
409 
410 	spin_lock_irq(&mapping->tree_lock);
411 
412 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
413 					page_index(page));
414 
415 	expected_count = 2 + page_has_private(page);
416 	if (page_count(page) != expected_count ||
417 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
418 		spin_unlock_irq(&mapping->tree_lock);
419 		return -EAGAIN;
420 	}
421 
422 	if (!page_freeze_refs(page, expected_count)) {
423 		spin_unlock_irq(&mapping->tree_lock);
424 		return -EAGAIN;
425 	}
426 
427 	get_page(newpage);
428 
429 	radix_tree_replace_slot(pslot, newpage);
430 
431 	page_unfreeze_refs(page, expected_count - 1);
432 
433 	spin_unlock_irq(&mapping->tree_lock);
434 	return MIGRATEPAGE_SUCCESS;
435 }
436 
437 /*
438  * Copy the page to its new location
439  */
440 void migrate_page_copy(struct page *newpage, struct page *page)
441 {
442 	if (PageHuge(page) || PageTransHuge(page))
443 		copy_huge_page(newpage, page);
444 	else
445 		copy_highpage(newpage, page);
446 
447 	if (PageError(page))
448 		SetPageError(newpage);
449 	if (PageReferenced(page))
450 		SetPageReferenced(newpage);
451 	if (PageUptodate(page))
452 		SetPageUptodate(newpage);
453 	if (TestClearPageActive(page)) {
454 		VM_BUG_ON(PageUnevictable(page));
455 		SetPageActive(newpage);
456 	} else if (TestClearPageUnevictable(page))
457 		SetPageUnevictable(newpage);
458 	if (PageChecked(page))
459 		SetPageChecked(newpage);
460 	if (PageMappedToDisk(page))
461 		SetPageMappedToDisk(newpage);
462 
463 	if (PageDirty(page)) {
464 		clear_page_dirty_for_io(page);
465 		/*
466 		 * Want to mark the page and the radix tree as dirty, and
467 		 * redo the accounting that clear_page_dirty_for_io undid,
468 		 * but we can't use set_page_dirty because that function
469 		 * is actually a signal that all of the page has become dirty.
470 		 * Whereas only part of our page may be dirty.
471 		 */
472 		if (PageSwapBacked(page))
473 			SetPageDirty(newpage);
474 		else
475 			__set_page_dirty_nobuffers(newpage);
476  	}
477 
478 	mlock_migrate_page(newpage, page);
479 	ksm_migrate_page(newpage, page);
480 	/*
481 	 * Please do not reorder this without considering how mm/ksm.c's
482 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
483 	 */
484 	ClearPageSwapCache(page);
485 	ClearPagePrivate(page);
486 	set_page_private(page, 0);
487 
488 	/*
489 	 * If any waiters have accumulated on the new page then
490 	 * wake them up.
491 	 */
492 	if (PageWriteback(newpage))
493 		end_page_writeback(newpage);
494 }
495 
496 /************************************************************
497  *                    Migration functions
498  ***********************************************************/
499 
500 /* Always fail migration. Used for mappings that are not movable */
501 int fail_migrate_page(struct address_space *mapping,
502 			struct page *newpage, struct page *page)
503 {
504 	return -EIO;
505 }
506 EXPORT_SYMBOL(fail_migrate_page);
507 
508 /*
509  * Common logic to directly migrate a single page suitable for
510  * pages that do not use PagePrivate/PagePrivate2.
511  *
512  * Pages are locked upon entry and exit.
513  */
514 int migrate_page(struct address_space *mapping,
515 		struct page *newpage, struct page *page,
516 		enum migrate_mode mode)
517 {
518 	int rc;
519 
520 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
521 
522 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
523 
524 	if (rc != MIGRATEPAGE_SUCCESS)
525 		return rc;
526 
527 	migrate_page_copy(newpage, page);
528 	return MIGRATEPAGE_SUCCESS;
529 }
530 EXPORT_SYMBOL(migrate_page);
531 
532 #ifdef CONFIG_BLOCK
533 /*
534  * Migration function for pages with buffers. This function can only be used
535  * if the underlying filesystem guarantees that no other references to "page"
536  * exist.
537  */
538 int buffer_migrate_page(struct address_space *mapping,
539 		struct page *newpage, struct page *page, enum migrate_mode mode)
540 {
541 	struct buffer_head *bh, *head;
542 	int rc;
543 
544 	if (!page_has_buffers(page))
545 		return migrate_page(mapping, newpage, page, mode);
546 
547 	head = page_buffers(page);
548 
549 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
550 
551 	if (rc != MIGRATEPAGE_SUCCESS)
552 		return rc;
553 
554 	/*
555 	 * In the async case, migrate_page_move_mapping locked the buffers
556 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
557 	 * need to be locked now
558 	 */
559 	if (mode != MIGRATE_ASYNC)
560 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
561 
562 	ClearPagePrivate(page);
563 	set_page_private(newpage, page_private(page));
564 	set_page_private(page, 0);
565 	put_page(page);
566 	get_page(newpage);
567 
568 	bh = head;
569 	do {
570 		set_bh_page(bh, newpage, bh_offset(bh));
571 		bh = bh->b_this_page;
572 
573 	} while (bh != head);
574 
575 	SetPagePrivate(newpage);
576 
577 	migrate_page_copy(newpage, page);
578 
579 	bh = head;
580 	do {
581 		unlock_buffer(bh);
582  		put_bh(bh);
583 		bh = bh->b_this_page;
584 
585 	} while (bh != head);
586 
587 	return MIGRATEPAGE_SUCCESS;
588 }
589 EXPORT_SYMBOL(buffer_migrate_page);
590 #endif
591 
592 /*
593  * Writeback a page to clean the dirty state
594  */
595 static int writeout(struct address_space *mapping, struct page *page)
596 {
597 	struct writeback_control wbc = {
598 		.sync_mode = WB_SYNC_NONE,
599 		.nr_to_write = 1,
600 		.range_start = 0,
601 		.range_end = LLONG_MAX,
602 		.for_reclaim = 1
603 	};
604 	int rc;
605 
606 	if (!mapping->a_ops->writepage)
607 		/* No write method for the address space */
608 		return -EINVAL;
609 
610 	if (!clear_page_dirty_for_io(page))
611 		/* Someone else already triggered a write */
612 		return -EAGAIN;
613 
614 	/*
615 	 * A dirty page may imply that the underlying filesystem has
616 	 * the page on some queue. So the page must be clean for
617 	 * migration. Writeout may mean we loose the lock and the
618 	 * page state is no longer what we checked for earlier.
