xref: /openbmc/linux/mm/migrate.c (revision bca67592)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 
44 #include <asm/tlbflush.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48 
49 #include "internal.h"
50 
51 /*
52  * migrate_prep() needs to be called before we start compiling a list of pages
53  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54  * undesirable, use migrate_prep_local()
55  */
56 int migrate_prep(void)
57 {
58 	/*
59 	 * Clear the LRU lists so pages can be isolated.
60 	 * Note that pages may be moved off the LRU after we have
61 	 * drained them. Those pages will fail to migrate like other
62 	 * pages that may be busy.
63 	 */
64 	lru_add_drain_all();
65 
66 	return 0;
67 }
68 
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72 	lru_add_drain();
73 
74 	return 0;
75 }
76 
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79 	struct address_space *mapping;
80 
81 	/*
82 	 * Avoid burning cycles with pages that are yet under __free_pages(),
83 	 * or just got freed under us.
84 	 *
85 	 * In case we 'win' a race for a movable page being freed under us and
86 	 * raise its refcount preventing __free_pages() from doing its job
87 	 * the put_page() at the end of this block will take care of
88 	 * release this page, thus avoiding a nasty leakage.
89 	 */
90 	if (unlikely(!get_page_unless_zero(page)))
91 		goto out;
92 
93 	/*
94 	 * Check PageMovable before holding a PG_lock because page's owner
95 	 * assumes anybody doesn't touch PG_lock of newly allocated page
96 	 * so unconditionally grapping the lock ruins page's owner side.
97 	 */
98 	if (unlikely(!__PageMovable(page)))
99 		goto out_putpage;
100 	/*
101 	 * As movable pages are not isolated from LRU lists, concurrent
102 	 * compaction threads can race against page migration functions
103 	 * as well as race against the releasing a page.
104 	 *
105 	 * In order to avoid having an already isolated movable page
106 	 * being (wrongly) re-isolated while it is under migration,
107 	 * or to avoid attempting to isolate pages being released,
108 	 * lets be sure we have the page lock
109 	 * before proceeding with the movable page isolation steps.
110 	 */
111 	if (unlikely(!trylock_page(page)))
112 		goto out_putpage;
113 
114 	if (!PageMovable(page) || PageIsolated(page))
115 		goto out_no_isolated;
116 
117 	mapping = page_mapping(page);
118 	VM_BUG_ON_PAGE(!mapping, page);
119 
120 	if (!mapping->a_ops->isolate_page(page, mode))
121 		goto out_no_isolated;
122 
123 	/* Driver shouldn't use PG_isolated bit of page->flags */
124 	WARN_ON_ONCE(PageIsolated(page));
125 	__SetPageIsolated(page);
126 	unlock_page(page);
127 
128 	return true;
129 
130 out_no_isolated:
131 	unlock_page(page);
132 out_putpage:
133 	put_page(page);
134 out:
135 	return false;
136 }
137 
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141 	struct address_space *mapping;
142 
143 	VM_BUG_ON_PAGE(!PageLocked(page), page);
144 	VM_BUG_ON_PAGE(!PageMovable(page), page);
145 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
146 
147 	mapping = page_mapping(page);
148 	mapping->a_ops->putback_page(page);
149 	__ClearPageIsolated(page);
150 }
151 
152 /*
153  * Put previously isolated pages back onto the appropriate lists
154  * from where they were once taken off for compaction/migration.
155  *
156  * This function shall be used whenever the isolated pageset has been
157  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158  * and isolate_huge_page().
159  */
160 void putback_movable_pages(struct list_head *l)
161 {
162 	struct page *page;
163 	struct page *page2;
164 
165 	list_for_each_entry_safe(page, page2, l, lru) {
166 		if (unlikely(PageHuge(page))) {
167 			putback_active_hugepage(page);
168 			continue;
169 		}
170 		list_del(&page->lru);
171 		dec_node_page_state(page, NR_ISOLATED_ANON +
172 				page_is_file_cache(page));
173 		/*
174 		 * We isolated non-lru movable page so here we can use
175 		 * __PageMovable because LRU page's mapping cannot have
176 		 * PAGE_MAPPING_MOVABLE.
177 		 */
178 		if (unlikely(__PageMovable(page))) {
179 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
180 			lock_page(page);
181 			if (PageMovable(page))
182 				putback_movable_page(page);
183 			else
184 				__ClearPageIsolated(page);
185 			unlock_page(page);
186 			put_page(page);
187 		} else {
188 			putback_lru_page(page);
189 		}
190 	}
191 }
192 
193 /*
194  * Restore a potential migration pte to a working pte entry
195  */
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 				 unsigned long addr, void *old)
198 {
199 	struct mm_struct *mm = vma->vm_mm;
200 	swp_entry_t entry;
201  	pmd_t *pmd;
202 	pte_t *ptep, pte;
203  	spinlock_t *ptl;
204 
205 	if (unlikely(PageHuge(new))) {
206 		ptep = huge_pte_offset(mm, addr);
207 		if (!ptep)
208 			goto out;
209 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210 	} else {
211 		pmd = mm_find_pmd(mm, addr);
212 		if (!pmd)
213 			goto out;
214 
215 		ptep = pte_offset_map(pmd, addr);
216 
217 		/*
218 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
219 		 * can race mremap's move_ptes(), which skips anon_vma lock.
220 		 */
221 
222 		ptl = pte_lockptr(mm, pmd);
223 	}
224 
225  	spin_lock(ptl);
226 	pte = *ptep;
227 	if (!is_swap_pte(pte))
228 		goto unlock;
229 
230 	entry = pte_to_swp_entry(pte);
231 
232 	if (!is_migration_entry(entry) ||
233 	    migration_entry_to_page(entry) != old)
234 		goto unlock;
235 
236 	get_page(new);
237 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
238 	if (pte_swp_soft_dirty(*ptep))
239 		pte = pte_mksoft_dirty(pte);
240 
241 	/* Recheck VMA as permissions can change since migration started  */
242 	if (is_write_migration_entry(entry))
243 		pte = maybe_mkwrite(pte, vma);
244 
245 #ifdef CONFIG_HUGETLB_PAGE
246 	if (PageHuge(new)) {
247 		pte = pte_mkhuge(pte);
248 		pte = arch_make_huge_pte(pte, vma, new, 0);
249 	}
250 #endif
251 	flush_dcache_page(new);
252 	set_pte_at(mm, addr, ptep, pte);
253 
254 	if (PageHuge(new)) {
255 		if (PageAnon(new))
256 			hugepage_add_anon_rmap(new, vma, addr);
257 		else
258 			page_dup_rmap(new, true);
259 	} else if (PageAnon(new))
260 		page_add_anon_rmap(new, vma, addr, false);
261 	else
262 		page_add_file_rmap(new, false);
263 
264 	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265 		mlock_vma_page(new);
266 
267 	/* No need to invalidate - it was non-present before */
268 	update_mmu_cache(vma, addr, ptep);
269 unlock:
270 	pte_unmap_unlock(ptep, ptl);
271 out:
272 	return SWAP_AGAIN;
273 }
274 
275 /*
276  * Get rid of all migration entries and replace them by
277  * references to the indicated page.
278  */
279 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
280 {
281 	struct rmap_walk_control rwc = {
282 		.rmap_one = remove_migration_pte,
283 		.arg = old,
284 	};
285 
286 	if (locked)
287 		rmap_walk_locked(new, &rwc);
288 	else
289 		rmap_walk(new, &rwc);
290 }
291 
292 /*
293  * Something used the pte of a page under migration. We need to
294  * get to the page and wait until migration is finished.
295  * When we return from this function the fault will be retried.
296  */
297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298 				spinlock_t *ptl)
299 {
300 	pte_t pte;
301 	swp_entry_t entry;
302 	struct page *page;
303 
304 	spin_lock(ptl);
305 	pte = *ptep;
306 	if (!is_swap_pte(pte))
307 		goto out;
308 
309 	entry = pte_to_swp_entry(pte);
310 	if (!is_migration_entry(entry))
311 		goto out;
312 
313 	page = migration_entry_to_page(entry);
314 
315 	/*
316 	 * Once radix-tree replacement of page migration started, page_count
317 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 	 * against a page without get_page().
