1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 44 #include <asm/tlbflush.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/migrate.h> 48 49 #include "internal.h" 50 51 /* 52 * migrate_prep() needs to be called before we start compiling a list of pages 53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 54 * undesirable, use migrate_prep_local() 55 */ 56 int migrate_prep(void) 57 { 58 /* 59 * Clear the LRU lists so pages can be isolated. 60 * Note that pages may be moved off the LRU after we have 61 * drained them. Those pages will fail to migrate like other 62 * pages that may be busy. 63 */ 64 lru_add_drain_all(); 65 66 return 0; 67 } 68 69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 70 int migrate_prep_local(void) 71 { 72 lru_add_drain(); 73 74 return 0; 75 } 76 77 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 78 { 79 struct address_space *mapping; 80 81 /* 82 * Avoid burning cycles with pages that are yet under __free_pages(), 83 * or just got freed under us. 84 * 85 * In case we 'win' a race for a movable page being freed under us and 86 * raise its refcount preventing __free_pages() from doing its job 87 * the put_page() at the end of this block will take care of 88 * release this page, thus avoiding a nasty leakage. 89 */ 90 if (unlikely(!get_page_unless_zero(page))) 91 goto out; 92 93 /* 94 * Check PageMovable before holding a PG_lock because page's owner 95 * assumes anybody doesn't touch PG_lock of newly allocated page 96 * so unconditionally grapping the lock ruins page's owner side. 97 */ 98 if (unlikely(!__PageMovable(page))) 99 goto out_putpage; 100 /* 101 * As movable pages are not isolated from LRU lists, concurrent 102 * compaction threads can race against page migration functions 103 * as well as race against the releasing a page. 104 * 105 * In order to avoid having an already isolated movable page 106 * being (wrongly) re-isolated while it is under migration, 107 * or to avoid attempting to isolate pages being released, 108 * lets be sure we have the page lock 109 * before proceeding with the movable page isolation steps. 110 */ 111 if (unlikely(!trylock_page(page))) 112 goto out_putpage; 113 114 if (!PageMovable(page) || PageIsolated(page)) 115 goto out_no_isolated; 116 117 mapping = page_mapping(page); 118 VM_BUG_ON_PAGE(!mapping, page); 119 120 if (!mapping->a_ops->isolate_page(page, mode)) 121 goto out_no_isolated; 122 123 /* Driver shouldn't use PG_isolated bit of page->flags */ 124 WARN_ON_ONCE(PageIsolated(page)); 125 __SetPageIsolated(page); 126 unlock_page(page); 127 128 return true; 129 130 out_no_isolated: 131 unlock_page(page); 132 out_putpage: 133 put_page(page); 134 out: 135 return false; 136 } 137 138 /* It should be called on page which is PG_movable */ 139 void putback_movable_page(struct page *page) 140 { 141 struct address_space *mapping; 142 143 VM_BUG_ON_PAGE(!PageLocked(page), page); 144 VM_BUG_ON_PAGE(!PageMovable(page), page); 145 VM_BUG_ON_PAGE(!PageIsolated(page), page); 146 147 mapping = page_mapping(page); 148 mapping->a_ops->putback_page(page); 149 __ClearPageIsolated(page); 150 } 151 152 /* 153 * Put previously isolated pages back onto the appropriate lists 154 * from where they were once taken off for compaction/migration. 155 * 156 * This function shall be used whenever the isolated pageset has been 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 158 * and isolate_huge_page(). 159 */ 160 void putback_movable_pages(struct list_head *l) 161 { 162 struct page *page; 163 struct page *page2; 164 165 list_for_each_entry_safe(page, page2, l, lru) { 166 if (unlikely(PageHuge(page))) { 167 putback_active_hugepage(page); 168 continue; 169 } 170 list_del(&page->lru); 171 dec_node_page_state(page, NR_ISOLATED_ANON + 172 page_is_file_cache(page)); 173 /* 174 * We isolated non-lru movable page so here we can use 175 * __PageMovable because LRU page's mapping cannot have 176 * PAGE_MAPPING_MOVABLE. 177 */ 178 if (unlikely(__PageMovable(page))) { 179 VM_BUG_ON_PAGE(!PageIsolated(page), page); 180 lock_page(page); 181 if (PageMovable(page)) 182 putback_movable_page(page); 183 else 184 __ClearPageIsolated(page); 185 unlock_page(page); 186 put_page(page); 187 } else { 188 putback_lru_page(page); 189 } 190 } 191 } 192 193 /* 194 * Restore a potential migration pte to a working pte entry 195 */ 196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 197 unsigned long addr, void *old) 198 { 199 struct mm_struct *mm = vma->vm_mm; 200 swp_entry_t entry; 201 pmd_t *pmd; 202 pte_t *ptep, pte; 203 spinlock_t *ptl; 204 205 if (unlikely(PageHuge(new))) { 206 ptep = huge_pte_offset(mm, addr); 207 if (!ptep) 208 goto out; 209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 210 } else { 211 pmd = mm_find_pmd(mm, addr); 212 if (!pmd) 213 goto out; 214 215 ptep = pte_offset_map(pmd, addr); 216 217 /* 218 * Peek to check is_swap_pte() before taking ptlock? No, we 219 * can race mremap's move_ptes(), which skips anon_vma lock. 220 */ 221 222 ptl = pte_lockptr(mm, pmd); 223 } 224 225 spin_lock(ptl); 226 pte = *ptep; 227 if (!is_swap_pte(pte)) 228 goto unlock; 229 230 entry = pte_to_swp_entry(pte); 231 232 if (!is_migration_entry(entry) || 233 migration_entry_to_page(entry) != old) 234 goto unlock; 235 236 get_page(new); 237 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 238 if (pte_swp_soft_dirty(*ptep)) 239 pte = pte_mksoft_dirty(pte); 240 241 /* Recheck VMA as permissions can change since migration started */ 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 #ifdef CONFIG_HUGETLB_PAGE 246 if (PageHuge(new)) { 247 pte = pte_mkhuge(pte); 248 pte = arch_make_huge_pte(pte, vma, new, 0); 249 } 250 #endif 251 flush_dcache_page(new); 252 set_pte_at(mm, addr, ptep, pte); 253 254 if (PageHuge(new)) { 255 if (PageAnon(new)) 256 hugepage_add_anon_rmap(new, vma, addr); 257 else 258 page_dup_rmap(new, true); 259 } else if (PageAnon(new)) 260 page_add_anon_rmap(new, vma, addr, false); 261 else 262 page_add_file_rmap(new, false); 263 264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 265 mlock_vma_page(new); 266 267 /* No need to invalidate - it was non-present before */ 268 update_mmu_cache(vma, addr, ptep); 269 unlock: 270 pte_unmap_unlock(ptep, ptl); 271 out: 272 return SWAP_AGAIN; 273 } 274 275 /* 276 * Get rid of all migration entries and replace them by 277 * references to the indicated page. 278 */ 279 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 280 { 281 struct rmap_walk_control rwc = { 282 .rmap_one = remove_migration_pte, 283 .arg = old, 284 }; 285 286 if (locked) 287 rmap_walk_locked(new, &rwc); 288 else 289 rmap_walk(new, &rwc); 290 } 291 292 /* 293 * Something used the pte of a page under migration. We need to 294 * get to the page and wait until migration is finished. 295 * When we return from this function the fault will be retried. 296 */ 297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 298 spinlock_t *ptl) 299 { 300 pte_t pte; 301 swp_entry_t entry; 302 struct page *page; 303 304 spin_lock(ptl); 305 pte = *ptep; 306 if (!is_swap_pte(pte)) 307 goto out; 308 309 entry = pte_to_swp_entry(pte); 310 if (!is_migration_entry(entry)) 311 goto out; 312 313 page = migration_entry_to_page(entry); 314 315 /* 316 * Once radix-tree replacement of page migration started, page_count 317 * *must* be zero. And, we don't want to call wait_on_page_locked() 318 * against a page without get_page(). 