619 	 * At this point we know that the migration attempt cannot
620 	 * be successful.
621 	 */
622 	remove_migration_ptes(page, page);
623 
624 	rc = mapping->a_ops->writepage(page, &wbc);
625 
626 	if (rc != AOP_WRITEPAGE_ACTIVATE)
627 		/* unlocked. Relock */
628 		lock_page(page);
629 
630 	return (rc < 0) ? -EIO : -EAGAIN;
631 }
632 
633 /*
634  * Default handling if a filesystem does not provide a migration function.
635  */
636 static int fallback_migrate_page(struct address_space *mapping,
637 	struct page *newpage, struct page *page, enum migrate_mode mode)
638 {
639 	if (PageDirty(page)) {
640 		/* Only writeback pages in full synchronous migration */
641 		if (mode != MIGRATE_SYNC)
642 			return -EBUSY;
643 		return writeout(mapping, page);
644 	}
645 
646 	/*
647 	 * Buffers may be managed in a filesystem specific way.
648 	 * We must have no buffers or drop them.
649 	 */
650 	if (page_has_private(page) &&
651 	    !try_to_release_page(page, GFP_KERNEL))
652 		return -EAGAIN;
653 
654 	return migrate_page(mapping, newpage, page, mode);
655 }
656 
657 /*
658  * Move a page to a newly allocated page
659  * The page is locked and all ptes have been successfully removed.
660  *
661  * The new page will have replaced the old page if this function
662  * is successful.
663  *
664  * Return value:
665  *   < 0 - error code
666  *  MIGRATEPAGE_SUCCESS - success
667  */
668 static int move_to_new_page(struct page *newpage, struct page *page,
669 				int remap_swapcache, enum migrate_mode mode)
670 {
671 	struct address_space *mapping;
672 	int rc;
673 
674 	/*
675 	 * Block others from accessing the page when we get around to
676 	 * establishing additional references. We are the only one
677 	 * holding a reference to the new page at this point.
678 	 */
679 	if (!trylock_page(newpage))
680 		BUG();
681 
682 	/* Prepare mapping for the new page.*/
683 	newpage->index = page->index;
684 	newpage->mapping = page->mapping;
685 	if (PageSwapBacked(page))
686 		SetPageSwapBacked(newpage);
687 
688 	mapping = page_mapping(page);
689 	if (!mapping)
690 		rc = migrate_page(mapping, newpage, page, mode);
691 	else if (mapping->a_ops->migratepage)
692 		/*
693 		 * Most pages have a mapping and most filesystems provide a
694 		 * migratepage callback. Anonymous pages are part of swap
695 		 * space which also has its own migratepage callback. This
696 		 * is the most common path for page migration.
697 		 */
698 		rc = mapping->a_ops->migratepage(mapping,
699 						newpage, page, mode);
700 	else
701 		rc = fallback_migrate_page(mapping, newpage, page, mode);
702 
703 	if (rc != MIGRATEPAGE_SUCCESS) {
704 		newpage->mapping = NULL;
705 	} else {
706 		if (remap_swapcache)
707 			remove_migration_ptes(page, newpage);
708 		page->mapping = NULL;
709 	}
710 
711 	unlock_page(newpage);
712 
713 	return rc;
714 }
715 
716 static int __unmap_and_move(struct page *page, struct page *newpage,
717 				int force, enum migrate_mode mode)
718 {
719 	int rc = -EAGAIN;
720 	int remap_swapcache = 1;
721 	struct mem_cgroup *mem;
722 	struct anon_vma *anon_vma = NULL;
723 
724 	if (!trylock_page(page)) {
725 		if (!force || mode == MIGRATE_ASYNC)
726 			goto out;
727 
728 		/*
729 		 * It's not safe for direct compaction to call lock_page.
730 		 * For example, during page readahead pages are added locked
731 		 * to the LRU. Later, when the IO completes the pages are
732 		 * marked uptodate and unlocked. However, the queueing
733 		 * could be merging multiple pages for one bio (e.g.
734 		 * mpage_readpages). If an allocation happens for the
735 		 * second or third page, the process can end up locking
736 		 * the same page twice and deadlocking. Rather than
737 		 * trying to be clever about what pages can be locked,
738 		 * avoid the use of lock_page for direct compaction
739 		 * altogether.