319 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
320 	 * will occur again.
321 	 */
322 	if (!get_page_unless_zero(page))
323 		goto out;
324 	pte_unmap_unlock(ptep, ptl);
325 	wait_on_page_locked(page);
326 	put_page(page);
327 	return;
328 out:
329 	pte_unmap_unlock(ptep, ptl);
330 }
331 
332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 				unsigned long address)
334 {
335 	spinlock_t *ptl = pte_lockptr(mm, pmd);
336 	pte_t *ptep = pte_offset_map(pmd, address);
337 	__migration_entry_wait(mm, ptep, ptl);
338 }
339 
340 void migration_entry_wait_huge(struct vm_area_struct *vma,
341 		struct mm_struct *mm, pte_t *pte)
342 {
343 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 	__migration_entry_wait(mm, pte, ptl);
345 }
346 
347 #ifdef CONFIG_BLOCK
348 /* Returns true if all buffers are successfully locked */
349 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 							enum migrate_mode mode)
351 {
352 	struct buffer_head *bh = head;
353 
354 	/* Simple case, sync compaction */
355 	if (mode != MIGRATE_ASYNC) {
356 		do {
357 			get_bh(bh);
358 			lock_buffer(bh);
359 			bh = bh->b_this_page;
360 
361 		} while (bh != head);
362 
363 		return true;
364 	}
365 
366 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
367 	do {
368 		get_bh(bh);
369 		if (!trylock_buffer(bh)) {
370 			/*
371 			 * We failed to lock the buffer and cannot stall in
372 			 * async migration. Release the taken locks
373 			 */
374 			struct buffer_head *failed_bh = bh;
375 			put_bh(failed_bh);
376 			bh = head;
377 			while (bh != failed_bh) {
378 				unlock_buffer(bh);
379 				put_bh(bh);
380 				bh = bh->b_this_page;
381 			}
382 			return false;
383 		}
384 
385 		bh = bh->b_this_page;
386 	} while (bh != head);
387 	return true;
388 }
389 #else
390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391 							enum migrate_mode mode)
392 {
393 	return true;
394 }
395 #endif /* CONFIG_BLOCK */
396 
397 /*
398  * Replace the page in the mapping.
399  *
400  * The number of remaining references must be:
401  * 1 for anonymous pages without a mapping
402  * 2 for pages with a mapping
403  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
404  */
405 int migrate_page_move_mapping(struct address_space *mapping,
406 		struct page *newpage, struct page *page,
407 		struct buffer_head *head, enum migrate_mode mode,
408 		int extra_count)
409 {
410 	struct zone *oldzone, *newzone;
411 	int dirty;
412 	int expected_count = 1 + extra_count;
413 	void **pslot;
414 
415 	if (!mapping) {
416 		/* Anonymous page without mapping */
417 		if (page_count(page) != expected_count)
418 			return -EAGAIN;
419 
420 		/* No turning back from here */
421 		newpage->index = page->index;
422 		newpage->mapping = page->mapping;
423 		if (PageSwapBacked(page))
424 			__SetPageSwapBacked(newpage);
425 
426 		return MIGRATEPAGE_SUCCESS;
427 	}
428 
429 	oldzone = page_zone(page);
430 	newzone = page_zone(newpage);
431 
432 	spin_lock_irq(&mapping->tree_lock);
433 
434 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
435  					page_index(page));
436 
437 	expected_count += 1 + page_has_private(page);
438 	if (page_count(page) != expected_count ||
439 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 		spin_unlock_irq(&mapping->tree_lock);
441 		return -EAGAIN;
442 	}
443 
444 	if (!page_ref_freeze(page, expected_count)) {
445 		spin_unlock_irq(&mapping->tree_lock);
446 		return -EAGAIN;
447 	}
448 
449 	/*
450 	 * In the async migration case of moving a page with buffers, lock the
451 	 * buffers using trylock before the mapping is moved. If the mapping
452 	 * was moved, we later failed to lock the buffers and could not move
453 	 * the mapping back due to an elevated page count, we would have to
454 	 * block waiting on other references to be dropped.
455 	 */
456 	if (mode == MIGRATE_ASYNC && head &&
457 			!buffer_migrate_lock_buffers(head, mode)) {
458 		page_ref_unfreeze(page, expected_count);
459 		spin_unlock_irq(&mapping->tree_lock);
460 		return -EAGAIN;
461 	}
462 
463 	/*
464 	 * Now we know that no one else is looking at the page:
465 	 * no turning back from here.
466 	 */
467 	newpage->index = page->index;
468 	newpage->mapping = page->mapping;
469 	if (PageSwapBacked(page))
470 		__SetPageSwapBacked(newpage);
471 
472 	get_page(newpage);	/* add cache reference */
473 	if (PageSwapCache(page)) {
474 		SetPageSwapCache(newpage);
475 		set_page_private(newpage, page_private(page));
476 	}
477 
478 	/* Move dirty while page refs frozen and newpage not yet exposed */
479 	dirty = PageDirty(page);
480 	if (dirty) {
481 		ClearPageDirty(page);
482 		SetPageDirty(newpage);
483 	}
484 
485 	radix_tree_replace_slot(pslot, newpage);
486 
487 	/*
488 	 * Drop cache reference from old page by unfreezing
489 	 * to one less reference.
490 	 * We know this isn't the last reference.
491 	 */
492 	page_ref_unfreeze(page, expected_count - 1);
493 
494 	spin_unlock(&mapping->tree_lock);
495 	/* Leave irq disabled to prevent preemption while updating stats */
496 
497 	/*
498 	 * If moved to a different zone then also account
499 	 * the page for that zone. Other VM counters will be
500 	 * taken care of when we establish references to the
501 	 * new page and drop references to the old page.
502 	 *
503 	 * Note that anonymous pages are accounted for
504 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
505 	 * are mapped to swap space.
506 	 */
507 	if (newzone != oldzone) {
508 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
509 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
510 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
511 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
512 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
513 		}
514 		if (dirty && mapping_cap_account_dirty(mapping)) {
515 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
516 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
517 		}
518 	}
519 	local_irq_enable();
520 
521 	return MIGRATEPAGE_SUCCESS;
522 }
523 EXPORT_SYMBOL(migrate_page_move_mapping);
524 
525 /*
526  * The expected number of remaining references is the same as that
527  * of migrate_page_move_mapping().
528  */
529 int migrate_huge_page_move_mapping(struct address_space *mapping,
530 				   struct page *newpage, struct page *page)
531 {
532 	int expected_count;
533 	void **pslot;
534 
535 	spin_lock_irq(&mapping->tree_lock);
536 
537 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
538 					page_index(page));
539 
540 	expected_count = 2 + page_has_private(page);
541 	if (page_count(page) != expected_count ||
542 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
543 		spin_unlock_irq(&mapping->tree_lock);
544 		return -EAGAIN;
545 	}
546 
547 	if (!page_ref_freeze(page, expected_count)) {
548 		spin_unlock_irq(&mapping->tree_lock);
549 		return -EAGAIN;
550 	}
551 
552 	newpage->index = page->index;
553 	newpage->mapping = page->mapping;
554 
555 	get_page(newpage);
556 
557 	radix_tree_replace_slot(pslot, newpage);
558 
559 	page_ref_unfreeze(page, expected_count - 1);
560 
561 	spin_unlock_irq(&mapping->tree_lock);
562 
563 	return MIGRATEPAGE_SUCCESS;
564 }
565 
566 /*
567  * Gigantic pages are so large that we do not guarantee that page++ pointer
568  * arithmetic will work across the entire page.  We need something more
569  * specialized.
