xref: /openbmc/linux/mm/migrate.c (revision c0e297dc)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 
124 		ptep = pte_offset_map(pmd, addr);
125 
126 		/*
127 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128 		 * can race mremap's move_ptes(), which skips anon_vma lock.
129 		 */
130 
131 		ptl = pte_lockptr(mm, pmd);
132 	}
133 
134  	spin_lock(ptl);
135 	pte = *ptep;
136 	if (!is_swap_pte(pte))
137 		goto unlock;
138 
139 	entry = pte_to_swp_entry(pte);
140 
141 	if (!is_migration_entry(entry) ||
142 	    migration_entry_to_page(entry) != old)
143 		goto unlock;
144 
145 	get_page(new);
146 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 	if (pte_swp_soft_dirty(*ptep))
148 		pte = pte_mksoft_dirty(pte);
149 
150 	/* Recheck VMA as permissions can change since migration started  */
151 	if (is_write_migration_entry(entry))
152 		pte = maybe_mkwrite(pte, vma);
153 
154 #ifdef CONFIG_HUGETLB_PAGE
155 	if (PageHuge(new)) {
156 		pte = pte_mkhuge(pte);
157 		pte = arch_make_huge_pte(pte, vma, new, 0);
158 	}
159 #endif
160 	flush_dcache_page(new);
161 	set_pte_at(mm, addr, ptep, pte);
162 
163 	if (PageHuge(new)) {
164 		if (PageAnon(new))
165 			hugepage_add_anon_rmap(new, vma, addr);
166 		else
167 			page_dup_rmap(new);
168 	} else if (PageAnon(new))
169 		page_add_anon_rmap(new, vma, addr);
170 	else
171 		page_add_file_rmap(new);
172 
173 	/* No need to invalidate - it was non-present before */
174 	update_mmu_cache(vma, addr, ptep);
175 unlock:
176 	pte_unmap_unlock(ptep, ptl);
177 out:
178 	return SWAP_AGAIN;
179 }
180 
181 /*
182  * Get rid of all migration entries and replace them by
183  * references to the indicated page.
184  */
185 static void remove_migration_ptes(struct page *old, struct page *new)
186 {
187 	struct rmap_walk_control rwc = {
188 		.rmap_one = remove_migration_pte,
189 		.arg = old,
190 	};
191 
192 	rmap_walk(new, &rwc);
193 }
194 
195 /*
196  * Something used the pte of a page under migration. We need to
197  * get to the page and wait until migration is finished.
198  * When we return from this function the fault will be retried.
199  */
200 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
201 				spinlock_t *ptl)
202 {
203 	pte_t pte;
204 	swp_entry_t entry;
205 	struct page *page;
206 
207 	spin_lock(ptl);
208 	pte = *ptep;
209 	if (!is_swap_pte(pte))
210 		goto out;
211 
212 	entry = pte_to_swp_entry(pte);
213 	if (!is_migration_entry(entry))
214 		goto out;
215 
216 	page = migration_entry_to_page(entry);
217 
218 	/*
219 	 * Once radix-tree replacement of page migration started, page_count
220 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
221 	 * against a page without get_page().
222 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
223 	 * will occur again.
224 	 */
225 	if (!get_page_unless_zero(page))
226 		goto out;
227 	pte_unmap_unlock(ptep, ptl);
228 	wait_on_page_locked(page);
229 	put_page(page);
230 	return;
231 out:
232 	pte_unmap_unlock(ptep, ptl);
233 }
234 
235 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
236 				unsigned long address)
237 {
238 	spinlock_t *ptl = pte_lockptr(mm, pmd);
239 	pte_t *ptep = pte_offset_map(pmd, address);
240 	__migration_entry_wait(mm, ptep, ptl);
241 }
242 
243 void migration_entry_wait_huge(struct vm_area_struct *vma,
244 		struct mm_struct *mm, pte_t *pte)
245 {
246 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
247 	__migration_entry_wait(mm, pte, ptl);
248 }
249 
250 #ifdef CONFIG_BLOCK
251 /* Returns true if all buffers are successfully locked */
252 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
253 							enum migrate_mode mode)
254 {
255 	struct buffer_head *bh = head;
256 
257 	/* Simple case, sync compaction */
258 	if (mode != MIGRATE_ASYNC) {
259 		do {
260 			get_bh(bh);
261 			lock_buffer(bh);
262 			bh = bh->b_this_page;
263 
264 		} while (bh != head);
265 
266 		return true;
267 	}
268 
269 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
270 	do {
271 		get_bh(bh);
272 		if (!trylock_buffer(bh)) {
273 			/*
274 			 * We failed to lock the buffer and cannot stall in
275 			 * async migration. Release the taken locks
276 			 */
277 			struct buffer_head *failed_bh = bh;
278 			put_bh(failed_bh);
279 			bh = head;
280 			while (bh != failed_bh) {
281 				unlock_buffer(bh);
282 				put_bh(bh);
283 				bh = bh->b_this_page;
284 			}
285 			return false;
286 		}
287 
288 		bh = bh->b_this_page;
289 	} while (bh != head);
290 	return true;
291 }
292 #else
293 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
294 							enum migrate_mode mode)
295 {
296 	return true;
297 }
298 #endif /* CONFIG_BLOCK */
299 
300 /*
301  * Replace the page in the mapping.
302  *
303  * The number of remaining references must be:
304  * 1 for anonymous pages without a mapping
305  * 2 for pages with a mapping
306  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
307  */
308 int migrate_page_move_mapping(struct address_space *mapping,
309 		struct page *newpage, struct page *page,
310 		struct buffer_head *head, enum migrate_mode mode,
311 		int extra_count)
312 {
313 	int expected_count = 1 + extra_count;
314 	void **pslot;
315 
316 	if (!mapping) {
317 		/* Anonymous page without mapping */
318 		if (page_count(page) != expected_count)
319 			return -EAGAIN;
320 		return MIGRATEPAGE_SUCCESS;
321 	}
322 
323 	spin_lock_irq(&mapping->tree_lock);
324 
325 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
326  					page_index(page));
327 
328 	expected_count += 1 + page_has_private(page);
329 	if (page_count(page) != expected_count ||
330 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
331 		spin_unlock_irq(&mapping->tree_lock);
332 		return -EAGAIN;
333 	}
334 
335 	if (!page_freeze_refs(page, expected_count)) {
336 		spin_unlock_irq(&mapping->tree_lock);
337 		return -EAGAIN;
338 	}
339 
340 	/*
341 	 * In the async migration case of moving a page with buffers, lock the
342 	 * buffers using trylock before the mapping is moved. If the mapping
343 	 * was moved, we later failed to lock the buffers and could not move
344 	 * the mapping back due to an elevated page count, we would have to
345 	 * block waiting on other references to be dropped.