740 		 */
741 		if (current->flags & PF_MEMALLOC)
742 			goto out;
743 
744 		lock_page(page);
745 	}
746 
747 	/* charge against new page */
748 	mem_cgroup_prepare_migration(page, newpage, &mem);
749 
750 	if (PageWriteback(page)) {
751 		/*
752 		 * Only in the case of a full synchronous migration is it
753 		 * necessary to wait for PageWriteback. In the async case,
754 		 * the retry loop is too short and in the sync-light case,
755 		 * the overhead of stalling is too much
756 		 */
757 		if (mode != MIGRATE_SYNC) {
758 			rc = -EBUSY;
759 			goto uncharge;
760 		}
761 		if (!force)
762 			goto uncharge;
763 		wait_on_page_writeback(page);
764 	}
765 	/*
766 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
767 	 * we cannot notice that anon_vma is freed while we migrates a page.
768 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
769 	 * of migration. File cache pages are no problem because of page_lock()
770 	 * File Caches may use write_page() or lock_page() in migration, then,
771 	 * just care Anon page here.
772 	 */
773 	if (PageAnon(page) && !PageKsm(page)) {
774 		/*
775 		 * Only page_lock_anon_vma_read() understands the subtleties of
776 		 * getting a hold on an anon_vma from outside one of its mms.
777 		 */
778 		anon_vma = page_get_anon_vma(page);
779 		if (anon_vma) {
780 			/*
781 			 * Anon page
782 			 */
783 		} else if (PageSwapCache(page)) {
784 			/*
785 			 * We cannot be sure that the anon_vma of an unmapped
786 			 * swapcache page is safe to use because we don't
787 			 * know in advance if the VMA that this page belonged
788 			 * to still exists. If the VMA and others sharing the
789 			 * data have been freed, then the anon_vma could
790 			 * already be invalid.
791 			 *
792 			 * To avoid this possibility, swapcache pages get
793 			 * migrated but are not remapped when migration
794 			 * completes
795 			 */
796 			remap_swapcache = 0;
797 		} else {
798 			goto uncharge;
799 		}
800 	}
801 
802 	if (unlikely(balloon_page_movable(page))) {
803 		/*
804 		 * A ballooned page does not need any special attention from
805 		 * physical to virtual reverse mapping procedures.
806 		 * Skip any attempt to unmap PTEs or to remap swap cache,
807 		 * in order to avoid burning cycles at rmap level, and perform
808 		 * the page migration right away (proteced by page lock).
809 		 */
810 		rc = balloon_page_migrate(newpage, page, mode);
811 		goto uncharge;
812 	}
813 
814 	/*
815 	 * Corner case handling:
816 	 * 1. When a new swap-cache page is read into, it is added to the LRU
817 	 * and treated as swapcache but it has no rmap yet.
818 	 * Calling try_to_unmap() against a page->mapping==NULL page will
819 	 * trigger a BUG.  So handle it here.
820 	 * 2. An orphaned page (see truncate_complete_page) might have
821 	 * fs-private metadata. The page can be picked up due to memory
822 	 * offlining.  Everywhere else except page reclaim, the page is
823 	 * invisible to the vm, so the page can not be migrated.  So try to
824 	 * free the metadata, so the page can be freed.
825 	 */
826 	if (!page->mapping) {
827 		VM_BUG_ON(PageAnon(page));
828 		if (page_has_private(page)) {
829 			try_to_free_buffers(page);
830 			goto uncharge;
831 		}
832 		goto skip_unmap;
833 	}
834 
835 	/* Establish migration ptes or remove ptes */
836 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
837 
838 skip_unmap:
839 	if (!page_mapped(page))
840 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
841 
842 	if (rc && remap_swapcache)
843 		remove_migration_ptes(page, page);
844 
845 	/* Drop an anon_vma reference if we took one */
846 	if (anon_vma)
847 		put_anon_vma(anon_vma);
848 
849 uncharge:
850 	mem_cgroup_end_migration(mem, page, newpage,
851 				 (rc == MIGRATEPAGE_SUCCESS ||
852 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
853 	unlock_page(page);
854 out:
855 	return rc;
856 }
857 
858 /*
859  * Obtain the lock on page, remove all ptes and migrate the page
860  * to the newly allocated page in newpage.
861  */
862 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
863 			struct page *page, int force, enum migrate_mode mode)
864 {
865 	int rc = 0;
866 	int *result = NULL;
867 	struct page *newpage = get_new_page(page, private, &result);
868 
869 	if (!newpage)
870 		return -ENOMEM;
871 
872 	if (page_count(page) == 1) {
873 		/* page was freed from under us. So we are done. */
874 		goto out;
875 	}
876 
877 	if (unlikely(PageTransHuge(page)))
878 		if (unlikely(split_huge_page(page)))
879 			goto out;
880 
881 	rc = __unmap_and_move(page, newpage, force, mode);
882 
883 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
884 		/*
885 		 * A ballooned page has been migrated already.
886 		 * Now, it's the time to wrap-up counters,
887 		 * handle the page back to Buddy and return.
888 		 */
889 		dec_zone_page_state(page, NR_ISOLATED_ANON +
890 				    page_is_file_cache(page));
891 		balloon_page_free(page);
892 		return MIGRATEPAGE_SUCCESS;
893 	}
894 out:
895 	if (rc != -EAGAIN) {
896 		/*
897 		 * A page that has been migrated has all references
898 		 * removed and will be freed. A page that has not been
899 		 * migrated will have kepts its references and be
900 		 * restored.