319 * So, we use get_page_unless_zero(), here. Even failed, page fault 320 * will occur again. 321 */ 322 if (!get_page_unless_zero(page)) 323 goto out; 324 pte_unmap_unlock(ptep, ptl); 325 wait_on_page_locked(page); 326 put_page(page); 327 return; 328 out: 329 pte_unmap_unlock(ptep, ptl); 330 } 331 332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 333 unsigned long address) 334 { 335 spinlock_t *ptl = pte_lockptr(mm, pmd); 336 pte_t *ptep = pte_offset_map(pmd, address); 337 __migration_entry_wait(mm, ptep, ptl); 338 } 339 340 void migration_entry_wait_huge(struct vm_area_struct *vma, 341 struct mm_struct *mm, pte_t *pte) 342 { 343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 344 __migration_entry_wait(mm, pte, ptl); 345 } 346 347 #ifdef CONFIG_BLOCK 348 /* Returns true if all buffers are successfully locked */ 349 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 350 enum migrate_mode mode) 351 { 352 struct buffer_head *bh = head; 353 354 /* Simple case, sync compaction */ 355 if (mode != MIGRATE_ASYNC) { 356 do { 357 get_bh(bh); 358 lock_buffer(bh); 359 bh = bh->b_this_page; 360 361 } while (bh != head); 362 363 return true; 364 } 365 366 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 367 do { 368 get_bh(bh); 369 if (!trylock_buffer(bh)) { 370 /* 371 * We failed to lock the buffer and cannot stall in 372 * async migration. Release the taken locks 373 */ 374 struct buffer_head *failed_bh = bh; 375 put_bh(failed_bh); 376 bh = head; 377 while (bh != failed_bh) { 378 unlock_buffer(bh); 379 put_bh(bh); 380 bh = bh->b_this_page; 381 } 382 return false; 383 } 384 385 bh = bh->b_this_page; 386 } while (bh != head); 387 return true; 388 } 389 #else 390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 391 enum migrate_mode mode) 392 { 393 return true; 394 } 395 #endif /* CONFIG_BLOCK */ 396 397 /* 398 * Replace the page in the mapping. 399 * 400 * The number of remaining references must be: 401 * 1 for anonymous pages without a mapping 402 * 2 for pages with a mapping 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 404 */ 405 int migrate_page_move_mapping(struct address_space *mapping, 406 struct page *newpage, struct page *page, 407 struct buffer_head *head, enum migrate_mode mode, 408 int extra_count) 409 { 410 struct zone *oldzone, *newzone; 411 int dirty; 412 int expected_count = 1 + extra_count; 413 void **pslot; 414 415 if (!mapping) { 416 /* Anonymous page without mapping */ 417 if (page_count(page) != expected_count) 418 return -EAGAIN; 419 420 /* No turning back from here */ 421 newpage->index = page->index; 422 newpage->mapping = page->mapping; 423 if (PageSwapBacked(page)) 424 __SetPageSwapBacked(newpage); 425 426 return MIGRATEPAGE_SUCCESS; 427 } 428 429 oldzone = page_zone(page); 430 newzone = page_zone(newpage); 431 432 spin_lock_irq(&mapping->tree_lock); 433 434 pslot = radix_tree_lookup_slot(&mapping->page_tree, 435 page_index(page)); 436 437 expected_count += 1 + page_has_private(page); 438 if (page_count(page) != expected_count || 439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 440 spin_unlock_irq(&mapping->tree_lock); 441 return -EAGAIN; 442 } 443 444 if (!page_ref_freeze(page, expected_count)) { 445 spin_unlock_irq(&mapping->tree_lock); 446 return -EAGAIN; 447 } 448 449 /* 450 * In the async migration case of moving a page with buffers, lock the 451 * buffers using trylock before the mapping is moved. If the mapping 452 * was moved, we later failed to lock the buffers and could not move 453 * the mapping back due to an elevated page count, we would have to 454 * block waiting on other references to be dropped. 455 */ 456 if (mode == MIGRATE_ASYNC && head && 457 !buffer_migrate_lock_buffers(head, mode)) { 458 page_ref_unfreeze(page, expected_count); 459 spin_unlock_irq(&mapping->tree_lock); 460 return -EAGAIN; 461 } 462 463 /* 464 * Now we know that no one else is looking at the page: 465 * no turning back from here. 466 */ 467 newpage->index = page->index; 468 newpage->mapping = page->mapping; 469 if (PageSwapBacked(page)) 470 __SetPageSwapBacked(newpage); 471 472 get_page(newpage); /* add cache reference */ 473 if (PageSwapCache(page)) { 474 SetPageSwapCache(newpage); 475 set_page_private(newpage, page_private(page)); 476 } 477 478 /* Move dirty while page refs frozen and newpage not yet exposed */ 479 dirty = PageDirty(page); 480 if (dirty) { 481 ClearPageDirty(page); 482 SetPageDirty(newpage); 483 } 484 485 radix_tree_replace_slot(pslot, newpage); 486 487 /* 488 * Drop cache reference from old page by unfreezing 489 * to one less reference. 490 * We know this isn't the last reference. 491 */ 492 page_ref_unfreeze(page, expected_count - 1); 493 494 spin_unlock(&mapping->tree_lock); 495 /* Leave irq disabled to prevent preemption while updating stats */ 496 497 /* 498 * If moved to a different zone then also account 499 * the page for that zone. Other VM counters will be 500 * taken care of when we establish references to the 501 * new page and drop references to the old page. 502 * 503 * Note that anonymous pages are accounted for 504 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 505 * are mapped to swap space. 506 */ 507 if (newzone != oldzone) { 508 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 510 if (PageSwapBacked(page) && !PageSwapCache(page)) { 511 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 512 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 513 } 514 if (dirty && mapping_cap_account_dirty(mapping)) { 515 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 516 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 517 } 518 } 519 local_irq_enable(); 520 521 return MIGRATEPAGE_SUCCESS; 522 } 523 EXPORT_SYMBOL(migrate_page_move_mapping); 524 525 /* 526 * The expected number of remaining references is the same as that 527 * of migrate_page_move_mapping(). 528 */ 529 int migrate_huge_page_move_mapping(struct address_space *mapping, 530 struct page *newpage, struct page *page) 531 { 532 int expected_count; 533 void **pslot; 534 535 spin_lock_irq(&mapping->tree_lock); 536 537 pslot = radix_tree_lookup_slot(&mapping->page_tree, 538 page_index(page)); 539 540 expected_count = 2 + page_has_private(page); 541 if (page_count(page) != expected_count || 542 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 543 spin_unlock_irq(&mapping->tree_lock); 544 return -EAGAIN; 545 } 546 547 if (!page_ref_freeze(page, expected_count)) { 548 spin_unlock_irq(&mapping->tree_lock); 549 return -EAGAIN; 550 } 551 552 newpage->index = page->index; 553 newpage->mapping = page->mapping; 554 555 get_page(newpage); 556 557 radix_tree_replace_slot(pslot, newpage); 558 559 page_ref_unfreeze(page, expected_count - 1); 560 561 spin_unlock_irq(&mapping->tree_lock); 562 563 return MIGRATEPAGE_SUCCESS; 564 } 565 566 /* 567 * Gigantic pages are so large that we do not guarantee that page++ pointer 568 * arithmetic will work across the entire page. We need something more 569 * specialized. 