1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/gfp.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 43 44 /* 45 * migrate_prep() needs to be called before we start compiling a list of pages 46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 47 * undesirable, use migrate_prep_local() 48 */ 49 int migrate_prep(void) 50 { 51 /* 52 * Clear the LRU lists so pages can be isolated. 53 * Note that pages may be moved off the LRU after we have 54 * drained them. Those pages will fail to migrate like other 55 * pages that may be busy. 56 */ 57 lru_add_drain_all(); 58 59 return 0; 60 } 61 62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 63 int migrate_prep_local(void) 64 { 65 lru_add_drain(); 66 67 return 0; 68 } 69 70 /* 71 * Add isolated pages on the list back to the LRU under page lock 72 * to avoid leaking evictable pages back onto unevictable list. 73 */ 74 void putback_lru_pages(struct list_head *l) 75 { 76 struct page *page; 77 struct page *page2; 78 79 list_for_each_entry_safe(page, page2, l, lru) { 80 list_del(&page->lru); 81 dec_zone_page_state(page, NR_ISOLATED_ANON + 82 page_is_file_cache(page)); 83 putback_lru_page(page); 84 } 85 } 86 87 /* 88 * Restore a potential migration pte to a working pte entry 89 */ 90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 91 unsigned long addr, void *old) 92 { 93 struct mm_struct *mm = vma->vm_mm; 94 swp_entry_t entry; 95 pgd_t *pgd; 96 pud_t *pud; 97 pmd_t *pmd; 98 pte_t *ptep, pte; 99 spinlock_t *ptl; 100 101 if (unlikely(PageHuge(new))) { 102 ptep = huge_pte_offset(mm, addr); 103 if (!ptep) 104 goto out; 105 ptl = &mm->page_table_lock; 106 } else { 107 pgd = pgd_offset(mm, addr); 108 if (!pgd_present(*pgd)) 109 goto out; 110 111 pud = pud_offset(pgd, addr); 112 if (!pud_present(*pud)) 113 goto out; 114 115 pmd = pmd_offset(pud, addr); 116 if (!pmd_present(*pmd)) 117 goto out; 118 119 ptep = pte_offset_map(pmd, addr); 120 121 if (!is_swap_pte(*ptep)) { 122 pte_unmap(ptep); 123 goto out; 124 } 125 126 ptl = pte_lockptr(mm, pmd); 127 } 128 129 spin_lock(ptl); 130 pte = *ptep; 131 if (!is_swap_pte(pte)) 132 goto unlock; 133 134 entry = pte_to_swp_entry(pte); 135 136 if (!is_migration_entry(entry) || 137 migration_entry_to_page(entry) != old) 138 goto unlock; 139 140 get_page(new); 141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 142 if (is_write_migration_entry(entry)) 143 pte = pte_mkwrite(pte); 144 #ifdef CONFIG_HUGETLB_PAGE 145 if (PageHuge(new)) 146 pte = pte_mkhuge(pte); 147 #endif 148 flush_cache_page(vma, addr, pte_pfn(pte)); 149 set_pte_at(mm, addr, ptep, pte); 150 151 if (PageHuge(new)) { 152 if (PageAnon(new)) 153 hugepage_add_anon_rmap(new, vma, addr); 154 else 155 page_dup_rmap(new); 156 } else if (PageAnon(new)) 157 page_add_anon_rmap(new, vma, addr); 158 else 159 page_add_file_rmap(new); 160 161 /* No need to invalidate - it was non-present before */ 162 update_mmu_cache(vma, addr, ptep); 163 unlock: 164 pte_unmap_unlock(ptep, ptl); 165 out: 166 return SWAP_AGAIN; 167 } 168 169 /* 170 * Get rid of all migration entries and replace them by 171 * references to the indicated page. 172 */ 173 static void remove_migration_ptes(struct page *old, struct page *new) 174 { 175 rmap_walk(new, remove_migration_pte, old); 176 } 177 178 /* 179 * Something used the pte of a page under migration. We need to 180 * get to the page and wait until migration is finished. 181 * When we return from this function the fault will be retried. 182 * 183 * This function is called from do_swap_page(). 184 */ 185 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 186 unsigned long address) 187 { 188 pte_t *ptep, pte; 189 spinlock_t *ptl; 190 swp_entry_t entry; 191 struct page *page; 192 193 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 194 pte = *ptep; 195 if (!is_swap_pte(pte)) 196 goto out; 197 198 entry = pte_to_swp_entry(pte); 199 if (!is_migration_entry(entry)) 200 goto out; 201 202 page = migration_entry_to_page(entry); 203 204 /* 205 * Once radix-tree replacement of page migration started, page_count 206 * *must* be zero. And, we don't want to call wait_on_page_locked() 207 * against a page without get_page(). 208 * So, we use get_page_unless_zero(), here. Even failed, page fault 209 * will occur again. 