346 	 */
347 	if (mode == MIGRATE_ASYNC && head &&
348 			!buffer_migrate_lock_buffers(head, mode)) {
349 		page_unfreeze_refs(page, expected_count);
350 		spin_unlock_irq(&mapping->tree_lock);
351 		return -EAGAIN;
352 	}
353 
354 	/*
355 	 * Now we know that no one else is looking at the page.
356 	 */
357 	get_page(newpage);	/* add cache reference */
358 	if (PageSwapCache(page)) {
359 		SetPageSwapCache(newpage);
360 		set_page_private(newpage, page_private(page));
361 	}
362 
363 	radix_tree_replace_slot(pslot, newpage);
364 
365 	/*
366 	 * Drop cache reference from old page by unfreezing
367 	 * to one less reference.
368 	 * We know this isn't the last reference.
369 	 */
370 	page_unfreeze_refs(page, expected_count - 1);
371 
372 	/*
373 	 * If moved to a different zone then also account
374 	 * the page for that zone. Other VM counters will be
375 	 * taken care of when we establish references to the
376 	 * new page and drop references to the old page.
377 	 *
378 	 * Note that anonymous pages are accounted for
379 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
380 	 * are mapped to swap space.
381 	 */
382 	__dec_zone_page_state(page, NR_FILE_PAGES);
383 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
384 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
385 		__dec_zone_page_state(page, NR_SHMEM);
386 		__inc_zone_page_state(newpage, NR_SHMEM);
387 	}
388 	spin_unlock_irq(&mapping->tree_lock);
389 
390 	return MIGRATEPAGE_SUCCESS;
391 }
392 
393 /*
394  * The expected number of remaining references is the same as that
395  * of migrate_page_move_mapping().
396  */
397 int migrate_huge_page_move_mapping(struct address_space *mapping,
398 				   struct page *newpage, struct page *page)
399 {
400 	int expected_count;
401 	void **pslot;
402 
403 	if (!mapping) {
404 		if (page_count(page) != 1)
405 			return -EAGAIN;
406 		return MIGRATEPAGE_SUCCESS;
407 	}
408 
409 	spin_lock_irq(&mapping->tree_lock);
410 
411 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
412 					page_index(page));
413 
414 	expected_count = 2 + page_has_private(page);
415 	if (page_count(page) != expected_count ||
416 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
417 		spin_unlock_irq(&mapping->tree_lock);
418 		return -EAGAIN;
419 	}
420 
421 	if (!page_freeze_refs(page, expected_count)) {
422 		spin_unlock_irq(&mapping->tree_lock);
423 		return -EAGAIN;
424 	}
425 
426 	get_page(newpage);
427 
428 	radix_tree_replace_slot(pslot, newpage);
429 
430 	page_unfreeze_refs(page, expected_count - 1);
431 
432 	spin_unlock_irq(&mapping->tree_lock);
433 	return MIGRATEPAGE_SUCCESS;
434 }
435 
436 /*
437  * Gigantic pages are so large that we do not guarantee that page++ pointer
438  * arithmetic will work across the entire page.  We need something more
439  * specialized.
440  */
441 static void __copy_gigantic_page(struct page *dst, struct page *src,
442 				int nr_pages)
443 {
444 	int i;
445 	struct page *dst_base = dst;
446 	struct page *src_base = src;
447 
448 	for (i = 0; i < nr_pages; ) {
449 		cond_resched();
450 		copy_highpage(dst, src);
451 
452 		i++;
453 		dst = mem_map_next(dst, dst_base, i);
454 		src = mem_map_next(src, src_base, i);
455 	}
456 }
457 
458 static void copy_huge_page(struct page *dst, struct page *src)
459 {
460 	int i;
461 	int nr_pages;
462 
463 	if (PageHuge(src)) {
464 		/* hugetlbfs page */
465 		struct hstate *h = page_hstate(src);
466 		nr_pages = pages_per_huge_page(h);
467 
468 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
469 			__copy_gigantic_page(dst, src, nr_pages);
470 			return;
471 		}
472 	} else {
473 		/* thp page */
474 		BUG_ON(!PageTransHuge(src));
475 		nr_pages = hpage_nr_pages(src);
476 	}
477 
478 	for (i = 0; i < nr_pages; i++) {
479 		cond_resched();
480 		copy_highpage(dst + i, src + i);
481 	}
482 }
483 
484 /*
485  * Copy the page to its new location
486  */
487 void migrate_page_copy(struct page *newpage, struct page *page)
488 {
489 	int cpupid;
490 
491 	if (PageHuge(page) || PageTransHuge(page))
492 		copy_huge_page(newpage, page);
493 	else
494 		copy_highpage(newpage, page);
495 
496 	if (PageError(page))
497 		SetPageError(newpage);
498 	if (PageReferenced(page))
499 		SetPageReferenced(newpage);
500 	if (PageUptodate(page))
501 		SetPageUptodate(newpage);
502 	if (TestClearPageActive(page)) {
503 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
504 		SetPageActive(newpage);
505 	} else if (TestClearPageUnevictable(page))
506 		SetPageUnevictable(newpage);
507 	if (PageChecked(page))
508 		SetPageChecked(newpage);
509 	if (PageMappedToDisk(page))
510 		SetPageMappedToDisk(newpage);
511 
512 	if (PageDirty(page)) {
513 		clear_page_dirty_for_io(page);
514 		/*
515 		 * Want to mark the page and the radix tree as dirty, and
516 		 * redo the accounting that clear_page_dirty_for_io undid,
517 		 * but we can't use set_page_dirty because that function
518 		 * is actually a signal that all of the page has become dirty.
519 		 * Whereas only part of our page may be dirty.
520 		 */
521 		if (PageSwapBacked(page))
522 			SetPageDirty(newpage);
523 		else
524 			__set_page_dirty_nobuffers(newpage);
525  	}
526 
527 	/*
528 	 * Copy NUMA information to the new page, to prevent over-eager
529 	 * future migrations of this same page.
530 	 */
531 	cpupid = page_cpupid_xchg_last(page, -1);
532 	page_cpupid_xchg_last(newpage, cpupid);
533 
534 	mlock_migrate_page(newpage, page);
535 	ksm_migrate_page(newpage, page);
536 	/*
537 	 * Please do not reorder this without considering how mm/ksm.c's
538 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
539 	 */
540 	if (PageSwapCache(page))
541 		ClearPageSwapCache(page);
542 	ClearPagePrivate(page);
543 	set_page_private(page, 0);
544 
545 	/*
546 	 * If any waiters have accumulated on the new page then
547 	 * wake them up.
548 	 */
549 	if (PageWriteback(newpage))
550 		end_page_writeback(newpage);
551 }
552 
553 /************************************************************
554  *                    Migration functions
555  ***********************************************************/
556 
557 /*
558  * Common logic to directly migrate a single page suitable for
559  * pages that do not use PagePrivate/PagePrivate2.
560  *
561  * Pages are locked upon entry and exit.
