xref: /openbmc/linux/mm/migrate.c (revision b0b515bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	__SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	__ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				__ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 				 unsigned long addr, void *old)
176 {
177 	struct page_vma_mapped_walk pvmw = {
178 		.page = old,
179 		.vma = vma,
180 		.address = addr,
181 		.flags = PVMW_SYNC | PVMW_MIGRATION,
182 	};
183 	struct page *new;
184 	pte_t pte;
185 	swp_entry_t entry;
186 
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		if (PageKsm(page))
190 			new = page;
191 		else
192 			new = page - pvmw.page->index +
193 				linear_page_index(vma, pvmw.address);
194 
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 		/* PMD-mapped THP migration entry */
197 		if (!pvmw.pte) {
198 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 			remove_migration_pmd(&pvmw, new);
200 			continue;
201 		}
202 #endif
203 
204 		get_page(new);
205 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 		if (pte_swp_soft_dirty(*pvmw.pte))
207 			pte = pte_mksoft_dirty(pte);
208 
209 		/*
210 		 * Recheck VMA as permissions can change since migration started
211 		 */
212 		entry = pte_to_swp_entry(*pvmw.pte);
213 		if (is_write_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			entry = make_device_private_entry(new, pte_write(pte));
220 			pte = swp_entry_to_pte(entry);
221 			if (pte_swp_soft_dirty(*pvmw.pte))
222 				pte = pte_swp_mksoft_dirty(pte);
223 			if (pte_swp_uffd_wp(*pvmw.pte))
224 				pte = pte_swp_mkuffd_wp(pte);
225 		}
226 
227 #ifdef CONFIG_HUGETLB_PAGE
228 		if (PageHuge(new)) {
229 			unsigned int shift = huge_page_shift(hstate_vma(vma));
230 
231 			pte = pte_mkhuge(pte);
232 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
233 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
234 			if (PageAnon(new))
235 				hugepage_add_anon_rmap(new, vma, pvmw.address);
236 			else
237 				page_dup_rmap(new, true);
238 		} else
239 #endif
240 		{
241 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
242 
243 			if (PageAnon(new))
244 				page_add_anon_rmap(new, vma, pvmw.address, false);
245 			else
246 				page_add_file_rmap(new, false);
247 		}
248 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
249 			mlock_vma_page(new);
250 
251 		if (PageTransHuge(page) && PageMlocked(page))
252 			clear_page_mlock(page);
253 
254 		/* No need to invalidate - it was non-present before */
255 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 	}
257 
258 	return true;
259 }
260 
261 /*
262  * Get rid of all migration entries and replace them by
263  * references to the indicated page.
264  */
265 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
266 {
267 	struct rmap_walk_control rwc = {
268 		.rmap_one = remove_migration_pte,
269 		.arg = old,
270 	};
271 
272 	if (locked)
273 		rmap_walk_locked(new, &rwc);
274 	else
275 		rmap_walk(new, &rwc);
276 }
277 
278 /*
279  * Something used the pte of a page under migration. We need to
280  * get to the page and wait until migration is finished.
281  * When we return from this function the fault will be retried.
282  */
283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284 				spinlock_t *ptl)
285 {
286 	pte_t pte;
287 	swp_entry_t entry;
288 	struct page *page;
289 
290 	spin_lock(ptl);
291 	pte = *ptep;
292 	if (!is_swap_pte(pte))
293 		goto out;
294 
295 	entry = pte_to_swp_entry(pte);
296 	if (!is_migration_entry(entry))
297 		goto out;
298 
299 	page = migration_entry_to_page(entry);
300 	page = compound_head(page);
301 
302 	/*
303 	 * Once page cache replacement of page migration started, page_count
304 	 * is zero; but we must not call put_and_wait_on_page_locked() without
305 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
306 	 */
307 	if (!get_page_unless_zero(page))
308 		goto out;
309 	pte_unmap_unlock(ptep, ptl);
310 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
311 	return;
312 out:
313 	pte_unmap_unlock(ptep, ptl);
314 }
315 
316 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317 				unsigned long address)
318 {
319 	spinlock_t *ptl = pte_lockptr(mm, pmd);
320 	pte_t *ptep = pte_offset_map(pmd, address);
321 	__migration_entry_wait(mm, ptep, ptl);
322 }
323 
324 void migration_entry_wait_huge(struct vm_area_struct *vma,
325 		struct mm_struct *mm, pte_t *pte)
326 {
327 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
328 	__migration_entry_wait(mm, pte, ptl);
329 }
330 
331 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
332 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
333 {
334 	spinlock_t *ptl;
335 	struct page *page;
336 
337 	ptl = pmd_lock(mm, pmd);
338 	if (!is_pmd_migration_entry(*pmd))
339 		goto unlock;
340 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
341 	if (!get_page_unless_zero(page))
342 		goto unlock;
343 	spin_unlock(ptl);
344 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
345 	return;
346 unlock:
347 	spin_unlock(ptl);
348 }
349 #endif
350 
351 static int expected_page_refs(struct address_space *mapping, struct page *page)
352 {
353 	int expected_count = 1;
354 
355 	/*
356 	 * Device private pages have an extra refcount as they are
357 	 * ZONE_DEVICE pages.