210 */ 211 if (!get_page_unless_zero(page)) 212 goto out; 213 pte_unmap_unlock(ptep, ptl); 214 wait_on_page_locked(page); 215 put_page(page); 216 return; 217 out: 218 pte_unmap_unlock(ptep, ptl); 219 } 220 221 /* 222 * Replace the page in the mapping. 223 * 224 * The number of remaining references must be: 225 * 1 for anonymous pages without a mapping 226 * 2 for pages with a mapping 227 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 228 */ 229 static int migrate_page_move_mapping(struct address_space *mapping, 230 struct page *newpage, struct page *page) 231 { 232 int expected_count; 233 void **pslot; 234 235 if (!mapping) { 236 /* Anonymous page without mapping */ 237 if (page_count(page) != 1) 238 return -EAGAIN; 239 return 0; 240 } 241 242 spin_lock_irq(&mapping->tree_lock); 243 244 pslot = radix_tree_lookup_slot(&mapping->page_tree, 245 page_index(page)); 246 247 expected_count = 2 + page_has_private(page); 248 if (page_count(page) != expected_count || 249 (struct page *)radix_tree_deref_slot(pslot) != page) { 250 spin_unlock_irq(&mapping->tree_lock); 251 return -EAGAIN; 252 } 253 254 if (!page_freeze_refs(page, expected_count)) { 255 spin_unlock_irq(&mapping->tree_lock); 256 return -EAGAIN; 257 } 258 259 /* 260 * Now we know that no one else is looking at the page. 261 */ 262 get_page(newpage); /* add cache reference */ 263 if (PageSwapCache(page)) { 264 SetPageSwapCache(newpage); 265 set_page_private(newpage, page_private(page)); 266 } 267 268 radix_tree_replace_slot(pslot, newpage); 269 270 page_unfreeze_refs(page, expected_count); 271 /* 272 * Drop cache reference from old page. 273 * We know this isn't the last reference. 274 */ 275 __put_page(page); 276 277 /* 278 * If moved to a different zone then also account 279 * the page for that zone. Other VM counters will be 280 * taken care of when we establish references to the 281 * new page and drop references to the old page. 282 * 283 * Note that anonymous pages are accounted for 284 * via NR_FILE_PAGES and NR_ANON_PAGES if they 285 * are mapped to swap space. 286 */ 287 __dec_zone_page_state(page, NR_FILE_PAGES); 288 __inc_zone_page_state(newpage, NR_FILE_PAGES); 289 if (PageSwapBacked(page)) { 290 __dec_zone_page_state(page, NR_SHMEM); 291 __inc_zone_page_state(newpage, NR_SHMEM); 292 } 293 spin_unlock_irq(&mapping->tree_lock); 294 295 return 0; 296 } 297 298 /* 299 * The expected number of remaining references is the same as that 300 * of migrate_page_move_mapping(). 301 */ 302 int migrate_huge_page_move_mapping(struct address_space *mapping, 303 struct page *newpage, struct page *page) 304 { 305 int expected_count; 306 void **pslot; 307 308 if (!mapping) { 309 if (page_count(page) != 1) 310 return -EAGAIN; 311 return 0; 312 } 313 314 spin_lock_irq(&mapping->tree_lock); 315 316 pslot = radix_tree_lookup_slot(&mapping->page_tree, 317 page_index(page)); 318 319 expected_count = 2 + page_has_private(page); 320 if (page_count(page) != expected_count || 321 (struct page *)radix_tree_deref_slot(pslot) != page) { 322 spin_unlock_irq(&mapping->tree_lock); 323 return -EAGAIN; 324 } 325 326 if (!page_freeze_refs(page, expected_count)) { 327 spin_unlock_irq(&mapping->tree_lock); 328 return -EAGAIN; 329 } 330 331 get_page(newpage); 332 333 radix_tree_replace_slot(pslot, newpage); 334 335 page_unfreeze_refs(page, expected_count); 336 337 __put_page(page); 338 339 spin_unlock_irq(&mapping->tree_lock); 340 return 0; 341 } 342 343 /* 344 * Copy the page to its new location 345 */ 346 void migrate_page_copy(struct page *newpage, struct page *page) 347 { 348 if (PageHuge(page)) 349 copy_huge_page(newpage, page); 350 else 351 copy_highpage(newpage, page); 352 353 if (PageError(page)) 354 SetPageError(newpage); 355 if (PageReferenced(page)) 356 SetPageReferenced(newpage); 357 if (PageUptodate(page)) 358 SetPageUptodate(newpage); 359 if (TestClearPageActive(page)) { 360 VM_BUG_ON(PageUnevictable(page)); 361 SetPageActive(newpage); 362 } else if (TestClearPageUnevictable(page)) 363 SetPageUnevictable(newpage); 364 if (PageChecked(page)) 365 SetPageChecked(newpage); 366 if (PageMappedToDisk(page)) 367 SetPageMappedToDisk(newpage); 368 369 if (PageDirty(page)) { 370 clear_page_dirty_for_io(page); 371 /* 372 * Want to mark the page and the radix tree as dirty, and 373 * redo the accounting that clear_page_dirty_for_io undid, 374 * but we can't use set_page_dirty because that function 375 * is actually a signal that all of the page has become dirty. 