562  */
563 int migrate_page(struct address_space *mapping,
564 		struct page *newpage, struct page *page,
565 		enum migrate_mode mode)
566 {
567 	int rc;
568 
569 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
570 
571 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
572 
573 	if (rc != MIGRATEPAGE_SUCCESS)
574 		return rc;
575 
576 	migrate_page_copy(newpage, page);
577 	return MIGRATEPAGE_SUCCESS;
578 }
579 EXPORT_SYMBOL(migrate_page);
580 
581 #ifdef CONFIG_BLOCK
582 /*
583  * Migration function for pages with buffers. This function can only be used
584  * if the underlying filesystem guarantees that no other references to "page"
585  * exist.
586  */
587 int buffer_migrate_page(struct address_space *mapping,
588 		struct page *newpage, struct page *page, enum migrate_mode mode)
589 {
590 	struct buffer_head *bh, *head;
591 	int rc;
592 
593 	if (!page_has_buffers(page))
594 		return migrate_page(mapping, newpage, page, mode);
595 
596 	head = page_buffers(page);
597 
598 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
599 
600 	if (rc != MIGRATEPAGE_SUCCESS)
601 		return rc;
602 
603 	/*
604 	 * In the async case, migrate_page_move_mapping locked the buffers
605 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
606 	 * need to be locked now
607 	 */
608 	if (mode != MIGRATE_ASYNC)
609 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
610 
611 	ClearPagePrivate(page);
612 	set_page_private(newpage, page_private(page));
613 	set_page_private(page, 0);
614 	put_page(page);
615 	get_page(newpage);
616 
617 	bh = head;
618 	do {
619 		set_bh_page(bh, newpage, bh_offset(bh));
620 		bh = bh->b_this_page;
621 
622 	} while (bh != head);
623 
624 	SetPagePrivate(newpage);
625 
626 	migrate_page_copy(newpage, page);
627 
628 	bh = head;
629 	do {
630 		unlock_buffer(bh);
631  		put_bh(bh);
632 		bh = bh->b_this_page;
633 
634 	} while (bh != head);
635 
636 	return MIGRATEPAGE_SUCCESS;
637 }
638 EXPORT_SYMBOL(buffer_migrate_page);
639 #endif
640 
641 /*
642  * Writeback a page to clean the dirty state
643  */
644 static int writeout(struct address_space *mapping, struct page *page)
645 {
646 	struct writeback_control wbc = {
647 		.sync_mode = WB_SYNC_NONE,
648 		.nr_to_write = 1,
649 		.range_start = 0,
650 		.range_end = LLONG_MAX,
651 		.for_reclaim = 1
652 	};
653 	int rc;
654 
655 	if (!mapping->a_ops->writepage)
656 		/* No write method for the address space */
657 		return -EINVAL;
658 
659 	if (!clear_page_dirty_for_io(page))
660 		/* Someone else already triggered a write */
661 		return -EAGAIN;
662 
663 	/*
664 	 * A dirty page may imply that the underlying filesystem has
665 	 * the page on some queue. So the page must be clean for
666 	 * migration. Writeout may mean we loose the lock and the
667 	 * page state is no longer what we checked for earlier.
668 	 * At this point we know that the migration attempt cannot
669 	 * be successful.
670 	 */
671 	remove_migration_ptes(page, page);
672 
673 	rc = mapping->a_ops->writepage(page, &wbc);
674 
675 	if (rc != AOP_WRITEPAGE_ACTIVATE)
676 		/* unlocked. Relock */
677 		lock_page(page);
678 
679 	return (rc < 0) ? -EIO : -EAGAIN;
680 }
681 
682 /*
683  * Default handling if a filesystem does not provide a migration function.
684  */
685 static int fallback_migrate_page(struct address_space *mapping,
686 	struct page *newpage, struct page *page, enum migrate_mode mode)
687 {
688 	if (PageDirty(page)) {
689 		/* Only writeback pages in full synchronous migration */
690 		if (mode != MIGRATE_SYNC)
691 			return -EBUSY;
692 		return writeout(mapping, page);
693 	}
694 
695 	/*
696 	 * Buffers may be managed in a filesystem specific way.
697 	 * We must have no buffers or drop them.
698 	 */
699 	if (page_has_private(page) &&
700 	    !try_to_release_page(page, GFP_KERNEL))
701 		return -EAGAIN;
702 
703 	return migrate_page(mapping, newpage, page, mode);
704 }
705 
706 /*
707  * Move a page to a newly allocated page
708  * The page is locked and all ptes have been successfully removed.
709  *
710  * The new page will have replaced the old page if this function
711  * is successful.
712  *
713  * Return value:
714  *   < 0 - error code
715  *  MIGRATEPAGE_SUCCESS - success
716  */
717 static int move_to_new_page(struct page *newpage, struct page *page,
718 				int page_was_mapped, enum migrate_mode mode)
719 {
720 	struct address_space *mapping;
721 	int rc;
722 
723 	/*
724 	 * Block others from accessing the page when we get around to
725 	 * establishing additional references. We are the only one
726 	 * holding a reference to the new page at this point.
727 	 */
728 	if (!trylock_page(newpage))
729 		BUG();
730 
731 	/* Prepare mapping for the new page.*/
732 	newpage->index = page->index;
733 	newpage->mapping = page->mapping;
734 	if (PageSwapBacked(page))
735 		SetPageSwapBacked(newpage);
736 
737 	mapping = page_mapping(page);
738 	if (!mapping)
739 		rc = migrate_page(mapping, newpage, page, mode);
740 	else if (mapping->a_ops->migratepage)
741 		/*
742 		 * Most pages have a mapping and most filesystems provide a
743 		 * migratepage callback. Anonymous pages are part of swap
744 		 * space which also has its own migratepage callback. This
745 		 * is the most common path for page migration.
746 		 */
747 		rc = mapping->a_ops->migratepage(mapping,
748 						newpage, page, mode);
749 	else
750 		rc = fallback_migrate_page(mapping, newpage, page, mode);
751 
752 	if (rc != MIGRATEPAGE_SUCCESS) {
753 		newpage->mapping = NULL;
754 	} else {
755 		mem_cgroup_migrate(page, newpage, false);
756 		if (page_was_mapped)
757 			remove_migration_ptes(page, newpage);
758 		page->mapping = NULL;
759 	}
760 
761 	unlock_page(newpage);
762 
763 	return rc;
764 }
765 
766 static int __unmap_and_move(struct page *page, struct page *newpage,
767 				int force, enum migrate_mode mode)
768 {
769 	int rc = -EAGAIN;
770 	int page_was_mapped = 0;
771 	struct anon_vma *anon_vma = NULL;
772 
773 	if (!trylock_page(page)) {
774 		if (!force || mode == MIGRATE_ASYNC)
775 			goto out;
776 
777 		/*
778 		 * It's not safe for direct compaction to call lock_page.
