xref: /openbmc/linux/mm/migrate.c (revision b5f184fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 void migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 }
81 
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84 	struct address_space *mapping;
85 
86 	/*
87 	 * Avoid burning cycles with pages that are yet under __free_pages(),
88 	 * or just got freed under us.
89 	 *
90 	 * In case we 'win' a race for a movable page being freed under us and
91 	 * raise its refcount preventing __free_pages() from doing its job
92 	 * the put_page() at the end of this block will take care of
93 	 * release this page, thus avoiding a nasty leakage.
94 	 */
95 	if (unlikely(!get_page_unless_zero(page)))
96 		goto out;
97 
98 	/*
99 	 * Check PageMovable before holding a PG_lock because page's owner
100 	 * assumes anybody doesn't touch PG_lock of newly allocated page
101 	 * so unconditionally grabbing the lock ruins page's owner side.
102 	 */
103 	if (unlikely(!__PageMovable(page)))
104 		goto out_putpage;
105 	/*
106 	 * As movable pages are not isolated from LRU lists, concurrent
107 	 * compaction threads can race against page migration functions
108 	 * as well as race against the releasing a page.
109 	 *
110 	 * In order to avoid having an already isolated movable page
111 	 * being (wrongly) re-isolated while it is under migration,
112 	 * or to avoid attempting to isolate pages being released,
113 	 * lets be sure we have the page lock
114 	 * before proceeding with the movable page isolation steps.
115 	 */
116 	if (unlikely(!trylock_page(page)))
117 		goto out_putpage;
118 
119 	if (!PageMovable(page) || PageIsolated(page))
120 		goto out_no_isolated;
121 
122 	mapping = page_mapping(page);
123 	VM_BUG_ON_PAGE(!mapping, page);
124 
125 	if (!mapping->a_ops->isolate_page(page, mode))
126 		goto out_no_isolated;
127 
128 	/* Driver shouldn't use PG_isolated bit of page->flags */
129 	WARN_ON_ONCE(PageIsolated(page));
130 	__SetPageIsolated(page);
131 	unlock_page(page);
132 
133 	return 0;
134 
135 out_no_isolated:
136 	unlock_page(page);
137 out_putpage:
138 	put_page(page);
139 out:
140 	return -EBUSY;
141 }
142 
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146 	struct address_space *mapping;
147 
148 	VM_BUG_ON_PAGE(!PageLocked(page), page);
149 	VM_BUG_ON_PAGE(!PageMovable(page), page);
150 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
151 
152 	mapping = page_mapping(page);
153 	mapping->a_ops->putback_page(page);
154 	__ClearPageIsolated(page);
155 }
156 
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167 	struct page *page;
168 	struct page *page2;
169 
170 	list_for_each_entry_safe(page, page2, l, lru) {
171 		if (unlikely(PageHuge(page))) {
172 			putback_active_hugepage(page);
173 			continue;
174 		}
175 		list_del(&page->lru);
176 		/*
177 		 * We isolated non-lru movable page so here we can use
178 		 * __PageMovable because LRU page's mapping cannot have
179 		 * PAGE_MAPPING_MOVABLE.
180 		 */
181 		if (unlikely(__PageMovable(page))) {
182 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 			lock_page(page);
184 			if (PageMovable(page))
185 				putback_movable_page(page);
186 			else
187 				__ClearPageIsolated(page);
188 			unlock_page(page);
189 			put_page(page);
190 		} else {
191 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 					page_is_file_lru(page), -thp_nr_pages(page));
193 			putback_lru_page(page);
194 		}
195 	}
196 }
197 
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 				 unsigned long addr, void *old)
203 {
204 	struct page_vma_mapped_walk pvmw = {
205 		.page = old,
206 		.vma = vma,
207 		.address = addr,
208 		.flags = PVMW_SYNC | PVMW_MIGRATION,
209 	};
210 	struct page *new;
211 	pte_t pte;
212 	swp_entry_t entry;
213 
214 	VM_BUG_ON_PAGE(PageTail(page), page);
215 	while (page_vma_mapped_walk(&pvmw)) {
216 		if (PageKsm(page))
217 			new = page;
218 		else
219 			new = page - pvmw.page->index +
220 				linear_page_index(vma, pvmw.address);
221 
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 		/* PMD-mapped THP migration entry */
224 		if (!pvmw.pte) {
225 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 			remove_migration_pmd(&pvmw, new);
227 			continue;
228 		}
229 #endif
230 
231 		get_page(new);
232 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 		if (pte_swp_soft_dirty(*pvmw.pte))
234 			pte = pte_mksoft_dirty(pte);
235 
236 		/*
237 		 * Recheck VMA as permissions can change since migration started
238 		 */
239 		entry = pte_to_swp_entry(*pvmw.pte);
240 		if (is_write_migration_entry(entry))
241 			pte = maybe_mkwrite(pte, vma);
242 		else if (pte_swp_uffd_wp(*pvmw.pte))
243 			pte = pte_mkuffd_wp(pte);
244 
245 		if (unlikely(is_device_private_page(new))) {
246 			entry = make_device_private_entry(new, pte_write(pte));
247 			pte = swp_entry_to_pte(entry);
248 			if (pte_swp_soft_dirty(*pvmw.pte))
249 				pte = pte_swp_mksoft_dirty(pte);
250 			if (pte_swp_uffd_wp(*pvmw.pte))
251 				pte = pte_swp_mkuffd_wp(pte);
252 		}
253 
254 #ifdef CONFIG_HUGETLB_PAGE
255 		if (PageHuge(new)) {
256 			pte = pte_mkhuge(pte);
257 			pte = arch_make_huge_pte(pte, vma, new, 0);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 			if (PageAnon(new))
260 				hugepage_add_anon_rmap(new, vma, pvmw.address);
261 			else
262 				page_dup_rmap(new, true);
263 		} else
264 #endif
265 		{
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 
268 			if (PageAnon(new))
269 				page_add_anon_rmap(new, vma, pvmw.address, false);
270 			else
271 				page_add_file_rmap(new, false);
272 		}
273 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 			mlock_vma_page(new);
275 
276 		if (PageTransHuge(page) && PageMlocked(page))
277 			clear_page_mlock(page);
278 
279 		/* No need to invalidate - it was non-present before */
280 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 	}
282 
283 	return true;
284 }
285 
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 	struct rmap_walk_control rwc = {
293 		.rmap_one = remove_migration_pte,
294 		.arg = old,
295 	};
296 
297 	if (locked)
298 		rmap_walk_locked(new, &rwc);
299 	else
300 		rmap_walk(new, &rwc);
301 }
302 
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 				spinlock_t *ptl)
310 {
311 	pte_t pte;
312 	swp_entry_t entry;
313 	struct page *page;
314 
315 	spin_lock(ptl);
316 	pte = *ptep;
317 	if (!is_swap_pte(pte))
318 		goto out;
319 
320 	entry = pte_to_swp_entry(pte);
321 	if (!is_migration_entry(entry))
322 		goto out;
323 
324 	page = migration_entry_to_page(entry);
325 
326 	/*
327 	 * Once page cache replacement of page migration started, page_count
328 	 * is zero; but we must not call put_and_wait_on_page_locked() without
329 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	put_and_wait_on_page_locked(page);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	put_and_wait_on_page_locked(page);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 	int expected_count = 1;
378 
379 	/*
380 	 * Device private pages have an extra refcount as they are
381 	 * ZONE_DEVICE pages.
382 	 */
383 	expected_count += is_device_private_page(page);
384 	if (mapping)
385 		expected_count += thp_nr_pages(page) + page_has_private(page);
386 
387 	return expected_count;
388 }
389 
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 		struct page *newpage, struct page *page, int extra_count)
400 {
401 	XA_STATE(xas, &mapping->i_pages, page_index(page));
402 	struct zone *oldzone, *newzone;
403 	int dirty;
404 	int expected_count = expected_page_refs(mapping, page) + extra_count;
405 	int nr = thp_nr_pages(page);
406 
407 	if (!mapping) {
408 		/* Anonymous page without mapping */
409 		if (page_count(page) != expected_count)
410 			return -EAGAIN;
411 
412 		/* No turning back from here */
413 		newpage->index = page->index;
414 		newpage->mapping = page->mapping;
415 		if (PageSwapBacked(page))
416 			__SetPageSwapBacked(newpage);
417 
418 		return MIGRATEPAGE_SUCCESS;
419 	}
420 
421 	oldzone = page_zone(page);
422 	newzone = page_zone(newpage);
423 
424 	xas_lock_irq(&xas);
425 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 		xas_unlock_irq(&xas);
427 		return -EAGAIN;
428 	}
429 
430 	if (!page_ref_freeze(page, expected_count)) {
431 		xas_unlock_irq(&xas);
432 		return -EAGAIN;
433 	}
434 
435 	/*
436 	 * Now we know that no one else is looking at the page:
437 	 * no turning back from here.
438 	 */
439 	newpage->index = page->index;
440 	newpage->mapping = page->mapping;
441 	page_ref_add(newpage, nr); /* add cache reference */
442 	if (PageSwapBacked(page)) {
443 		__SetPageSwapBacked(newpage);
444 		if (PageSwapCache(page)) {
445 			SetPageSwapCache(newpage);
446 			set_page_private(newpage, page_private(page));
447 		}
448 	} else {
449 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
450 	}
451 
452 	/* Move dirty while page refs frozen and newpage not yet exposed */
453 	dirty = PageDirty(page);
454 	if (dirty) {
455 		ClearPageDirty(page);
456 		SetPageDirty(newpage);
457 	}
458 
459 	xas_store(&xas, newpage);
460 	if (PageTransHuge(page)) {
461 		int i;
462 
463 		for (i = 1; i < nr; i++) {
464 			xas_next(&xas);
465 			xas_store(&xas, newpage);
466 		}
467 	}
468 
469 	/*
470 	 * Drop cache reference from old page by unfreezing
471 	 * to one less reference.
472 	 * We know this isn't the last reference.
473 	 */
474 	page_ref_unfreeze(page, expected_count - nr);
475 
476 	xas_unlock(&xas);
477 	/* Leave irq disabled to prevent preemption while updating stats */
478 
479 	/*
480 	 * If moved to a different zone then also account
481 	 * the page for that zone. Other VM counters will be
482 	 * taken care of when we establish references to the
483 	 * new page and drop references to the old page.
484 	 *
485 	 * Note that anonymous pages are accounted for
486 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 	 * are mapped to swap space.
488 	 */
489 	if (newzone != oldzone) {
490 		struct lruvec *old_lruvec, *new_lruvec;
491 		struct mem_cgroup *memcg;
492 
493 		memcg = page_memcg(page);
494 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496 
497 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
500 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
502 		}
503 		if (dirty && mapping_can_writeback(mapping)) {
504 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
505 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
506 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
507 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
508 		}
509 	}
510 	local_irq_enable();
511 
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL(migrate_page_move_mapping);
515 
516 /*
517  * The expected number of remaining references is the same as that
518  * of migrate_page_move_mapping().
519  */
520 int migrate_huge_page_move_mapping(struct address_space *mapping,
521 				   struct page *newpage, struct page *page)
522 {
523 	XA_STATE(xas, &mapping->i_pages, page_index(page));
524 	int expected_count;
525 
526 	xas_lock_irq(&xas);
527 	expected_count = 2 + page_has_private(page);
528 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
529 		xas_unlock_irq(&xas);
530 		return -EAGAIN;
531 	}
532 
533 	if (!page_ref_freeze(page, expected_count)) {
534 		xas_unlock_irq(&xas);
535 		return -EAGAIN;
536 	}
537 
538 	newpage->index = page->index;
539 	newpage->mapping = page->mapping;
540 
541 	get_page(newpage);
542 
543 	xas_store(&xas, newpage);
544 
545 	page_ref_unfreeze(page, expected_count - 1);
546 
547 	xas_unlock_irq(&xas);
548 
549 	return MIGRATEPAGE_SUCCESS;
550 }
551 
552 /*
553  * Gigantic pages are so large that we do not guarantee that page++ pointer
554  * arithmetic will work across the entire page.  We need something more
555  * specialized.