570 */ 571 static void __copy_gigantic_page(struct page *dst, struct page *src, 572 int nr_pages) 573 { 574 int i; 575 struct page *dst_base = dst; 576 struct page *src_base = src; 577 578 for (i = 0; i < nr_pages; ) { 579 cond_resched(); 580 copy_highpage(dst, src); 581 582 i++; 583 dst = mem_map_next(dst, dst_base, i); 584 src = mem_map_next(src, src_base, i); 585 } 586 } 587 588 static void copy_huge_page(struct page *dst, struct page *src) 589 { 590 int i; 591 int nr_pages; 592 593 if (PageHuge(src)) { 594 /* hugetlbfs page */ 595 struct hstate *h = page_hstate(src); 596 nr_pages = pages_per_huge_page(h); 597 598 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 599 __copy_gigantic_page(dst, src, nr_pages); 600 return; 601 } 602 } else { 603 /* thp page */ 604 BUG_ON(!PageTransHuge(src)); 605 nr_pages = hpage_nr_pages(src); 606 } 607 608 for (i = 0; i < nr_pages; i++) { 609 cond_resched(); 610 copy_highpage(dst + i, src + i); 611 } 612 } 613 614 /* 615 * Copy the page to its new location 616 */ 617 void migrate_page_copy(struct page *newpage, struct page *page) 618 { 619 int cpupid; 620 621 if (PageHuge(page) || PageTransHuge(page)) 622 copy_huge_page(newpage, page); 623 else 624 copy_highpage(newpage, page); 625 626 if (PageError(page)) 627 SetPageError(newpage); 628 if (PageReferenced(page)) 629 SetPageReferenced(newpage); 630 if (PageUptodate(page)) 631 SetPageUptodate(newpage); 632 if (TestClearPageActive(page)) { 633 VM_BUG_ON_PAGE(PageUnevictable(page), page); 634 SetPageActive(newpage); 635 } else if (TestClearPageUnevictable(page)) 636 SetPageUnevictable(newpage); 637 if (PageChecked(page)) 638 SetPageChecked(newpage); 639 if (PageMappedToDisk(page)) 640 SetPageMappedToDisk(newpage); 641 642 /* Move dirty on pages not done by migrate_page_move_mapping() */ 643 if (PageDirty(page)) 644 SetPageDirty(newpage); 645 646 if (page_is_young(page)) 647 set_page_young(newpage); 648 if (page_is_idle(page)) 649 set_page_idle(newpage); 650 651 /* 652 * Copy NUMA information to the new page, to prevent over-eager 653 * future migrations of this same page. 654 */ 655 cpupid = page_cpupid_xchg_last(page, -1); 656 page_cpupid_xchg_last(newpage, cpupid); 657 658 ksm_migrate_page(newpage, page); 659 /* 660 * Please do not reorder this without considering how mm/ksm.c's 661 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 662 */ 663 if (PageSwapCache(page)) 664 ClearPageSwapCache(page); 665 ClearPagePrivate(page); 666 set_page_private(page, 0); 667 668 /* 669 * If any waiters have accumulated on the new page then 670 * wake them up. 671 */ 672 if (PageWriteback(newpage)) 673 end_page_writeback(newpage); 674 675 copy_page_owner(page, newpage); 676 677 mem_cgroup_migrate(page, newpage); 678 } 679 EXPORT_SYMBOL(migrate_page_copy); 680 681 /************************************************************ 682 * Migration functions 683 ***********************************************************/ 684 685 /* 686 * Common logic to directly migrate a single LRU page suitable for 687 * pages that do not use PagePrivate/PagePrivate2. 688 * 689 * Pages are locked upon entry and exit. 690 */ 691 int migrate_page(struct address_space *mapping, 692 struct page *newpage, struct page *page, 693 enum migrate_mode mode) 694 { 695 int rc; 696 697 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 698 699 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 700 701 if (rc != MIGRATEPAGE_SUCCESS) 702 return rc; 703 704 migrate_page_copy(newpage, page); 705 return MIGRATEPAGE_SUCCESS; 706 } 707 EXPORT_SYMBOL(migrate_page); 708 709 #ifdef CONFIG_BLOCK 710 /* 711 * Migration function for pages with buffers. This function can only be used 712 * if the underlying filesystem guarantees that no other references to "page" 713 * exist. 714 */ 715 int buffer_migrate_page(struct address_space *mapping, 716 struct page *newpage, struct page *page, enum migrate_mode mode) 717 { 718 struct buffer_head *bh, *head; 719 int rc; 720 721 if (!page_has_buffers(page)) 722 return migrate_page(mapping, newpage, page, mode); 723 724 head = page_buffers(page); 725 726 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 727 728 if (rc != MIGRATEPAGE_SUCCESS) 729 return rc; 730 731 /* 732 * In the async case, migrate_page_move_mapping locked the buffers 733 * with an IRQ-safe spinlock held. In the sync case, the buffers 734 * need to be locked now 735 */ 736 if (mode != MIGRATE_ASYNC) 737 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 738 739 ClearPagePrivate(page); 740 set_page_private(newpage, page_private(page)); 741 set_page_private(page, 0); 742 put_page(page); 743 get_page(newpage); 744 745 bh = head; 746 do { 747 set_bh_page(bh, newpage, bh_offset(bh)); 748 bh = bh->b_this_page; 749 750 } while (bh != head); 751 752 SetPagePrivate(newpage); 753 754 migrate_page_copy(newpage, page); 755 756 bh = head; 757 do { 758 unlock_buffer(bh); 759 put_bh(bh); 760 bh = bh->b_this_page; 761 762 } while (bh != head); 763 764 return MIGRATEPAGE_SUCCESS; 765 } 766 EXPORT_SYMBOL(buffer_migrate_page); 767 #endif 768 769 /* 770 * Writeback a page to clean the dirty state 771 */ 772 static int writeout(struct address_space *mapping, struct page *page) 773 { 774 struct writeback_control wbc = { 775 .sync_mode = WB_SYNC_NONE, 776 .nr_to_write = 1, 777 .range_start = 0, 778 .range_end = LLONG_MAX, 779 .for_reclaim = 1 780 }; 781 int rc; 782 783 if (!mapping->a_ops->writepage) 784 /* No write method for the address space */ 785 return -EINVAL; 786 787 if (!clear_page_dirty_for_io(page)) 788 /* Someone else already triggered a write */ 789 return -EAGAIN; 790 791 /* 792 * A dirty page may imply that the underlying filesystem has 793 * the page on some queue. So the page must be clean for 794 * migration. Writeout may mean we loose the lock and the 795 * page state is no longer what we checked for earlier. 796 * At this point we know that the migration attempt cannot 797 * be successful. 798 */ 799 remove_migration_ptes(page, page, false); 800 801 rc = mapping->a_ops->writepage(page, &wbc); 802 803 if (rc != AOP_WRITEPAGE_ACTIVATE) 804 /* unlocked. Relock */ 805 lock_page(page); 806 807 return (rc < 0) ? -EIO : -EAGAIN; 808 } 809 810 /* 811 * Default handling if a filesystem does not provide a migration function. 812 */ 813 static int fallback_migrate_page(struct address_space *mapping, 814 struct page *newpage, struct page *page, enum migrate_mode mode) 815 { 816 if (PageDirty(page)) { 817 /* Only writeback pages in full synchronous migration */ 818 if (mode != MIGRATE_SYNC) 819 return -EBUSY; 820 return writeout(mapping, page); 821 } 822 823 /* 824 * Buffers may be managed in a filesystem specific way. 825 * We must have no buffers or drop them. 826 */ 827 if (page_has_private(page) && 828 !try_to_release_page(page, GFP_KERNEL)) 829 return -EAGAIN; 830 831 return migrate_page(mapping, newpage, page, mode); 832 } 833 834 /* 835 * Move a page to a newly allocated page 836 * The page is locked and all ptes have been successfully removed. 