779 		 * For example, during page readahead pages are added locked
780 		 * to the LRU. Later, when the IO completes the pages are
781 		 * marked uptodate and unlocked. However, the queueing
782 		 * could be merging multiple pages for one bio (e.g.
783 		 * mpage_readpages). If an allocation happens for the
784 		 * second or third page, the process can end up locking
785 		 * the same page twice and deadlocking. Rather than
786 		 * trying to be clever about what pages can be locked,
787 		 * avoid the use of lock_page for direct compaction
788 		 * altogether.
789 		 */
790 		if (current->flags & PF_MEMALLOC)
791 			goto out;
792 
793 		lock_page(page);
794 	}
795 
796 	if (PageWriteback(page)) {
797 		/*
798 		 * Only in the case of a full synchronous migration is it
799 		 * necessary to wait for PageWriteback. In the async case,
800 		 * the retry loop is too short and in the sync-light case,
801 		 * the overhead of stalling is too much
802 		 */
803 		if (mode != MIGRATE_SYNC) {
804 			rc = -EBUSY;
805 			goto out_unlock;
806 		}
807 		if (!force)
808 			goto out_unlock;
809 		wait_on_page_writeback(page);
810 	}
811 	/*
812 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
813 	 * we cannot notice that anon_vma is freed while we migrates a page.
814 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
815 	 * of migration. File cache pages are no problem because of page_lock()
816 	 * File Caches may use write_page() or lock_page() in migration, then,
817 	 * just care Anon page here.
818 	 */
819 	if (PageAnon(page) && !PageKsm(page)) {
820 		/*
821 		 * Only page_lock_anon_vma_read() understands the subtleties of
822 		 * getting a hold on an anon_vma from outside one of its mms.
823 		 */
824 		anon_vma = page_get_anon_vma(page);
825 		if (anon_vma) {
826 			/*
827 			 * Anon page
828 			 */
829 		} else if (PageSwapCache(page)) {
830 			/*
831 			 * We cannot be sure that the anon_vma of an unmapped
832 			 * swapcache page is safe to use because we don't
833 			 * know in advance if the VMA that this page belonged
834 			 * to still exists. If the VMA and others sharing the
835 			 * data have been freed, then the anon_vma could
836 			 * already be invalid.
837 			 *
838 			 * To avoid this possibility, swapcache pages get
839 			 * migrated but are not remapped when migration
840 			 * completes
841 			 */
842 		} else {
843 			goto out_unlock;
844 		}
845 	}
846 
847 	if (unlikely(isolated_balloon_page(page))) {
848 		/*
849 		 * A ballooned page does not need any special attention from
850 		 * physical to virtual reverse mapping procedures.
851 		 * Skip any attempt to unmap PTEs or to remap swap cache,
852 		 * in order to avoid burning cycles at rmap level, and perform
853 		 * the page migration right away (proteced by page lock).
854 		 */
855 		rc = balloon_page_migrate(newpage, page, mode);
856 		goto out_unlock;
857 	}
858 
859 	/*
860 	 * Corner case handling:
861 	 * 1. When a new swap-cache page is read into, it is added to the LRU
862 	 * and treated as swapcache but it has no rmap yet.
863 	 * Calling try_to_unmap() against a page->mapping==NULL page will
864 	 * trigger a BUG.  So handle it here.
865 	 * 2. An orphaned page (see truncate_complete_page) might have
866 	 * fs-private metadata. The page can be picked up due to memory
867 	 * offlining.  Everywhere else except page reclaim, the page is
868 	 * invisible to the vm, so the page can not be migrated.  So try to
869 	 * free the metadata, so the page can be freed.
870 	 */
871 	if (!page->mapping) {
872 		VM_BUG_ON_PAGE(PageAnon(page), page);
873 		if (page_has_private(page)) {
874 			try_to_free_buffers(page);
875 			goto out_unlock;
876 		}
877 		goto skip_unmap;
878 	}
879 
880 	/* Establish migration ptes or remove ptes */
881 	if (page_mapped(page)) {
882 		try_to_unmap(page,
883 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
884 			TTU_IGNORE_HWPOISON);
885 		page_was_mapped = 1;
886 	}
887 
888 skip_unmap:
889 	if (!page_mapped(page))
890 		rc = move_to_new_page(newpage, page, page_was_mapped, mode);
891 
892 	if (rc && page_was_mapped)
893 		remove_migration_ptes(page, page);
894 
895 	/* Drop an anon_vma reference if we took one */
896 	if (anon_vma)
897 		put_anon_vma(anon_vma);
898 
899 out_unlock:
900 	unlock_page(page);
901 out:
902 	return rc;
903 }
904 
905 /*
906  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
907  * around it.
908  */
909 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
910 #define ICE_noinline noinline
911 #else
912 #define ICE_noinline
913 #endif
914 
915 /*
916  * Obtain the lock on page, remove all ptes and migrate the page
917  * to the newly allocated page in newpage.
918  */
919 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
920 				   free_page_t put_new_page,
921 				   unsigned long private, struct page *page,
922 				   int force, enum migrate_mode mode,
923 				   enum migrate_reason reason)
924 {
925 	int rc = 0;
926 	int *result = NULL;
927 	struct page *newpage = get_new_page(page, private, &result);
928 
929 	if (!newpage)
930 		return -ENOMEM;
931 
932 	if (page_count(page) == 1) {
933 		/* page was freed from under us. So we are done. */
934 		goto out;
935 	}
936 
937 	if (unlikely(PageTransHuge(page)))
938 		if (unlikely(split_huge_page(page)))
939 			goto out;
940 
941 	rc = __unmap_and_move(page, newpage, force, mode);
942 
943 out:
944 	if (rc != -EAGAIN) {
945 		/*
946 		 * A page that has been migrated has all references
947 		 * removed and will be freed. A page that has not been
948 		 * migrated will have kepts its references and be
949 		 * restored.
950 		 */
951 		list_del(&page->lru);
952 		dec_zone_page_state(page, NR_ISOLATED_ANON +
953 				page_is_file_cache(page));
954 		/* Soft-offlined page shouldn't go through lru cache list */
955 		if (reason == MR_MEMORY_FAILURE)
956 			put_page(page);
957 		else
958 			putback_lru_page(page);
959 	}
960 
961 	/*
962 	 * If migration was not successful and there's a freeing callback, use
963 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
964 	 * during isolation.
965 	 */
966 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
967 		ClearPageSwapBacked(newpage);
968 		put_new_page(newpage, private);
969 	} else if (unlikely(__is_movable_balloon_page(newpage))) {
970 		/* drop our reference, page already in the balloon */
971 		put_page(newpage);
972 	} else
973 		putback_lru_page(newpage);
974 
975 	if (result) {
976 		if (rc)
977 			*result = rc;
978 		else
979 			*result = page_to_nid(newpage);
980 	}
981 	return rc;
982 }
983 
984 /*
985  * Counterpart of unmap_and_move_page() for hugepage migration.