556  */
557 static void __copy_gigantic_page(struct page *dst, struct page *src,
558 				int nr_pages)
559 {
560 	int i;
561 	struct page *dst_base = dst;
562 	struct page *src_base = src;
563 
564 	for (i = 0; i < nr_pages; ) {
565 		cond_resched();
566 		copy_highpage(dst, src);
567 
568 		i++;
569 		dst = mem_map_next(dst, dst_base, i);
570 		src = mem_map_next(src, src_base, i);
571 	}
572 }
573 
574 static void copy_huge_page(struct page *dst, struct page *src)
575 {
576 	int i;
577 	int nr_pages;
578 
579 	if (PageHuge(src)) {
580 		/* hugetlbfs page */
581 		struct hstate *h = page_hstate(src);
582 		nr_pages = pages_per_huge_page(h);
583 
584 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
585 			__copy_gigantic_page(dst, src, nr_pages);
586 			return;
587 		}
588 	} else {
589 		/* thp page */
590 		BUG_ON(!PageTransHuge(src));
591 		nr_pages = thp_nr_pages(src);
592 	}
593 
594 	for (i = 0; i < nr_pages; i++) {
595 		cond_resched();
596 		copy_highpage(dst + i, src + i);
597 	}
598 }
599 
600 /*
601  * Copy the page to its new location
602  */
603 void migrate_page_states(struct page *newpage, struct page *page)
604 {
605 	int cpupid;
606 
607 	if (PageError(page))
608 		SetPageError(newpage);
609 	if (PageReferenced(page))
610 		SetPageReferenced(newpage);
611 	if (PageUptodate(page))
612 		SetPageUptodate(newpage);
613 	if (TestClearPageActive(page)) {
614 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
615 		SetPageActive(newpage);
616 	} else if (TestClearPageUnevictable(page))
617 		SetPageUnevictable(newpage);
618 	if (PageWorkingset(page))
619 		SetPageWorkingset(newpage);
620 	if (PageChecked(page))
621 		SetPageChecked(newpage);
622 	if (PageMappedToDisk(page))
623 		SetPageMappedToDisk(newpage);
624 
625 	/* Move dirty on pages not done by migrate_page_move_mapping() */
626 	if (PageDirty(page))
627 		SetPageDirty(newpage);
628 
629 	if (page_is_young(page))
630 		set_page_young(newpage);
631 	if (page_is_idle(page))
632 		set_page_idle(newpage);
633 
634 	/*
635 	 * Copy NUMA information to the new page, to prevent over-eager
636 	 * future migrations of this same page.
637 	 */
638 	cpupid = page_cpupid_xchg_last(page, -1);
639 	page_cpupid_xchg_last(newpage, cpupid);
640 
641 	ksm_migrate_page(newpage, page);
642 	/*
643 	 * Please do not reorder this without considering how mm/ksm.c's
644 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
645 	 */
646 	if (PageSwapCache(page))
647 		ClearPageSwapCache(page);
648 	ClearPagePrivate(page);
649 	set_page_private(page, 0);
650 
651 	/*
652 	 * If any waiters have accumulated on the new page then
653 	 * wake them up.
654 	 */
655 	if (PageWriteback(newpage))
656 		end_page_writeback(newpage);
657 
658 	/*
659 	 * PG_readahead shares the same bit with PG_reclaim.  The above
660 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
661 	 * bit after that.
662 	 */
663 	if (PageReadahead(page))
664 		SetPageReadahead(newpage);
665 
666 	copy_page_owner(page, newpage);
667 
668 	if (!PageHuge(page))
669 		mem_cgroup_migrate(page, newpage);
670 }
671 EXPORT_SYMBOL(migrate_page_states);
672 
673 void migrate_page_copy(struct page *newpage, struct page *page)
674 {
675 	if (PageHuge(page) || PageTransHuge(page))
676 		copy_huge_page(newpage, page);
677 	else
678 		copy_highpage(newpage, page);
679 
680 	migrate_page_states(newpage, page);
681 }
682 EXPORT_SYMBOL(migrate_page_copy);
683 
684 /************************************************************
685  *                    Migration functions
686  ***********************************************************/
687 
688 /*
689  * Common logic to directly migrate a single LRU page suitable for
690  * pages that do not use PagePrivate/PagePrivate2.
691  *
692  * Pages are locked upon entry and exit.
693  */
694 int migrate_page(struct address_space *mapping,
695 		struct page *newpage, struct page *page,
696 		enum migrate_mode mode)
697 {
698 	int rc;
699 
700 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
701 
702 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
703 
704 	if (rc != MIGRATEPAGE_SUCCESS)
705 		return rc;
706 
707 	if (mode != MIGRATE_SYNC_NO_COPY)
708 		migrate_page_copy(newpage, page);
709 	else
710 		migrate_page_states(newpage, page);
711 	return MIGRATEPAGE_SUCCESS;
712 }
713 EXPORT_SYMBOL(migrate_page);
714 
715 #ifdef CONFIG_BLOCK
716 /* Returns true if all buffers are successfully locked */
717 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
718 							enum migrate_mode mode)
719 {
720 	struct buffer_head *bh = head;
721 
722 	/* Simple case, sync compaction */
723 	if (mode != MIGRATE_ASYNC) {
724 		do {
725 			lock_buffer(bh);
726 			bh = bh->b_this_page;
727 
728 		} while (bh != head);
729 
730 		return true;
731 	}
732 
733 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
734 	do {
735 		if (!trylock_buffer(bh)) {
736 			/*
737 			 * We failed to lock the buffer and cannot stall in
738 			 * async migration. Release the taken locks
739 			 */
740 			struct buffer_head *failed_bh = bh;
741 			bh = head;
742 			while (bh != failed_bh) {
743 				unlock_buffer(bh);
744 				bh = bh->b_this_page;
745 			}
746 			return false;
747 		}
748 
749 		bh = bh->b_this_page;
750 	} while (bh != head);
751 	return true;
752 }
753 
754 static int __buffer_migrate_page(struct address_space *mapping,
755 		struct page *newpage, struct page *page, enum migrate_mode mode,
756 		bool check_refs)
757 {
758 	struct buffer_head *bh, *head;
759 	int rc;
760 	int expected_count;
761 
762 	if (!page_has_buffers(page))
763 		return migrate_page(mapping, newpage, page, mode);
764 
765 	/* Check whether page does not have extra refs before we do more work */
766 	expected_count = expected_page_refs(mapping, page);
767 	if (page_count(page) != expected_count)
768 		return -EAGAIN;
769 
770 	head = page_buffers(page);
771 	if (!buffer_migrate_lock_buffers(head, mode))
772 		return -EAGAIN;
773 
774 	if (check_refs) {
775 		bool busy;
776 		bool invalidated = false;
777 
778 recheck_buffers:
779 		busy = false;
780 		spin_lock(&mapping->private_lock);
781 		bh = head;
782 		do {
783 			if (atomic_read(&bh->b_count)) {
784 				busy = true;
785 				break;
786 			}
787 			bh = bh->b_this_page;
788 		} while (bh != head);
789 		if (busy) {
790 			if (invalidated) {
791 				rc = -EAGAIN;
792 				goto unlock_buffers;
793 			}
794 			spin_unlock(&mapping->private_lock);
795 			invalidate_bh_lrus();
796 			invalidated = true;
797 			goto recheck_buffers;
798 		}
799 	}
800 
801 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
802 	if (rc != MIGRATEPAGE_SUCCESS)
803 		goto unlock_buffers;
804 
805 	attach_page_private(newpage, detach_page_private(page));
806 
807 	bh = head;
808 	do {
809 		set_bh_page(bh, newpage, bh_offset(bh));
810 		bh = bh->b_this_page;
811 
812 	} while (bh != head);
813 
814 	if (mode != MIGRATE_SYNC_NO_COPY)
815 		migrate_page_copy(newpage, page);
816 	else
817 		migrate_page_states(newpage, page);
818 
819 	rc = MIGRATEPAGE_SUCCESS;
820 unlock_buffers:
821 	if (check_refs)
822 		spin_unlock(&mapping->private_lock);
823 	bh = head;
824 	do {
825 		unlock_buffer(bh);
826 		bh = bh->b_this_page;
827 
828 	} while (bh != head);
829 
830 	return rc;
831 }
832 
833 /*
834  * Migration function for pages with buffers. This function can only be used
835  * if the underlying filesystem guarantees that no other references to "page"
836  * exist. For example attached buffer heads are accessed only under page lock.
837  */
838 int buffer_migrate_page(struct address_space *mapping,
839 		struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
842 }
843 EXPORT_SYMBOL(buffer_migrate_page);
844 
845 /*
846  * Same as above except that this variant is more careful and checks that there
847  * are also no buffer head references. This function is the right one for
848  * mappings where buffer heads are directly looked up and referenced (such as
849  * block device mappings).
850  */
851 int buffer_migrate_page_norefs(struct address_space *mapping,
852 		struct page *newpage, struct page *page, enum migrate_mode mode)
853 {
854 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
855 }
856 #endif
857 
858 /*
859  * Writeback a page to clean the dirty state
860  */
861 static int writeout(struct address_space *mapping, struct page *page)
862 {
863 	struct writeback_control wbc = {
864 		.sync_mode = WB_SYNC_NONE,
865 		.nr_to_write = 1,
866 		.range_start = 0,
867 		.range_end = LLONG_MAX,
868 		.for_reclaim = 1
869 	};
870 	int rc;
871 
872 	if (!mapping->a_ops->writepage)
873 		/* No write method for the address space */
874 		return -EINVAL;
875 
876 	if (!clear_page_dirty_for_io(page))
877 		/* Someone else already triggered a write */
878 		return -EAGAIN;
879 
880 	/*
881 	 * A dirty page may imply that the underlying filesystem has
882 	 * the page on some queue. So the page must be clean for
883 	 * migration. Writeout may mean we loose the lock and the
884 	 * page state is no longer what we checked for earlier.
885 	 * At this point we know that the migration attempt cannot
886 	 * be successful.
887 	 */
888 	remove_migration_ptes(page, page, false);
889 
890 	rc = mapping->a_ops->writepage(page, &wbc);
891 
892 	if (rc != AOP_WRITEPAGE_ACTIVATE)
893 		/* unlocked. Relock */
894 		lock_page(page);
895 
896 	return (rc < 0) ? -EIO : -EAGAIN;
897 }
898 
899 /*
900  * Default handling if a filesystem does not provide a migration function.
901  */
902 static int fallback_migrate_page(struct address_space *mapping,
903 	struct page *newpage, struct page *page, enum migrate_mode mode)
904 {
905 	if (PageDirty(page)) {
906 		/* Only writeback pages in full synchronous migration */
907 		switch (mode) {
908 		case MIGRATE_SYNC:
909 		case MIGRATE_SYNC_NO_COPY:
910 			break;
911 		default:
912 			return -EBUSY;
913 		}
914 		return writeout(mapping, page);
915 	}
916 
917 	/*
918 	 * Buffers may be managed in a filesystem specific way.
919 	 * We must have no buffers or drop them.
920 	 */
921 	if (page_has_private(page) &&
922 	    !try_to_release_page(page, GFP_KERNEL))
923 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
924 
925 	return migrate_page(mapping, newpage, page, mode);
926 }
927 
928 /*
929  * Move a page to a newly allocated page
930  * The page is locked and all ptes have been successfully removed.
931  *
932  * The new page will have replaced the old page if this function
933  * is successful.