837 * 838 * The new page will have replaced the old page if this function 839 * is successful. 840 * 841 * Return value: 842 * < 0 - error code 843 * MIGRATEPAGE_SUCCESS - success 844 */ 845 static int move_to_new_page(struct page *newpage, struct page *page, 846 enum migrate_mode mode) 847 { 848 struct address_space *mapping; 849 int rc = -EAGAIN; 850 bool is_lru = !__PageMovable(page); 851 852 VM_BUG_ON_PAGE(!PageLocked(page), page); 853 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 854 855 mapping = page_mapping(page); 856 857 if (likely(is_lru)) { 858 if (!mapping) 859 rc = migrate_page(mapping, newpage, page, mode); 860 else if (mapping->a_ops->migratepage) 861 /* 862 * Most pages have a mapping and most filesystems 863 * provide a migratepage callback. Anonymous pages 864 * are part of swap space which also has its own 865 * migratepage callback. This is the most common path 866 * for page migration. 867 */ 868 rc = mapping->a_ops->migratepage(mapping, newpage, 869 page, mode); 870 else 871 rc = fallback_migrate_page(mapping, newpage, 872 page, mode); 873 } else { 874 /* 875 * In case of non-lru page, it could be released after 876 * isolation step. In that case, we shouldn't try migration. 877 */ 878 VM_BUG_ON_PAGE(!PageIsolated(page), page); 879 if (!PageMovable(page)) { 880 rc = MIGRATEPAGE_SUCCESS; 881 __ClearPageIsolated(page); 882 goto out; 883 } 884 885 rc = mapping->a_ops->migratepage(mapping, newpage, 886 page, mode); 887 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 888 !PageIsolated(page)); 889 } 890 891 /* 892 * When successful, old pagecache page->mapping must be cleared before 893 * page is freed; but stats require that PageAnon be left as PageAnon. 894 */ 895 if (rc == MIGRATEPAGE_SUCCESS) { 896 if (__PageMovable(page)) { 897 VM_BUG_ON_PAGE(!PageIsolated(page), page); 898 899 /* 900 * We clear PG_movable under page_lock so any compactor 901 * cannot try to migrate this page. 902 */ 903 __ClearPageIsolated(page); 904 } 905 906 /* 907 * Anonymous and movable page->mapping will be cleard by 908 * free_pages_prepare so don't reset it here for keeping 909 * the type to work PageAnon, for example. 910 */ 911 if (!PageMappingFlags(page)) 912 page->mapping = NULL; 913 } 914 out: 915 return rc; 916 } 917 918 static int __unmap_and_move(struct page *page, struct page *newpage, 919 int force, enum migrate_mode mode) 920 { 921 int rc = -EAGAIN; 922 int page_was_mapped = 0; 923 struct anon_vma *anon_vma = NULL; 924 bool is_lru = !__PageMovable(page); 925 926 if (!trylock_page(page)) { 927 if (!force || mode == MIGRATE_ASYNC) 928 goto out; 929 930 /* 931 * It's not safe for direct compaction to call lock_page. 932 * For example, during page readahead pages are added locked 933 * to the LRU. Later, when the IO completes the pages are 934 * marked uptodate and unlocked. However, the queueing 935 * could be merging multiple pages for one bio (e.g. 936 * mpage_readpages). If an allocation happens for the 937 * second or third page, the process can end up locking 938 * the same page twice and deadlocking. Rather than 939 * trying to be clever about what pages can be locked, 940 * avoid the use of lock_page for direct compaction 941 * altogether. 942 */ 943 if (current->flags & PF_MEMALLOC) 944 goto out; 945 946 lock_page(page); 947 } 948 949 if (PageWriteback(page)) { 950 /* 951 * Only in the case of a full synchronous migration is it 952 * necessary to wait for PageWriteback. In the async case, 953 * the retry loop is too short and in the sync-light case, 954 * the overhead of stalling is too much 955 */ 956 if (mode != MIGRATE_SYNC) { 957 rc = -EBUSY; 958 goto out_unlock; 959 } 960 if (!force) 961 goto out_unlock; 962 wait_on_page_writeback(page); 963 } 964 965 /* 966 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 967 * we cannot notice that anon_vma is freed while we migrates a page. 968 * This get_anon_vma() delays freeing anon_vma pointer until the end 969 * of migration. File cache pages are no problem because of page_lock() 970 * File Caches may use write_page() or lock_page() in migration, then, 971 * just care Anon page here. 972 * 973 * Only page_get_anon_vma() understands the subtleties of 974 * getting a hold on an anon_vma from outside one of its mms. 975 * But if we cannot get anon_vma, then we won't need it anyway, 976 * because that implies that the anon page is no longer mapped 977 * (and cannot be remapped so long as we hold the page lock). 978 */ 979 if (PageAnon(page) && !PageKsm(page)) 980 anon_vma = page_get_anon_vma(page); 981 982 /* 983 * Block others from accessing the new page when we get around to 984 * establishing additional references. We are usually the only one 985 * holding a reference to newpage at this point. We used to have a BUG 986 * here if trylock_page(newpage) fails, but would like to allow for 987 * cases where there might be a race with the previous use of newpage. 988 * This is much like races on refcount of oldpage: just don't BUG(). 989 */ 990 if (unlikely(!trylock_page(newpage))) 991 goto out_unlock; 992 993 if (unlikely(!is_lru)) { 994 rc = move_to_new_page(newpage, page, mode); 995 goto out_unlock_both; 996 } 997 998 /* 999 * Corner case handling: 1000 * 1. When a new swap-cache page is read into, it is added to the LRU 1001 * and treated as swapcache but it has no rmap yet. 1002 * Calling try_to_unmap() against a page->mapping==NULL page will 1003 * trigger a BUG. So handle it here. 1004 * 2. An orphaned page (see truncate_complete_page) might have 1005 * fs-private metadata. The page can be picked up due to memory 1006 * offlining. Everywhere else except page reclaim, the page is 1007 * invisible to the vm, so the page can not be migrated. So try to 1008 * free the metadata, so the page can be freed. 1009 */ 1010 if (!page->mapping) { 1011 VM_BUG_ON_PAGE(PageAnon(page), page); 1012 if (page_has_private(page)) { 1013 try_to_free_buffers(page); 1014 goto out_unlock_both; 1015 } 1016 } else if (page_mapped(page)) { 1017 /* Establish migration ptes */ 1018 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1019 page); 1020 try_to_unmap(page, 1021 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1022 page_was_mapped = 1; 1023 } 1024 1025 if (!page_mapped(page)) 1026 rc = move_to_new_page(newpage, page, mode); 1027 1028 if (page_was_mapped) 1029 remove_migration_ptes(page, 1030 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1031 1032 out_unlock_both: 1033 unlock_page(newpage); 1034 out_unlock: 1035 /* Drop an anon_vma reference if we took one */ 1036 if (anon_vma) 1037 put_anon_vma(anon_vma); 1038 unlock_page(page); 1039 out: 1040 /* 1041 * If migration is successful, decrease refcount of the newpage 1042 * which will not free the page because new page owner increased 1043 * refcounter. As well, if it is LRU page, add the page to LRU 1044 * list in here. 1045 */ 1046 if (rc == MIGRATEPAGE_SUCCESS) { 1047 if (unlikely(__PageMovable(newpage))) 1048 put_page(newpage); 1049 else 1050 putback_lru_page(newpage); 1051 } 1052 1053 return rc; 1054 } 1055 1056 /* 1057 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1058 * around it. 1059 */ 1060 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1061 #define ICE_noinline noinline 1062 #else 1063 #define ICE_noinline 1064 #endif 1065 1066 /* 1067 * Obtain the lock on page, remove all ptes and migrate the page 1068 * to the newly allocated page in newpage. 