376 * Wheras only part of our page may be dirty. 377 */ 378 __set_page_dirty_nobuffers(newpage); 379 } 380 381 mlock_migrate_page(newpage, page); 382 ksm_migrate_page(newpage, page); 383 384 ClearPageSwapCache(page); 385 ClearPagePrivate(page); 386 set_page_private(page, 0); 387 page->mapping = NULL; 388 389 /* 390 * If any waiters have accumulated on the new page then 391 * wake them up. 392 */ 393 if (PageWriteback(newpage)) 394 end_page_writeback(newpage); 395 } 396 397 /************************************************************ 398 * Migration functions 399 ***********************************************************/ 400 401 /* Always fail migration. Used for mappings that are not movable */ 402 int fail_migrate_page(struct address_space *mapping, 403 struct page *newpage, struct page *page) 404 { 405 return -EIO; 406 } 407 EXPORT_SYMBOL(fail_migrate_page); 408 409 /* 410 * Common logic to directly migrate a single page suitable for 411 * pages that do not use PagePrivate/PagePrivate2. 412 * 413 * Pages are locked upon entry and exit. 414 */ 415 int migrate_page(struct address_space *mapping, 416 struct page *newpage, struct page *page) 417 { 418 int rc; 419 420 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 421 422 rc = migrate_page_move_mapping(mapping, newpage, page); 423 424 if (rc) 425 return rc; 426 427 migrate_page_copy(newpage, page); 428 return 0; 429 } 430 EXPORT_SYMBOL(migrate_page); 431 432 #ifdef CONFIG_BLOCK 433 /* 434 * Migration function for pages with buffers. This function can only be used 435 * if the underlying filesystem guarantees that no other references to "page" 436 * exist. 437 */ 438 int buffer_migrate_page(struct address_space *mapping, 439 struct page *newpage, struct page *page) 440 { 441 struct buffer_head *bh, *head; 442 int rc; 443 444 if (!page_has_buffers(page)) 445 return migrate_page(mapping, newpage, page); 446 447 head = page_buffers(page); 448 449 rc = migrate_page_move_mapping(mapping, newpage, page); 450 451 if (rc) 452 return rc; 453 454 bh = head; 455 do { 456 get_bh(bh); 457 lock_buffer(bh); 458 bh = bh->b_this_page; 459 460 } while (bh != head); 461 462 ClearPagePrivate(page); 463 set_page_private(newpage, page_private(page)); 464 set_page_private(page, 0); 465 put_page(page); 466 get_page(newpage); 467 468 bh = head; 469 do { 470 set_bh_page(bh, newpage, bh_offset(bh)); 471 bh = bh->b_this_page; 472 473 } while (bh != head); 474 475 SetPagePrivate(newpage); 476 477 migrate_page_copy(newpage, page); 478 479 bh = head; 480 do { 481 unlock_buffer(bh); 482 put_bh(bh); 483 bh = bh->b_this_page; 484 485 } while (bh != head); 486 487 return 0; 488 } 489 EXPORT_SYMBOL(buffer_migrate_page); 490 #endif 491 492 /* 493 * Writeback a page to clean the dirty state 494 */ 495 static int writeout(struct address_space *mapping, struct page *page) 496 { 497 struct writeback_control wbc = { 498 .sync_mode = WB_SYNC_NONE, 499 .nr_to_write = 1, 500 .range_start = 0, 501 .range_end = LLONG_MAX, 502 .for_reclaim = 1 503 }; 504 int rc; 505 506 if (!mapping->a_ops->writepage) 507 /* No write method for the address space */ 508 return -EINVAL; 509 510 if (!clear_page_dirty_for_io(page)) 511 /* Someone else already triggered a write */ 512 return -EAGAIN; 513 514 /* 515 * A dirty page may imply that the underlying filesystem has 516 * the page on some queue. So the page must be clean for 517 * migration. Writeout may mean we loose the lock and the 518 * page state is no longer what we checked for earlier. 519 * At this point we know that the migration attempt cannot 520 * be successful. 521 */ 522 remove_migration_ptes(page, page); 523 524 rc = mapping->a_ops->writepage(page, &wbc); 525 526 if (rc != AOP_WRITEPAGE_ACTIVATE) 527 /* unlocked. Relock */ 528 lock_page(page); 529 530 return (rc < 0) ? -EIO : -EAGAIN; 531 } 532 533 /* 534 * Default handling if a filesystem does not provide a migration function. 