934  *
935  * Return value:
936  *   < 0 - error code
937  *  MIGRATEPAGE_SUCCESS - success
938  */
939 static int move_to_new_page(struct page *newpage, struct page *page,
940 				enum migrate_mode mode)
941 {
942 	struct address_space *mapping;
943 	int rc = -EAGAIN;
944 	bool is_lru = !__PageMovable(page);
945 
946 	VM_BUG_ON_PAGE(!PageLocked(page), page);
947 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
948 
949 	mapping = page_mapping(page);
950 
951 	if (likely(is_lru)) {
952 		if (!mapping)
953 			rc = migrate_page(mapping, newpage, page, mode);
954 		else if (mapping->a_ops->migratepage)
955 			/*
956 			 * Most pages have a mapping and most filesystems
957 			 * provide a migratepage callback. Anonymous pages
958 			 * are part of swap space which also has its own
959 			 * migratepage callback. This is the most common path
960 			 * for page migration.
961 			 */
962 			rc = mapping->a_ops->migratepage(mapping, newpage,
963 							page, mode);
964 		else
965 			rc = fallback_migrate_page(mapping, newpage,
966 							page, mode);
967 	} else {
968 		/*
969 		 * In case of non-lru page, it could be released after
970 		 * isolation step. In that case, we shouldn't try migration.
971 		 */
972 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 		if (!PageMovable(page)) {
974 			rc = MIGRATEPAGE_SUCCESS;
975 			__ClearPageIsolated(page);
976 			goto out;
977 		}
978 
979 		rc = mapping->a_ops->migratepage(mapping, newpage,
980 						page, mode);
981 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
982 			!PageIsolated(page));
983 	}
984 
985 	/*
986 	 * When successful, old pagecache page->mapping must be cleared before
987 	 * page is freed; but stats require that PageAnon be left as PageAnon.
988 	 */
989 	if (rc == MIGRATEPAGE_SUCCESS) {
990 		if (__PageMovable(page)) {
991 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
992 
993 			/*
994 			 * We clear PG_movable under page_lock so any compactor
995 			 * cannot try to migrate this page.
996 			 */
997 			__ClearPageIsolated(page);
998 		}
999 
1000 		/*
1001 		 * Anonymous and movable page->mapping will be cleared by
1002 		 * free_pages_prepare so don't reset it here for keeping
1003 		 * the type to work PageAnon, for example.
1004 		 */
1005 		if (!PageMappingFlags(page))
1006 			page->mapping = NULL;
1007 
1008 		if (likely(!is_zone_device_page(newpage)))
1009 			flush_dcache_page(newpage);
1010 
1011 	}
1012 out:
1013 	return rc;
1014 }
1015 
1016 static int __unmap_and_move(struct page *page, struct page *newpage,
1017 				int force, enum migrate_mode mode)
1018 {
1019 	int rc = -EAGAIN;
1020 	int page_was_mapped = 0;
1021 	struct anon_vma *anon_vma = NULL;
1022 	bool is_lru = !__PageMovable(page);
1023 
1024 	if (!trylock_page(page)) {
1025 		if (!force || mode == MIGRATE_ASYNC)
1026 			goto out;
1027 
1028 		/*
1029 		 * It's not safe for direct compaction to call lock_page.
1030 		 * For example, during page readahead pages are added locked
1031 		 * to the LRU. Later, when the IO completes the pages are
1032 		 * marked uptodate and unlocked. However, the queueing
1033 		 * could be merging multiple pages for one bio (e.g.
1034 		 * mpage_readahead). If an allocation happens for the
1035 		 * second or third page, the process can end up locking
1036 		 * the same page twice and deadlocking. Rather than
1037 		 * trying to be clever about what pages can be locked,
1038 		 * avoid the use of lock_page for direct compaction
1039 		 * altogether.
1040 		 */
1041 		if (current->flags & PF_MEMALLOC)
1042 			goto out;
1043 
1044 		lock_page(page);
1045 	}
1046 
1047 	if (PageWriteback(page)) {
1048 		/*
1049 		 * Only in the case of a full synchronous migration is it
1050 		 * necessary to wait for PageWriteback. In the async case,
1051 		 * the retry loop is too short and in the sync-light case,
1052 		 * the overhead of stalling is too much
1053 		 */
1054 		switch (mode) {
1055 		case MIGRATE_SYNC:
1056 		case MIGRATE_SYNC_NO_COPY:
1057 			break;
1058 		default:
1059 			rc = -EBUSY;
1060 			goto out_unlock;
1061 		}
1062 		if (!force)
1063 			goto out_unlock;
1064 		wait_on_page_writeback(page);
1065 	}
1066 
1067 	/*
1068 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1069 	 * we cannot notice that anon_vma is freed while we migrates a page.
1070 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1071 	 * of migration. File cache pages are no problem because of page_lock()
1072 	 * File Caches may use write_page() or lock_page() in migration, then,
1073 	 * just care Anon page here.
1074 	 *
1075 	 * Only page_get_anon_vma() understands the subtleties of
1076 	 * getting a hold on an anon_vma from outside one of its mms.
1077 	 * But if we cannot get anon_vma, then we won't need it anyway,
1078 	 * because that implies that the anon page is no longer mapped
1079 	 * (and cannot be remapped so long as we hold the page lock).
1080 	 */
1081 	if (PageAnon(page) && !PageKsm(page))
1082 		anon_vma = page_get_anon_vma(page);
1083 
1084 	/*
1085 	 * Block others from accessing the new page when we get around to
1086 	 * establishing additional references. We are usually the only one
1087 	 * holding a reference to newpage at this point. We used to have a BUG
1088 	 * here if trylock_page(newpage) fails, but would like to allow for
1089 	 * cases where there might be a race with the previous use of newpage.
1090 	 * This is much like races on refcount of oldpage: just don't BUG().
1091 	 */
1092 	if (unlikely(!trylock_page(newpage)))
1093 		goto out_unlock;
1094 
1095 	if (unlikely(!is_lru)) {
1096 		rc = move_to_new_page(newpage, page, mode);
1097 		goto out_unlock_both;
1098 	}
1099 
1100 	/*
1101 	 * Corner case handling:
1102 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1103 	 * and treated as swapcache but it has no rmap yet.
1104 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1105 	 * trigger a BUG.  So handle it here.
1106 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1107 	 * fs-private metadata. The page can be picked up due to memory
1108 	 * offlining.  Everywhere else except page reclaim, the page is
1109 	 * invisible to the vm, so the page can not be migrated.  So try to
1110 	 * free the metadata, so the page can be freed.
1111 	 */
1112 	if (!page->mapping) {
1113 		VM_BUG_ON_PAGE(PageAnon(page), page);
1114 		if (page_has_private(page)) {
1115 			try_to_free_buffers(page);
1116 			goto out_unlock_both;
1117 		}
1118 	} else if (page_mapped(page)) {
1119 		/* Establish migration ptes */
1120 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1121 				page);
1122 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1123 		page_was_mapped = 1;
1124 	}
1125 
1126 	if (!page_mapped(page))
1127 		rc = move_to_new_page(newpage, page, mode);
1128 
1129 	if (page_was_mapped)
1130 		remove_migration_ptes(page,
1131 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1132 
1133 out_unlock_both:
1134 	unlock_page(newpage);
1135 out_unlock:
1136 	/* Drop an anon_vma reference if we took one */
1137 	if (anon_vma)
1138 		put_anon_vma(anon_vma);
1139 	unlock_page(page);
1140 out:
1141 	/*
1142 	 * If migration is successful, decrease refcount of the newpage
1143 	 * which will not free the page because new page owner increased
1144 	 * refcounter. As well, if it is LRU page, add the page to LRU
1145 	 * list in here. Use the old state of the isolated source page to
1146 	 * determine if we migrated a LRU page. newpage was already unlocked
1147 	 * and possibly modified by its owner - don't rely on the page
1148 	 * state.
1149 	 */
1150 	if (rc == MIGRATEPAGE_SUCCESS) {
1151 		if (unlikely(!is_lru))
1152 			put_page(newpage);
1153 		else
1154 			putback_lru_page(newpage);
1155 	}
1156 
1157 	return rc;
1158 }
1159 
1160 /*
1161  * Obtain the lock on page, remove all ptes and migrate the page
1162  * to the newly allocated page in newpage.
1163  */
1164 static int unmap_and_move(new_page_t get_new_page,
1165 				   free_page_t put_new_page,
1166 				   unsigned long private, struct page *page,
1167 				   int force, enum migrate_mode mode,
1168 				   enum migrate_reason reason,
1169 				   struct list_head *ret)
1170 {
1171 	int rc = MIGRATEPAGE_SUCCESS;
1172 	struct page *newpage = NULL;
1173 
1174 	if (!thp_migration_supported() && PageTransHuge(page))
1175 		return -ENOSYS;
1176 
1177 	if (page_count(page) == 1) {
1178 		/* page was freed from under us. So we are done. */
1179 		ClearPageActive(page);
1180 		ClearPageUnevictable(page);
1181 		if (unlikely(__PageMovable(page))) {
1182 			lock_page(page);
1183 			if (!PageMovable(page))
1184 				__ClearPageIsolated(page);
1185 			unlock_page(page);
1186 		}
1187 		goto out;
1188 	}
1189 
1190 	newpage = get_new_page(page, private);
1191 	if (!newpage)
1192 		return -ENOMEM;
1193 
1194 	rc = __unmap_and_move(page, newpage, force, mode);
1195 	if (rc == MIGRATEPAGE_SUCCESS)
1196 		set_page_owner_migrate_reason(newpage, reason);
1197 
1198 out:
1199 	if (rc != -EAGAIN) {
1200 		/*
1201 		 * A page that has been migrated has all references
1202 		 * removed and will be freed. A page that has not been
1203 		 * migrated will have kept its references and be restored.
1204 		 */
1205 		list_del(&page->lru);
1206 	}
1207 
1208 	/*
1209 	 * If migration is successful, releases reference grabbed during
1210 	 * isolation. Otherwise, restore the page to right list unless
1211 	 * we want to retry.
1212 	 */
1213 	if (rc == MIGRATEPAGE_SUCCESS) {
1214 		/*
1215 		 * Compaction can migrate also non-LRU pages which are
1216 		 * not accounted to NR_ISOLATED_*. They can be recognized
1217 		 * as __PageMovable
1218 		 */
1219 		if (likely(!__PageMovable(page)))
1220 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1221 					page_is_file_lru(page), -thp_nr_pages(page));
1222 
1223 		if (reason != MR_MEMORY_FAILURE)
1224 			/*
1225 			 * We release the page in page_handle_poison.
1226 			 */
1227 			put_page(page);
1228 	} else {
1229 		if (rc != -EAGAIN)
1230 			list_add_tail(&page->lru, ret);
1231 
1232 		if (put_new_page)
1233 			put_new_page(newpage, private);
1234 		else
1235 			put_page(newpage);
1236 	}
1237 
1238 	return rc;
1239 }
1240 
1241 /*
1242  * Counterpart of unmap_and_move_page() for hugepage migration.
1243  *
1244  * This function doesn't wait the completion of hugepage I/O
1245  * because there is no race between I/O and migration for hugepage.
1246  * Note that currently hugepage I/O occurs only in direct I/O
1247  * where no lock is held and PG_writeback is irrelevant,
1248  * and writeback status of all subpages are counted in the reference
1249  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250  * under direct I/O, the reference of the head page is 512 and a bit more.)
1251  * This means that when we try to migrate hugepage whose subpages are
1252  * doing direct I/O, some references remain after try_to_unmap() and
1253  * hugepage migration fails without data corruption.
1254  *
1255  * There is also no race when direct I/O is issued on the page under migration,
1256  * because then pte is replaced with migration swap entry and direct I/O code
1257  * will wait in the page fault for migration to complete.
1258  */
1259 static int unmap_and_move_huge_page(new_page_t get_new_page,
1260 				free_page_t put_new_page, unsigned long private,
1261 				struct page *hpage, int force,
1262 				enum migrate_mode mode, int reason,
1263 				struct list_head *ret)
1264 {
1265 	int rc = -EAGAIN;
1266 	int page_was_mapped = 0;
1267 	struct page *new_hpage;
1268 	struct anon_vma *anon_vma = NULL;
1269 	struct address_space *mapping = NULL;
1270 
1271 	/*
1272 	 * Migratability of hugepages depends on architectures and their size.