1069 */ 1070 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1071 free_page_t put_new_page, 1072 unsigned long private, struct page *page, 1073 int force, enum migrate_mode mode, 1074 enum migrate_reason reason) 1075 { 1076 int rc = MIGRATEPAGE_SUCCESS; 1077 int *result = NULL; 1078 struct page *newpage; 1079 1080 newpage = get_new_page(page, private, &result); 1081 if (!newpage) 1082 return -ENOMEM; 1083 1084 if (page_count(page) == 1) { 1085 /* page was freed from under us. So we are done. */ 1086 ClearPageActive(page); 1087 ClearPageUnevictable(page); 1088 if (unlikely(__PageMovable(page))) { 1089 lock_page(page); 1090 if (!PageMovable(page)) 1091 __ClearPageIsolated(page); 1092 unlock_page(page); 1093 } 1094 if (put_new_page) 1095 put_new_page(newpage, private); 1096 else 1097 put_page(newpage); 1098 goto out; 1099 } 1100 1101 if (unlikely(PageTransHuge(page))) { 1102 lock_page(page); 1103 rc = split_huge_page(page); 1104 unlock_page(page); 1105 if (rc) 1106 goto out; 1107 } 1108 1109 rc = __unmap_and_move(page, newpage, force, mode); 1110 if (rc == MIGRATEPAGE_SUCCESS) 1111 set_page_owner_migrate_reason(newpage, reason); 1112 1113 out: 1114 if (rc != -EAGAIN) { 1115 /* 1116 * A page that has been migrated has all references 1117 * removed and will be freed. A page that has not been 1118 * migrated will have kepts its references and be 1119 * restored. 1120 */ 1121 list_del(&page->lru); 1122 dec_node_page_state(page, NR_ISOLATED_ANON + 1123 page_is_file_cache(page)); 1124 } 1125 1126 /* 1127 * If migration is successful, releases reference grabbed during 1128 * isolation. Otherwise, restore the page to right list unless 1129 * we want to retry. 1130 */ 1131 if (rc == MIGRATEPAGE_SUCCESS) { 1132 put_page(page); 1133 if (reason == MR_MEMORY_FAILURE) { 1134 /* 1135 * Set PG_HWPoison on just freed page 1136 * intentionally. Although it's rather weird, 1137 * it's how HWPoison flag works at the moment. 1138 */ 1139 if (!test_set_page_hwpoison(page)) 1140 num_poisoned_pages_inc(); 1141 } 1142 } else { 1143 if (rc != -EAGAIN) { 1144 if (likely(!__PageMovable(page))) { 1145 putback_lru_page(page); 1146 goto put_new; 1147 } 1148 1149 lock_page(page); 1150 if (PageMovable(page)) 1151 putback_movable_page(page); 1152 else 1153 __ClearPageIsolated(page); 1154 unlock_page(page); 1155 put_page(page); 1156 } 1157 put_new: 1158 if (put_new_page) 1159 put_new_page(newpage, private); 1160 else 1161 put_page(newpage); 1162 } 1163 1164 if (result) { 1165 if (rc) 1166 *result = rc; 1167 else 1168 *result = page_to_nid(newpage); 1169 } 1170 return rc; 1171 } 1172 1173 /* 1174 * Counterpart of unmap_and_move_page() for hugepage migration. 1175 * 1176 * This function doesn't wait the completion of hugepage I/O 1177 * because there is no race between I/O and migration for hugepage. 1178 * Note that currently hugepage I/O occurs only in direct I/O 1179 * where no lock is held and PG_writeback is irrelevant, 1180 * and writeback status of all subpages are counted in the reference 1181 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1182 * under direct I/O, the reference of the head page is 512 and a bit more.) 1183 * This means that when we try to migrate hugepage whose subpages are 1184 * doing direct I/O, some references remain after try_to_unmap() and 1185 * hugepage migration fails without data corruption. 1186 * 1187 * There is also no race when direct I/O is issued on the page under migration, 1188 * because then pte is replaced with migration swap entry and direct I/O code 1189 * will wait in the page fault for migration to complete. 1190 */ 1191 static int unmap_and_move_huge_page(new_page_t get_new_page, 1192 free_page_t put_new_page, unsigned long private, 1193 struct page *hpage, int force, 1194 enum migrate_mode mode, int reason) 1195 { 1196 int rc = -EAGAIN; 1197 int *result = NULL; 1198 int page_was_mapped = 0; 1199 struct page *new_hpage; 1200 struct anon_vma *anon_vma = NULL; 1201 1202 /* 1203 * Movability of hugepages depends on architectures and hugepage size. 1204 * This check is necessary because some callers of hugepage migration 1205 * like soft offline and memory hotremove don't walk through page 1206 * tables or check whether the hugepage is pmd-based or not before 1207 * kicking migration. 1208 */ 1209 if (!hugepage_migration_supported(page_hstate(hpage))) { 1210 putback_active_hugepage(hpage); 1211 return -ENOSYS; 1212 } 1213 1214 new_hpage = get_new_page(hpage, private, &result); 1215 if (!new_hpage) 1216 return -ENOMEM; 1217 1218 if (!trylock_page(hpage)) { 1219 if (!force || mode != MIGRATE_SYNC) 1220 goto out; 1221 lock_page(hpage); 1222 } 1223 1224 if (PageAnon(hpage)) 1225 anon_vma = page_get_anon_vma(hpage); 1226 1227 if (unlikely(!trylock_page(new_hpage))) 1228 goto put_anon; 1229 1230 if (page_mapped(hpage)) { 1231 try_to_unmap(hpage, 1232 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1233 page_was_mapped = 1; 1234 } 1235 1236 if (!page_mapped(hpage)) 1237 rc = move_to_new_page(new_hpage, hpage, mode); 1238 1239 if (page_was_mapped) 1240 remove_migration_ptes(hpage, 1241 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1242 1243 unlock_page(new_hpage); 1244 1245 put_anon: 1246 if (anon_vma) 1247 put_anon_vma(anon_vma); 1248 1249 if (rc == MIGRATEPAGE_SUCCESS) { 1250 hugetlb_cgroup_migrate(hpage, new_hpage); 1251 put_new_page = NULL; 1252 set_page_owner_migrate_reason(new_hpage, reason); 1253 } 1254 1255 unlock_page(hpage); 1256 out: 1257 if (rc != -EAGAIN) 1258 putback_active_hugepage(hpage); 1259 1260 /* 1261 * If migration was not successful and there's a freeing callback, use 1262 * it. Otherwise, put_page() will drop the reference grabbed during 1263 * isolation. 1264 */ 1265 if (put_new_page) 1266 put_new_page(new_hpage, private); 1267 else 1268 putback_active_hugepage(new_hpage); 1269 1270 if (result) { 1271 if (rc) 1272 *result = rc; 1273 else 1274 *result = page_to_nid(new_hpage); 1275 } 1276 return rc; 1277 } 1278 1279 /* 1280 * migrate_pages - migrate the pages specified in a list, to the free pages 1281 * supplied as the target for the page migration 1282 * 1283 * @from: The list of pages to be migrated. 1284 * @get_new_page: The function used to allocate free pages to be used 1285 * as the target of the page migration. 1286 * @put_new_page: The function used to free target pages if migration 1287 * fails, or NULL if no special handling is necessary. 1288 * @private: Private data to be passed on to get_new_page() 1289 * @mode: The migration mode that specifies the constraints for 1290 * page migration, if any. 1291 * @reason: The reason for page migration. 1292 * 1293 * The function returns after 10 attempts or if no pages are movable any more 1294 * because the list has become empty or no retryable pages exist any more. 1295 * The caller should call putback_movable_pages() to return pages to the LRU 1296 * or free list only if ret != 0. 