901 		 */
902 		list_del(&page->lru);
903 		dec_zone_page_state(page, NR_ISOLATED_ANON +
904 				page_is_file_cache(page));
905 		putback_lru_page(page);
906 	}
907 	/*
908 	 * Move the new page to the LRU. If migration was not successful
909 	 * then this will free the page.
910 	 */
911 	putback_lru_page(newpage);
912 	if (result) {
913 		if (rc)
914 			*result = rc;
915 		else
916 			*result = page_to_nid(newpage);
917 	}
918 	return rc;
919 }
920 
921 /*
922  * Counterpart of unmap_and_move_page() for hugepage migration.
923  *
924  * This function doesn't wait the completion of hugepage I/O
925  * because there is no race between I/O and migration for hugepage.
926  * Note that currently hugepage I/O occurs only in direct I/O
927  * where no lock is held and PG_writeback is irrelevant,
928  * and writeback status of all subpages are counted in the reference
929  * count of the head page (i.e. if all subpages of a 2MB hugepage are
930  * under direct I/O, the reference of the head page is 512 and a bit more.)
931  * This means that when we try to migrate hugepage whose subpages are
932  * doing direct I/O, some references remain after try_to_unmap() and
933  * hugepage migration fails without data corruption.
934  *
935  * There is also no race when direct I/O is issued on the page under migration,
936  * because then pte is replaced with migration swap entry and direct I/O code
937  * will wait in the page fault for migration to complete.
938  */
939 static int unmap_and_move_huge_page(new_page_t get_new_page,
940 				unsigned long private, struct page *hpage,
941 				int force, enum migrate_mode mode)
942 {
943 	int rc = 0;
944 	int *result = NULL;
945 	struct page *new_hpage = get_new_page(hpage, private, &result);
946 	struct anon_vma *anon_vma = NULL;
947 
948 	if (!new_hpage)
949 		return -ENOMEM;
950 
951 	rc = -EAGAIN;
952 
953 	if (!trylock_page(hpage)) {
954 		if (!force || mode != MIGRATE_SYNC)
955 			goto out;
956 		lock_page(hpage);
957 	}
958 
959 	if (PageAnon(hpage))
960 		anon_vma = page_get_anon_vma(hpage);
961 
962 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
963 
964 	if (!page_mapped(hpage))
965 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
966 
967 	if (rc)
968 		remove_migration_ptes(hpage, hpage);
969 
970 	if (anon_vma)
971 		put_anon_vma(anon_vma);
972 
973 	if (!rc)
974 		hugetlb_cgroup_migrate(hpage, new_hpage);
975 
976 	unlock_page(hpage);
977 out:
978 	put_page(new_hpage);
979 	if (result) {
980 		if (rc)
981 			*result = rc;
982 		else
983 			*result = page_to_nid(new_hpage);
984 	}
985 	return rc;
986 }
987 
988 /*
989  * migrate_pages - migrate the pages specified in a list, to the free pages
990  *		   supplied as the target for the page migration
991  *
992  * @from:		The list of pages to be migrated.
993  * @get_new_page:	The function used to allocate free pages to be used
994  *			as the target of the page migration.
995  * @private:		Private data to be passed on to get_new_page()
996  * @mode:		The migration mode that specifies the constraints for
997  *			page migration, if any.
998  * @reason:		The reason for page migration.
999  *
1000  * The function returns after 10 attempts or if no pages are movable any more
1001  * because the list has become empty or no retryable pages exist any more.
1002  * The caller should call putback_lru_pages() to return pages to the LRU
1003  * or free list only if ret != 0.
1004  *
1005  * Returns the number of pages that were not migrated, or an error code.