1273 	 * This check is necessary because some callers of hugepage migration
1274 	 * like soft offline and memory hotremove don't walk through page
1275 	 * tables or check whether the hugepage is pmd-based or not before
1276 	 * kicking migration.
1277 	 */
1278 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 		list_move_tail(&hpage->lru, ret);
1280 		return -ENOSYS;
1281 	}
1282 
1283 	if (page_count(hpage) == 1) {
1284 		/* page was freed from under us. So we are done. */
1285 		putback_active_hugepage(hpage);
1286 		return MIGRATEPAGE_SUCCESS;
1287 	}
1288 
1289 	new_hpage = get_new_page(hpage, private);
1290 	if (!new_hpage)
1291 		return -ENOMEM;
1292 
1293 	if (!trylock_page(hpage)) {
1294 		if (!force)
1295 			goto out;
1296 		switch (mode) {
1297 		case MIGRATE_SYNC:
1298 		case MIGRATE_SYNC_NO_COPY:
1299 			break;
1300 		default:
1301 			goto out;
1302 		}
1303 		lock_page(hpage);
1304 	}
1305 
1306 	/*
1307 	 * Check for pages which are in the process of being freed.  Without
1308 	 * page_mapping() set, hugetlbfs specific move page routine will not
1309 	 * be called and we could leak usage counts for subpools.
1310 	 */
1311 	if (page_private(hpage) && !page_mapping(hpage)) {
1312 		rc = -EBUSY;
1313 		goto out_unlock;
1314 	}
1315 
1316 	if (PageAnon(hpage))
1317 		anon_vma = page_get_anon_vma(hpage);
1318 
1319 	if (unlikely(!trylock_page(new_hpage)))
1320 		goto put_anon;
1321 
1322 	if (page_mapped(hpage)) {
1323 		bool mapping_locked = false;
1324 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1325 
1326 		if (!PageAnon(hpage)) {
1327 			/*
1328 			 * In shared mappings, try_to_unmap could potentially
1329 			 * call huge_pmd_unshare.  Because of this, take
1330 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1331 			 * to let lower levels know we have taken the lock.
1332 			 */
1333 			mapping = hugetlb_page_mapping_lock_write(hpage);
1334 			if (unlikely(!mapping))
1335 				goto unlock_put_anon;
1336 
1337 			mapping_locked = true;
1338 			ttu |= TTU_RMAP_LOCKED;
1339 		}
1340 
1341 		try_to_unmap(hpage, ttu);
1342 		page_was_mapped = 1;
1343 
1344 		if (mapping_locked)
1345 			i_mmap_unlock_write(mapping);
1346 	}
1347 
1348 	if (!page_mapped(hpage))
1349 		rc = move_to_new_page(new_hpage, hpage, mode);
1350 
1351 	if (page_was_mapped)
1352 		remove_migration_ptes(hpage,
1353 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1354 
1355 unlock_put_anon:
1356 	unlock_page(new_hpage);
1357 
1358 put_anon:
1359 	if (anon_vma)
1360 		put_anon_vma(anon_vma);
1361 
1362 	if (rc == MIGRATEPAGE_SUCCESS) {
1363 		move_hugetlb_state(hpage, new_hpage, reason);
1364 		put_new_page = NULL;
1365 	}
1366 
1367 out_unlock:
1368 	unlock_page(hpage);
1369 out:
1370 	if (rc == MIGRATEPAGE_SUCCESS)
1371 		putback_active_hugepage(hpage);
1372 	else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1373 		list_move_tail(&hpage->lru, ret);
1374 
1375 	/*
1376 	 * If migration was not successful and there's a freeing callback, use
1377 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1378 	 * isolation.
1379 	 */
1380 	if (put_new_page)
1381 		put_new_page(new_hpage, private);
1382 	else
1383 		putback_active_hugepage(new_hpage);
1384 
1385 	return rc;
1386 }
1387 
1388 static inline int try_split_thp(struct page *page, struct page **page2,
1389 				struct list_head *from)
1390 {
1391 	int rc = 0;
1392 
1393 	lock_page(page);
1394 	rc = split_huge_page_to_list(page, from);
1395 	unlock_page(page);
1396 	if (!rc)
1397 		list_safe_reset_next(page, *page2, lru);
1398 
1399 	return rc;
1400 }
1401 
1402 /*
1403  * migrate_pages - migrate the pages specified in a list, to the free pages
1404  *		   supplied as the target for the page migration
1405  *
1406  * @from:		The list of pages to be migrated.
1407  * @get_new_page:	The function used to allocate free pages to be used
1408  *			as the target of the page migration.
1409  * @put_new_page:	The function used to free target pages if migration
1410  *			fails, or NULL if no special handling is necessary.
1411  * @private:		Private data to be passed on to get_new_page()
1412  * @mode:		The migration mode that specifies the constraints for
1413  *			page migration, if any.
1414  * @reason:		The reason for page migration.
1415  *
1416  * The function returns after 10 attempts or if no pages are movable any more
1417  * because the list has become empty or no retryable pages exist any more.
1418  * It is caller's responsibility to call putback_movable_pages() to return pages
1419  * to the LRU or free list only if ret != 0.
1420  *
1421  * Returns the number of pages that were not migrated, or an error code.
1422  */
1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424 		free_page_t put_new_page, unsigned long private,
1425 		enum migrate_mode mode, int reason)
1426 {
1427 	int retry = 1;
1428 	int thp_retry = 1;
1429 	int nr_failed = 0;
1430 	int nr_succeeded = 0;
1431 	int nr_thp_succeeded = 0;
1432 	int nr_thp_failed = 0;
1433 	int nr_thp_split = 0;
1434 	int pass = 0;
1435 	bool is_thp = false;
1436 	struct page *page;
1437 	struct page *page2;
1438 	int swapwrite = current->flags & PF_SWAPWRITE;
1439 	int rc, nr_subpages;
1440 	LIST_HEAD(ret_pages);
1441 
1442 	if (!swapwrite)
1443 		current->flags |= PF_SWAPWRITE;
1444 
1445 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1446 		retry = 0;
1447 		thp_retry = 0;
1448 
1449 		list_for_each_entry_safe(page, page2, from, lru) {
1450 retry:
1451 			/*
1452 			 * THP statistics is based on the source huge page.
1453 			 * Capture required information that might get lost
1454 			 * during migration.
1455 			 */
1456 			is_thp = PageTransHuge(page) && !PageHuge(page);
1457 			nr_subpages = thp_nr_pages(page);
1458 			cond_resched();
1459 
1460 			if (PageHuge(page))
1461 				rc = unmap_and_move_huge_page(get_new_page,
1462 						put_new_page, private, page,
1463 						pass > 2, mode, reason,
1464 						&ret_pages);
1465 			else
1466 				rc = unmap_and_move(get_new_page, put_new_page,
1467 						private, page, pass > 2, mode,
1468 						reason, &ret_pages);
1469 			/*
1470 			 * The rules are:
1471 			 *	Success: non hugetlb page will be freed, hugetlb
1472 			 *		 page will be put back
1473 			 *	-EAGAIN: stay on the from list
1474 			 *	-ENOMEM: stay on the from list
1475 			 *	Other errno: put on ret_pages list then splice to
1476 			 *		     from list
1477 			 */
1478 			switch(rc) {
1479 			/*
1480 			 * THP migration might be unsupported or the
1481 			 * allocation could've failed so we should
1482 			 * retry on the same page with the THP split
1483 			 * to base pages.
1484 			 *
1485 			 * Head page is retried immediately and tail
1486 			 * pages are added to the tail of the list so
1487 			 * we encounter them after the rest of the list
1488 			 * is processed.
1489 			 */
1490 			case -ENOSYS:
1491 				/* THP migration is unsupported */
1492 				if (is_thp) {
1493 					if (!try_split_thp(page, &page2, from)) {
1494 						nr_thp_split++;
1495 						goto retry;
1496 					}
1497 
1498 					nr_thp_failed++;
1499 					nr_failed += nr_subpages;
1500 					break;
1501 				}
1502 
1503 				/* Hugetlb migration is unsupported */
1504 				nr_failed++;
1505 				break;
1506 			case -ENOMEM:
1507 				/*
1508 				 * When memory is low, don't bother to try to migrate
1509 				 * other pages, just exit.
1510 				 */
1511 				if (is_thp) {
1512 					if (!try_split_thp(page, &page2, from)) {
1513 						nr_thp_split++;
1514 						goto retry;
1515 					}
1516 
1517 					nr_thp_failed++;
1518 					nr_failed += nr_subpages;
1519 					goto out;
1520 				}
1521 				nr_failed++;
1522 				goto out;
1523 			case -EAGAIN:
1524 				if (is_thp) {
1525 					thp_retry++;
1526 					break;
1527 				}
1528 				retry++;
1529 				break;
1530 			case MIGRATEPAGE_SUCCESS:
1531 				if (is_thp) {
1532 					nr_thp_succeeded++;
1533 					nr_succeeded += nr_subpages;
1534 					break;
1535 				}
1536 				nr_succeeded++;
1537 				break;
1538 			default:
1539 				/*
1540 				 * Permanent failure (-EBUSY, etc.):
1541 				 * unlike -EAGAIN case, the failed page is
1542 				 * removed from migration page list and not
1543 				 * retried in the next outer loop.
1544 				 */
1545 				if (is_thp) {
1546 					nr_thp_failed++;
1547 					nr_failed += nr_subpages;
1548 					break;
1549 				}
1550 				nr_failed++;
1551 				break;
1552 			}
1553 		}
1554 	}
1555 	nr_failed += retry + thp_retry;
1556 	nr_thp_failed += thp_retry;
1557 	rc = nr_failed;
1558 out:
1559 	/*
1560 	 * Put the permanent failure page back to migration list, they
1561 	 * will be put back to the right list by the caller.
1562 	 */
1563 	list_splice(&ret_pages, from);
1564 
1565 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1566 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1567 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1568 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1569 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1570 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1571 			       nr_thp_failed, nr_thp_split, mode, reason);
1572 
1573 	if (!swapwrite)
1574 		current->flags &= ~PF_SWAPWRITE;
1575 
1576 	return rc;
1577 }
1578 
1579 struct page *alloc_migration_target(struct page *page, unsigned long private)
1580 {
1581 	struct migration_target_control *mtc;
1582 	gfp_t gfp_mask;
1583 	unsigned int order = 0;
1584 	struct page *new_page = NULL;
1585 	int nid;
1586 	int zidx;
1587 
1588 	mtc = (struct migration_target_control *)private;
1589 	gfp_mask = mtc->gfp_mask;
1590 	nid = mtc->nid;
1591 	if (nid == NUMA_NO_NODE)
1592 		nid = page_to_nid(page);
1593 
1594 	if (PageHuge(page)) {
1595 		struct hstate *h = page_hstate(compound_head(page));
1596 
1597 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1598 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1599 	}
1600 
1601 	if (PageTransHuge(page)) {
1602 		/*
1603 		 * clear __GFP_RECLAIM to make the migration callback
1604 		 * consistent with regular THP allocations.
1605 		 */
1606 		gfp_mask &= ~__GFP_RECLAIM;
1607 		gfp_mask |= GFP_TRANSHUGE;
1608 		order = HPAGE_PMD_ORDER;
1609 	}
1610 	zidx = zone_idx(page_zone(page));
1611 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1612 		gfp_mask |= __GFP_HIGHMEM;
1613 
1614 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1615 
1616 	if (new_page && PageTransHuge(new_page))
1617 		prep_transhuge_page(new_page);
1618 
1619 	return new_page;
1620 }
1621 
1622 #ifdef CONFIG_NUMA
1623 
1624 static int store_status(int __user *status, int start, int value, int nr)
1625 {
1626 	while (nr-- > 0) {
1627 		if (put_user(value, status + start))
1628 			return -EFAULT;
1629 		start++;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 static int do_move_pages_to_node(struct mm_struct *mm,
1636 		struct list_head *pagelist, int node)
1637 {
1638 	int err;
1639 	struct migration_target_control mtc = {
1640 		.nid = node,
1641 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1642 	};
1643 
1644 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1645 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1646 	if (err)
1647 		putback_movable_pages(pagelist);
1648 	return err;
1649 }
1650 
1651 /*
1652  * Resolves the given address to a struct page, isolates it from the LRU and
1653  * puts it to the given pagelist.