535 */ 536 static int fallback_migrate_page(struct address_space *mapping, 537 struct page *newpage, struct page *page) 538 { 539 if (PageDirty(page)) 540 return writeout(mapping, page); 541 542 /* 543 * Buffers may be managed in a filesystem specific way. 544 * We must have no buffers or drop them. 545 */ 546 if (page_has_private(page) && 547 !try_to_release_page(page, GFP_KERNEL)) 548 return -EAGAIN; 549 550 return migrate_page(mapping, newpage, page); 551 } 552 553 /* 554 * Move a page to a newly allocated page 555 * The page is locked and all ptes have been successfully removed. 556 * 557 * The new page will have replaced the old page if this function 558 * is successful. 559 * 560 * Return value: 561 * < 0 - error code 562 * == 0 - success 563 */ 564 static int move_to_new_page(struct page *newpage, struct page *page, 565 int remap_swapcache) 566 { 567 struct address_space *mapping; 568 int rc; 569 570 /* 571 * Block others from accessing the page when we get around to 572 * establishing additional references. We are the only one 573 * holding a reference to the new page at this point. 574 */ 575 if (!trylock_page(newpage)) 576 BUG(); 577 578 /* Prepare mapping for the new page.*/ 579 newpage->index = page->index; 580 newpage->mapping = page->mapping; 581 if (PageSwapBacked(page)) 582 SetPageSwapBacked(newpage); 583 584 mapping = page_mapping(page); 585 if (!mapping) 586 rc = migrate_page(mapping, newpage, page); 587 else if (mapping->a_ops->migratepage) 588 /* 589 * Most pages have a mapping and most filesystems 590 * should provide a migration function. Anonymous 591 * pages are part of swap space which also has its 592 * own migration function. This is the most common 593 * path for page migration. 594 */ 595 rc = mapping->a_ops->migratepage(mapping, 596 newpage, page); 597 else 598 rc = fallback_migrate_page(mapping, newpage, page); 599 600 if (rc) { 601 newpage->mapping = NULL; 602 } else { 603 if (remap_swapcache) 604 remove_migration_ptes(page, newpage); 605 } 606 607 unlock_page(newpage); 608 609 return rc; 610 } 611 612 /* 613 * Obtain the lock on page, remove all ptes and migrate the page 614 * to the newly allocated page in newpage. 615 */ 616 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 617 struct page *page, int force, int offlining) 618 { 619 int rc = 0; 620 int *result = NULL; 621 struct page *newpage = get_new_page(page, private, &result); 622 int remap_swapcache = 1; 623 int rcu_locked = 0; 624 int charge = 0; 625 struct mem_cgroup *mem = NULL; 626 struct anon_vma *anon_vma = NULL; 627 628 if (!newpage) 629 return -ENOMEM; 630 631 if (page_count(page) == 1) { 632 /* page was freed from under us. So we are done. */ 633 goto move_newpage; 634 } 635 636 /* prepare cgroup just returns 0 or -ENOMEM */ 637 rc = -EAGAIN; 638 639 if (!trylock_page(page)) { 640 if (!force) 641 goto move_newpage; 642 lock_page(page); 643 } 644 645 /* 646 * Only memory hotplug's offline_pages() caller has locked out KSM, 647 * and can safely migrate a KSM page. The other cases have skipped 648 * PageKsm along with PageReserved - but it is only now when we have 649 * the page lock that we can be certain it will not go KSM beneath us 650 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees 651 * its pagecount raised, but only here do we take the page lock which 652 * serializes that). 653 */ 654 if (PageKsm(page) && !offlining) { 655 rc = -EBUSY; 656 goto unlock; 657 } 658 659 /* charge against new page */ 660 charge = mem_cgroup_prepare_migration(page, newpage, &mem); 661 if (charge == -ENOMEM) { 662 rc = -ENOMEM; 663 goto unlock; 664 } 665 BUG_ON(charge); 666 667 if (PageWriteback(page)) { 668 if (!force) 669 goto uncharge; 670 wait_on_page_writeback(page); 671 } 672 /* 673 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 674 * we cannot notice that anon_vma is freed while we migrates a page. 675 * This rcu_read_lock() delays freeing anon_vma pointer until the end 676 * of migration. File cache pages are no problem because of page_lock() 677 * File Caches may use write_page() or lock_page() in migration, then, 678 * just care Anon page here. 679 */ 680 if (PageAnon(page)) { 681 rcu_read_lock(); 682 rcu_locked = 1; 683 684 /* Determine how to safely use anon_vma */ 685 if (!page_mapped(page)) { 686 if (!PageSwapCache(page)) 687 goto rcu_unlock; 688 689 /* 690 * We cannot be sure that the anon_vma of an unmapped 691 * swapcache page is safe to use because we don't 692 * know in advance if the VMA that this page belonged 693 * to still exists. If the VMA and others sharing the 694 * data have been freed, then the anon_vma could 695 * already be invalid. 