570  */
571 static void __copy_gigantic_page(struct page *dst, struct page *src,
572 				int nr_pages)
573 {
574 	int i;
575 	struct page *dst_base = dst;
576 	struct page *src_base = src;
577 
578 	for (i = 0; i < nr_pages; ) {
579 		cond_resched();
580 		copy_highpage(dst, src);
581 
582 		i++;
583 		dst = mem_map_next(dst, dst_base, i);
584 		src = mem_map_next(src, src_base, i);
585 	}
586 }
587 
588 static void copy_huge_page(struct page *dst, struct page *src)
589 {
590 	int i;
591 	int nr_pages;
592 
593 	if (PageHuge(src)) {
594 		/* hugetlbfs page */
595 		struct hstate *h = page_hstate(src);
596 		nr_pages = pages_per_huge_page(h);
597 
598 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
599 			__copy_gigantic_page(dst, src, nr_pages);
600 			return;
601 		}
602 	} else {
603 		/* thp page */
604 		BUG_ON(!PageTransHuge(src));
605 		nr_pages = hpage_nr_pages(src);
606 	}
607 
608 	for (i = 0; i < nr_pages; i++) {
609 		cond_resched();
610 		copy_highpage(dst + i, src + i);
611 	}
612 }
613 
614 /*
615  * Copy the page to its new location
616  */
617 void migrate_page_copy(struct page *newpage, struct page *page)
618 {
619 	int cpupid;
620 
621 	if (PageHuge(page) || PageTransHuge(page))
622 		copy_huge_page(newpage, page);
623 	else
624 		copy_highpage(newpage, page);
625 
626 	if (PageError(page))
627 		SetPageError(newpage);
628 	if (PageReferenced(page))
629 		SetPageReferenced(newpage);
630 	if (PageUptodate(page))
631 		SetPageUptodate(newpage);
632 	if (TestClearPageActive(page)) {
633 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
634 		SetPageActive(newpage);
635 	} else if (TestClearPageUnevictable(page))
636 		SetPageUnevictable(newpage);
637 	if (PageChecked(page))
638 		SetPageChecked(newpage);
639 	if (PageMappedToDisk(page))
640 		SetPageMappedToDisk(newpage);
641 
642 	/* Move dirty on pages not done by migrate_page_move_mapping() */
643 	if (PageDirty(page))
644 		SetPageDirty(newpage);
645 
646 	if (page_is_young(page))
647 		set_page_young(newpage);
648 	if (page_is_idle(page))
649 		set_page_idle(newpage);
650 
651 	/*
652 	 * Copy NUMA information to the new page, to prevent over-eager
653 	 * future migrations of this same page.
654 	 */
655 	cpupid = page_cpupid_xchg_last(page, -1);
656 	page_cpupid_xchg_last(newpage, cpupid);
657 
658 	ksm_migrate_page(newpage, page);
659 	/*
660 	 * Please do not reorder this without considering how mm/ksm.c's
661 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
662 	 */
663 	if (PageSwapCache(page))
664 		ClearPageSwapCache(page);
665 	ClearPagePrivate(page);
666 	set_page_private(page, 0);
667 
668 	/*
669 	 * If any waiters have accumulated on the new page then
670 	 * wake them up.
671 	 */
672 	if (PageWriteback(newpage))
673 		end_page_writeback(newpage);
674 
675 	copy_page_owner(page, newpage);
676 
677 	mem_cgroup_migrate(page, newpage);
678 }
679 EXPORT_SYMBOL(migrate_page_copy);
680 
681 /************************************************************
682  *                    Migration functions
683  ***********************************************************/
684 
685 /*
686  * Common logic to directly migrate a single LRU page suitable for
687  * pages that do not use PagePrivate/PagePrivate2.
688  *
689  * Pages are locked upon entry and exit.
690  */
691 int migrate_page(struct address_space *mapping,
692 		struct page *newpage, struct page *page,
693 		enum migrate_mode mode)
694 {
695 	int rc;
696 
697 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
698 
699 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
700 
701 	if (rc != MIGRATEPAGE_SUCCESS)
702 		return rc;
703 
704 	migrate_page_copy(newpage, page);
705 	return MIGRATEPAGE_SUCCESS;
706 }
707 EXPORT_SYMBOL(migrate_page);
708 
709 #ifdef CONFIG_BLOCK
710 /*
711  * Migration function for pages with buffers. This function can only be used
712  * if the underlying filesystem guarantees that no other references to "page"
713  * exist.
714  */
715 int buffer_migrate_page(struct address_space *mapping,
716 		struct page *newpage, struct page *page, enum migrate_mode mode)
717 {
718 	struct buffer_head *bh, *head;
719 	int rc;
720 
721 	if (!page_has_buffers(page))
722 		return migrate_page(mapping, newpage, page, mode);
723 
724 	head = page_buffers(page);
725 
726 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
727 
728 	if (rc != MIGRATEPAGE_SUCCESS)
729 		return rc;
730 
731 	/*
732 	 * In the async case, migrate_page_move_mapping locked the buffers
733 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
734 	 * need to be locked now
735 	 */
736 	if (mode != MIGRATE_ASYNC)
737 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
738 
739 	ClearPagePrivate(page);
740 	set_page_private(newpage, page_private(page));
741 	set_page_private(page, 0);
742 	put_page(page);
743 	get_page(newpage);
744 
745 	bh = head;
746 	do {
747 		set_bh_page(bh, newpage, bh_offset(bh));
748 		bh = bh->b_this_page;
749 
750 	} while (bh != head);
751 
752 	SetPagePrivate(newpage);
753 
754 	migrate_page_copy(newpage, page);
755 
756 	bh = head;
757 	do {
758 		unlock_buffer(bh);
759  		put_bh(bh);
760 		bh = bh->b_this_page;
761 
762 	} while (bh != head);
763 
764 	return MIGRATEPAGE_SUCCESS;
765 }
766 EXPORT_SYMBOL(buffer_migrate_page);
767 #endif
768 
769 /*
770  * Writeback a page to clean the dirty state
771  */
772 static int writeout(struct address_space *mapping, struct page *page)
773 {
774 	struct writeback_control wbc = {
775 		.sync_mode = WB_SYNC_NONE,
776 		.nr_to_write = 1,
777 		.range_start = 0,
778 		.range_end = LLONG_MAX,
779 		.for_reclaim = 1
780 	};
781 	int rc;
782 
783 	if (!mapping->a_ops->writepage)
784 		/* No write method for the address space */
785 		return -EINVAL;
786 
787 	if (!clear_page_dirty_for_io(page))
788 		/* Someone else already triggered a write */
789 		return -EAGAIN;
790 
791 	/*
792 	 * A dirty page may imply that the underlying filesystem has
793 	 * the page on some queue. So the page must be clean for
794 	 * migration. Writeout may mean we loose the lock and the
795 	 * page state is no longer what we checked for earlier.
796 	 * At this point we know that the migration attempt cannot
797 	 * be successful.
798 	 */
799 	remove_migration_ptes(page, page, false);
800 
801 	rc = mapping->a_ops->writepage(page, &wbc);
802 
803 	if (rc != AOP_WRITEPAGE_ACTIVATE)
804 		/* unlocked. Relock */
805 		lock_page(page);
806 
807 	return (rc < 0) ? -EIO : -EAGAIN;
808 }
809 
810 /*
811  * Default handling if a filesystem does not provide a migration function.
812  */
813 static int fallback_migrate_page(struct address_space *mapping,
814 	struct page *newpage, struct page *page, enum migrate_mode mode)
815 {
816 	if (PageDirty(page)) {
817 		/* Only writeback pages in full synchronous migration */
818 		if (mode != MIGRATE_SYNC)
819 			return -EBUSY;
820 		return writeout(mapping, page);
821 	}
822 
823 	/*
824 	 * Buffers may be managed in a filesystem specific way.
825 	 * We must have no buffers or drop them.