1297 * 1298 * Returns the number of pages that were not migrated, or an error code. 1299 */ 1300 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1301 free_page_t put_new_page, unsigned long private, 1302 enum migrate_mode mode, int reason) 1303 { 1304 int retry = 1; 1305 int nr_failed = 0; 1306 int nr_succeeded = 0; 1307 int pass = 0; 1308 struct page *page; 1309 struct page *page2; 1310 int swapwrite = current->flags & PF_SWAPWRITE; 1311 int rc; 1312 1313 if (!swapwrite) 1314 current->flags |= PF_SWAPWRITE; 1315 1316 for(pass = 0; pass < 10 && retry; pass++) { 1317 retry = 0; 1318 1319 list_for_each_entry_safe(page, page2, from, lru) { 1320 cond_resched(); 1321 1322 if (PageHuge(page)) 1323 rc = unmap_and_move_huge_page(get_new_page, 1324 put_new_page, private, page, 1325 pass > 2, mode, reason); 1326 else 1327 rc = unmap_and_move(get_new_page, put_new_page, 1328 private, page, pass > 2, mode, 1329 reason); 1330 1331 switch(rc) { 1332 case -ENOMEM: 1333 nr_failed++; 1334 goto out; 1335 case -EAGAIN: 1336 retry++; 1337 break; 1338 case MIGRATEPAGE_SUCCESS: 1339 nr_succeeded++; 1340 break; 1341 default: 1342 /* 1343 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1344 * unlike -EAGAIN case, the failed page is 1345 * removed from migration page list and not 1346 * retried in the next outer loop. 1347 */ 1348 nr_failed++; 1349 break; 1350 } 1351 } 1352 } 1353 nr_failed += retry; 1354 rc = nr_failed; 1355 out: 1356 if (nr_succeeded) 1357 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1358 if (nr_failed) 1359 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1360 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1361 1362 if (!swapwrite) 1363 current->flags &= ~PF_SWAPWRITE; 1364 1365 return rc; 1366 } 1367 1368 #ifdef CONFIG_NUMA 1369 /* 1370 * Move a list of individual pages 1371 */ 1372 struct page_to_node { 1373 unsigned long addr; 1374 struct page *page; 1375 int node; 1376 int status; 1377 }; 1378 1379 static struct page *new_page_node(struct page *p, unsigned long private, 1380 int **result) 1381 { 1382 struct page_to_node *pm = (struct page_to_node *)private; 1383 1384 while (pm->node != MAX_NUMNODES && pm->page != p) 1385 pm++; 1386 1387 if (pm->node == MAX_NUMNODES) 1388 return NULL; 1389 1390 *result = &pm->status; 1391 1392 if (PageHuge(p)) 1393 return alloc_huge_page_node(page_hstate(compound_head(p)), 1394 pm->node); 1395 else 1396 return __alloc_pages_node(pm->node, 1397 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1398 } 1399 1400 /* 1401 * Move a set of pages as indicated in the pm array. The addr 1402 * field must be set to the virtual address of the page to be moved 1403 * and the node number must contain a valid target node. 1404 * The pm array ends with node = MAX_NUMNODES. 1405 */ 1406 static int do_move_page_to_node_array(struct mm_struct *mm, 1407 struct page_to_node *pm, 1408 int migrate_all) 1409 { 1410 int err; 1411 struct page_to_node *pp; 1412 LIST_HEAD(pagelist); 1413 1414 down_read(&mm->mmap_sem); 1415 1416 /* 1417 * Build a list of pages to migrate 1418 */ 1419 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1420 struct vm_area_struct *vma; 1421 struct page *page; 1422 1423 err = -EFAULT; 1424 vma = find_vma(mm, pp->addr); 1425 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1426 goto set_status; 1427 1428 /* FOLL_DUMP to ignore special (like zero) pages */ 1429 page = follow_page(vma, pp->addr, 1430 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1431 1432 err = PTR_ERR(page); 1433 if (IS_ERR(page)) 1434 goto set_status; 1435 1436 err = -ENOENT; 1437 if (!page) 1438 goto set_status; 1439 1440 pp->page = page; 1441 err = page_to_nid(page); 1442 1443 if (err == pp->node) 1444 /* 1445 * Node already in the right place 1446 */ 1447 goto put_and_set; 1448 1449 err = -EACCES; 1450 if (page_mapcount(page) > 1 && 1451 !migrate_all) 1452 goto put_and_set; 1453 1454 if (PageHuge(page)) { 1455 if (PageHead(page)) 1456 isolate_huge_page(page, &pagelist); 1457 goto put_and_set; 1458 } 1459 1460 err = isolate_lru_page(page); 1461 if (!err) { 1462 list_add_tail(&page->lru, &pagelist); 1463 inc_node_page_state(page, NR_ISOLATED_ANON + 1464 page_is_file_cache(page)); 1465 } 1466 put_and_set: 1467 /* 1468 * Either remove the duplicate refcount from 1469 * isolate_lru_page() or drop the page ref if it was 1470 * not isolated. 1471 */ 1472 put_page(page); 1473 set_status: 1474 pp->status = err; 1475 } 1476 1477 err = 0; 1478 if (!list_empty(&pagelist)) { 1479 err = migrate_pages(&pagelist, new_page_node, NULL, 1480 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1481 if (err) 1482 putback_movable_pages(&pagelist); 1483 } 1484 1485 up_read(&mm->mmap_sem); 1486 return err; 1487 } 1488 1489 /* 1490 * Migrate an array of page address onto an array of nodes and fill 1491 * the corresponding array of status. 1492 */ 1493 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1494 unsigned long nr_pages, 1495 const void __user * __user *pages, 1496 const int __user *nodes, 1497 int __user *status, int flags) 1498 { 1499 struct page_to_node *pm; 1500 unsigned long chunk_nr_pages; 1501 unsigned long chunk_start; 1502 int err; 1503 1504 err = -ENOMEM; 1505 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1506 if (!pm) 1507 goto out; 1508 1509 migrate_prep(); 1510 1511 /* 1512 * Store a chunk of page_to_node array in a page, 1513 * but keep the last one as a marker 1514 */ 1515 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1516 1517 for (chunk_start = 0; 1518 chunk_start < nr_pages; 1519 chunk_start += chunk_nr_pages) { 1520 int j; 1521 1522 if (chunk_start + chunk_nr_pages > nr_pages) 1523 chunk_nr_pages = nr_pages - chunk_start; 1524 1525 /* fill the chunk pm with addrs and nodes from user-space */ 1526 for (j = 0; j < chunk_nr_pages; j++) { 1527 const void __user *p; 1528 int node; 1529 1530 err = -EFAULT; 1531 if (get_user(p, pages + j + chunk_start)) 1532 goto out_pm; 1533 pm[j].addr = (unsigned long) p; 1534 1535 if (get_user(node, nodes + j + chunk_start)) 1536 goto out_pm; 1537 1538 err = -ENODEV; 1539 if (node < 0 || node >= MAX_NUMNODES) 1540 goto out_pm; 1541 1542 if (!node_state(node, N_MEMORY)) 1543 goto out_pm; 1544 1545 err = -EACCES; 1546 if (!node_isset(node, task_nodes)) 1547 goto out_pm; 1548 1549 pm[j].node = node; 1550 } 1551 1552 /* End marker for this chunk */ 1553 pm[chunk_nr_pages].node = MAX_NUMNODES; 1554 1555 /* Migrate this chunk */ 1556 err = do_move_page_to_node_array(mm, pm, 1557 flags & MPOL_MF_MOVE_ALL); 1558 if (err < 0) 1559 goto out_pm; 1560 1561 /* Return status information */ 1562 for (j = 0; j < chunk_nr_pages; j++) 1563 if (put_user(pm[j].status, status + j + chunk_start)) { 1564 err = -EFAULT; 1565 goto out_pm; 1566 } 1567 } 1568 err = 0; 1569 1570 out_pm: 1571 free_page((unsigned long)pm); 1572 out: 1573 return err; 1574 } 1575 1576 /* 1577 * Determine the nodes of an array of pages and store it in an array of status. 