696 * 697 * To avoid this possibility, swapcache pages get 698 * migrated but are not remapped when migration 699 * completes 700 */ 701 remap_swapcache = 0; 702 } else { 703 /* 704 * Take a reference count on the anon_vma if the 705 * page is mapped so that it is guaranteed to 706 * exist when the page is remapped later 707 */ 708 anon_vma = page_anon_vma(page); 709 get_anon_vma(anon_vma); 710 } 711 } 712 713 /* 714 * Corner case handling: 715 * 1. When a new swap-cache page is read into, it is added to the LRU 716 * and treated as swapcache but it has no rmap yet. 717 * Calling try_to_unmap() against a page->mapping==NULL page will 718 * trigger a BUG. So handle it here. 719 * 2. An orphaned page (see truncate_complete_page) might have 720 * fs-private metadata. The page can be picked up due to memory 721 * offlining. Everywhere else except page reclaim, the page is 722 * invisible to the vm, so the page can not be migrated. So try to 723 * free the metadata, so the page can be freed. 724 */ 725 if (!page->mapping) { 726 if (!PageAnon(page) && page_has_private(page)) { 727 /* 728 * Go direct to try_to_free_buffers() here because 729 * a) that's what try_to_release_page() would do anyway 730 * b) we may be under rcu_read_lock() here, so we can't 731 * use GFP_KERNEL which is what try_to_release_page() 732 * needs to be effective. 733 */ 734 try_to_free_buffers(page); 735 goto rcu_unlock; 736 } 737 goto skip_unmap; 738 } 739 740 /* Establish migration ptes or remove ptes */ 741 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 742 743 skip_unmap: 744 if (!page_mapped(page)) 745 rc = move_to_new_page(newpage, page, remap_swapcache); 746 747 if (rc && remap_swapcache) 748 remove_migration_ptes(page, page); 749 rcu_unlock: 750 751 /* Drop an anon_vma reference if we took one */ 752 if (anon_vma) 753 drop_anon_vma(anon_vma); 754 755 if (rcu_locked) 756 rcu_read_unlock(); 757 uncharge: 758 if (!charge) 759 mem_cgroup_end_migration(mem, page, newpage); 760 unlock: 761 unlock_page(page); 762 763 if (rc != -EAGAIN) { 764 /* 765 * A page that has been migrated has all references 766 * removed and will be freed. A page that has not been 767 * migrated will have kepts its references and be 768 * restored. 769 */ 770 list_del(&page->lru); 771 dec_zone_page_state(page, NR_ISOLATED_ANON + 772 page_is_file_cache(page)); 773 putback_lru_page(page); 774 } 775 776 move_newpage: 777 778 /* 779 * Move the new page to the LRU. If migration was not successful 780 * then this will free the page. 781 */ 782 putback_lru_page(newpage); 783 784 if (result) { 785 if (rc) 786 *result = rc; 787 else 788 *result = page_to_nid(newpage); 789 } 790 return rc; 791 } 792 793 /* 794 * Counterpart of unmap_and_move_page() for hugepage migration. 795 * 796 * This function doesn't wait the completion of hugepage I/O 797 * because there is no race between I/O and migration for hugepage. 798 * Note that currently hugepage I/O occurs only in direct I/O 799 * where no lock is held and PG_writeback is irrelevant, 800 * and writeback status of all subpages are counted in the reference 801 * count of the head page (i.e. if all subpages of a 2MB hugepage are 802 * under direct I/O, the reference of the head page is 512 and a bit more.) 803 * This means that when we try to migrate hugepage whose subpages are 804 * doing direct I/O, some references remain after try_to_unmap() and 805 * hugepage migration fails without data corruption. 806 * 807 * There is also no race when direct I/O is issued on the page under migration, 808 * because then pte is replaced with migration swap entry and direct I/O code 809 * will wait in the page fault for migration to complete. 