1654  * Returns:
1655  *     errno - if the page cannot be found/isolated
1656  *     0 - when it doesn't have to be migrated because it is already on the
1657  *         target node
1658  *     1 - when it has been queued
1659  */
1660 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1661 		int node, struct list_head *pagelist, bool migrate_all)
1662 {
1663 	struct vm_area_struct *vma;
1664 	struct page *page;
1665 	unsigned int follflags;
1666 	int err;
1667 
1668 	mmap_read_lock(mm);
1669 	err = -EFAULT;
1670 	vma = find_vma(mm, addr);
1671 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1672 		goto out;
1673 
1674 	/* FOLL_DUMP to ignore special (like zero) pages */
1675 	follflags = FOLL_GET | FOLL_DUMP;
1676 	page = follow_page(vma, addr, follflags);
1677 
1678 	err = PTR_ERR(page);
1679 	if (IS_ERR(page))
1680 		goto out;
1681 
1682 	err = -ENOENT;
1683 	if (!page)
1684 		goto out;
1685 
1686 	err = 0;
1687 	if (page_to_nid(page) == node)
1688 		goto out_putpage;
1689 
1690 	err = -EACCES;
1691 	if (page_mapcount(page) > 1 && !migrate_all)
1692 		goto out_putpage;
1693 
1694 	if (PageHuge(page)) {
1695 		if (PageHead(page)) {
1696 			isolate_huge_page(page, pagelist);
1697 			err = 1;
1698 		}
1699 	} else {
1700 		struct page *head;
1701 
1702 		head = compound_head(page);
1703 		err = isolate_lru_page(head);
1704 		if (err)
1705 			goto out_putpage;
1706 
1707 		err = 1;
1708 		list_add_tail(&head->lru, pagelist);
1709 		mod_node_page_state(page_pgdat(head),
1710 			NR_ISOLATED_ANON + page_is_file_lru(head),
1711 			thp_nr_pages(head));
1712 	}
1713 out_putpage:
1714 	/*
1715 	 * Either remove the duplicate refcount from
1716 	 * isolate_lru_page() or drop the page ref if it was
1717 	 * not isolated.
1718 	 */
1719 	put_page(page);
1720 out:
1721 	mmap_read_unlock(mm);
1722 	return err;
1723 }
1724 
1725 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1726 		struct list_head *pagelist, int __user *status,
1727 		int start, int i, unsigned long nr_pages)
1728 {
1729 	int err;
1730 
1731 	if (list_empty(pagelist))
1732 		return 0;
1733 
1734 	err = do_move_pages_to_node(mm, pagelist, node);
1735 	if (err) {
1736 		/*
1737 		 * Positive err means the number of failed
1738 		 * pages to migrate.  Since we are going to
1739 		 * abort and return the number of non-migrated
1740 		 * pages, so need to include the rest of the
1741 		 * nr_pages that have not been attempted as
1742 		 * well.
1743 		 */
1744 		if (err > 0)
1745 			err += nr_pages - i - 1;
1746 		return err;
1747 	}
1748 	return store_status(status, start, node, i - start);
1749 }
1750 
1751 /*
1752  * Migrate an array of page address onto an array of nodes and fill
1753  * the corresponding array of status.
1754  */
1755 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1756 			 unsigned long nr_pages,
1757 			 const void __user * __user *pages,
1758 			 const int __user *nodes,
1759 			 int __user *status, int flags)
1760 {
1761 	int current_node = NUMA_NO_NODE;
1762 	LIST_HEAD(pagelist);
1763 	int start, i;
1764 	int err = 0, err1;
1765 
1766 	migrate_prep();
1767 
1768 	for (i = start = 0; i < nr_pages; i++) {
1769 		const void __user *p;
1770 		unsigned long addr;
1771 		int node;
1772 
1773 		err = -EFAULT;
1774 		if (get_user(p, pages + i))
1775 			goto out_flush;
1776 		if (get_user(node, nodes + i))
1777 			goto out_flush;
1778 		addr = (unsigned long)untagged_addr(p);
1779 
1780 		err = -ENODEV;
1781 		if (node < 0 || node >= MAX_NUMNODES)
1782 			goto out_flush;
1783 		if (!node_state(node, N_MEMORY))
1784 			goto out_flush;
1785 
1786 		err = -EACCES;
1787 		if (!node_isset(node, task_nodes))
1788 			goto out_flush;
1789 
1790 		if (current_node == NUMA_NO_NODE) {
1791 			current_node = node;
1792 			start = i;
1793 		} else if (node != current_node) {
1794 			err = move_pages_and_store_status(mm, current_node,
1795 					&pagelist, status, start, i, nr_pages);
1796 			if (err)
1797 				goto out;
1798 			start = i;
1799 			current_node = node;
1800 		}
1801 
1802 		/*
1803 		 * Errors in the page lookup or isolation are not fatal and we simply
1804 		 * report them via status
1805 		 */
1806 		err = add_page_for_migration(mm, addr, current_node,
1807 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1808 
1809 		if (err > 0) {
1810 			/* The page is successfully queued for migration */
1811 			continue;
1812 		}
1813 
1814 		/*
1815 		 * If the page is already on the target node (!err), store the
1816 		 * node, otherwise, store the err.
1817 		 */
1818 		err = store_status(status, i, err ? : current_node, 1);
1819 		if (err)
1820 			goto out_flush;
1821 
1822 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1823 				status, start, i, nr_pages);
1824 		if (err)
1825 			goto out;
1826 		current_node = NUMA_NO_NODE;
1827 	}
1828 out_flush:
1829 	/* Make sure we do not overwrite the existing error */
1830 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831 				status, start, i, nr_pages);
1832 	if (err >= 0)
1833 		err = err1;
1834 out:
1835 	return err;
1836 }
1837 
1838 /*
1839  * Determine the nodes of an array of pages and store it in an array of status.
1840  */
1841 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1842 				const void __user **pages, int *status)
1843 {
1844 	unsigned long i;
1845 
1846 	mmap_read_lock(mm);
1847 
1848 	for (i = 0; i < nr_pages; i++) {
1849 		unsigned long addr = (unsigned long)(*pages);
1850 		struct vm_area_struct *vma;
1851 		struct page *page;
1852 		int err = -EFAULT;
1853 
1854 		vma = find_vma(mm, addr);
1855 		if (!vma || addr < vma->vm_start)
1856 			goto set_status;
1857 
1858 		/* FOLL_DUMP to ignore special (like zero) pages */
1859 		page = follow_page(vma, addr, FOLL_DUMP);
1860 
1861 		err = PTR_ERR(page);
1862 		if (IS_ERR(page))
1863 			goto set_status;
1864 
1865 		err = page ? page_to_nid(page) : -ENOENT;
1866 set_status:
1867 		*status = err;
1868 
1869 		pages++;
1870 		status++;
1871 	}
1872 
1873 	mmap_read_unlock(mm);
1874 }
1875 
1876 /*
1877  * Determine the nodes of a user array of pages and store it in
1878  * a user array of status.
1879  */
1880 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1881 			 const void __user * __user *pages,
1882 			 int __user *status)
1883 {
1884 #define DO_PAGES_STAT_CHUNK_NR 16
1885 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1886 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1887 
1888 	while (nr_pages) {
1889 		unsigned long chunk_nr;
1890 
1891 		chunk_nr = nr_pages;
1892 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1893 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1894 
1895 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1896 			break;
1897 
1898 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1899 
1900 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1901 			break;
1902 
1903 		pages += chunk_nr;
1904 		status += chunk_nr;
1905 		nr_pages -= chunk_nr;
1906 	}
1907 	return nr_pages ? -EFAULT : 0;
1908 }
1909 
1910 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1911 {
1912 	struct task_struct *task;
1913 	struct mm_struct *mm;
1914 
1915 	/*
1916 	 * There is no need to check if current process has the right to modify
1917 	 * the specified process when they are same.
1918 	 */
1919 	if (!pid) {
1920 		mmget(current->mm);
1921 		*mem_nodes = cpuset_mems_allowed(current);
1922 		return current->mm;
1923 	}
1924 
1925 	/* Find the mm_struct */
1926 	rcu_read_lock();
1927 	task = find_task_by_vpid(pid);
1928 	if (!task) {
1929 		rcu_read_unlock();
1930 		return ERR_PTR(-ESRCH);
1931 	}
1932 	get_task_struct(task);
1933 
1934 	/*
1935 	 * Check if this process has the right to modify the specified
1936 	 * process. Use the regular "ptrace_may_access()" checks.
1937 	 */
1938 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1939 		rcu_read_unlock();
1940 		mm = ERR_PTR(-EPERM);
1941 		goto out;
1942 	}
1943 	rcu_read_unlock();
1944 
1945 	mm = ERR_PTR(security_task_movememory(task));
1946 	if (IS_ERR(mm))
1947 		goto out;
1948 	*mem_nodes = cpuset_mems_allowed(task);
1949 	mm = get_task_mm(task);
1950 out:
1951 	put_task_struct(task);
1952 	if (!mm)
1953 		mm = ERR_PTR(-EINVAL);
1954 	return mm;
1955 }
1956 
1957 /*
1958  * Move a list of pages in the address space of the currently executing
1959  * process.
1960  */
1961 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1962 			     const void __user * __user *pages,
1963 			     const int __user *nodes,
1964 			     int __user *status, int flags)
1965 {
1966 	struct mm_struct *mm;
1967 	int err;
1968 	nodemask_t task_nodes;
1969 
1970 	/* Check flags */
1971 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1972 		return -EINVAL;
1973 
1974 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1975 		return -EPERM;
1976 
1977 	mm = find_mm_struct(pid, &task_nodes);
1978 	if (IS_ERR(mm))
1979 		return PTR_ERR(mm);
1980 
1981 	if (nodes)
1982 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1983 				    nodes, status, flags);
1984 	else
1985 		err = do_pages_stat(mm, nr_pages, pages, status);
1986 
1987 	mmput(mm);
1988 	return err;
1989 }
1990 
1991 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1992 		const void __user * __user *, pages,
1993 		const int __user *, nodes,
1994 		int __user *, status, int, flags)
1995 {
1996 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1997 }
1998 
1999 #ifdef CONFIG_COMPAT
2000 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2001 		       compat_uptr_t __user *, pages32,
2002 		       const int __user *, nodes,
2003 		       int __user *, status,
2004 		       int, flags)
2005 {
2006 	const void __user * __user *pages;
2007 	int i;
2008 
2009 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2010 	for (i = 0; i < nr_pages; i++) {
2011 		compat_uptr_t p;
2012 
2013 		if (get_user(p, pages32 + i) ||
2014 			put_user(compat_ptr(p), pages + i))
2015 			return -EFAULT;
2016 	}
2017 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2018 }
2019 #endif /* CONFIG_COMPAT */
2020 
2021 #ifdef CONFIG_NUMA_BALANCING
2022 /*
2023  * Returns true if this is a safe migration target node for misplaced NUMA
2024  * pages. Currently it only checks the watermarks which crude
2025  */
2026 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2027 				   unsigned long nr_migrate_pages)
2028 {
2029 	int z;
2030 
2031 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2032 		struct zone *zone = pgdat->node_zones + z;
2033 
2034 		if (!populated_zone(zone))
2035 			continue;
2036 
2037 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2038 		if (!zone_watermark_ok(zone, 0,
2039 				       high_wmark_pages(zone) +
2040 				       nr_migrate_pages,
2041 				       ZONE_MOVABLE, 0))
2042 			continue;
2043 		return true;
2044 	}
2045 	return false;
2046 }
2047 
2048 static struct page *alloc_misplaced_dst_page(struct page *page,
2049 					   unsigned long data)
2050 {
2051 	int nid = (int) data;
2052 	struct page *newpage;
2053 
2054 	newpage = __alloc_pages_node(nid,
2055 					 (GFP_HIGHUSER_MOVABLE |
2056 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2057 					  __GFP_NORETRY | __GFP_NOWARN) &
2058 					 ~__GFP_RECLAIM, 0);
2059 
2060 	return newpage;
2061 }
2062 
2063 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2064 {
2065 	int page_lru;
2066 
2067 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2068 
2069 	/* Avoid migrating to a node that is nearly full */
2070 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2071 		return 0;
2072 
2073 	if (isolate_lru_page(page))
2074 		return 0;
2075 
2076 	/*
2077 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2078 	 * check on page_count(), so we must do it here, now that the page
2079 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2080 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2081 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2082 	 */
2083 	if (PageTransHuge(page) && page_count(page) != 3) {
2084 		putback_lru_page(page);
2085 		return 0;
2086 	}
2087 
2088 	page_lru = page_is_file_lru(page);
2089 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2090 				thp_nr_pages(page));
2091 
2092 	/*
2093 	 * Isolating the page has taken another reference, so the
2094 	 * caller's reference can be safely dropped without the page
2095 	 * disappearing underneath us during migration.