1006  */
1007 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1008 		unsigned long private, enum migrate_mode mode, int reason)
1009 {
1010 	int retry = 1;
1011 	int nr_failed = 0;
1012 	int nr_succeeded = 0;
1013 	int pass = 0;
1014 	struct page *page;
1015 	struct page *page2;
1016 	int swapwrite = current->flags & PF_SWAPWRITE;
1017 	int rc;
1018 
1019 	if (!swapwrite)
1020 		current->flags |= PF_SWAPWRITE;
1021 
1022 	for(pass = 0; pass < 10 && retry; pass++) {
1023 		retry = 0;
1024 
1025 		list_for_each_entry_safe(page, page2, from, lru) {
1026 			cond_resched();
1027 
1028 			rc = unmap_and_move(get_new_page, private,
1029 						page, pass > 2, mode);
1030 
1031 			switch(rc) {
1032 			case -ENOMEM:
1033 				goto out;
1034 			case -EAGAIN:
1035 				retry++;
1036 				break;
1037 			case MIGRATEPAGE_SUCCESS:
1038 				nr_succeeded++;
1039 				break;
1040 			default:
1041 				/* Permanent failure */
1042 				nr_failed++;
1043 				break;
1044 			}
1045 		}
1046 	}
1047 	rc = nr_failed + retry;
1048 out:
1049 	if (nr_succeeded)
1050 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1051 	if (nr_failed)
1052 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1053 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1054 
1055 	if (!swapwrite)
1056 		current->flags &= ~PF_SWAPWRITE;
1057 
1058 	return rc;
1059 }
1060 
1061 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1062 		      unsigned long private, enum migrate_mode mode)
1063 {
1064 	int pass, rc;
1065 
1066 	for (pass = 0; pass < 10; pass++) {
1067 		rc = unmap_and_move_huge_page(get_new_page, private,
1068 						hpage, pass > 2, mode);
1069 		switch (rc) {
1070 		case -ENOMEM:
1071 			goto out;
1072 		case -EAGAIN:
1073 			/* try again */
1074 			cond_resched();
1075 			break;
1076 		case MIGRATEPAGE_SUCCESS:
1077 			goto out;
1078 		default:
1079 			rc = -EIO;
1080 			goto out;
1081 		}
1082 	}
1083 out:
1084 	return rc;
1085 }
1086 
1087 #ifdef CONFIG_NUMA
1088 /*
1089  * Move a list of individual pages
1090  */
1091 struct page_to_node {
1092 	unsigned long addr;
1093 	struct page *page;
1094 	int node;
1095 	int status;
1096 };
1097 
1098 static struct page *new_page_node(struct page *p, unsigned long private,
1099 		int **result)
1100 {
1101 	struct page_to_node *pm = (struct page_to_node *)private;
1102 
1103 	while (pm->node != MAX_NUMNODES && pm->page != p)
1104 		pm++;
1105 
1106 	if (pm->node == MAX_NUMNODES)
1107 		return NULL;
1108 
1109 	*result = &pm->status;
1110 
1111 	return alloc_pages_exact_node(pm->node,
1112 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1113 }
1114 
1115 /*
1116  * Move a set of pages as indicated in the pm array. The addr
1117  * field must be set to the virtual address of the page to be moved
1118  * and the node number must contain a valid target node.
1119  * The pm array ends with node = MAX_NUMNODES.
1120  */
1121 static int do_move_page_to_node_array(struct mm_struct *mm,
1122 				      struct page_to_node *pm,
1123 				      int migrate_all)
1124 {
1125 	int err;
1126 	struct page_to_node *pp;
1127 	LIST_HEAD(pagelist);
1128 
1129 	down_read(&mm->mmap_sem);
1130 
1131 	/*
1132 	 * Build a list of pages to migrate
1133 	 */
1134 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1135 		struct vm_area_struct *vma;
1136 		struct page *page;
1137 
1138 		err = -EFAULT;
1139 		vma = find_vma(mm, pp->addr);
1140 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1141 			goto set_status;
1142 
1143 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1144 
1145 		err = PTR_ERR(page);
1146 		if (IS_ERR(page))
1147 			goto set_status;
1148 
1149 		err = -ENOENT;
1150 		if (!page)
1151 			goto set_status;
1152 
1153 		/* Use PageReserved to check for zero page */
1154 		if (PageReserved(page))
1155 			goto put_and_set;
1156 
1157 		pp->page = page;
1158 		err = page_to_nid(page);
1159 
1160 		if (err == pp->node)
1161 			/*
1162 			 * Node already in the right place
1163 			 */
1164 			goto put_and_set;
1165 
1166 		err = -EACCES;
1167 		if (page_mapcount(page) > 1 &&
1168 				!migrate_all)
1169 			goto put_and_set;
1170 
1171 		err = isolate_lru_page(page);
1172 		if (!err) {
1173 			list_add_tail(&page->lru, &pagelist);
1174 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1175 					    page_is_file_cache(page));
1176 		}
1177 put_and_set:
1178 		/*
1179 		 * Either remove the duplicate refcount from
1180 		 * isolate_lru_page() or drop the page ref if it was
1181 		 * not isolated.
1182 		 */
1183 		put_page(page);
1184 set_status:
1185 		pp->status = err;
1186 	}
1187 
1188 	err = 0;
1189 	if (!list_empty(&pagelist)) {
1190 		err = migrate_pages(&pagelist, new_page_node,
1191 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1192 		if (err)
1193 			putback_lru_pages(&pagelist);
1194 	}
1195 
1196 	up_read(&mm->mmap_sem);
1197 	return err;
1198 }
1199 
1200 /*
1201  * Migrate an array of page address onto an array of nodes and fill
1202  * the corresponding array of status.