810 */ 811 static int unmap_and_move_huge_page(new_page_t get_new_page, 812 unsigned long private, struct page *hpage, 813 int force, int offlining) 814 { 815 int rc = 0; 816 int *result = NULL; 817 struct page *new_hpage = get_new_page(hpage, private, &result); 818 int rcu_locked = 0; 819 struct anon_vma *anon_vma = NULL; 820 821 if (!new_hpage) 822 return -ENOMEM; 823 824 rc = -EAGAIN; 825 826 if (!trylock_page(hpage)) { 827 if (!force) 828 goto out; 829 lock_page(hpage); 830 } 831 832 if (PageAnon(hpage)) { 833 rcu_read_lock(); 834 rcu_locked = 1; 835 836 if (page_mapped(hpage)) { 837 anon_vma = page_anon_vma(hpage); 838 atomic_inc(&anon_vma->external_refcount); 839 } 840 } 841 842 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 843 844 if (!page_mapped(hpage)) 845 rc = move_to_new_page(new_hpage, hpage, 1); 846 847 if (rc) 848 remove_migration_ptes(hpage, hpage); 849 850 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, 851 &anon_vma->lock)) { 852 int empty = list_empty(&anon_vma->head); 853 spin_unlock(&anon_vma->lock); 854 if (empty) 855 anon_vma_free(anon_vma); 856 } 857 858 if (rcu_locked) 859 rcu_read_unlock(); 860 out: 861 unlock_page(hpage); 862 863 if (rc != -EAGAIN) { 864 list_del(&hpage->lru); 865 put_page(hpage); 866 } 867 868 put_page(new_hpage); 869 870 if (result) { 871 if (rc) 872 *result = rc; 873 else 874 *result = page_to_nid(new_hpage); 875 } 876 return rc; 877 } 878 879 /* 880 * migrate_pages 881 * 882 * The function takes one list of pages to migrate and a function 883 * that determines from the page to be migrated and the private data 884 * the target of the move and allocates the page. 885 * 886 * The function returns after 10 attempts or if no pages 887 * are movable anymore because to has become empty 888 * or no retryable pages exist anymore. 889 * Caller should call putback_lru_pages to return pages to the LRU 890 * or free list. 891 * 892 * Return: Number of pages not migrated or error code. 893 */ 894 int migrate_pages(struct list_head *from, 895 new_page_t get_new_page, unsigned long private, int offlining) 896 { 897 int retry = 1; 898 int nr_failed = 0; 899 int pass = 0; 900 struct page *page; 901 struct page *page2; 902 int swapwrite = current->flags & PF_SWAPWRITE; 903 int rc; 904 905 if (!swapwrite) 906 current->flags |= PF_SWAPWRITE; 907 908 for(pass = 0; pass < 10 && retry; pass++) { 909 retry = 0; 910 911 list_for_each_entry_safe(page, page2, from, lru) { 912 cond_resched(); 913 914 rc = unmap_and_move(get_new_page, private, 915 page, pass > 2, offlining); 916 917 switch(rc) { 918 case -ENOMEM: 919 goto out; 920 case -EAGAIN: 921 retry++; 922 break; 923 case 0: 924 break; 925 default: 926 /* Permanent failure */ 927 nr_failed++; 928 break; 929 } 930 } 931 } 932 rc = 0; 933 out: 934 if (!swapwrite) 935 current->flags &= ~PF_SWAPWRITE; 936 937 if (rc) 938 return rc; 939 940 return nr_failed + retry; 941 } 942 943 int migrate_huge_pages(struct list_head *from, 944 new_page_t get_new_page, unsigned long private, int offlining) 945 { 946 int retry = 1; 947 int nr_failed = 0; 948 int pass = 0; 949 struct page *page; 950 struct page *page2; 951 int rc; 952 953 for (pass = 0; pass < 10 && retry; pass++) { 954 retry = 0; 955 956 list_for_each_entry_safe(page, page2, from, lru) { 957 cond_resched(); 958 959 rc = unmap_and_move_huge_page(get_new_page, 960 private, page, pass > 2, offlining); 961 962 switch(rc) { 963 case -ENOMEM: 964 goto out; 965 case -EAGAIN: 966 retry++; 967 break; 968 case 0: 969 break; 970 default: 971 /* Permanent failure */ 972 nr_failed++; 973 break; 974 } 975 } 976 } 977 rc = 0; 978 out: 979 980 list_for_each_entry_safe(page, page2, from, lru) 981 put_page(page); 982 983 if (rc) 984 return rc; 985 986 return nr_failed + retry; 987 } 988 989 #ifdef CONFIG_NUMA 990 /* 991 * Move a list of individual pages 992 */ 993 struct page_to_node { 994 unsigned long addr; 995 struct page *page; 996 int node; 997 int status; 998 }; 999 1000 static struct page *new_page_node(struct page *p, unsigned long private, 1001 int **result) 1002 { 1003 struct page_to_node *pm = (struct page_to_node *)private; 1004 1005 while (pm->node != MAX_NUMNODES && pm->page != p) 1006 pm++; 1007 1008 if (pm->node == MAX_NUMNODES) 1009 return NULL; 1010 1011 *result = &pm->status; 1012 1013 return alloc_pages_exact_node(pm->node, 1014 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 1015 } 1016 1017 /* 1018 * Move a set of pages as indicated in the pm array. The addr 1019 * field must be set to the virtual address of the page to be moved 1020 * and the node number must contain a valid target node. 1021 * The pm array ends with node = MAX_NUMNODES. 