826 	 */
827 	if (page_has_private(page) &&
828 	    !try_to_release_page(page, GFP_KERNEL))
829 		return -EAGAIN;
830 
831 	return migrate_page(mapping, newpage, page, mode);
832 }
833 
834 /*
835  * Move a page to a newly allocated page
836  * The page is locked and all ptes have been successfully removed.
837  *
838  * The new page will have replaced the old page if this function
839  * is successful.
840  *
841  * Return value:
842  *   < 0 - error code
843  *  MIGRATEPAGE_SUCCESS - success
844  */
845 static int move_to_new_page(struct page *newpage, struct page *page,
846 				enum migrate_mode mode)
847 {
848 	struct address_space *mapping;
849 	int rc = -EAGAIN;
850 	bool is_lru = !__PageMovable(page);
851 
852 	VM_BUG_ON_PAGE(!PageLocked(page), page);
853 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
854 
855 	mapping = page_mapping(page);
856 
857 	if (likely(is_lru)) {
858 		if (!mapping)
859 			rc = migrate_page(mapping, newpage, page, mode);
860 		else if (mapping->a_ops->migratepage)
861 			/*
862 			 * Most pages have a mapping and most filesystems
863 			 * provide a migratepage callback. Anonymous pages
864 			 * are part of swap space which also has its own
865 			 * migratepage callback. This is the most common path
866 			 * for page migration.
867 			 */
868 			rc = mapping->a_ops->migratepage(mapping, newpage,
869 							page, mode);
870 		else
871 			rc = fallback_migrate_page(mapping, newpage,
872 							page, mode);
873 	} else {
874 		/*
875 		 * In case of non-lru page, it could be released after
876 		 * isolation step. In that case, we shouldn't try migration.
877 		 */
878 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
879 		if (!PageMovable(page)) {
880 			rc = MIGRATEPAGE_SUCCESS;
881 			__ClearPageIsolated(page);
882 			goto out;
883 		}
884 
885 		rc = mapping->a_ops->migratepage(mapping, newpage,
886 						page, mode);
887 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
888 			!PageIsolated(page));
889 	}
890 
891 	/*
892 	 * When successful, old pagecache page->mapping must be cleared before
893 	 * page is freed; but stats require that PageAnon be left as PageAnon.
894 	 */
895 	if (rc == MIGRATEPAGE_SUCCESS) {
896 		if (__PageMovable(page)) {
897 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
898 
899 			/*
900 			 * We clear PG_movable under page_lock so any compactor
901 			 * cannot try to migrate this page.
902 			 */
903 			__ClearPageIsolated(page);
904 		}
905 
906 		/*
907 		 * Anonymous and movable page->mapping will be cleard by
908 		 * free_pages_prepare so don't reset it here for keeping
909 		 * the type to work PageAnon, for example.
910 		 */
911 		if (!PageMappingFlags(page))
912 			page->mapping = NULL;
913 	}
914 out:
915 	return rc;
916 }
917 
918 static int __unmap_and_move(struct page *page, struct page *newpage,
919 				int force, enum migrate_mode mode)
920 {
921 	int rc = -EAGAIN;
922 	int page_was_mapped = 0;
923 	struct anon_vma *anon_vma = NULL;
924 	bool is_lru = !__PageMovable(page);
925 
926 	if (!trylock_page(page)) {
927 		if (!force || mode == MIGRATE_ASYNC)
928 			goto out;
929 
930 		/*
931 		 * It's not safe for direct compaction to call lock_page.
932 		 * For example, during page readahead pages are added locked
933 		 * to the LRU. Later, when the IO completes the pages are
934 		 * marked uptodate and unlocked. However, the queueing
935 		 * could be merging multiple pages for one bio (e.g.
936 		 * mpage_readpages). If an allocation happens for the
937 		 * second or third page, the process can end up locking
938 		 * the same page twice and deadlocking. Rather than
939 		 * trying to be clever about what pages can be locked,
940 		 * avoid the use of lock_page for direct compaction
941 		 * altogether.
942 		 */
943 		if (current->flags & PF_MEMALLOC)
944 			goto out;
945 
946 		lock_page(page);
947 	}
948 
949 	if (PageWriteback(page)) {
950 		/*
951 		 * Only in the case of a full synchronous migration is it
952 		 * necessary to wait for PageWriteback. In the async case,
953 		 * the retry loop is too short and in the sync-light case,
954 		 * the overhead of stalling is too much
955 		 */
956 		if (mode != MIGRATE_SYNC) {
957 			rc = -EBUSY;
958 			goto out_unlock;
959 		}
960 		if (!force)
961 			goto out_unlock;
962 		wait_on_page_writeback(page);
963 	}
964 
965 	/*
966 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
967 	 * we cannot notice that anon_vma is freed while we migrates a page.
968 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
969 	 * of migration. File cache pages are no problem because of page_lock()
970 	 * File Caches may use write_page() or lock_page() in migration, then,
971 	 * just care Anon page here.
972 	 *
973 	 * Only page_get_anon_vma() understands the subtleties of
974 	 * getting a hold on an anon_vma from outside one of its mms.
975 	 * But if we cannot get anon_vma, then we won't need it anyway,
976 	 * because that implies that the anon page is no longer mapped
977 	 * (and cannot be remapped so long as we hold the page lock).
978 	 */
979 	if (PageAnon(page) && !PageKsm(page))
980 		anon_vma = page_get_anon_vma(page);
981 
982 	/*
983 	 * Block others from accessing the new page when we get around to
984 	 * establishing additional references. We are usually the only one
985 	 * holding a reference to newpage at this point. We used to have a BUG
986 	 * here if trylock_page(newpage) fails, but would like to allow for
987 	 * cases where there might be a race with the previous use of newpage.
988 	 * This is much like races on refcount of oldpage: just don't BUG().
989 	 */
990 	if (unlikely(!trylock_page(newpage)))
991 		goto out_unlock;
992 
993 	if (unlikely(!is_lru)) {
994 		rc = move_to_new_page(newpage, page, mode);
995 		goto out_unlock_both;
996 	}
997 
998 	/*
999 	 * Corner case handling:
1000 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1001 	 * and treated as swapcache but it has no rmap yet.
1002 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1003 	 * trigger a BUG.  So handle it here.
1004 	 * 2. An orphaned page (see truncate_complete_page) might have
1005 	 * fs-private metadata. The page can be picked up due to memory
1006 	 * offlining.  Everywhere else except page reclaim, the page is
1007 	 * invisible to the vm, so the page can not be migrated.  So try to
1008 	 * free the metadata, so the page can be freed.
1009 	 */
1010 	if (!page->mapping) {
1011 		VM_BUG_ON_PAGE(PageAnon(page), page);
1012 		if (page_has_private(page)) {
1013 			try_to_free_buffers(page);
1014 			goto out_unlock_both;
1015 		}
1016 	} else if (page_mapped(page)) {
1017 		/* Establish migration ptes */
1018 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1019 				page);
1020 		try_to_unmap(page,
1021 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1022 		page_was_mapped = 1;
1023 	}
1024 
1025 	if (!page_mapped(page))
1026 		rc = move_to_new_page(newpage, page, mode);
1027 
1028 	if (page_was_mapped)
1029 		remove_migration_ptes(page,
1030 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1031 
1032 out_unlock_both:
1033 	unlock_page(newpage);
1034 out_unlock:
1035 	/* Drop an anon_vma reference if we took one */
1036 	if (anon_vma)
1037 		put_anon_vma(anon_vma);
1038 	unlock_page(page);
1039 out:
1040 	/*
1041 	 * If migration is successful, decrease refcount of the newpage
1042 	 * which will not free the page because new page owner increased
1043 	 * refcounter. As well, if it is LRU page, add the page to LRU
1044 	 * list in here.
1045 	 */
1046 	if (rc == MIGRATEPAGE_SUCCESS) {
1047 		if (unlikely(__PageMovable(newpage)))
1048 			put_page(newpage);
1049 		else
1050 			putback_lru_page(newpage);
1051 	}
1052 
1053 	return rc;
1054 }
1055 
1056 /*
1057  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1058  * around it.