2096 	 */
2097 	put_page(page);
2098 	return 1;
2099 }
2100 
2101 bool pmd_trans_migrating(pmd_t pmd)
2102 {
2103 	struct page *page = pmd_page(pmd);
2104 	return PageLocked(page);
2105 }
2106 
2107 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2108 				       struct page *page)
2109 {
2110 	if (page_mapcount(page) != 1 &&
2111 	    (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2112 	    (vma->vm_flags & VM_EXEC))
2113 		return true;
2114 
2115 	return false;
2116 }
2117 
2118 /*
2119  * Attempt to migrate a misplaced page to the specified destination
2120  * node. Caller is expected to have an elevated reference count on
2121  * the page that will be dropped by this function before returning.
2122  */
2123 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2124 			   int node)
2125 {
2126 	pg_data_t *pgdat = NODE_DATA(node);
2127 	int isolated;
2128 	int nr_remaining;
2129 	LIST_HEAD(migratepages);
2130 
2131 	/*
2132 	 * Don't migrate file pages that are mapped in multiple processes
2133 	 * with execute permissions as they are probably shared libraries.
2134 	 */
2135 	if (is_shared_exec_page(vma, page))
2136 		goto out;
2137 
2138 	/*
2139 	 * Also do not migrate dirty pages as not all filesystems can move
2140 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2141 	 */
2142 	if (page_is_file_lru(page) && PageDirty(page))
2143 		goto out;
2144 
2145 	isolated = numamigrate_isolate_page(pgdat, page);
2146 	if (!isolated)
2147 		goto out;
2148 
2149 	list_add(&page->lru, &migratepages);
2150 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2151 				     NULL, node, MIGRATE_ASYNC,
2152 				     MR_NUMA_MISPLACED);
2153 	if (nr_remaining) {
2154 		if (!list_empty(&migratepages)) {
2155 			list_del(&page->lru);
2156 			dec_node_page_state(page, NR_ISOLATED_ANON +
2157 					page_is_file_lru(page));
2158 			putback_lru_page(page);
2159 		}
2160 		isolated = 0;
2161 	} else
2162 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2163 	BUG_ON(!list_empty(&migratepages));
2164 	return isolated;
2165 
2166 out:
2167 	put_page(page);
2168 	return 0;
2169 }
2170 #endif /* CONFIG_NUMA_BALANCING */
2171 
2172 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2173 /*
2174  * Migrates a THP to a given target node. page must be locked and is unlocked
2175  * before returning.
2176  */
2177 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2178 				struct vm_area_struct *vma,
2179 				pmd_t *pmd, pmd_t entry,
2180 				unsigned long address,
2181 				struct page *page, int node)
2182 {
2183 	spinlock_t *ptl;
2184 	pg_data_t *pgdat = NODE_DATA(node);
2185 	int isolated = 0;
2186 	struct page *new_page = NULL;
2187 	int page_lru = page_is_file_lru(page);
2188 	unsigned long start = address & HPAGE_PMD_MASK;
2189 
2190 	if (is_shared_exec_page(vma, page))
2191 		goto out;
2192 
2193 	new_page = alloc_pages_node(node,
2194 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2195 		HPAGE_PMD_ORDER);
2196 	if (!new_page)
2197 		goto out_fail;
2198 	prep_transhuge_page(new_page);
2199 
2200 	isolated = numamigrate_isolate_page(pgdat, page);
2201 	if (!isolated) {
2202 		put_page(new_page);
2203 		goto out_fail;
2204 	}
2205 
2206 	/* Prepare a page as a migration target */
2207 	__SetPageLocked(new_page);
2208 	if (PageSwapBacked(page))
2209 		__SetPageSwapBacked(new_page);
2210 
2211 	/* anon mapping, we can simply copy page->mapping to the new page: */
2212 	new_page->mapping = page->mapping;
2213 	new_page->index = page->index;
2214 	/* flush the cache before copying using the kernel virtual address */
2215 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2216 	migrate_page_copy(new_page, page);
2217 	WARN_ON(PageLRU(new_page));
2218 
2219 	/* Recheck the target PMD */
2220 	ptl = pmd_lock(mm, pmd);
2221 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2222 		spin_unlock(ptl);
2223 
2224 		/* Reverse changes made by migrate_page_copy() */
2225 		if (TestClearPageActive(new_page))
2226 			SetPageActive(page);
2227 		if (TestClearPageUnevictable(new_page))
2228 			SetPageUnevictable(page);
2229 
2230 		unlock_page(new_page);
2231 		put_page(new_page);		/* Free it */
2232 
2233 		/* Retake the callers reference and putback on LRU */
2234 		get_page(page);
2235 		putback_lru_page(page);
2236 		mod_node_page_state(page_pgdat(page),
2237 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2238 
2239 		goto out_unlock;
2240 	}
2241 
2242 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2243 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2244 
2245 	/*
2246 	 * Overwrite the old entry under pagetable lock and establish
2247 	 * the new PTE. Any parallel GUP will either observe the old
2248 	 * page blocking on the page lock, block on the page table
2249 	 * lock or observe the new page. The SetPageUptodate on the
2250 	 * new page and page_add_new_anon_rmap guarantee the copy is
2251 	 * visible before the pagetable update.
2252 	 */
2253 	page_add_anon_rmap(new_page, vma, start, true);
2254 	/*
2255 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2256 	 * has already been flushed globally.  So no TLB can be currently
2257 	 * caching this non present pmd mapping.  There's no need to clear the
2258 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2259 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2260 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2261 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2262 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2263 	 * pmd.
2264 	 */
2265 	set_pmd_at(mm, start, pmd, entry);
2266 	update_mmu_cache_pmd(vma, address, &entry);
2267 
2268 	page_ref_unfreeze(page, 2);
2269 	mlock_migrate_page(new_page, page);
2270 	page_remove_rmap(page, true);
2271 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2272 
2273 	spin_unlock(ptl);
2274 
2275 	/* Take an "isolate" reference and put new page on the LRU. */
2276 	get_page(new_page);
2277 	putback_lru_page(new_page);
2278 
2279 	unlock_page(new_page);
2280 	unlock_page(page);
2281 	put_page(page);			/* Drop the rmap reference */
2282 	put_page(page);			/* Drop the LRU isolation reference */
2283 
2284 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2285 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2286 
2287 	mod_node_page_state(page_pgdat(page),
2288 			NR_ISOLATED_ANON + page_lru,
2289 			-HPAGE_PMD_NR);
2290 	return isolated;
2291 
2292 out_fail:
2293 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2294 	ptl = pmd_lock(mm, pmd);
2295 	if (pmd_same(*pmd, entry)) {
2296 		entry = pmd_modify(entry, vma->vm_page_prot);
2297 		set_pmd_at(mm, start, pmd, entry);
2298 		update_mmu_cache_pmd(vma, address, &entry);
2299 	}
2300 	spin_unlock(ptl);
2301 
2302 out_unlock:
2303 	unlock_page(page);
2304 out:
2305 	put_page(page);
2306 	return 0;
2307 }
2308 #endif /* CONFIG_NUMA_BALANCING */
2309 
2310 #endif /* CONFIG_NUMA */
2311 
2312 #ifdef CONFIG_DEVICE_PRIVATE
2313 static int migrate_vma_collect_hole(unsigned long start,
2314 				    unsigned long end,
2315 				    __always_unused int depth,
2316 				    struct mm_walk *walk)
2317 {
2318 	struct migrate_vma *migrate = walk->private;
2319 	unsigned long addr;
2320 
2321 	/* Only allow populating anonymous memory. */
2322 	if (!vma_is_anonymous(walk->vma)) {
2323 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2324 			migrate->src[migrate->npages] = 0;
2325 			migrate->dst[migrate->npages] = 0;
2326 			migrate->npages++;
2327 		}
2328 		return 0;
2329 	}
2330 
2331 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2332 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2333 		migrate->dst[migrate->npages] = 0;
2334 		migrate->npages++;
2335 		migrate->cpages++;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static int migrate_vma_collect_skip(unsigned long start,
2342 				    unsigned long end,
2343 				    struct mm_walk *walk)
2344 {
2345 	struct migrate_vma *migrate = walk->private;
2346 	unsigned long addr;
2347 
2348 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2349 		migrate->dst[migrate->npages] = 0;
2350 		migrate->src[migrate->npages++] = 0;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2357 				   unsigned long start,
2358 				   unsigned long end,
2359 				   struct mm_walk *walk)
2360 {
2361 	struct migrate_vma *migrate = walk->private;
2362 	struct vm_area_struct *vma = walk->vma;
2363 	struct mm_struct *mm = vma->vm_mm;
2364 	unsigned long addr = start, unmapped = 0;
2365 	spinlock_t *ptl;
2366 	pte_t *ptep;
2367 
2368 again:
2369 	if (pmd_none(*pmdp))
2370 		return migrate_vma_collect_hole(start, end, -1, walk);
2371 
2372 	if (pmd_trans_huge(*pmdp)) {
2373 		struct page *page;
2374 
2375 		ptl = pmd_lock(mm, pmdp);
2376 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2377 			spin_unlock(ptl);
2378 			goto again;
2379 		}
2380 
2381 		page = pmd_page(*pmdp);
2382 		if (is_huge_zero_page(page)) {
2383 			spin_unlock(ptl);
2384 			split_huge_pmd(vma, pmdp, addr);
2385 			if (pmd_trans_unstable(pmdp))
2386 				return migrate_vma_collect_skip(start, end,
2387 								walk);
2388 		} else {
2389 			int ret;
2390 
2391 			get_page(page);
2392 			spin_unlock(ptl);
2393 			if (unlikely(!trylock_page(page)))
2394 				return migrate_vma_collect_skip(start, end,
2395 								walk);
2396 			ret = split_huge_page(page);
2397 			unlock_page(page);
2398 			put_page(page);
2399 			if (ret)
2400 				return migrate_vma_collect_skip(start, end,
2401 								walk);
2402 			if (pmd_none(*pmdp))
2403 				return migrate_vma_collect_hole(start, end, -1,
2404 								walk);
2405 		}
2406 	}
2407 
2408 	if (unlikely(pmd_bad(*pmdp)))
2409 		return migrate_vma_collect_skip(start, end, walk);
2410 
2411 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2412 	arch_enter_lazy_mmu_mode();
2413 
2414 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2415 		unsigned long mpfn = 0, pfn;
2416 		struct page *page;
2417 		swp_entry_t entry;
2418 		pte_t pte;
2419 
2420 		pte = *ptep;
2421 
2422 		if (pte_none(pte)) {
2423 			if (vma_is_anonymous(vma)) {
2424 				mpfn = MIGRATE_PFN_MIGRATE;
2425 				migrate->cpages++;
2426 			}
2427 			goto next;
2428 		}
2429 
2430 		if (!pte_present(pte)) {
2431 			/*
2432 			 * Only care about unaddressable device page special
2433 			 * page table entry. Other special swap entries are not
2434 			 * migratable, and we ignore regular swapped page.