986  *
987  * This function doesn't wait the completion of hugepage I/O
988  * because there is no race between I/O and migration for hugepage.
989  * Note that currently hugepage I/O occurs only in direct I/O
990  * where no lock is held and PG_writeback is irrelevant,
991  * and writeback status of all subpages are counted in the reference
992  * count of the head page (i.e. if all subpages of a 2MB hugepage are
993  * under direct I/O, the reference of the head page is 512 and a bit more.)
994  * This means that when we try to migrate hugepage whose subpages are
995  * doing direct I/O, some references remain after try_to_unmap() and
996  * hugepage migration fails without data corruption.
997  *
998  * There is also no race when direct I/O is issued on the page under migration,
999  * because then pte is replaced with migration swap entry and direct I/O code
1000  * will wait in the page fault for migration to complete.
1001  */
1002 static int unmap_and_move_huge_page(new_page_t get_new_page,
1003 				free_page_t put_new_page, unsigned long private,
1004 				struct page *hpage, int force,
1005 				enum migrate_mode mode)
1006 {
1007 	int rc = 0;
1008 	int *result = NULL;
1009 	int page_was_mapped = 0;
1010 	struct page *new_hpage;
1011 	struct anon_vma *anon_vma = NULL;
1012 
1013 	/*
1014 	 * Movability of hugepages depends on architectures and hugepage size.
1015 	 * This check is necessary because some callers of hugepage migration
1016 	 * like soft offline and memory hotremove don't walk through page
1017 	 * tables or check whether the hugepage is pmd-based or not before
1018 	 * kicking migration.
1019 	 */
1020 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1021 		putback_active_hugepage(hpage);
1022 		return -ENOSYS;
1023 	}
1024 
1025 	new_hpage = get_new_page(hpage, private, &result);
1026 	if (!new_hpage)
1027 		return -ENOMEM;
1028 
1029 	rc = -EAGAIN;
1030 
1031 	if (!trylock_page(hpage)) {
1032 		if (!force || mode != MIGRATE_SYNC)
1033 			goto out;
1034 		lock_page(hpage);
1035 	}
1036 
1037 	if (PageAnon(hpage))
1038 		anon_vma = page_get_anon_vma(hpage);
1039 
1040 	if (page_mapped(hpage)) {
1041 		try_to_unmap(hpage,
1042 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1043 		page_was_mapped = 1;
1044 	}
1045 
1046 	if (!page_mapped(hpage))
1047 		rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1048 
1049 	if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1050 		remove_migration_ptes(hpage, hpage);
1051 
1052 	if (anon_vma)
1053 		put_anon_vma(anon_vma);
1054 
1055 	if (rc == MIGRATEPAGE_SUCCESS)
1056 		hugetlb_cgroup_migrate(hpage, new_hpage);
1057 
1058 	unlock_page(hpage);
1059 out:
1060 	if (rc != -EAGAIN)
1061 		putback_active_hugepage(hpage);
1062 
1063 	/*
1064 	 * If migration was not successful and there's a freeing callback, use
1065 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1066 	 * isolation.
1067 	 */
1068 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1069 		put_new_page(new_hpage, private);
1070 	else
1071 		put_page(new_hpage);
1072 
1073 	if (result) {
1074 		if (rc)
1075 			*result = rc;
1076 		else
1077 			*result = page_to_nid(new_hpage);
1078 	}
1079 	return rc;
1080 }
1081 
1082 /*
1083  * migrate_pages - migrate the pages specified in a list, to the free pages
1084  *		   supplied as the target for the page migration
1085  *
1086  * @from:		The list of pages to be migrated.
1087  * @get_new_page:	The function used to allocate free pages to be used
1088  *			as the target of the page migration.
1089  * @put_new_page:	The function used to free target pages if migration
1090  *			fails, or NULL if no special handling is necessary.
1091  * @private:		Private data to be passed on to get_new_page()
1092  * @mode:		The migration mode that specifies the constraints for
1093  *			page migration, if any.
1094  * @reason:		The reason for page migration.
1095  *
1096  * The function returns after 10 attempts or if no pages are movable any more
1097  * because the list has become empty or no retryable pages exist any more.
1098  * The caller should call putback_lru_pages() to return pages to the LRU
1099  * or free list only if ret != 0.
1100  *
1101  * Returns the number of pages that were not migrated, or an error code.
1102  */
1103 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1104 		free_page_t put_new_page, unsigned long private,
1105 		enum migrate_mode mode, int reason)
1106 {
1107 	int retry = 1;
1108 	int nr_failed = 0;
1109 	int nr_succeeded = 0;
1110 	int pass = 0;
1111 	struct page *page;
1112 	struct page *page2;
1113 	int swapwrite = current->flags & PF_SWAPWRITE;
1114 	int rc;
1115 
1116 	if (!swapwrite)
1117 		current->flags |= PF_SWAPWRITE;
1118 
1119 	for(pass = 0; pass < 10 && retry; pass++) {
1120 		retry = 0;
1121 
1122 		list_for_each_entry_safe(page, page2, from, lru) {
1123 			cond_resched();
1124 
1125 			if (PageHuge(page))
1126 				rc = unmap_and_move_huge_page(get_new_page,
1127 						put_new_page, private, page,
1128 						pass > 2, mode);
1129 			else
1130 				rc = unmap_and_move(get_new_page, put_new_page,
1131 						private, page, pass > 2, mode,
1132 						reason);
1133 
1134 			switch(rc) {
1135 			case -ENOMEM:
1136 				goto out;
1137 			case -EAGAIN:
1138 				retry++;
1139 				break;
1140 			case MIGRATEPAGE_SUCCESS:
1141 				nr_succeeded++;
1142 				break;
1143 			default:
1144 				/*
1145 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1146 				 * unlike -EAGAIN case, the failed page is
1147 				 * removed from migration page list and not
1148 				 * retried in the next outer loop.
1149 				 */
1150 				nr_failed++;
1151 				break;
1152 			}
1153 		}
1154 	}
1155 	rc = nr_failed + retry;
1156 out:
1157 	if (nr_succeeded)
1158 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1159 	if (nr_failed)
1160 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1161 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1162 
1163 	if (!swapwrite)
1164 		current->flags &= ~PF_SWAPWRITE;
1165 
1166 	return rc;
1167 }
1168 
1169 #ifdef CONFIG_NUMA
1170 /*
1171  * Move a list of individual pages
1172  */
1173 struct page_to_node {
1174 	unsigned long addr;
1175 	struct page *page;
1176 	int node;
1177 	int status;
1178 };
1179 
1180 static struct page *new_page_node(struct page *p, unsigned long private,
1181 		int **result)
1182 {
1183 	struct page_to_node *pm = (struct page_to_node *)private;
1184 
1185 	while (pm->node != MAX_NUMNODES && pm->page != p)
1186 		pm++;
1187 
1188 	if (pm->node == MAX_NUMNODES)
1189 		return NULL;
1190 
1191 	*result = &pm->status;
1192 
1193 	if (PageHuge(p))
1194 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1195 					pm->node);
1196 	else
1197 		return alloc_pages_exact_node(pm->node,
1198 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1199 }
1200 
1201 /*
1202  * Move a set of pages as indicated in the pm array. The addr
1203  * field must be set to the virtual address of the page to be moved
1204  * and the node number must contain a valid target node.