1203  */
1204 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1205 			 unsigned long nr_pages,
1206 			 const void __user * __user *pages,
1207 			 const int __user *nodes,
1208 			 int __user *status, int flags)
1209 {
1210 	struct page_to_node *pm;
1211 	unsigned long chunk_nr_pages;
1212 	unsigned long chunk_start;
1213 	int err;
1214 
1215 	err = -ENOMEM;
1216 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1217 	if (!pm)
1218 		goto out;
1219 
1220 	migrate_prep();
1221 
1222 	/*
1223 	 * Store a chunk of page_to_node array in a page,
1224 	 * but keep the last one as a marker
1225 	 */
1226 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1227 
1228 	for (chunk_start = 0;
1229 	     chunk_start < nr_pages;
1230 	     chunk_start += chunk_nr_pages) {
1231 		int j;
1232 
1233 		if (chunk_start + chunk_nr_pages > nr_pages)
1234 			chunk_nr_pages = nr_pages - chunk_start;
1235 
1236 		/* fill the chunk pm with addrs and nodes from user-space */
1237 		for (j = 0; j < chunk_nr_pages; j++) {
1238 			const void __user *p;
1239 			int node;
1240 
1241 			err = -EFAULT;
1242 			if (get_user(p, pages + j + chunk_start))
1243 				goto out_pm;
1244 			pm[j].addr = (unsigned long) p;
1245 
1246 			if (get_user(node, nodes + j + chunk_start))
1247 				goto out_pm;
1248 
1249 			err = -ENODEV;
1250 			if (node < 0 || node >= MAX_NUMNODES)
1251 				goto out_pm;
1252 
1253 			if (!node_state(node, N_MEMORY))
1254 				goto out_pm;
1255 
1256 			err = -EACCES;
1257 			if (!node_isset(node, task_nodes))
1258 				goto out_pm;
1259 
1260 			pm[j].node = node;
1261 		}
1262 
1263 		/* End marker for this chunk */
1264 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1265 
1266 		/* Migrate this chunk */
1267 		err = do_move_page_to_node_array(mm, pm,
1268 						 flags & MPOL_MF_MOVE_ALL);
1269 		if (err < 0)
1270 			goto out_pm;
1271 
1272 		/* Return status information */
1273 		for (j = 0; j < chunk_nr_pages; j++)
1274 			if (put_user(pm[j].status, status + j + chunk_start)) {
1275 				err = -EFAULT;
1276 				goto out_pm;
1277 			}
1278 	}
1279 	err = 0;
1280 
1281 out_pm:
1282 	free_page((unsigned long)pm);
1283 out:
1284 	return err;
1285 }
1286 
1287 /*
1288  * Determine the nodes of an array of pages and store it in an array of status.
1289  */
1290 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1291 				const void __user **pages, int *status)
1292 {
1293 	unsigned long i;
1294 
1295 	down_read(&mm->mmap_sem);
1296 
1297 	for (i = 0; i < nr_pages; i++) {
1298 		unsigned long addr = (unsigned long)(*pages);
1299 		struct vm_area_struct *vma;
1300 		struct page *page;
1301 		int err = -EFAULT;
1302 
1303 		vma = find_vma(mm, addr);
1304 		if (!vma || addr < vma->vm_start)
1305 			goto set_status;
1306 
1307 		page = follow_page(vma, addr, 0);
1308 
1309 		err = PTR_ERR(page);
1310 		if (IS_ERR(page))
1311 			goto set_status;
1312 
1313 		err = -ENOENT;
1314 		/* Use PageReserved to check for zero page */
1315 		if (!page || PageReserved(page))
1316 			goto set_status;
1317 
1318 		err = page_to_nid(page);
1319 set_status:
1320 		*status = err;
1321 
1322 		pages++;
1323 		status++;
1324 	}
1325 
1326 	up_read(&mm->mmap_sem);
1327 }
1328 
1329 /*
1330  * Determine the nodes of a user array of pages and store it in
1331  * a user array of status.
1332  */
1333 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1334 			 const void __user * __user *pages,
1335 			 int __user *status)
1336 {
1337 #define DO_PAGES_STAT_CHUNK_NR 16
1338 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1339 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1340 
1341 	while (nr_pages) {
1342 		unsigned long chunk_nr;
1343 
1344 		chunk_nr = nr_pages;
1345 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1346 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1347 
1348 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1349 			break;
1350 
1351 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1352 
1353 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1354 			break;
1355 
1356 		pages += chunk_nr;
1357 		status += chunk_nr;
1358 		nr_pages -= chunk_nr;
1359 	}
1360 	return nr_pages ? -EFAULT : 0;
1361 }
1362 
1363 /*
1364  * Move a list of pages in the address space of the currently executing
1365  * process.
1366  */
1367 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1368 		const void __user * __user *, pages,
1369 		const int __user *, nodes,
1370 		int __user *, status, int, flags)
1371 {
1372 	const struct cred *cred = current_cred(), *tcred;
1373 	struct task_struct *task;
1374 	struct mm_struct *mm;
1375 	int err;
1376 	nodemask_t task_nodes;
1377 
1378 	/* Check flags */
1379 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1380 		return -EINVAL;
1381 
1382 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1383 		return -EPERM;
1384 
1385 	/* Find the mm_struct */
1386 	rcu_read_lock();
1387 	task = pid ? find_task_by_vpid(pid) : current;
1388 	if (!task) {
1389 		rcu_read_unlock();
1390 		return -ESRCH;
1391 	}
1392 	get_task_struct(task);
1393 
1394 	/*
1395 	 * Check if this process has the right to modify the specified
1396 	 * process. The right exists if the process has administrative
1397 	 * capabilities, superuser privileges or the same
1398 	 * userid as the target process.
1399 	 */
1400 	tcred = __task_cred(task);
1401 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1402 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1403 	    !capable(CAP_SYS_NICE)) {
1404 		rcu_read_unlock();
1405 		err = -EPERM;
1406 		goto out;
1407 	}
1408 	rcu_read_unlock();
1409 
1410  	err = security_task_movememory(task);
1411  	if (err)
1412 		goto out;
1413 
1414 	task_nodes = cpuset_mems_allowed(task);
1415 	mm = get_task_mm(task);
1416 	put_task_struct(task);
1417 
1418 	if (!mm)
1419 		return -EINVAL;
1420 
1421 	if (nodes)
1422 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1423 				    nodes, status, flags);
1424 	else
1425 		err = do_pages_stat(mm, nr_pages, pages, status);
1426 
1427 	mmput(mm);
1428 	return err;
1429 
1430 out:
1431 	put_task_struct(task);
1432 	return err;
1433 }
1434 
1435 /*
1436  * Call migration functions in the vma_ops that may prepare
1437  * memory in a vm for migration. migration functions may perform
1438  * the migration for vmas that do not have an underlying page struct.