1022 */ 1023 static int do_move_page_to_node_array(struct mm_struct *mm, 1024 struct page_to_node *pm, 1025 int migrate_all) 1026 { 1027 int err; 1028 struct page_to_node *pp; 1029 LIST_HEAD(pagelist); 1030 1031 down_read(&mm->mmap_sem); 1032 1033 /* 1034 * Build a list of pages to migrate 1035 */ 1036 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1037 struct vm_area_struct *vma; 1038 struct page *page; 1039 1040 err = -EFAULT; 1041 vma = find_vma(mm, pp->addr); 1042 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1043 goto set_status; 1044 1045 page = follow_page(vma, pp->addr, FOLL_GET); 1046 1047 err = PTR_ERR(page); 1048 if (IS_ERR(page)) 1049 goto set_status; 1050 1051 err = -ENOENT; 1052 if (!page) 1053 goto set_status; 1054 1055 /* Use PageReserved to check for zero page */ 1056 if (PageReserved(page) || PageKsm(page)) 1057 goto put_and_set; 1058 1059 pp->page = page; 1060 err = page_to_nid(page); 1061 1062 if (err == pp->node) 1063 /* 1064 * Node already in the right place 1065 */ 1066 goto put_and_set; 1067 1068 err = -EACCES; 1069 if (page_mapcount(page) > 1 && 1070 !migrate_all) 1071 goto put_and_set; 1072 1073 err = isolate_lru_page(page); 1074 if (!err) { 1075 list_add_tail(&page->lru, &pagelist); 1076 inc_zone_page_state(page, NR_ISOLATED_ANON + 1077 page_is_file_cache(page)); 1078 } 1079 put_and_set: 1080 /* 1081 * Either remove the duplicate refcount from 1082 * isolate_lru_page() or drop the page ref if it was 1083 * not isolated. 1084 */ 1085 put_page(page); 1086 set_status: 1087 pp->status = err; 1088 } 1089 1090 err = 0; 1091 if (!list_empty(&pagelist)) { 1092 err = migrate_pages(&pagelist, new_page_node, 1093 (unsigned long)pm, 0); 1094 if (err) 1095 putback_lru_pages(&pagelist); 1096 } 1097 1098 up_read(&mm->mmap_sem); 1099 return err; 1100 } 1101 1102 /* 1103 * Migrate an array of page address onto an array of nodes and fill 1104 * the corresponding array of status. 1105 */ 1106 static int do_pages_move(struct mm_struct *mm, struct task_struct *task, 1107 unsigned long nr_pages, 1108 const void __user * __user *pages, 1109 const int __user *nodes, 1110 int __user *status, int flags) 1111 { 1112 struct page_to_node *pm; 1113 nodemask_t task_nodes; 1114 unsigned long chunk_nr_pages; 1115 unsigned long chunk_start; 1116 int err; 1117 1118 task_nodes = cpuset_mems_allowed(task); 1119 1120 err = -ENOMEM; 1121 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1122 if (!pm) 1123 goto out; 1124 1125 migrate_prep(); 1126 1127 /* 1128 * Store a chunk of page_to_node array in a page, 1129 * but keep the last one as a marker 1130 */ 1131 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1132 1133 for (chunk_start = 0; 1134 chunk_start < nr_pages; 1135 chunk_start += chunk_nr_pages) { 1136 int j; 1137 1138 if (chunk_start + chunk_nr_pages > nr_pages) 1139 chunk_nr_pages = nr_pages - chunk_start; 1140 1141 /* fill the chunk pm with addrs and nodes from user-space */ 1142 for (j = 0; j < chunk_nr_pages; j++) { 1143 const void __user *p; 1144 int node; 1145 1146 err = -EFAULT; 1147 if (get_user(p, pages + j + chunk_start)) 1148 goto out_pm; 1149 pm[j].addr = (unsigned long) p; 1150 1151 if (get_user(node, nodes + j + chunk_start)) 1152 goto out_pm; 1153 1154 err = -ENODEV; 1155 if (node < 0 || node >= MAX_NUMNODES) 1156 goto out_pm; 1157 1158 if (!node_state(node, N_HIGH_MEMORY)) 1159 goto out_pm; 1160 1161 err = -EACCES; 1162 if (!node_isset(node, task_nodes)) 1163 goto out_pm; 1164 1165 pm[j].node = node; 1166 } 1167 1168 /* End marker for this chunk */ 1169 pm[chunk_nr_pages].node = MAX_NUMNODES; 1170 1171 /* Migrate this chunk */ 1172 err = do_move_page_to_node_array(mm, pm, 1173 flags & MPOL_MF_MOVE_ALL); 1174 if (err < 0) 1175 goto out_pm; 1176 1177 /* Return status information */ 1178 for (j = 0; j < chunk_nr_pages; j++) 1179 if (put_user(pm[j].status, status + j + chunk_start)) { 1180 err = -EFAULT; 1181 goto out_pm; 1182 } 1183 } 1184 err = 0; 1185 1186 out_pm: 1187 free_page((unsigned long)pm); 1188 out: 1189 return err; 1190 } 1191 1192 /* 1193 * Determine the nodes of an array of pages and store it in an array of status. 