1205  * The pm array ends with node = MAX_NUMNODES.
1206  */
1207 static int do_move_page_to_node_array(struct mm_struct *mm,
1208 				      struct page_to_node *pm,
1209 				      int migrate_all)
1210 {
1211 	int err;
1212 	struct page_to_node *pp;
1213 	LIST_HEAD(pagelist);
1214 
1215 	down_read(&mm->mmap_sem);
1216 
1217 	/*
1218 	 * Build a list of pages to migrate
1219 	 */
1220 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1221 		struct vm_area_struct *vma;
1222 		struct page *page;
1223 
1224 		err = -EFAULT;
1225 		vma = find_vma(mm, pp->addr);
1226 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1227 			goto set_status;
1228 
1229 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1230 
1231 		err = PTR_ERR(page);
1232 		if (IS_ERR(page))
1233 			goto set_status;
1234 
1235 		err = -ENOENT;
1236 		if (!page)
1237 			goto set_status;
1238 
1239 		/* Use PageReserved to check for zero page */
1240 		if (PageReserved(page))
1241 			goto put_and_set;
1242 
1243 		pp->page = page;
1244 		err = page_to_nid(page);
1245 
1246 		if (err == pp->node)
1247 			/*
1248 			 * Node already in the right place
1249 			 */
1250 			goto put_and_set;
1251 
1252 		err = -EACCES;
1253 		if (page_mapcount(page) > 1 &&
1254 				!migrate_all)
1255 			goto put_and_set;
1256 
1257 		if (PageHuge(page)) {
1258 			if (PageHead(page))
1259 				isolate_huge_page(page, &pagelist);
1260 			goto put_and_set;
1261 		}
1262 
1263 		err = isolate_lru_page(page);
1264 		if (!err) {
1265 			list_add_tail(&page->lru, &pagelist);
1266 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1267 					    page_is_file_cache(page));
1268 		}
1269 put_and_set:
1270 		/*
1271 		 * Either remove the duplicate refcount from
1272 		 * isolate_lru_page() or drop the page ref if it was
1273 		 * not isolated.
1274 		 */
1275 		put_page(page);
1276 set_status:
1277 		pp->status = err;
1278 	}
1279 
1280 	err = 0;
1281 	if (!list_empty(&pagelist)) {
1282 		err = migrate_pages(&pagelist, new_page_node, NULL,
1283 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1284 		if (err)
1285 			putback_movable_pages(&pagelist);
1286 	}
1287 
1288 	up_read(&mm->mmap_sem);
1289 	return err;
1290 }
1291 
1292 /*
1293  * Migrate an array of page address onto an array of nodes and fill
1294  * the corresponding array of status.
1295  */
1296 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1297 			 unsigned long nr_pages,
1298 			 const void __user * __user *pages,
1299 			 const int __user *nodes,
1300 			 int __user *status, int flags)
1301 {
1302 	struct page_to_node *pm;
1303 	unsigned long chunk_nr_pages;
1304 	unsigned long chunk_start;
1305 	int err;
1306 
1307 	err = -ENOMEM;
1308 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1309 	if (!pm)
1310 		goto out;
1311 
1312 	migrate_prep();
1313 
1314 	/*
1315 	 * Store a chunk of page_to_node array in a page,
1316 	 * but keep the last one as a marker
1317 	 */
1318 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1319 
1320 	for (chunk_start = 0;
1321 	     chunk_start < nr_pages;
1322 	     chunk_start += chunk_nr_pages) {
1323 		int j;
1324 
1325 		if (chunk_start + chunk_nr_pages > nr_pages)
1326 			chunk_nr_pages = nr_pages - chunk_start;
1327 
1328 		/* fill the chunk pm with addrs and nodes from user-space */
1329 		for (j = 0; j < chunk_nr_pages; j++) {
1330 			const void __user *p;
1331 			int node;
1332 
1333 			err = -EFAULT;
1334 			if (get_user(p, pages + j + chunk_start))
1335 				goto out_pm;
1336 			pm[j].addr = (unsigned long) p;
1337 
1338 			if (get_user(node, nodes + j + chunk_start))
1339 				goto out_pm;
1340 
1341 			err = -ENODEV;
1342 			if (node < 0 || node >= MAX_NUMNODES)
1343 				goto out_pm;
1344 
1345 			if (!node_state(node, N_MEMORY))
1346 				goto out_pm;
1347 
1348 			err = -EACCES;
1349 			if (!node_isset(node, task_nodes))
1350 				goto out_pm;
1351 
1352 			pm[j].node = node;
1353 		}
1354 
1355 		/* End marker for this chunk */
1356 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1357 
1358 		/* Migrate this chunk */
1359 		err = do_move_page_to_node_array(mm, pm,
1360 						 flags & MPOL_MF_MOVE_ALL);
1361 		if (err < 0)
1362 			goto out_pm;
1363 
1364 		/* Return status information */
1365 		for (j = 0; j < chunk_nr_pages; j++)
1366 			if (put_user(pm[j].status, status + j + chunk_start)) {
1367 				err = -EFAULT;
1368 				goto out_pm;
1369 			}
1370 	}
1371 	err = 0;
1372 
1373 out_pm:
1374 	free_page((unsigned long)pm);
1375 out:
1376 	return err;
1377 }
1378 
1379 /*
1380  * Determine the nodes of an array of pages and store it in an array of status.
1381  */
1382 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1383 				const void __user **pages, int *status)
1384 {
1385 	unsigned long i;
1386 
1387 	down_read(&mm->mmap_sem);
1388 
1389 	for (i = 0; i < nr_pages; i++) {
1390 		unsigned long addr = (unsigned long)(*pages);
1391 		struct vm_area_struct *vma;
1392 		struct page *page;
1393 		int err = -EFAULT;
1394 
1395 		vma = find_vma(mm, addr);
1396 		if (!vma || addr < vma->vm_start)
1397 			goto set_status;
1398 
1399 		page = follow_page(vma, addr, 0);
1400 
1401 		err = PTR_ERR(page);
1402 		if (IS_ERR(page))
1403 			goto set_status;
1404 
1405 		err = -ENOENT;
1406 		/* Use PageReserved to check for zero page */
1407 		if (!page || PageReserved(page))
1408 			goto set_status;
1409 
1410 		err = page_to_nid(page);
1411 set_status:
1412 		*status = err;
1413 
1414 		pages++;
1415 		status++;
1416 	}
1417 
1418 	up_read(&mm->mmap_sem);
1419 }
1420 
1421 /*
1422  * Determine the nodes of a user array of pages and store it in
1423  * a user array of status.