1439  */
1440 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1441 	const nodemask_t *from, unsigned long flags)
1442 {
1443  	struct vm_area_struct *vma;
1444  	int err = 0;
1445 
1446 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1447  		if (vma->vm_ops && vma->vm_ops->migrate) {
1448  			err = vma->vm_ops->migrate(vma, to, from, flags);
1449  			if (err)
1450  				break;
1451  		}
1452  	}
1453  	return err;
1454 }
1455 
1456 #ifdef CONFIG_NUMA_BALANCING
1457 /*
1458  * Returns true if this is a safe migration target node for misplaced NUMA
1459  * pages. Currently it only checks the watermarks which crude
1460  */
1461 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1462 				   unsigned long nr_migrate_pages)
1463 {
1464 	int z;
1465 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1466 		struct zone *zone = pgdat->node_zones + z;
1467 
1468 		if (!populated_zone(zone))
1469 			continue;
1470 
1471 		if (zone->all_unreclaimable)
1472 			continue;
1473 
1474 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1475 		if (!zone_watermark_ok(zone, 0,
1476 				       high_wmark_pages(zone) +
1477 				       nr_migrate_pages,
1478 				       0, 0))
1479 			continue;
1480 		return true;
1481 	}
1482 	return false;
1483 }
1484 
1485 static struct page *alloc_misplaced_dst_page(struct page *page,
1486 					   unsigned long data,
1487 					   int **result)
1488 {
1489 	int nid = (int) data;
1490 	struct page *newpage;
1491 
1492 	newpage = alloc_pages_exact_node(nid,
1493 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1494 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1495 					  __GFP_NOWARN) &
1496 					 ~GFP_IOFS, 0);
1497 	if (newpage)
1498 		page_nid_xchg_last(newpage, page_nid_last(page));
1499 
1500 	return newpage;
1501 }
1502 
1503 /*
1504  * page migration rate limiting control.
1505  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1506  * window of time. Default here says do not migrate more than 1280M per second.
1507  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1508  * as it is faults that reset the window, pte updates will happen unconditionally
1509  * if there has not been a fault since @pteupdate_interval_millisecs after the
1510  * throttle window closed.
1511  */
1512 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1513 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1514 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1515 
1516 /* Returns true if NUMA migration is currently rate limited */
1517 bool migrate_ratelimited(int node)
1518 {
1519 	pg_data_t *pgdat = NODE_DATA(node);
1520 
1521 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1522 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1523 		return false;
1524 
1525 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1526 		return false;
1527 
1528 	return true;
1529 }
1530 
1531 /* Returns true if the node is migrate rate-limited after the update */
1532 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1533 {
1534 	bool rate_limited = false;
1535 
1536 	/*
1537 	 * Rate-limit the amount of data that is being migrated to a node.
1538 	 * Optimal placement is no good if the memory bus is saturated and
1539 	 * all the time is being spent migrating!
1540 	 */
1541 	spin_lock(&pgdat->numabalancing_migrate_lock);
1542 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1543 		pgdat->numabalancing_migrate_nr_pages = 0;
1544 		pgdat->numabalancing_migrate_next_window = jiffies +
1545 			msecs_to_jiffies(migrate_interval_millisecs);
1546 	}
1547 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1548 		rate_limited = true;
1549 	else
1550 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1551 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1552 
1553 	return rate_limited;
1554 }
1555 
1556 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1557 {
1558 	int page_lru;
1559 
1560 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1561 
1562 	/* Avoid migrating to a node that is nearly full */
1563 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1564 		return 0;
1565 
1566 	if (isolate_lru_page(page))
1567 		return 0;
1568 
1569 	/*
1570 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1571 	 * check on page_count(), so we must do it here, now that the page
1572 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1573 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1574 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1575 	 */
1576 	if (PageTransHuge(page) && page_count(page) != 3) {
1577 		putback_lru_page(page);
1578 		return 0;
1579 	}
1580 
1581 	page_lru = page_is_file_cache(page);
1582 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1583 				hpage_nr_pages(page));
1584 
1585 	/*
1586 	 * Isolating the page has taken another reference, so the
1587 	 * caller's reference can be safely dropped without the page
1588 	 * disappearing underneath us during migration.
1589 	 */
1590 	put_page(page);
1591 	return 1;
1592 }
1593 
1594 /*
1595  * Attempt to migrate a misplaced page to the specified destination
1596  * node. Caller is expected to have an elevated reference count on
1597  * the page that will be dropped by this function before returning.
1598  */
1599 int migrate_misplaced_page(struct page *page, int node)
1600 {
1601 	pg_data_t *pgdat = NODE_DATA(node);
1602 	int isolated;
1603 	int nr_remaining;
1604 	LIST_HEAD(migratepages);
1605 
1606 	/*
1607 	 * Don't migrate pages that are mapped in multiple processes.
1608 	 * TODO: Handle false sharing detection instead of this hammer
1609 	 */
1610 	if (page_mapcount(page) != 1)
1611 		goto out;
1612 
1613 	/*
1614 	 * Rate-limit the amount of data that is being migrated to a node.
1615 	 * Optimal placement is no good if the memory bus is saturated and
1616 	 * all the time is being spent migrating!