358 	 */
359 	expected_count += is_device_private_page(page);
360 	if (mapping)
361 		expected_count += thp_nr_pages(page) + page_has_private(page);
362 
363 	return expected_count;
364 }
365 
366 /*
367  * Replace the page in the mapping.
368  *
369  * The number of remaining references must be:
370  * 1 for anonymous pages without a mapping
371  * 2 for pages with a mapping
372  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
373  */
374 int migrate_page_move_mapping(struct address_space *mapping,
375 		struct page *newpage, struct page *page, int extra_count)
376 {
377 	XA_STATE(xas, &mapping->i_pages, page_index(page));
378 	struct zone *oldzone, *newzone;
379 	int dirty;
380 	int expected_count = expected_page_refs(mapping, page) + extra_count;
381 	int nr = thp_nr_pages(page);
382 
383 	if (!mapping) {
384 		/* Anonymous page without mapping */
385 		if (page_count(page) != expected_count)
386 			return -EAGAIN;
387 
388 		/* No turning back from here */
389 		newpage->index = page->index;
390 		newpage->mapping = page->mapping;
391 		if (PageSwapBacked(page))
392 			__SetPageSwapBacked(newpage);
393 
394 		return MIGRATEPAGE_SUCCESS;
395 	}
396 
397 	oldzone = page_zone(page);
398 	newzone = page_zone(newpage);
399 
400 	xas_lock_irq(&xas);
401 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
402 		xas_unlock_irq(&xas);
403 		return -EAGAIN;
404 	}
405 
406 	if (!page_ref_freeze(page, expected_count)) {
407 		xas_unlock_irq(&xas);
408 		return -EAGAIN;
409 	}
410 
411 	/*
412 	 * Now we know that no one else is looking at the page:
413 	 * no turning back from here.
414 	 */
415 	newpage->index = page->index;
416 	newpage->mapping = page->mapping;
417 	page_ref_add(newpage, nr); /* add cache reference */
418 	if (PageSwapBacked(page)) {
419 		__SetPageSwapBacked(newpage);
420 		if (PageSwapCache(page)) {
421 			SetPageSwapCache(newpage);
422 			set_page_private(newpage, page_private(page));
423 		}
424 	} else {
425 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
426 	}
427 
428 	/* Move dirty while page refs frozen and newpage not yet exposed */
429 	dirty = PageDirty(page);
430 	if (dirty) {
431 		ClearPageDirty(page);
432 		SetPageDirty(newpage);
433 	}
434 
435 	xas_store(&xas, newpage);
436 	if (PageTransHuge(page)) {
437 		int i;
438 
439 		for (i = 1; i < nr; i++) {
440 			xas_next(&xas);
441 			xas_store(&xas, newpage);
442 		}
443 	}
444 
445 	/*
446 	 * Drop cache reference from old page by unfreezing
447 	 * to one less reference.
448 	 * We know this isn't the last reference.
449 	 */
450 	page_ref_unfreeze(page, expected_count - nr);
451 
452 	xas_unlock(&xas);
453 	/* Leave irq disabled to prevent preemption while updating stats */
454 
455 	/*
456 	 * If moved to a different zone then also account
457 	 * the page for that zone. Other VM counters will be
458 	 * taken care of when we establish references to the
459 	 * new page and drop references to the old page.
460 	 *
461 	 * Note that anonymous pages are accounted for
462 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
463 	 * are mapped to swap space.
464 	 */
465 	if (newzone != oldzone) {
466 		struct lruvec *old_lruvec, *new_lruvec;
467 		struct mem_cgroup *memcg;
468 
469 		memcg = page_memcg(page);
470 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
471 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
472 
473 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
474 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
475 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
476 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
477 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
478 		}
479 #ifdef CONFIG_SWAP
480 		if (PageSwapCache(page)) {
481 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
482 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
483 		}
484 #endif
485 		if (dirty && mapping_can_writeback(mapping)) {
486 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
487 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
488 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
489 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
490 		}
491 	}
492 	local_irq_enable();
493 
494 	return MIGRATEPAGE_SUCCESS;
495 }
496 EXPORT_SYMBOL(migrate_page_move_mapping);
497 
498 /*
499  * The expected number of remaining references is the same as that
500  * of migrate_page_move_mapping().