2435 			 */
2436 			entry = pte_to_swp_entry(pte);
2437 			if (!is_device_private_entry(entry))
2438 				goto next;
2439 
2440 			page = device_private_entry_to_page(entry);
2441 			if (!(migrate->flags &
2442 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2443 			    page->pgmap->owner != migrate->pgmap_owner)
2444 				goto next;
2445 
2446 			mpfn = migrate_pfn(page_to_pfn(page)) |
2447 					MIGRATE_PFN_MIGRATE;
2448 			if (is_write_device_private_entry(entry))
2449 				mpfn |= MIGRATE_PFN_WRITE;
2450 		} else {
2451 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2452 				goto next;
2453 			pfn = pte_pfn(pte);
2454 			if (is_zero_pfn(pfn)) {
2455 				mpfn = MIGRATE_PFN_MIGRATE;
2456 				migrate->cpages++;
2457 				goto next;
2458 			}
2459 			page = vm_normal_page(migrate->vma, addr, pte);
2460 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2461 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2462 		}
2463 
2464 		/* FIXME support THP */
2465 		if (!page || !page->mapping || PageTransCompound(page)) {
2466 			mpfn = 0;
2467 			goto next;
2468 		}
2469 
2470 		/*
2471 		 * By getting a reference on the page we pin it and that blocks
2472 		 * any kind of migration. Side effect is that it "freezes" the
2473 		 * pte.
2474 		 *
2475 		 * We drop this reference after isolating the page from the lru
2476 		 * for non device page (device page are not on the lru and thus
2477 		 * can't be dropped from it).
2478 		 */
2479 		get_page(page);
2480 		migrate->cpages++;
2481 
2482 		/*
2483 		 * Optimize for the common case where page is only mapped once
2484 		 * in one process. If we can lock the page, then we can safely
2485 		 * set up a special migration page table entry now.
2486 		 */
2487 		if (trylock_page(page)) {
2488 			pte_t swp_pte;
2489 
2490 			mpfn |= MIGRATE_PFN_LOCKED;
2491 			ptep_get_and_clear(mm, addr, ptep);
2492 
2493 			/* Setup special migration page table entry */
2494 			entry = make_migration_entry(page, mpfn &
2495 						     MIGRATE_PFN_WRITE);
2496 			swp_pte = swp_entry_to_pte(entry);
2497 			if (pte_present(pte)) {
2498 				if (pte_soft_dirty(pte))
2499 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2500 				if (pte_uffd_wp(pte))
2501 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2502 			} else {
2503 				if (pte_swp_soft_dirty(pte))
2504 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2505 				if (pte_swp_uffd_wp(pte))
2506 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2507 			}
2508 			set_pte_at(mm, addr, ptep, swp_pte);
2509 
2510 			/*
2511 			 * This is like regular unmap: we remove the rmap and
2512 			 * drop page refcount. Page won't be freed, as we took
2513 			 * a reference just above.
2514 			 */
2515 			page_remove_rmap(page, false);
2516 			put_page(page);
2517 
2518 			if (pte_present(pte))
2519 				unmapped++;
2520 		}
2521 
2522 next:
2523 		migrate->dst[migrate->npages] = 0;
2524 		migrate->src[migrate->npages++] = mpfn;
2525 	}
2526 	arch_leave_lazy_mmu_mode();
2527 	pte_unmap_unlock(ptep - 1, ptl);
2528 
2529 	/* Only flush the TLB if we actually modified any entries */
2530 	if (unmapped)
2531 		flush_tlb_range(walk->vma, start, end);
2532 
2533 	return 0;
2534 }
2535 
2536 static const struct mm_walk_ops migrate_vma_walk_ops = {
2537 	.pmd_entry		= migrate_vma_collect_pmd,
2538 	.pte_hole		= migrate_vma_collect_hole,
2539 };
2540 
2541 /*
2542  * migrate_vma_collect() - collect pages over a range of virtual addresses
2543  * @migrate: migrate struct containing all migration information
2544  *
2545  * This will walk the CPU page table. For each virtual address backed by a
2546  * valid page, it updates the src array and takes a reference on the page, in
2547  * order to pin the page until we lock it and unmap it.
2548  */
2549 static void migrate_vma_collect(struct migrate_vma *migrate)
2550 {
2551 	struct mmu_notifier_range range;
2552 
2553 	/*
2554 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2555 	 * that the registered device driver can skip invalidating device
2556 	 * private page mappings that won't be migrated.
2557 	 */
2558 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2559 		migrate->vma->vm_mm, migrate->start, migrate->end,
2560 		migrate->pgmap_owner);
2561 	mmu_notifier_invalidate_range_start(&range);
2562 
2563 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2564 			&migrate_vma_walk_ops, migrate);
2565 
2566 	mmu_notifier_invalidate_range_end(&range);
2567 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2568 }
2569 
2570 /*
2571  * migrate_vma_check_page() - check if page is pinned or not
2572  * @page: struct page to check
2573  *
2574  * Pinned pages cannot be migrated. This is the same test as in
2575  * migrate_page_move_mapping(), except that here we allow migration of a
2576  * ZONE_DEVICE page.
2577  */
2578 static bool migrate_vma_check_page(struct page *page)
2579 {
2580 	/*
2581 	 * One extra ref because caller holds an extra reference, either from
2582 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2583 	 * a device page.
2584 	 */
2585 	int extra = 1;
2586 
2587 	/*
2588 	 * FIXME support THP (transparent huge page), it is bit more complex to
2589 	 * check them than regular pages, because they can be mapped with a pmd
2590 	 * or with a pte (split pte mapping).
2591 	 */
2592 	if (PageCompound(page))
2593 		return false;
2594 
2595 	/* Page from ZONE_DEVICE have one extra reference */
2596 	if (is_zone_device_page(page)) {
2597 		/*
2598 		 * Private page can never be pin as they have no valid pte and
2599 		 * GUP will fail for those. Yet if there is a pending migration
2600 		 * a thread might try to wait on the pte migration entry and
2601 		 * will bump the page reference count. Sadly there is no way to
2602 		 * differentiate a regular pin from migration wait. Hence to
2603 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2604 		 * infinite loop (one stopping migration because the other is
2605 		 * waiting on pte migration entry). We always return true here.
2606 		 *
2607 		 * FIXME proper solution is to rework migration_entry_wait() so
2608 		 * it does not need to take a reference on page.
2609 		 */
2610 		return is_device_private_page(page);
2611 	}
2612 
2613 	/* For file back page */
2614 	if (page_mapping(page))
2615 		extra += 1 + page_has_private(page);
2616 
2617 	if ((page_count(page) - extra) > page_mapcount(page))
2618 		return false;
2619 
2620 	return true;
2621 }
2622 
2623 /*
2624  * migrate_vma_prepare() - lock pages and isolate them from the lru
2625  * @migrate: migrate struct containing all migration information
2626  *
2627  * This locks pages that have been collected by migrate_vma_collect(). Once each
2628  * page is locked it is isolated from the lru (for non-device pages). Finally,
2629  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2630  * migrated by concurrent kernel threads.
2631  */
2632 static void migrate_vma_prepare(struct migrate_vma *migrate)
2633 {
2634 	const unsigned long npages = migrate->npages;
2635 	const unsigned long start = migrate->start;
2636 	unsigned long addr, i, restore = 0;
2637 	bool allow_drain = true;
2638 
2639 	lru_add_drain();
2640 
2641 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2642 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2643 		bool remap = true;
2644 
2645 		if (!page)
2646 			continue;
2647 
2648 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2649 			/*
2650 			 * Because we are migrating several pages there can be
2651 			 * a deadlock between 2 concurrent migration where each
2652 			 * are waiting on each other page lock.
2653 			 *
2654 			 * Make migrate_vma() a best effort thing and backoff
2655 			 * for any page we can not lock right away.
2656 			 */
2657 			if (!trylock_page(page)) {
2658 				migrate->src[i] = 0;
2659 				migrate->cpages--;
2660 				put_page(page);
2661 				continue;
2662 			}
2663 			remap = false;
2664 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2665 		}
2666 
2667 		/* ZONE_DEVICE pages are not on LRU */
2668 		if (!is_zone_device_page(page)) {
2669 			if (!PageLRU(page) && allow_drain) {
2670 				/* Drain CPU's pagevec */
2671 				lru_add_drain_all();
2672 				allow_drain = false;
2673 			}
2674 
2675 			if (isolate_lru_page(page)) {
2676 				if (remap) {
2677 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2678 					migrate->cpages--;
2679 					restore++;
2680 				} else {
2681 					migrate->src[i] = 0;
2682 					unlock_page(page);
2683 					migrate->cpages--;
2684 					put_page(page);
2685 				}
2686 				continue;
2687 			}
2688 
2689 			/* Drop the reference we took in collect */
2690 			put_page(page);
2691 		}
2692 
2693 		if (!migrate_vma_check_page(page)) {
2694 			if (remap) {
2695 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2696 				migrate->cpages--;
2697 				restore++;
2698 
2699 				if (!is_zone_device_page(page)) {
2700 					get_page(page);
2701 					putback_lru_page(page);
2702 				}
2703 			} else {
2704 				migrate->src[i] = 0;
2705 				unlock_page(page);
2706 				migrate->cpages--;
2707 
2708 				if (!is_zone_device_page(page))
2709 					putback_lru_page(page);
2710 				else
2711 					put_page(page);
2712 			}
2713 		}
2714 	}
2715 
2716 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2717 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718 
2719 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2720 			continue;
2721 
2722 		remove_migration_pte(page, migrate->vma, addr, page);
2723 
2724 		migrate->src[i] = 0;
2725 		unlock_page(page);
2726 		put_page(page);
2727 		restore--;
2728 	}
2729 }
2730 
2731 /*
2732  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2733  * @migrate: migrate struct containing all migration information
2734  *
2735  * Replace page mapping (CPU page table pte) with a special migration pte entry
2736  * and check again if it has been pinned. Pinned pages are restored because we
2737  * cannot migrate them.
2738  *
2739  * This is the last step before we call the device driver callback to allocate
2740  * destination memory and copy contents of original page over to new page.
2741  */
2742 static void migrate_vma_unmap(struct migrate_vma *migrate)
2743 {
2744 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2745 	const unsigned long npages = migrate->npages;
2746 	const unsigned long start = migrate->start;
2747 	unsigned long addr, i, restore = 0;
2748 
2749 	for (i = 0; i < npages; i++) {
2750 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2751 
2752 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2753 			continue;
2754 
2755 		if (page_mapped(page)) {
2756 			try_to_unmap(page, flags);
2757 			if (page_mapped(page))
2758 				goto restore;
2759 		}
2760 
2761 		if (migrate_vma_check_page(page))
2762 			continue;
2763 
2764 restore:
2765 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2766 		migrate->cpages--;
2767 		restore++;
2768 	}
2769 
2770 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2771 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2772 
2773 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2774 			continue;
2775 
2776 		remove_migration_ptes(page, page, false);
2777 
2778 		migrate->src[i] = 0;
2779 		unlock_page(page);
2780 		restore--;
2781 
2782 		if (is_zone_device_page(page))
2783 			put_page(page);
2784 		else
2785 			putback_lru_page(page);
2786 	}
2787 }
2788 
2789 /**
2790  * migrate_vma_setup() - prepare to migrate a range of memory
2791  * @args: contains the vma, start, and pfns arrays for the migration
2792  *
2793  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2794  * without an error.
2795  *
2796  * Prepare to migrate a range of memory virtual address range by collecting all
2797  * the pages backing each virtual address in the range, saving them inside the
2798  * src array.  Then lock those pages and unmap them. Once the pages are locked
2799  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2800  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2801  * corresponding src array entry.  Then restores any pages that are pinned, by
2802  * remapping and unlocking those pages.