1617 	 */
1618 	if (numamigrate_update_ratelimit(pgdat, 1))
1619 		goto out;
1620 
1621 	isolated = numamigrate_isolate_page(pgdat, page);
1622 	if (!isolated)
1623 		goto out;
1624 
1625 	list_add(&page->lru, &migratepages);
1626 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1627 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1628 	if (nr_remaining) {
1629 		putback_lru_pages(&migratepages);
1630 		isolated = 0;
1631 	} else
1632 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1633 	BUG_ON(!list_empty(&migratepages));
1634 	return isolated;
1635 
1636 out:
1637 	put_page(page);
1638 	return 0;
1639 }
1640 #endif /* CONFIG_NUMA_BALANCING */
1641 
1642 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1643 /*
1644  * Migrates a THP to a given target node. page must be locked and is unlocked
1645  * before returning.
1646  */
1647 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1648 				struct vm_area_struct *vma,
1649 				pmd_t *pmd, pmd_t entry,
1650 				unsigned long address,
1651 				struct page *page, int node)
1652 {
1653 	unsigned long haddr = address & HPAGE_PMD_MASK;
1654 	pg_data_t *pgdat = NODE_DATA(node);
1655 	int isolated = 0;
1656 	struct page *new_page = NULL;
1657 	struct mem_cgroup *memcg = NULL;
1658 	int page_lru = page_is_file_cache(page);
1659 
1660 	/*
1661 	 * Don't migrate pages that are mapped in multiple processes.
1662 	 * TODO: Handle false sharing detection instead of this hammer
1663 	 */
1664 	if (page_mapcount(page) != 1)
1665 		goto out_dropref;
1666 
1667 	/*
1668 	 * Rate-limit the amount of data that is being migrated to a node.
1669 	 * Optimal placement is no good if the memory bus is saturated and
1670 	 * all the time is being spent migrating!
1671 	 */
1672 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1673 		goto out_dropref;
1674 
1675 	new_page = alloc_pages_node(node,
1676 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1677 	if (!new_page)
1678 		goto out_fail;
1679 
1680 	page_nid_xchg_last(new_page, page_nid_last(page));
1681 
1682 	isolated = numamigrate_isolate_page(pgdat, page);
1683 	if (!isolated) {
1684 		put_page(new_page);
1685 		goto out_fail;
1686 	}
1687 
1688 	/* Prepare a page as a migration target */
1689 	__set_page_locked(new_page);
1690 	SetPageSwapBacked(new_page);
1691 
1692 	/* anon mapping, we can simply copy page->mapping to the new page: */
1693 	new_page->mapping = page->mapping;
1694 	new_page->index = page->index;
1695 	migrate_page_copy(new_page, page);
1696 	WARN_ON(PageLRU(new_page));
1697 
1698 	/* Recheck the target PMD */
1699 	spin_lock(&mm->page_table_lock);
1700 	if (unlikely(!pmd_same(*pmd, entry))) {
1701 		spin_unlock(&mm->page_table_lock);
1702 
1703 		/* Reverse changes made by migrate_page_copy() */
1704 		if (TestClearPageActive(new_page))
1705 			SetPageActive(page);
1706 		if (TestClearPageUnevictable(new_page))
1707 			SetPageUnevictable(page);
1708 		mlock_migrate_page(page, new_page);
1709 
1710 		unlock_page(new_page);
1711 		put_page(new_page);		/* Free it */
1712 
1713 		unlock_page(page);
1714 		putback_lru_page(page);
1715 
1716 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1717 		isolated = 0;
1718 		goto out;
1719 	}
1720 
1721 	/*
1722 	 * Traditional migration needs to prepare the memcg charge
1723 	 * transaction early to prevent the old page from being
1724 	 * uncharged when installing migration entries.  Here we can
1725 	 * save the potential rollback and start the charge transfer
1726 	 * only when migration is already known to end successfully.
1727 	 */
1728 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1729 
1730 	entry = mk_pmd(new_page, vma->vm_page_prot);
1731 	entry = pmd_mknonnuma(entry);
1732 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1733 	entry = pmd_mkhuge(entry);
1734 
1735 	page_add_new_anon_rmap(new_page, vma, haddr);
1736 
1737 	set_pmd_at(mm, haddr, pmd, entry);
1738 	update_mmu_cache_pmd(vma, address, &entry);
1739 	page_remove_rmap(page);
1740 	/*
1741 	 * Finish the charge transaction under the page table lock to
1742 	 * prevent split_huge_page() from dividing up the charge
1743 	 * before it's fully transferred to the new page.
1744 	 */
1745 	mem_cgroup_end_migration(memcg, page, new_page, true);
1746 	spin_unlock(&mm->page_table_lock);
1747 
1748 	unlock_page(new_page);
1749 	unlock_page(page);
1750 	put_page(page);			/* Drop the rmap reference */
1751 	put_page(page);			/* Drop the LRU isolation reference */
1752 
1753 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1754 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1755 
1756 out:
1757 	mod_zone_page_state(page_zone(page),
1758 			NR_ISOLATED_ANON + page_lru,
1759 			-HPAGE_PMD_NR);
1760 	return isolated;
1761 
1762 out_fail:
1763 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1764 out_dropref:
1765 	unlock_page(page);
1766 	put_page(page);
1767 	return 0;
1768 }
1769 #endif /* CONFIG_NUMA_BALANCING */
1770 
1771 #endif /* CONFIG_NUMA */
1772