1424  */
1425 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1426 			 const void __user * __user *pages,
1427 			 int __user *status)
1428 {
1429 #define DO_PAGES_STAT_CHUNK_NR 16
1430 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1431 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1432 
1433 	while (nr_pages) {
1434 		unsigned long chunk_nr;
1435 
1436 		chunk_nr = nr_pages;
1437 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1438 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1439 
1440 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1441 			break;
1442 
1443 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1444 
1445 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1446 			break;
1447 
1448 		pages += chunk_nr;
1449 		status += chunk_nr;
1450 		nr_pages -= chunk_nr;
1451 	}
1452 	return nr_pages ? -EFAULT : 0;
1453 }
1454 
1455 /*
1456  * Move a list of pages in the address space of the currently executing
1457  * process.
1458  */
1459 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1460 		const void __user * __user *, pages,
1461 		const int __user *, nodes,
1462 		int __user *, status, int, flags)
1463 {
1464 	const struct cred *cred = current_cred(), *tcred;
1465 	struct task_struct *task;
1466 	struct mm_struct *mm;
1467 	int err;
1468 	nodemask_t task_nodes;
1469 
1470 	/* Check flags */
1471 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1472 		return -EINVAL;
1473 
1474 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1475 		return -EPERM;
1476 
1477 	/* Find the mm_struct */
1478 	rcu_read_lock();
1479 	task = pid ? find_task_by_vpid(pid) : current;
1480 	if (!task) {
1481 		rcu_read_unlock();
1482 		return -ESRCH;
1483 	}
1484 	get_task_struct(task);
1485 
1486 	/*
1487 	 * Check if this process has the right to modify the specified
1488 	 * process. The right exists if the process has administrative
1489 	 * capabilities, superuser privileges or the same
1490 	 * userid as the target process.
1491 	 */
1492 	tcred = __task_cred(task);
1493 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1494 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1495 	    !capable(CAP_SYS_NICE)) {
1496 		rcu_read_unlock();
1497 		err = -EPERM;
1498 		goto out;
1499 	}
1500 	rcu_read_unlock();
1501 
1502  	err = security_task_movememory(task);
1503  	if (err)
1504 		goto out;
1505 
1506 	task_nodes = cpuset_mems_allowed(task);
1507 	mm = get_task_mm(task);
1508 	put_task_struct(task);
1509 
1510 	if (!mm)
1511 		return -EINVAL;
1512 
1513 	if (nodes)
1514 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1515 				    nodes, status, flags);
1516 	else
1517 		err = do_pages_stat(mm, nr_pages, pages, status);
1518 
1519 	mmput(mm);
1520 	return err;
1521 
1522 out:
1523 	put_task_struct(task);
1524 	return err;
1525 }
1526 
1527 #ifdef CONFIG_NUMA_BALANCING
1528 /*
1529  * Returns true if this is a safe migration target node for misplaced NUMA
1530  * pages. Currently it only checks the watermarks which crude
1531  */
1532 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1533 				   unsigned long nr_migrate_pages)
1534 {
1535 	int z;
1536 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1537 		struct zone *zone = pgdat->node_zones + z;
1538 
1539 		if (!populated_zone(zone))
1540 			continue;
1541 
1542 		if (!zone_reclaimable(zone))
1543 			continue;
1544 
1545 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1546 		if (!zone_watermark_ok(zone, 0,
1547 				       high_wmark_pages(zone) +
1548 				       nr_migrate_pages,
1549 				       0, 0))
1550 			continue;
1551 		return true;
1552 	}
1553 	return false;
1554 }
1555 
1556 static struct page *alloc_misplaced_dst_page(struct page *page,
1557 					   unsigned long data,
1558 					   int **result)
1559 {
1560 	int nid = (int) data;
1561 	struct page *newpage;
1562 
1563 	newpage = alloc_pages_exact_node(nid,
1564 					 (GFP_HIGHUSER_MOVABLE |
1565 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1566 					  __GFP_NORETRY | __GFP_NOWARN) &
1567 					 ~GFP_IOFS, 0);
1568 
1569 	return newpage;
1570 }
1571 
1572 /*
1573  * page migration rate limiting control.
1574  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1575  * window of time. Default here says do not migrate more than 1280M per second.
1576  */
1577 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1578 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1579 
1580 /* Returns true if the node is migrate rate-limited after the update */
1581 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1582 					unsigned long nr_pages)
1583 {
1584 	/*
1585 	 * Rate-limit the amount of data that is being migrated to a node.
1586 	 * Optimal placement is no good if the memory bus is saturated and
1587 	 * all the time is being spent migrating!
1588 	 */
1589 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1590 		spin_lock(&pgdat->numabalancing_migrate_lock);
1591 		pgdat->numabalancing_migrate_nr_pages = 0;
1592 		pgdat->numabalancing_migrate_next_window = jiffies +
1593 			msecs_to_jiffies(migrate_interval_millisecs);
1594 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1595 	}
1596 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1597 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1598 								nr_pages);
1599 		return true;
1600 	}
1601 
1602 	/*
1603 	 * This is an unlocked non-atomic update so errors are possible.
1604 	 * The consequences are failing to migrate when we potentiall should
1605 	 * have which is not severe enough to warrant locking. If it is ever
1606 	 * a problem, it can be converted to a per-cpu counter.
1607 	 */
1608 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1609 	return false;
1610 }
1611 
1612 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1613 {
1614 	int page_lru;
1615 
1616 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1617 
1618 	/* Avoid migrating to a node that is nearly full */
1619 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1620 		return 0;
1621 
1622 	if (isolate_lru_page(page))
1623 		return 0;
1624 
1625 	/*
1626 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1627 	 * check on page_count(), so we must do it here, now that the page
1628 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1629 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1630 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1631 	 */
1632 	if (PageTransHuge(page) && page_count(page) != 3) {
1633 		putback_lru_page(page);
1634 		return 0;
1635 	}
1636 
1637 	page_lru = page_is_file_cache(page);
1638 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1639 				hpage_nr_pages(page));
1640 
1641 	/*
1642 	 * Isolating the page has taken another reference, so the
1643 	 * caller's reference can be safely dropped without the page
1644 	 * disappearing underneath us during migration.
1645 	 */
1646 	put_page(page);
1647 	return 1;
1648 }
1649 
1650 bool pmd_trans_migrating(pmd_t pmd)
1651 {
1652 	struct page *page = pmd_page(pmd);
1653 	return PageLocked(page);
1654 }
1655 
1656 /*
1657  * Attempt to migrate a misplaced page to the specified destination
1658  * node. Caller is expected to have an elevated reference count on
1659  * the page that will be dropped by this function before returning.