1578 */ 1579 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1580 const void __user **pages, int *status) 1581 { 1582 unsigned long i; 1583 1584 down_read(&mm->mmap_sem); 1585 1586 for (i = 0; i < nr_pages; i++) { 1587 unsigned long addr = (unsigned long)(*pages); 1588 struct vm_area_struct *vma; 1589 struct page *page; 1590 int err = -EFAULT; 1591 1592 vma = find_vma(mm, addr); 1593 if (!vma || addr < vma->vm_start) 1594 goto set_status; 1595 1596 /* FOLL_DUMP to ignore special (like zero) pages */ 1597 page = follow_page(vma, addr, FOLL_DUMP); 1598 1599 err = PTR_ERR(page); 1600 if (IS_ERR(page)) 1601 goto set_status; 1602 1603 err = page ? page_to_nid(page) : -ENOENT; 1604 set_status: 1605 *status = err; 1606 1607 pages++; 1608 status++; 1609 } 1610 1611 up_read(&mm->mmap_sem); 1612 } 1613 1614 /* 1615 * Determine the nodes of a user array of pages and store it in 1616 * a user array of status. 1617 */ 1618 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1619 const void __user * __user *pages, 1620 int __user *status) 1621 { 1622 #define DO_PAGES_STAT_CHUNK_NR 16 1623 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1624 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1625 1626 while (nr_pages) { 1627 unsigned long chunk_nr; 1628 1629 chunk_nr = nr_pages; 1630 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1631 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1632 1633 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1634 break; 1635 1636 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1637 1638 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1639 break; 1640 1641 pages += chunk_nr; 1642 status += chunk_nr; 1643 nr_pages -= chunk_nr; 1644 } 1645 return nr_pages ? -EFAULT : 0; 1646 } 1647 1648 /* 1649 * Move a list of pages in the address space of the currently executing 1650 * process. 1651 */ 1652 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1653 const void __user * __user *, pages, 1654 const int __user *, nodes, 1655 int __user *, status, int, flags) 1656 { 1657 const struct cred *cred = current_cred(), *tcred; 1658 struct task_struct *task; 1659 struct mm_struct *mm; 1660 int err; 1661 nodemask_t task_nodes; 1662 1663 /* Check flags */ 1664 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1665 return -EINVAL; 1666 1667 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1668 return -EPERM; 1669 1670 /* Find the mm_struct */ 1671 rcu_read_lock(); 1672 task = pid ? find_task_by_vpid(pid) : current; 1673 if (!task) { 1674 rcu_read_unlock(); 1675 return -ESRCH; 1676 } 1677 get_task_struct(task); 1678 1679 /* 1680 * Check if this process has the right to modify the specified 1681 * process. The right exists if the process has administrative 1682 * capabilities, superuser privileges or the same 1683 * userid as the target process. 1684 */ 1685 tcred = __task_cred(task); 1686 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1687 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1688 !capable(CAP_SYS_NICE)) { 1689 rcu_read_unlock(); 1690 err = -EPERM; 1691 goto out; 1692 } 1693 rcu_read_unlock(); 1694 1695 err = security_task_movememory(task); 1696 if (err) 1697 goto out; 1698 1699 task_nodes = cpuset_mems_allowed(task); 1700 mm = get_task_mm(task); 1701 put_task_struct(task); 1702 1703 if (!mm) 1704 return -EINVAL; 1705 1706 if (nodes) 1707 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1708 nodes, status, flags); 1709 else 1710 err = do_pages_stat(mm, nr_pages, pages, status); 1711 1712 mmput(mm); 1713 return err; 1714 1715 out: 1716 put_task_struct(task); 1717 return err; 1718 } 1719 1720 #ifdef CONFIG_NUMA_BALANCING 1721 /* 1722 * Returns true if this is a safe migration target node for misplaced NUMA 1723 * pages. Currently it only checks the watermarks which crude 1724 */ 1725 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1726 unsigned long nr_migrate_pages) 1727 { 1728 int z; 1729 1730 if (!pgdat_reclaimable(pgdat)) 1731 return false; 1732 1733 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1734 struct zone *zone = pgdat->node_zones + z; 1735 1736 if (!populated_zone(zone)) 1737 continue; 1738 1739 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1740 if (!zone_watermark_ok(zone, 0, 1741 high_wmark_pages(zone) + 1742 nr_migrate_pages, 1743 0, 0)) 1744 continue; 1745 return true; 1746 } 1747 return false; 1748 } 1749 1750 static struct page *alloc_misplaced_dst_page(struct page *page, 1751 unsigned long data, 1752 int **result) 1753 { 1754 int nid = (int) data; 1755 struct page *newpage; 1756 1757 newpage = __alloc_pages_node(nid, 1758 (GFP_HIGHUSER_MOVABLE | 1759 __GFP_THISNODE | __GFP_NOMEMALLOC | 1760 __GFP_NORETRY | __GFP_NOWARN) & 1761 ~__GFP_RECLAIM, 0); 1762 1763 return newpage; 1764 } 1765 1766 /* 1767 * page migration rate limiting control. 1768 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1769 * window of time. Default here says do not migrate more than 1280M per second. 1770 */ 1771 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1772 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1773 1774 /* Returns true if the node is migrate rate-limited after the update */ 1775 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1776 unsigned long nr_pages) 1777 { 1778 /* 1779 * Rate-limit the amount of data that is being migrated to a node. 1780 * Optimal placement is no good if the memory bus is saturated and 1781 * all the time is being spent migrating! 1782 */ 1783 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1784 spin_lock(&pgdat->numabalancing_migrate_lock); 1785 pgdat->numabalancing_migrate_nr_pages = 0; 1786 pgdat->numabalancing_migrate_next_window = jiffies + 1787 msecs_to_jiffies(migrate_interval_millisecs); 1788 spin_unlock(&pgdat->numabalancing_migrate_lock); 1789 } 1790 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1791 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1792 nr_pages); 1793 return true; 1794 } 1795 1796 /* 1797 * This is an unlocked non-atomic update so errors are possible. 1798 * The consequences are failing to migrate when we potentiall should 1799 * have which is not severe enough to warrant locking. If it is ever 1800 * a problem, it can be converted to a per-cpu counter. 1801 */ 1802 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1803 return false; 1804 } 1805 1806 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1807 { 1808 int page_lru; 1809 1810 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1811 1812 /* Avoid migrating to a node that is nearly full */ 1813 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1814 return 0; 1815 1816 if (isolate_lru_page(page)) 1817 return 0; 1818 1819 /* 1820 * migrate_misplaced_transhuge_page() skips page migration's usual 1821 * check on page_count(), so we must do it here, now that the page 1822 * has been isolated: a GUP pin, or any other pin, prevents migration. 1823 * The expected page count is 3: 1 for page's mapcount and 1 for the 1824 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1825 */ 1826 if (PageTransHuge(page) && page_count(page) != 3) { 1827 putback_lru_page(page); 1828 return 0; 1829 } 1830 1831 page_lru = page_is_file_cache(page); 1832 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1833 hpage_nr_pages(page)); 1834 1835 /* 1836 * Isolating the page has taken another reference, so the 1837 * caller's reference can be safely dropped without the page 1838 * disappearing underneath us during migration. 