1059  */
1060 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1061 #define ICE_noinline noinline
1062 #else
1063 #define ICE_noinline
1064 #endif
1065 
1066 /*
1067  * Obtain the lock on page, remove all ptes and migrate the page
1068  * to the newly allocated page in newpage.
1069  */
1070 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1071 				   free_page_t put_new_page,
1072 				   unsigned long private, struct page *page,
1073 				   int force, enum migrate_mode mode,
1074 				   enum migrate_reason reason)
1075 {
1076 	int rc = MIGRATEPAGE_SUCCESS;
1077 	int *result = NULL;
1078 	struct page *newpage;
1079 
1080 	newpage = get_new_page(page, private, &result);
1081 	if (!newpage)
1082 		return -ENOMEM;
1083 
1084 	if (page_count(page) == 1) {
1085 		/* page was freed from under us. So we are done. */
1086 		ClearPageActive(page);
1087 		ClearPageUnevictable(page);
1088 		if (unlikely(__PageMovable(page))) {
1089 			lock_page(page);
1090 			if (!PageMovable(page))
1091 				__ClearPageIsolated(page);
1092 			unlock_page(page);
1093 		}
1094 		if (put_new_page)
1095 			put_new_page(newpage, private);
1096 		else
1097 			put_page(newpage);
1098 		goto out;
1099 	}
1100 
1101 	if (unlikely(PageTransHuge(page))) {
1102 		lock_page(page);
1103 		rc = split_huge_page(page);
1104 		unlock_page(page);
1105 		if (rc)
1106 			goto out;
1107 	}
1108 
1109 	rc = __unmap_and_move(page, newpage, force, mode);
1110 	if (rc == MIGRATEPAGE_SUCCESS)
1111 		set_page_owner_migrate_reason(newpage, reason);
1112 
1113 out:
1114 	if (rc != -EAGAIN) {
1115 		/*
1116 		 * A page that has been migrated has all references
1117 		 * removed and will be freed. A page that has not been
1118 		 * migrated will have kepts its references and be
1119 		 * restored.
1120 		 */
1121 		list_del(&page->lru);
1122 		dec_node_page_state(page, NR_ISOLATED_ANON +
1123 				page_is_file_cache(page));
1124 	}
1125 
1126 	/*
1127 	 * If migration is successful, releases reference grabbed during
1128 	 * isolation. Otherwise, restore the page to right list unless
1129 	 * we want to retry.
1130 	 */
1131 	if (rc == MIGRATEPAGE_SUCCESS) {
1132 		put_page(page);
1133 		if (reason == MR_MEMORY_FAILURE) {
1134 			/*
1135 			 * Set PG_HWPoison on just freed page
1136 			 * intentionally. Although it's rather weird,
1137 			 * it's how HWPoison flag works at the moment.
1138 			 */
1139 			if (!test_set_page_hwpoison(page))
1140 				num_poisoned_pages_inc();
1141 		}
1142 	} else {
1143 		if (rc != -EAGAIN) {
1144 			if (likely(!__PageMovable(page))) {
1145 				putback_lru_page(page);
1146 				goto put_new;
1147 			}
1148 
1149 			lock_page(page);
1150 			if (PageMovable(page))
1151 				putback_movable_page(page);
1152 			else
1153 				__ClearPageIsolated(page);
1154 			unlock_page(page);
1155 			put_page(page);
1156 		}
1157 put_new:
1158 		if (put_new_page)
1159 			put_new_page(newpage, private);
1160 		else
1161 			put_page(newpage);
1162 	}
1163 
1164 	if (result) {
1165 		if (rc)
1166 			*result = rc;
1167 		else
1168 			*result = page_to_nid(newpage);
1169 	}
1170 	return rc;
1171 }
1172 
1173 /*
1174  * Counterpart of unmap_and_move_page() for hugepage migration.
1175  *
1176  * This function doesn't wait the completion of hugepage I/O
1177  * because there is no race between I/O and migration for hugepage.
1178  * Note that currently hugepage I/O occurs only in direct I/O
1179  * where no lock is held and PG_writeback is irrelevant,
1180  * and writeback status of all subpages are counted in the reference
1181  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1182  * under direct I/O, the reference of the head page is 512 and a bit more.)
1183  * This means that when we try to migrate hugepage whose subpages are
1184  * doing direct I/O, some references remain after try_to_unmap() and
1185  * hugepage migration fails without data corruption.
1186  *
1187  * There is also no race when direct I/O is issued on the page under migration,
1188  * because then pte is replaced with migration swap entry and direct I/O code
1189  * will wait in the page fault for migration to complete.
1190  */
1191 static int unmap_and_move_huge_page(new_page_t get_new_page,
1192 				free_page_t put_new_page, unsigned long private,
1193 				struct page *hpage, int force,
1194 				enum migrate_mode mode, int reason)
1195 {
1196 	int rc = -EAGAIN;
1197 	int *result = NULL;
1198 	int page_was_mapped = 0;
1199 	struct page *new_hpage;
1200 	struct anon_vma *anon_vma = NULL;
1201 
1202 	/*
1203 	 * Movability of hugepages depends on architectures and hugepage size.
1204 	 * This check is necessary because some callers of hugepage migration
1205 	 * like soft offline and memory hotremove don't walk through page
1206 	 * tables or check whether the hugepage is pmd-based or not before
1207 	 * kicking migration.
1208 	 */
1209 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1210 		putback_active_hugepage(hpage);
1211 		return -ENOSYS;
1212 	}
1213 
1214 	new_hpage = get_new_page(hpage, private, &result);
1215 	if (!new_hpage)
1216 		return -ENOMEM;
1217 
1218 	if (!trylock_page(hpage)) {
1219 		if (!force || mode != MIGRATE_SYNC)
1220 			goto out;
1221 		lock_page(hpage);
1222 	}
1223 
1224 	if (PageAnon(hpage))
1225 		anon_vma = page_get_anon_vma(hpage);
1226 
1227 	if (unlikely(!trylock_page(new_hpage)))
1228 		goto put_anon;
1229 
1230 	if (page_mapped(hpage)) {
1231 		try_to_unmap(hpage,
1232 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1233 		page_was_mapped = 1;
1234 	}
1235 
1236 	if (!page_mapped(hpage))
1237 		rc = move_to_new_page(new_hpage, hpage, mode);
1238 
1239 	if (page_was_mapped)
1240 		remove_migration_ptes(hpage,
1241 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1242 
1243 	unlock_page(new_hpage);
1244 
1245 put_anon:
1246 	if (anon_vma)
1247 		put_anon_vma(anon_vma);
1248 
1249 	if (rc == MIGRATEPAGE_SUCCESS) {
1250 		hugetlb_cgroup_migrate(hpage, new_hpage);
1251 		put_new_page = NULL;
1252 		set_page_owner_migrate_reason(new_hpage, reason);
1253 	}
1254 
1255 	unlock_page(hpage);
1256 out:
1257 	if (rc != -EAGAIN)
1258 		putback_active_hugepage(hpage);
1259 
1260 	/*
1261 	 * If migration was not successful and there's a freeing callback, use
1262 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1263 	 * isolation.
1264 	 */
1265 	if (put_new_page)
1266 		put_new_page(new_hpage, private);
1267 	else
1268 		putback_active_hugepage(new_hpage);
1269 
1270 	if (result) {
1271 		if (rc)
1272 			*result = rc;
1273 		else
1274 			*result = page_to_nid(new_hpage);
1275 	}
1276 	return rc;
1277 }
1278 
1279 /*
1280  * migrate_pages - migrate the pages specified in a list, to the free pages
1281  *		   supplied as the target for the page migration
1282  *
1283  * @from:		The list of pages to be migrated.
1284  * @get_new_page:	The function used to allocate free pages to be used
1285  *			as the target of the page migration.