1194 */ 1195 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1196 const void __user **pages, int *status) 1197 { 1198 unsigned long i; 1199 1200 down_read(&mm->mmap_sem); 1201 1202 for (i = 0; i < nr_pages; i++) { 1203 unsigned long addr = (unsigned long)(*pages); 1204 struct vm_area_struct *vma; 1205 struct page *page; 1206 int err = -EFAULT; 1207 1208 vma = find_vma(mm, addr); 1209 if (!vma || addr < vma->vm_start) 1210 goto set_status; 1211 1212 page = follow_page(vma, addr, 0); 1213 1214 err = PTR_ERR(page); 1215 if (IS_ERR(page)) 1216 goto set_status; 1217 1218 err = -ENOENT; 1219 /* Use PageReserved to check for zero page */ 1220 if (!page || PageReserved(page) || PageKsm(page)) 1221 goto set_status; 1222 1223 err = page_to_nid(page); 1224 set_status: 1225 *status = err; 1226 1227 pages++; 1228 status++; 1229 } 1230 1231 up_read(&mm->mmap_sem); 1232 } 1233 1234 /* 1235 * Determine the nodes of a user array of pages and store it in 1236 * a user array of status. 1237 */ 1238 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1239 const void __user * __user *pages, 1240 int __user *status) 1241 { 1242 #define DO_PAGES_STAT_CHUNK_NR 16 1243 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1244 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1245 1246 while (nr_pages) { 1247 unsigned long chunk_nr; 1248 1249 chunk_nr = nr_pages; 1250 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1251 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1252 1253 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1254 break; 1255 1256 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1257 1258 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1259 break; 1260 1261 pages += chunk_nr; 1262 status += chunk_nr; 1263 nr_pages -= chunk_nr; 1264 } 1265 return nr_pages ? -EFAULT : 0; 1266 } 1267 1268 /* 1269 * Move a list of pages in the address space of the currently executing 1270 * process. 1271 */ 1272 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1273 const void __user * __user *, pages, 1274 const int __user *, nodes, 1275 int __user *, status, int, flags) 1276 { 1277 const struct cred *cred = current_cred(), *tcred; 1278 struct task_struct *task; 1279 struct mm_struct *mm; 1280 int err; 1281 1282 /* Check flags */ 1283 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1284 return -EINVAL; 1285 1286 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1287 return -EPERM; 1288 1289 /* Find the mm_struct */ 1290 read_lock(&tasklist_lock); 1291 task = pid ? find_task_by_vpid(pid) : current; 1292 if (!task) { 1293 read_unlock(&tasklist_lock); 1294 return -ESRCH; 1295 } 1296 mm = get_task_mm(task); 1297 read_unlock(&tasklist_lock); 1298 1299 if (!mm) 1300 return -EINVAL; 1301 1302 /* 1303 * Check if this process has the right to modify the specified 1304 * process. The right exists if the process has administrative 1305 * capabilities, superuser privileges or the same 1306 * userid as the target process. 1307 */ 1308 rcu_read_lock(); 1309 tcred = __task_cred(task); 1310 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1311 cred->uid != tcred->suid && cred->uid != tcred->uid && 1312 !capable(CAP_SYS_NICE)) { 1313 rcu_read_unlock(); 1314 err = -EPERM; 1315 goto out; 1316 } 1317 rcu_read_unlock(); 1318 1319 err = security_task_movememory(task); 1320 if (err) 1321 goto out; 1322 1323 if (nodes) { 1324 err = do_pages_move(mm, task, nr_pages, pages, nodes, status, 1325 flags); 1326 } else { 1327 err = do_pages_stat(mm, nr_pages, pages, status); 1328 } 1329 1330 out: 1331 mmput(mm); 1332 return err; 1333 } 1334 1335 /* 1336 * Call migration functions in the vma_ops that may prepare 1337 * memory in a vm for migration. migration functions may perform 1338 * the migration for vmas that do not have an underlying page struct. 1339 */ 1340 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1341 const nodemask_t *from, unsigned long flags) 1342 { 1343 struct vm_area_struct *vma; 1344 int err = 0; 1345 1346 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1347 if (vma->vm_ops && vma->vm_ops->migrate) { 1348 err = vma->vm_ops->migrate(vma, to, from, flags); 1349 if (err) 1350 break; 1351 } 1352 } 1353 return err; 1354 } 1355 #endif 1356