1839 */ 1840 put_page(page); 1841 return 1; 1842 } 1843 1844 bool pmd_trans_migrating(pmd_t pmd) 1845 { 1846 struct page *page = pmd_page(pmd); 1847 return PageLocked(page); 1848 } 1849 1850 /* 1851 * Attempt to migrate a misplaced page to the specified destination 1852 * node. Caller is expected to have an elevated reference count on 1853 * the page that will be dropped by this function before returning. 1854 */ 1855 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1856 int node) 1857 { 1858 pg_data_t *pgdat = NODE_DATA(node); 1859 int isolated; 1860 int nr_remaining; 1861 LIST_HEAD(migratepages); 1862 1863 /* 1864 * Don't migrate file pages that are mapped in multiple processes 1865 * with execute permissions as they are probably shared libraries. 1866 */ 1867 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1868 (vma->vm_flags & VM_EXEC)) 1869 goto out; 1870 1871 /* 1872 * Rate-limit the amount of data that is being migrated to a node. 1873 * Optimal placement is no good if the memory bus is saturated and 1874 * all the time is being spent migrating! 1875 */ 1876 if (numamigrate_update_ratelimit(pgdat, 1)) 1877 goto out; 1878 1879 isolated = numamigrate_isolate_page(pgdat, page); 1880 if (!isolated) 1881 goto out; 1882 1883 list_add(&page->lru, &migratepages); 1884 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1885 NULL, node, MIGRATE_ASYNC, 1886 MR_NUMA_MISPLACED); 1887 if (nr_remaining) { 1888 if (!list_empty(&migratepages)) { 1889 list_del(&page->lru); 1890 dec_node_page_state(page, NR_ISOLATED_ANON + 1891 page_is_file_cache(page)); 1892 putback_lru_page(page); 1893 } 1894 isolated = 0; 1895 } else 1896 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1897 BUG_ON(!list_empty(&migratepages)); 1898 return isolated; 1899 1900 out: 1901 put_page(page); 1902 return 0; 1903 } 1904 #endif /* CONFIG_NUMA_BALANCING */ 1905 1906 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1907 /* 1908 * Migrates a THP to a given target node. page must be locked and is unlocked 1909 * before returning. 1910 */ 1911 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1912 struct vm_area_struct *vma, 1913 pmd_t *pmd, pmd_t entry, 1914 unsigned long address, 1915 struct page *page, int node) 1916 { 1917 spinlock_t *ptl; 1918 pg_data_t *pgdat = NODE_DATA(node); 1919 int isolated = 0; 1920 struct page *new_page = NULL; 1921 int page_lru = page_is_file_cache(page); 1922 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1923 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1924 pmd_t orig_entry; 1925 1926 /* 1927 * Rate-limit the amount of data that is being migrated to a node. 1928 * Optimal placement is no good if the memory bus is saturated and 1929 * all the time is being spent migrating! 1930 */ 1931 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1932 goto out_dropref; 1933 1934 new_page = alloc_pages_node(node, 1935 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1936 HPAGE_PMD_ORDER); 1937 if (!new_page) 1938 goto out_fail; 1939 prep_transhuge_page(new_page); 1940 1941 isolated = numamigrate_isolate_page(pgdat, page); 1942 if (!isolated) { 1943 put_page(new_page); 1944 goto out_fail; 1945 } 1946 /* 1947 * We are not sure a pending tlb flush here is for a huge page 1948 * mapping or not. Hence use the tlb range variant 1949 */ 1950 if (mm_tlb_flush_pending(mm)) 1951 flush_tlb_range(vma, mmun_start, mmun_end); 1952 1953 /* Prepare a page as a migration target */ 1954 __SetPageLocked(new_page); 1955 __SetPageSwapBacked(new_page); 1956 1957 /* anon mapping, we can simply copy page->mapping to the new page: */ 1958 new_page->mapping = page->mapping; 1959 new_page->index = page->index; 1960 migrate_page_copy(new_page, page); 1961 WARN_ON(PageLRU(new_page)); 1962 1963 /* Recheck the target PMD */ 1964 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1965 ptl = pmd_lock(mm, pmd); 1966 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1967 fail_putback: 1968 spin_unlock(ptl); 1969 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1970 1971 /* Reverse changes made by migrate_page_copy() */ 1972 if (TestClearPageActive(new_page)) 1973 SetPageActive(page); 1974 if (TestClearPageUnevictable(new_page)) 1975 SetPageUnevictable(page); 1976 1977 unlock_page(new_page); 1978 put_page(new_page); /* Free it */ 1979 1980 /* Retake the callers reference and putback on LRU */ 1981 get_page(page); 1982 putback_lru_page(page); 1983 mod_node_page_state(page_pgdat(page), 1984 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1985 1986 goto out_unlock; 1987 } 1988 1989 orig_entry = *pmd; 1990 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1991 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1992 1993 /* 1994 * Clear the old entry under pagetable lock and establish the new PTE. 1995 * Any parallel GUP will either observe the old page blocking on the 1996 * page lock, block on the page table lock or observe the new page. 1997 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1998 * guarantee the copy is visible before the pagetable update. 1999 */ 2000 flush_cache_range(vma, mmun_start, mmun_end); 2001 page_add_anon_rmap(new_page, vma, mmun_start, true); 2002 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2003 set_pmd_at(mm, mmun_start, pmd, entry); 2004 update_mmu_cache_pmd(vma, address, &entry); 2005 2006 if (page_count(page) != 2) { 2007 set_pmd_at(mm, mmun_start, pmd, orig_entry); 2008 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 2009 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2010 update_mmu_cache_pmd(vma, address, &entry); 2011 page_remove_rmap(new_page, true); 2012 goto fail_putback; 2013 } 2014 2015 mlock_migrate_page(new_page, page); 2016 page_remove_rmap(page, true); 2017 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2018 2019 spin_unlock(ptl); 2020 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2021 2022 /* Take an "isolate" reference and put new page on the LRU. */ 2023 get_page(new_page); 2024 putback_lru_page(new_page); 2025 2026 unlock_page(new_page); 2027 unlock_page(page); 2028 put_page(page); /* Drop the rmap reference */ 2029 put_page(page); /* Drop the LRU isolation reference */ 2030 2031 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2032 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2033 2034 mod_node_page_state(page_pgdat(page), 2035 NR_ISOLATED_ANON + page_lru, 2036 -HPAGE_PMD_NR); 2037 return isolated; 2038 2039 out_fail: 2040 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2041 out_dropref: 2042 ptl = pmd_lock(mm, pmd); 2043 if (pmd_same(*pmd, entry)) { 2044 entry = pmd_modify(entry, vma->vm_page_prot); 2045 set_pmd_at(mm, mmun_start, pmd, entry); 2046 update_mmu_cache_pmd(vma, address, &entry); 2047 } 2048 spin_unlock(ptl); 2049 2050 out_unlock: 2051 unlock_page(page); 2052 put_page(page); 2053 return 0; 2054 } 2055 #endif /* CONFIG_NUMA_BALANCING */ 2056 2057 #endif /* CONFIG_NUMA */ 2058