2803  *
2804  * The caller should then allocate destination memory and copy source memory to
2805  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2806  * flag set).  Once these are allocated and copied, the caller must update each
2807  * corresponding entry in the dst array with the pfn value of the destination
2808  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2809  * (destination pages must have their struct pages locked, via lock_page()).
2810  *
2811  * Note that the caller does not have to migrate all the pages that are marked
2812  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2813  * device memory to system memory.  If the caller cannot migrate a device page
2814  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2815  * consequences for the userspace process, so it must be avoided if at all
2816  * possible.
2817  *
2818  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2819  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2820  * allowing the caller to allocate device memory for those unback virtual
2821  * address.  For this the caller simply has to allocate device memory and
2822  * properly set the destination entry like for regular migration.  Note that
2823  * this can still fails and thus inside the device driver must check if the
2824  * migration was successful for those entries after calling migrate_vma_pages()
2825  * just like for regular migration.
2826  *
2827  * After that, the callers must call migrate_vma_pages() to go over each entry
2828  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2829  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2830  * then migrate_vma_pages() to migrate struct page information from the source
2831  * struct page to the destination struct page.  If it fails to migrate the
2832  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2833  * src array.
2834  *
2835  * At this point all successfully migrated pages have an entry in the src
2836  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2837  * array entry with MIGRATE_PFN_VALID flag set.
2838  *
2839  * Once migrate_vma_pages() returns the caller may inspect which pages were
2840  * successfully migrated, and which were not.  Successfully migrated pages will
2841  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2842  *
2843  * It is safe to update device page table after migrate_vma_pages() because
2844  * both destination and source page are still locked, and the mmap_lock is held
2845  * in read mode (hence no one can unmap the range being migrated).
2846  *
2847  * Once the caller is done cleaning up things and updating its page table (if it
2848  * chose to do so, this is not an obligation) it finally calls
2849  * migrate_vma_finalize() to update the CPU page table to point to new pages
2850  * for successfully migrated pages or otherwise restore the CPU page table to
2851  * point to the original source pages.
2852  */
2853 int migrate_vma_setup(struct migrate_vma *args)
2854 {
2855 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2856 
2857 	args->start &= PAGE_MASK;
2858 	args->end &= PAGE_MASK;
2859 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2860 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2861 		return -EINVAL;
2862 	if (nr_pages <= 0)
2863 		return -EINVAL;
2864 	if (args->start < args->vma->vm_start ||
2865 	    args->start >= args->vma->vm_end)
2866 		return -EINVAL;
2867 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2868 		return -EINVAL;
2869 	if (!args->src || !args->dst)
2870 		return -EINVAL;
2871 
2872 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2873 	args->cpages = 0;
2874 	args->npages = 0;
2875 
2876 	migrate_vma_collect(args);
2877 
2878 	if (args->cpages)
2879 		migrate_vma_prepare(args);
2880 	if (args->cpages)
2881 		migrate_vma_unmap(args);
2882 
2883 	/*
2884 	 * At this point pages are locked and unmapped, and thus they have
2885 	 * stable content and can safely be copied to destination memory that
2886 	 * is allocated by the drivers.
2887 	 */
2888 	return 0;
2889 
2890 }
2891 EXPORT_SYMBOL(migrate_vma_setup);
2892 
2893 /*
2894  * This code closely matches the code in:
2895  *   __handle_mm_fault()
2896  *     handle_pte_fault()
2897  *       do_anonymous_page()
2898  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2899  * private page.
2900  */
2901 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2902 				    unsigned long addr,
2903 				    struct page *page,
2904 				    unsigned long *src)
2905 {
2906 	struct vm_area_struct *vma = migrate->vma;
2907 	struct mm_struct *mm = vma->vm_mm;
2908 	bool flush = false;
2909 	spinlock_t *ptl;
2910 	pte_t entry;
2911 	pgd_t *pgdp;
2912 	p4d_t *p4dp;
2913 	pud_t *pudp;
2914 	pmd_t *pmdp;
2915 	pte_t *ptep;
2916 
2917 	/* Only allow populating anonymous memory */
2918 	if (!vma_is_anonymous(vma))
2919 		goto abort;
2920 
2921 	pgdp = pgd_offset(mm, addr);
2922 	p4dp = p4d_alloc(mm, pgdp, addr);
2923 	if (!p4dp)
2924 		goto abort;
2925 	pudp = pud_alloc(mm, p4dp, addr);
2926 	if (!pudp)
2927 		goto abort;
2928 	pmdp = pmd_alloc(mm, pudp, addr);
2929 	if (!pmdp)
2930 		goto abort;
2931 
2932 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2933 		goto abort;
2934 
2935 	/*
2936 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2937 	 * pte_offset_map() on pmds where a huge pmd might be created
2938 	 * from a different thread.
2939 	 *
2940 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2941 	 * parallel threads are excluded by other means.
2942 	 *
2943 	 * Here we only have mmap_read_lock(mm).
2944 	 */
2945 	if (pte_alloc(mm, pmdp))
2946 		goto abort;
2947 
2948 	/* See the comment in pte_alloc_one_map() */
2949 	if (unlikely(pmd_trans_unstable(pmdp)))
2950 		goto abort;
2951 
2952 	if (unlikely(anon_vma_prepare(vma)))
2953 		goto abort;
2954 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2955 		goto abort;
2956 
2957 	/*
2958 	 * The memory barrier inside __SetPageUptodate makes sure that
2959 	 * preceding stores to the page contents become visible before
2960 	 * the set_pte_at() write.
2961 	 */
2962 	__SetPageUptodate(page);
2963 
2964 	if (is_zone_device_page(page)) {
2965 		if (is_device_private_page(page)) {
2966 			swp_entry_t swp_entry;
2967 
2968 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2969 			entry = swp_entry_to_pte(swp_entry);
2970 		}
2971 	} else {
2972 		entry = mk_pte(page, vma->vm_page_prot);
2973 		if (vma->vm_flags & VM_WRITE)
2974 			entry = pte_mkwrite(pte_mkdirty(entry));
2975 	}
2976 
2977 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2978 
2979 	if (check_stable_address_space(mm))
2980 		goto unlock_abort;
2981 
2982 	if (pte_present(*ptep)) {
2983 		unsigned long pfn = pte_pfn(*ptep);
2984 
2985 		if (!is_zero_pfn(pfn))
2986 			goto unlock_abort;
2987 		flush = true;
2988 	} else if (!pte_none(*ptep))
2989 		goto unlock_abort;
2990 
2991 	/*
2992 	 * Check for userfaultfd but do not deliver the fault. Instead,
2993 	 * just back off.
2994 	 */
2995 	if (userfaultfd_missing(vma))
2996 		goto unlock_abort;
2997 
2998 	inc_mm_counter(mm, MM_ANONPAGES);
2999 	page_add_new_anon_rmap(page, vma, addr, false);
3000 	if (!is_zone_device_page(page))
3001 		lru_cache_add_inactive_or_unevictable(page, vma);
3002 	get_page(page);
3003 
3004 	if (flush) {
3005 		flush_cache_page(vma, addr, pte_pfn(*ptep));
3006 		ptep_clear_flush_notify(vma, addr, ptep);
3007 		set_pte_at_notify(mm, addr, ptep, entry);
3008 		update_mmu_cache(vma, addr, ptep);
3009 	} else {
3010 		/* No need to invalidate - it was non-present before */
3011 		set_pte_at(mm, addr, ptep, entry);
3012 		update_mmu_cache(vma, addr, ptep);
3013 	}
3014 
3015 	pte_unmap_unlock(ptep, ptl);
3016 	*src = MIGRATE_PFN_MIGRATE;
3017 	return;
3018 
3019 unlock_abort:
3020 	pte_unmap_unlock(ptep, ptl);
3021 abort:
3022 	*src &= ~MIGRATE_PFN_MIGRATE;
3023 }
3024 
3025 /**
3026  * migrate_vma_pages() - migrate meta-data from src page to dst page
3027  * @migrate: migrate struct containing all migration information
3028  *
3029  * This migrates struct page meta-data from source struct page to destination
3030  * struct page. This effectively finishes the migration from source page to the
3031  * destination page.
3032  */
3033 void migrate_vma_pages(struct migrate_vma *migrate)
3034 {
3035 	const unsigned long npages = migrate->npages;
3036 	const unsigned long start = migrate->start;
3037 	struct mmu_notifier_range range;
3038 	unsigned long addr, i;
3039 	bool notified = false;
3040 
3041 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3042 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3043 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3044 		struct address_space *mapping;
3045 		int r;
3046 
3047 		if (!newpage) {
3048 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3049 			continue;
3050 		}
3051 
3052 		if (!page) {
3053 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3054 				continue;
3055 			if (!notified) {
3056 				notified = true;
3057 
3058 				mmu_notifier_range_init_migrate(&range, 0,
3059 					migrate->vma, migrate->vma->vm_mm,
3060 					addr, migrate->end,
3061 					migrate->pgmap_owner);
3062 				mmu_notifier_invalidate_range_start(&range);
3063 			}
3064 			migrate_vma_insert_page(migrate, addr, newpage,
3065 						&migrate->src[i]);
3066 			continue;
3067 		}
3068 
3069 		mapping = page_mapping(page);
3070 
3071 		if (is_zone_device_page(newpage)) {
3072 			if (is_device_private_page(newpage)) {
3073 				/*
3074 				 * For now only support private anonymous when
3075 				 * migrating to un-addressable device memory.
3076 				 */
3077 				if (mapping) {
3078 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3079 					continue;
3080 				}
3081 			} else {
3082 				/*
3083 				 * Other types of ZONE_DEVICE page are not
3084 				 * supported.
3085 				 */
3086 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3087 				continue;
3088 			}
3089 		}
3090 
3091 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3092 		if (r != MIGRATEPAGE_SUCCESS)
3093 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3094 	}
3095 
3096 	/*
3097 	 * No need to double call mmu_notifier->invalidate_range() callback as
3098 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3099 	 * did already call it.
3100 	 */
3101 	if (notified)
3102 		mmu_notifier_invalidate_range_only_end(&range);
3103 }
3104 EXPORT_SYMBOL(migrate_vma_pages);
3105 
3106 /**
3107  * migrate_vma_finalize() - restore CPU page table entry
3108  * @migrate: migrate struct containing all migration information
3109  *
3110  * This replaces the special migration pte entry with either a mapping to the
3111  * new page if migration was successful for that page, or to the original page
3112  * otherwise.
3113  *
3114  * This also unlocks the pages and puts them back on the lru, or drops the extra
3115  * refcount, for device pages.
3116  */
3117 void migrate_vma_finalize(struct migrate_vma *migrate)
3118 {
3119 	const unsigned long npages = migrate->npages;
3120 	unsigned long i;
3121 
3122 	for (i = 0; i < npages; i++) {
3123 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3124 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3125 
3126 		if (!page) {
3127 			if (newpage) {
3128 				unlock_page(newpage);
3129 				put_page(newpage);
3130 			}
3131 			continue;
3132 		}
3133 
3134 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3135 			if (newpage) {
3136 				unlock_page(newpage);
3137 				put_page(newpage);
3138 			}
3139 			newpage = page;
3140 		}
3141 
3142 		remove_migration_ptes(page, newpage, false);
3143 		unlock_page(page);
3144 
3145 		if (is_zone_device_page(page))
3146 			put_page(page);
3147 		else
3148 			putback_lru_page(page);
3149 
3150 		if (newpage != page) {
3151 			unlock_page(newpage);
3152 			if (is_zone_device_page(newpage))
3153 				put_page(newpage);
3154 			else
3155 				putback_lru_page(newpage);
3156 		}
3157 	}
3158 }
3159 EXPORT_SYMBOL(migrate_vma_finalize);
3160 #endif /* CONFIG_DEVICE_PRIVATE */
3161