1660  */
1661 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1662 			   int node)
1663 {
1664 	pg_data_t *pgdat = NODE_DATA(node);
1665 	int isolated;
1666 	int nr_remaining;
1667 	LIST_HEAD(migratepages);
1668 
1669 	/*
1670 	 * Don't migrate file pages that are mapped in multiple processes
1671 	 * with execute permissions as they are probably shared libraries.
1672 	 */
1673 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1674 	    (vma->vm_flags & VM_EXEC))
1675 		goto out;
1676 
1677 	/*
1678 	 * Rate-limit the amount of data that is being migrated to a node.
1679 	 * Optimal placement is no good if the memory bus is saturated and
1680 	 * all the time is being spent migrating!
1681 	 */
1682 	if (numamigrate_update_ratelimit(pgdat, 1))
1683 		goto out;
1684 
1685 	isolated = numamigrate_isolate_page(pgdat, page);
1686 	if (!isolated)
1687 		goto out;
1688 
1689 	list_add(&page->lru, &migratepages);
1690 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1691 				     NULL, node, MIGRATE_ASYNC,
1692 				     MR_NUMA_MISPLACED);
1693 	if (nr_remaining) {
1694 		if (!list_empty(&migratepages)) {
1695 			list_del(&page->lru);
1696 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1697 					page_is_file_cache(page));
1698 			putback_lru_page(page);
1699 		}
1700 		isolated = 0;
1701 	} else
1702 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1703 	BUG_ON(!list_empty(&migratepages));
1704 	return isolated;
1705 
1706 out:
1707 	put_page(page);
1708 	return 0;
1709 }
1710 #endif /* CONFIG_NUMA_BALANCING */
1711 
1712 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1713 /*
1714  * Migrates a THP to a given target node. page must be locked and is unlocked
1715  * before returning.
1716  */
1717 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1718 				struct vm_area_struct *vma,
1719 				pmd_t *pmd, pmd_t entry,
1720 				unsigned long address,
1721 				struct page *page, int node)
1722 {
1723 	spinlock_t *ptl;
1724 	pg_data_t *pgdat = NODE_DATA(node);
1725 	int isolated = 0;
1726 	struct page *new_page = NULL;
1727 	int page_lru = page_is_file_cache(page);
1728 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1729 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1730 	pmd_t orig_entry;
1731 
1732 	/*
1733 	 * Rate-limit the amount of data that is being migrated to a node.
1734 	 * Optimal placement is no good if the memory bus is saturated and
1735 	 * all the time is being spent migrating!
1736 	 */
1737 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1738 		goto out_dropref;
1739 
1740 	new_page = alloc_pages_node(node,
1741 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1742 		HPAGE_PMD_ORDER);
1743 	if (!new_page)
1744 		goto out_fail;
1745 
1746 	isolated = numamigrate_isolate_page(pgdat, page);
1747 	if (!isolated) {
1748 		put_page(new_page);
1749 		goto out_fail;
1750 	}
1751 
1752 	if (mm_tlb_flush_pending(mm))
1753 		flush_tlb_range(vma, mmun_start, mmun_end);
1754 
1755 	/* Prepare a page as a migration target */
1756 	__set_page_locked(new_page);
1757 	SetPageSwapBacked(new_page);
1758 
1759 	/* anon mapping, we can simply copy page->mapping to the new page: */
1760 	new_page->mapping = page->mapping;
1761 	new_page->index = page->index;
1762 	migrate_page_copy(new_page, page);
1763 	WARN_ON(PageLRU(new_page));
1764 
1765 	/* Recheck the target PMD */
1766 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1767 	ptl = pmd_lock(mm, pmd);
1768 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1769 fail_putback:
1770 		spin_unlock(ptl);
1771 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1772 
1773 		/* Reverse changes made by migrate_page_copy() */
1774 		if (TestClearPageActive(new_page))
1775 			SetPageActive(page);
1776 		if (TestClearPageUnevictable(new_page))
1777 			SetPageUnevictable(page);
1778 		mlock_migrate_page(page, new_page);
1779 
1780 		unlock_page(new_page);
1781 		put_page(new_page);		/* Free it */
1782 
1783 		/* Retake the callers reference and putback on LRU */
1784 		get_page(page);
1785 		putback_lru_page(page);
1786 		mod_zone_page_state(page_zone(page),
1787 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1788 
1789 		goto out_unlock;
1790 	}
1791 
1792 	orig_entry = *pmd;
1793 	entry = mk_pmd(new_page, vma->vm_page_prot);
1794 	entry = pmd_mkhuge(entry);
1795 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1796 
1797 	/*
1798 	 * Clear the old entry under pagetable lock and establish the new PTE.
1799 	 * Any parallel GUP will either observe the old page blocking on the
1800 	 * page lock, block on the page table lock or observe the new page.
1801 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1802 	 * guarantee the copy is visible before the pagetable update.
1803 	 */
1804 	flush_cache_range(vma, mmun_start, mmun_end);
1805 	page_add_anon_rmap(new_page, vma, mmun_start);
1806 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1807 	set_pmd_at(mm, mmun_start, pmd, entry);
1808 	flush_tlb_range(vma, mmun_start, mmun_end);
1809 	update_mmu_cache_pmd(vma, address, &entry);
1810 
1811 	if (page_count(page) != 2) {
1812 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1813 		flush_tlb_range(vma, mmun_start, mmun_end);
1814 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1815 		update_mmu_cache_pmd(vma, address, &entry);
1816 		page_remove_rmap(new_page);
1817 		goto fail_putback;
1818 	}
1819 
1820 	mem_cgroup_migrate(page, new_page, false);
1821 
1822 	page_remove_rmap(page);
1823 
1824 	spin_unlock(ptl);
1825 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1826 
1827 	/* Take an "isolate" reference and put new page on the LRU. */
1828 	get_page(new_page);
1829 	putback_lru_page(new_page);
1830 
1831 	unlock_page(new_page);
1832 	unlock_page(page);
1833 	put_page(page);			/* Drop the rmap reference */
1834 	put_page(page);			/* Drop the LRU isolation reference */
1835 
1836 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1837 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1838 
1839 	mod_zone_page_state(page_zone(page),
1840 			NR_ISOLATED_ANON + page_lru,
1841 			-HPAGE_PMD_NR);
1842 	return isolated;
1843 
1844 out_fail:
1845 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1846 out_dropref:
1847 	ptl = pmd_lock(mm, pmd);
1848 	if (pmd_same(*pmd, entry)) {
1849 		entry = pmd_modify(entry, vma->vm_page_prot);
1850 		set_pmd_at(mm, mmun_start, pmd, entry);
1851 		update_mmu_cache_pmd(vma, address, &entry);
1852 	}
1853 	spin_unlock(ptl);
1854 
1855 out_unlock:
1856 	unlock_page(page);
1857 	put_page(page);
1858 	return 0;
1859 }
1860 #endif /* CONFIG_NUMA_BALANCING */
1861 
1862 #endif /* CONFIG_NUMA */
1863