1286  * @put_new_page:	The function used to free target pages if migration
1287  *			fails, or NULL if no special handling is necessary.
1288  * @private:		Private data to be passed on to get_new_page()
1289  * @mode:		The migration mode that specifies the constraints for
1290  *			page migration, if any.
1291  * @reason:		The reason for page migration.
1292  *
1293  * The function returns after 10 attempts or if no pages are movable any more
1294  * because the list has become empty or no retryable pages exist any more.
1295  * The caller should call putback_movable_pages() to return pages to the LRU
1296  * or free list only if ret != 0.
1297  *
1298  * Returns the number of pages that were not migrated, or an error code.
1299  */
1300 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1301 		free_page_t put_new_page, unsigned long private,
1302 		enum migrate_mode mode, int reason)
1303 {
1304 	int retry = 1;
1305 	int nr_failed = 0;
1306 	int nr_succeeded = 0;
1307 	int pass = 0;
1308 	struct page *page;
1309 	struct page *page2;
1310 	int swapwrite = current->flags & PF_SWAPWRITE;
1311 	int rc;
1312 
1313 	if (!swapwrite)
1314 		current->flags |= PF_SWAPWRITE;
1315 
1316 	for(pass = 0; pass < 10 && retry; pass++) {
1317 		retry = 0;
1318 
1319 		list_for_each_entry_safe(page, page2, from, lru) {
1320 			cond_resched();
1321 
1322 			if (PageHuge(page))
1323 				rc = unmap_and_move_huge_page(get_new_page,
1324 						put_new_page, private, page,
1325 						pass > 2, mode, reason);
1326 			else
1327 				rc = unmap_and_move(get_new_page, put_new_page,
1328 						private, page, pass > 2, mode,
1329 						reason);
1330 
1331 			switch(rc) {
1332 			case -ENOMEM:
1333 				nr_failed++;
1334 				goto out;
1335 			case -EAGAIN:
1336 				retry++;
1337 				break;
1338 			case MIGRATEPAGE_SUCCESS:
1339 				nr_succeeded++;
1340 				break;
1341 			default:
1342 				/*
1343 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1344 				 * unlike -EAGAIN case, the failed page is
1345 				 * removed from migration page list and not
1346 				 * retried in the next outer loop.
1347 				 */
1348 				nr_failed++;
1349 				break;
1350 			}
1351 		}
1352 	}
1353 	nr_failed += retry;
1354 	rc = nr_failed;
1355 out:
1356 	if (nr_succeeded)
1357 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1358 	if (nr_failed)
1359 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1360 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1361 
1362 	if (!swapwrite)
1363 		current->flags &= ~PF_SWAPWRITE;
1364 
1365 	return rc;
1366 }
1367 
1368 #ifdef CONFIG_NUMA
1369 /*
1370  * Move a list of individual pages
1371  */
1372 struct page_to_node {
1373 	unsigned long addr;
1374 	struct page *page;
1375 	int node;
1376 	int status;
1377 };
1378 
1379 static struct page *new_page_node(struct page *p, unsigned long private,
1380 		int **result)
1381 {
1382 	struct page_to_node *pm = (struct page_to_node *)private;
1383 
1384 	while (pm->node != MAX_NUMNODES && pm->page != p)
1385 		pm++;
1386 
1387 	if (pm->node == MAX_NUMNODES)
1388 		return NULL;
1389 
1390 	*result = &pm->status;
1391 
1392 	if (PageHuge(p))
1393 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1394 					pm->node);
1395 	else
1396 		return __alloc_pages_node(pm->node,
1397 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1398 }
1399 
1400 /*
1401  * Move a set of pages as indicated in the pm array. The addr
1402  * field must be set to the virtual address of the page to be moved
1403  * and the node number must contain a valid target node.
1404  * The pm array ends with node = MAX_NUMNODES.
1405  */
1406 static int do_move_page_to_node_array(struct mm_struct *mm,
1407 				      struct page_to_node *pm,
1408 				      int migrate_all)
1409 {
1410 	int err;
1411 	struct page_to_node *pp;
1412 	LIST_HEAD(pagelist);
1413 
1414 	down_read(&mm->mmap_sem);
1415 
1416 	/*
1417 	 * Build a list of pages to migrate
1418 	 */
1419 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1420 		struct vm_area_struct *vma;
1421 		struct page *page;
1422 
1423 		err = -EFAULT;
1424 		vma = find_vma(mm, pp->addr);
1425 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1426 			goto set_status;
1427 
1428 		/* FOLL_DUMP to ignore special (like zero) pages */
1429 		page = follow_page(vma, pp->addr,
1430 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1431 
1432 		err = PTR_ERR(page);
1433 		if (IS_ERR(page))
1434 			goto set_status;
1435 
1436 		err = -ENOENT;
1437 		if (!page)
1438 			goto set_status;
1439 
1440 		pp->page = page;
1441 		err = page_to_nid(page);
1442 
1443 		if (err == pp->node)
1444 			/*
1445 			 * Node already in the right place
1446 			 */
1447 			goto put_and_set;
1448 
1449 		err = -EACCES;
1450 		if (page_mapcount(page) > 1 &&
1451 				!migrate_all)
1452 			goto put_and_set;
1453 
1454 		if (PageHuge(page)) {
1455 			if (PageHead(page))
1456 				isolate_huge_page(page, &pagelist);
1457 			goto put_and_set;
1458 		}
1459 
1460 		err = isolate_lru_page(page);
1461 		if (!err) {
1462 			list_add_tail(&page->lru, &pagelist);
1463 			inc_node_page_state(page, NR_ISOLATED_ANON +
1464 					    page_is_file_cache(page));
1465 		}
1466 put_and_set:
1467 		/*
1468 		 * Either remove the duplicate refcount from
1469 		 * isolate_lru_page() or drop the page ref if it was
1470 		 * not isolated.
1471 		 */
1472 		put_page(page);
1473 set_status:
1474 		pp->status = err;
1475 	}
1476 
1477 	err = 0;
1478 	if (!list_empty(&pagelist)) {
1479 		err = migrate_pages(&pagelist, new_page_node, NULL,
1480 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1481 		if (err)
1482 			putback_movable_pages(&pagelist);
1483 	}
1484 
1485 	up_read(&mm->mmap_sem);
1486 	return err;
1487 }
1488 
1489 /*
1490  * Migrate an array of page address onto an array of nodes and fill
1491  * the corresponding array of status.
1492  */
1493 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1494 			 unsigned long nr_pages,
1495 			 const void __user * __user *pages,
1496 			 const int __user *nodes,
1497 			 int __user *status, int flags)
1498 {
1499 	struct page_to_node *pm;
1500 	unsigned long chunk_nr_pages;
1501 	unsigned long chunk_start;
1502 	int err;
1503 
1504 	err = -ENOMEM;
1505 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1506 	if (!pm)
1507 		goto out;
1508 
1509 	migrate_prep();
1510 
1511 	/*
1512 	 * Store a chunk of page_to_node array in a page,
1513 	 * but keep the last one as a marker
1514 	 */
1515 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1516 
1517 	for (chunk_start = 0;
1518 	     chunk_start < nr_pages;
1519 	     chunk_start += chunk_nr_pages) {
1520 		int j;
1521 
1522 		if (chunk_start + chunk_nr_pages > nr_pages)
1523 			chunk_nr_pages = nr_pages - chunk_start;
1524 
1525 		/* fill the chunk pm with addrs and nodes from user-space */
1526 		for (j = 0; j < chunk_nr_pages; j++) {
1527 			const void __user *p;
1528 			int node;
1529 
1530 			err = -EFAULT;
1531 			if (get_user(p, pages + j + chunk_start))
1532 				goto out_pm;
1533 			pm[j].addr = (unsigned long) p;
1534 
1535 			if (get_user(node, nodes + j + chunk_start))
1536 				goto out_pm;
1537 
1538 			err = -ENODEV;
1539 			if (node < 0 || node >= MAX_NUMNODES)
1540 				goto out_pm;
1541 
1542 			if (!node_state(node, N_MEMORY))
1543 				goto out_pm;
1544 
1545 			err = -EACCES;
1546 			if (!node_isset(node, task_nodes))
1547 				goto out_pm;
1548 
1549 			pm[j].node = node;
1550 		}
1551 
1552 		/* End marker for this chunk */
1553 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1554 
1555 		/* Migrate this chunk */
1556 		err = do_move_page_to_node_array(mm, pm,
1557 						 flags & MPOL_MF_MOVE_ALL);
1558 		if (err < 0)
1559 			goto out_pm;
1560 
1561 		/* Return status information */
1562 		for (j = 0; j < chunk_nr_pages; j++)
1563 			if (put_user(pm[j].status, status + j + chunk_start)) {
1564 				err = -EFAULT;
1565 				goto out_pm;
1566 			}
1567 	}
1568 	err = 0;
1569 
1570 out_pm:
1571 	free_page((unsigned long)pm);
1572 out:
1573 	return err;
1574 }
1575 
1576 /*
1577  * Determine the nodes of an array of pages and store it in an array of status.
1578  */
1579 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1580 				const void __user **pages, int *status)
1581 {
1582 	unsigned long i;
1583 
1584 	down_read(&mm->mmap_sem);
1585 
1586 	for (i = 0; i < nr_pages; i++) {
1587 		unsigned long addr = (unsigned long)(*pages);
1588 		struct vm_area_struct *vma;
1589 		struct page *page;
1590 		int err = -EFAULT;
1591 
1592 		vma = find_vma(mm, addr);
1593 		if (!vma || addr < vma->vm_start)
1594 			goto set_status;
1595 
1596 		/* FOLL_DUMP to ignore special (like zero) pages */
1597 		page = follow_page(vma, addr, FOLL_DUMP);
1598 
1599 		err = PTR_ERR(page);
1600 		if (IS_ERR(page))
1601 			goto set_status;
1602 
1603 		err = page ? page_to_nid(page) : -ENOENT;
1604 set_status:
1605 		*status = err;
1606 
1607 		pages++;
1608 		status++;
1609 	}
1610 
1611 	up_read(&mm->mmap_sem);
1612 }
1613 
1614 /*
1615  * Determine the nodes of a user array of pages and store it in
1616  * a user array of status.
1617  */
1618 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1619 			 const void __user * __user *pages,
1620 			 int __user *status)
1621 {
1622 #define DO_PAGES_STAT_CHUNK_NR 16
1623 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1624 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1625 
1626 	while (nr_pages) {
1627 		unsigned long chunk_nr;
1628 
1629 		chunk_nr = nr_pages;
1630 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1631 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1632 
1633 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1634 			break;
1635 
1636 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1637 
1638 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1639 			break;
1640 
1641 		pages += chunk_nr;
1642 		status += chunk_nr;
1643 		nr_pages -= chunk_nr;
1644 	}
1645 	return nr_pages ? -EFAULT : 0;
1646 }
1647 
1648 /*
1649  * Move a list of pages in the address space of the currently executing
1650  * process.
1651  */
1652 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1653 		const void __user * __user *, pages,
1654 		const int __user *, nodes,
1655 		int __user *, status, int, flags)
1656 {
1657 	const struct cred *cred = current_cred(), *tcred;
1658 	struct task_struct *task;
1659 	struct mm_struct *mm;
1660 	int err;
1661 	nodemask_t task_nodes;
1662 
1663 	/* Check flags */
1664 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1665 		return -EINVAL;
1666 
1667 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1668 		return -EPERM;
1669 
1670 	/* Find the mm_struct */
1671 	rcu_read_lock();
1672 	task = pid ? find_task_by_vpid(pid) : current;
1673 	if (!task) {
1674 		rcu_read_unlock();
1675 		return -ESRCH;
1676 	}
1677 	get_task_struct(task);
1678 
1679 	/*
1680 	 * Check if this process has the right to modify the specified
1681 	 * process. The right exists if the process has administrative
1682 	 * capabilities, superuser privileges or the same
1683 	 * userid as the target process.
1684 	 */
1685 	tcred = __task_cred(task);
1686 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1687 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1688 	    !capable(CAP_SYS_NICE)) {
1689 		rcu_read_unlock();
1690 		err = -EPERM;
1691 		goto out;
1692 	}
1693 	rcu_read_unlock();
1694 
1695  	err = security_task_movememory(task);
1696  	if (err)
1697 		goto out;
1698 
1699 	task_nodes = cpuset_mems_allowed(task);
1700 	mm = get_task_mm(task);
1701 	put_task_struct(task);
1702 
1703 	if (!mm)
1704 		return -EINVAL;
1705 
1706 	if (nodes)
1707 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1708 				    nodes, status, flags);
1709 	else
1710 		err = do_pages_stat(mm, nr_pages, pages, status);
1711 
1712 	mmput(mm);
1713 	return err;
1714 
1715 out:
1716 	put_task_struct(task);
1717 	return err;
1718 }
1719 
1720 #ifdef CONFIG_NUMA_BALANCING
1721 /*
1722  * Returns true if this is a safe migration target node for misplaced NUMA
1723  * pages. Currently it only checks the watermarks which crude
1724  */
1725 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1726 				   unsigned long nr_migrate_pages)
1727 {
1728 	int z;
1729 
1730 	if (!pgdat_reclaimable(pgdat))
1731 		return false;
1732 
1733 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1734 		struct zone *zone = pgdat->node_zones + z;
1735 
1736 		if (!populated_zone(zone))
1737 			continue;
1738 
1739 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1740 		if (!zone_watermark_ok(zone, 0,
1741 				       high_wmark_pages(zone) +
1742 				       nr_migrate_pages,
1743 				       0, 0))
1744 			continue;
1745 		return true;
1746 	}
1747 	return false;
1748 }
1749 
1750 static struct page *alloc_misplaced_dst_page(struct page *page,
1751 					   unsigned long data,
1752 					   int **result)
1753 {
1754 	int nid = (int) data;
1755 	struct page *newpage;
1756 
1757 	newpage = __alloc_pages_node(nid,
1758 					 (GFP_HIGHUSER_MOVABLE |
1759 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1760 					  __GFP_NORETRY | __GFP_NOWARN) &
1761 					 ~__GFP_RECLAIM, 0);
1762 
1763 	return newpage;
1764 }
1765 
1766 /*
1767  * page migration rate limiting control.
1768  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1769  * window of time. Default here says do not migrate more than 1280M per second.
1770  */
1771 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1772 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1773 
1774 /* Returns true if the node is migrate rate-limited after the update */
1775 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1776 					unsigned long nr_pages)
1777 {
1778 	/*
1779 	 * Rate-limit the amount of data that is being migrated to a node.
1780 	 * Optimal placement is no good if the memory bus is saturated and
1781 	 * all the time is being spent migrating!
1782 	 */
1783 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1784 		spin_lock(&pgdat->numabalancing_migrate_lock);
1785 		pgdat->numabalancing_migrate_nr_pages = 0;
1786 		pgdat->numabalancing_migrate_next_window = jiffies +
1787 			msecs_to_jiffies(migrate_interval_millisecs);
1788 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1789 	}
1790 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1791 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1792 								nr_pages);
1793 		return true;
1794 	}
1795 
1796 	/*
1797 	 * This is an unlocked non-atomic update so errors are possible.
1798 	 * The consequences are failing to migrate when we potentiall should
1799 	 * have which is not severe enough to warrant locking. If it is ever
1800 	 * a problem, it can be converted to a per-cpu counter.
1801 	 */
1802 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1803 	return false;
1804 }
1805 
1806 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1807 {
1808 	int page_lru;
1809 
1810 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1811 
1812 	/* Avoid migrating to a node that is nearly full */
1813 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1814 		return 0;
1815 
1816 	if (isolate_lru_page(page))
1817 		return 0;
1818 
1819 	/*
1820 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1821 	 * check on page_count(), so we must do it here, now that the page
1822 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1823 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1824 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1825 	 */
1826 	if (PageTransHuge(page) && page_count(page) != 3) {
1827 		putback_lru_page(page);
1828 		return 0;
1829 	}
1830 
1831 	page_lru = page_is_file_cache(page);
1832 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1833 				hpage_nr_pages(page));
1834 
1835 	/*
1836 	 * Isolating the page has taken another reference, so the
1837 	 * caller's reference can be safely dropped without the page
1838 	 * disappearing underneath us during migration.
1839 	 */
1840 	put_page(page);
1841 	return 1;
1842 }
1843 
1844 bool pmd_trans_migrating(pmd_t pmd)
1845 {
1846 	struct page *page = pmd_page(pmd);
1847 	return PageLocked(page);
1848 }
1849 
1850 /*
1851  * Attempt to migrate a misplaced page to the specified destination
1852  * node. Caller is expected to have an elevated reference count on
1853  * the page that will be dropped by this function before returning.
1854  */
1855 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1856 			   int node)
1857 {
1858 	pg_data_t *pgdat = NODE_DATA(node);
1859 	int isolated;
1860 	int nr_remaining;
1861 	LIST_HEAD(migratepages);
1862 
1863 	/*
1864 	 * Don't migrate file pages that are mapped in multiple processes
1865 	 * with execute permissions as they are probably shared libraries.
1866 	 */
1867 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1868 	    (vma->vm_flags & VM_EXEC))
1869 		goto out;
1870 
1871 	/*
1872 	 * Rate-limit the amount of data that is being migrated to a node.
1873 	 * Optimal placement is no good if the memory bus is saturated and
1874 	 * all the time is being spent migrating!
1875 	 */
1876 	if (numamigrate_update_ratelimit(pgdat, 1))
1877 		goto out;
1878 
1879 	isolated = numamigrate_isolate_page(pgdat, page);
1880 	if (!isolated)
1881 		goto out;
1882 
1883 	list_add(&page->lru, &migratepages);
1884 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1885 				     NULL, node, MIGRATE_ASYNC,
1886 				     MR_NUMA_MISPLACED);
1887 	if (nr_remaining) {
1888 		if (!list_empty(&migratepages)) {
1889 			list_del(&page->lru);
1890 			dec_node_page_state(page, NR_ISOLATED_ANON +
1891 					page_is_file_cache(page));
1892 			putback_lru_page(page);
1893 		}
1894 		isolated = 0;
1895 	} else
1896 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1897 	BUG_ON(!list_empty(&migratepages));
1898 	return isolated;
1899 
1900 out:
1901 	put_page(page);
1902 	return 0;
1903 }
1904 #endif /* CONFIG_NUMA_BALANCING */
1905 
1906 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1907 /*
1908  * Migrates a THP to a given target node. page must be locked and is unlocked
1909  * before returning.
1910  */
1911 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1912 				struct vm_area_struct *vma,
1913 				pmd_t *pmd, pmd_t entry,
1914 				unsigned long address,
1915 				struct page *page, int node)
1916 {
1917 	spinlock_t *ptl;
1918 	pg_data_t *pgdat = NODE_DATA(node);
1919 	int isolated = 0;
1920 	struct page *new_page = NULL;
1921 	int page_lru = page_is_file_cache(page);
1922 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1923 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1924 	pmd_t orig_entry;
1925 
1926 	/*
1927 	 * Rate-limit the amount of data that is being migrated to a node.
1928 	 * Optimal placement is no good if the memory bus is saturated and
1929 	 * all the time is being spent migrating!
1930 	 */
1931 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1932 		goto out_dropref;
1933 
1934 	new_page = alloc_pages_node(node,
1935 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1936 		HPAGE_PMD_ORDER);
1937 	if (!new_page)
1938 		goto out_fail;
1939 	prep_transhuge_page(new_page);
1940 
1941 	isolated = numamigrate_isolate_page(pgdat, page);
1942 	if (!isolated) {
1943 		put_page(new_page);
1944 		goto out_fail;
1945 	}
1946 	/*
1947 	 * We are not sure a pending tlb flush here is for a huge page
1948 	 * mapping or not. Hence use the tlb range variant
1949 	 */
1950 	if (mm_tlb_flush_pending(mm))
1951 		flush_tlb_range(vma, mmun_start, mmun_end);
1952 
1953 	/* Prepare a page as a migration target */
1954 	__SetPageLocked(new_page);
1955 	__SetPageSwapBacked(new_page);
1956 
1957 	/* anon mapping, we can simply copy page->mapping to the new page: */
1958 	new_page->mapping = page->mapping;
1959 	new_page->index = page->index;
1960 	migrate_page_copy(new_page, page);
1961 	WARN_ON(PageLRU(new_page));
1962 
1963 	/* Recheck the target PMD */
1964 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1965 	ptl = pmd_lock(mm, pmd);
1966 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1967 fail_putback:
1968 		spin_unlock(ptl);
1969 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1970 
1971 		/* Reverse changes made by migrate_page_copy() */
1972 		if (TestClearPageActive(new_page))
1973 			SetPageActive(page);
1974 		if (TestClearPageUnevictable(new_page))
1975 			SetPageUnevictable(page);
1976 
1977 		unlock_page(new_page);
1978 		put_page(new_page);		/* Free it */
1979 
1980 		/* Retake the callers reference and putback on LRU */
1981 		get_page(page);
1982 		putback_lru_page(page);
1983 		mod_node_page_state(page_pgdat(page),
1984 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1985 
1986 		goto out_unlock;
1987 	}
1988 
1989 	orig_entry = *pmd;
1990 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1991 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1992 
1993 	/*
1994 	 * Clear the old entry under pagetable lock and establish the new PTE.
1995 	 * Any parallel GUP will either observe the old page blocking on the
1996 	 * page lock, block on the page table lock or observe the new page.
1997 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1998 	 * guarantee the copy is visible before the pagetable update.
1999 	 */
2000 	flush_cache_range(vma, mmun_start, mmun_end);
2001 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2002 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2003 	set_pmd_at(mm, mmun_start, pmd, entry);
2004 	update_mmu_cache_pmd(vma, address, &entry);
2005 
2006 	if (page_count(page) != 2) {
2007 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2008 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2009 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2010 		update_mmu_cache_pmd(vma, address, &entry);
2011 		page_remove_rmap(new_page, true);
2012 		goto fail_putback;
2013 	}
2014 
2015 	mlock_migrate_page(new_page, page);
2016 	page_remove_rmap(page, true);
2017 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2018 
2019 	spin_unlock(ptl);
2020 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2021 
2022 	/* Take an "isolate" reference and put new page on the LRU. */
2023 	get_page(new_page);
2024 	putback_lru_page(new_page);
2025 
2026 	unlock_page(new_page);
2027 	unlock_page(page);
2028 	put_page(page);			/* Drop the rmap reference */
2029 	put_page(page);			/* Drop the LRU isolation reference */
2030 
2031 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2032 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2033 
2034 	mod_node_page_state(page_pgdat(page),
2035 			NR_ISOLATED_ANON + page_lru,
2036 			-HPAGE_PMD_NR);
2037 	return isolated;
2038 
2039 out_fail:
2040 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2041 out_dropref:
2042 	ptl = pmd_lock(mm, pmd);
2043 	if (pmd_same(*pmd, entry)) {
2044 		entry = pmd_modify(entry, vma->vm_page_prot);
2045 		set_pmd_at(mm, mmun_start, pmd, entry);
2046 		update_mmu_cache_pmd(vma, address, &entry);
2047 	}
2048 	spin_unlock(ptl);
2049 
2050 out_unlock:
2051 	unlock_page(page);
2052 	put_page(page);
2053 	return 0;
2054 }
2055 #endif /* CONFIG_NUMA_BALANCING */
2056 
2057 #endif /* CONFIG_NUMA */
2058