501  */
502 int migrate_huge_page_move_mapping(struct address_space *mapping,
503 				   struct page *newpage, struct page *page)
504 {
505 	XA_STATE(xas, &mapping->i_pages, page_index(page));
506 	int expected_count;
507 
508 	xas_lock_irq(&xas);
509 	expected_count = 2 + page_has_private(page);
510 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
511 		xas_unlock_irq(&xas);
512 		return -EAGAIN;
513 	}
514 
515 	if (!page_ref_freeze(page, expected_count)) {
516 		xas_unlock_irq(&xas);
517 		return -EAGAIN;
518 	}
519 
520 	newpage->index = page->index;
521 	newpage->mapping = page->mapping;
522 
523 	get_page(newpage);
524 
525 	xas_store(&xas, newpage);
526 
527 	page_ref_unfreeze(page, expected_count - 1);
528 
529 	xas_unlock_irq(&xas);
530 
531 	return MIGRATEPAGE_SUCCESS;
532 }
533 
534 /*
535  * Gigantic pages are so large that we do not guarantee that page++ pointer
536  * arithmetic will work across the entire page.  We need something more
537  * specialized.
538  */
539 static void __copy_gigantic_page(struct page *dst, struct page *src,
540 				int nr_pages)
541 {
542 	int i;
543 	struct page *dst_base = dst;
544 	struct page *src_base = src;
545 
546 	for (i = 0; i < nr_pages; ) {
547 		cond_resched();
548 		copy_highpage(dst, src);
549 
550 		i++;
551 		dst = mem_map_next(dst, dst_base, i);
552 		src = mem_map_next(src, src_base, i);
553 	}
554 }
555 
556 void copy_huge_page(struct page *dst, struct page *src)
557 {
558 	int i;
559 	int nr_pages;
560 
561 	if (PageHuge(src)) {
562 		/* hugetlbfs page */
563 		struct hstate *h = page_hstate(src);
564 		nr_pages = pages_per_huge_page(h);
565 
566 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
567 			__copy_gigantic_page(dst, src, nr_pages);
568 			return;
569 		}
570 	} else {
571 		/* thp page */
572 		BUG_ON(!PageTransHuge(src));
573 		nr_pages = thp_nr_pages(src);
574 	}
575 
576 	for (i = 0; i < nr_pages; i++) {
577 		cond_resched();
578 		copy_highpage(dst + i, src + i);
579 	}
580 }
581 
582 /*
583  * Copy the page to its new location
584  */
585 void migrate_page_states(struct page *newpage, struct page *page)
586 {
587 	int cpupid;
588 
589 	if (PageError(page))
590 		SetPageError(newpage);
591 	if (PageReferenced(page))
592 		SetPageReferenced(newpage);
593 	if (PageUptodate(page))
594 		SetPageUptodate(newpage);
595 	if (TestClearPageActive(page)) {
596 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
597 		SetPageActive(newpage);
598 	} else if (TestClearPageUnevictable(page))
599 		SetPageUnevictable(newpage);
600 	if (PageWorkingset(page))
601 		SetPageWorkingset(newpage);
602 	if (PageChecked(page))
603 		SetPageChecked(newpage);
604 	if (PageMappedToDisk(page))
605 		SetPageMappedToDisk(newpage);
606 
607 	/* Move dirty on pages not done by migrate_page_move_mapping() */
608 	if (PageDirty(page))
609 		SetPageDirty(newpage);
610 
611 	if (page_is_young(page))
612 		set_page_young(newpage);
613 	if (page_is_idle(page))
614 		set_page_idle(newpage);
615 
616 	/*
617 	 * Copy NUMA information to the new page, to prevent over-eager
618 	 * future migrations of this same page.
619 	 */
620 	cpupid = page_cpupid_xchg_last(page, -1);
621 	page_cpupid_xchg_last(newpage, cpupid);
622 
623 	ksm_migrate_page(newpage, page);
624 	/*
625 	 * Please do not reorder this without considering how mm/ksm.c's
626 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
627 	 */
628 	if (PageSwapCache(page))
629 		ClearPageSwapCache(page);
630 	ClearPagePrivate(page);
631 
632 	/* page->private contains hugetlb specific flags */
633 	if (!PageHuge(page))
634 		set_page_private(page, 0);
635 
636 	/*
637 	 * If any waiters have accumulated on the new page then
638 	 * wake them up.
639 	 */
640 	if (PageWriteback(newpage))
641 		end_page_writeback(newpage);
642 
643 	/*
644 	 * PG_readahead shares the same bit with PG_reclaim.  The above
645 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
646 	 * bit after that.
647 	 */
648 	if (PageReadahead(page))
649 		SetPageReadahead(newpage);
650 
651 	copy_page_owner(page, newpage);
652 
653 	if (!PageHuge(page))
654 		mem_cgroup_migrate(page, newpage);
655 }
656 EXPORT_SYMBOL(migrate_page_states);
657 
658 void migrate_page_copy(struct page *newpage, struct page *page)
659 {
660 	if (PageHuge(page) || PageTransHuge(page))
661 		copy_huge_page(newpage, page);
662 	else
663 		copy_highpage(newpage, page);
664 
665 	migrate_page_states(newpage, page);
666 }
667 EXPORT_SYMBOL(migrate_page_copy);
668 
669 /************************************************************
670  *                    Migration functions
671  ***********************************************************/
672 
673 /*
674  * Common logic to directly migrate a single LRU page suitable for
675  * pages that do not use PagePrivate/PagePrivate2.
676  *
677  * Pages are locked upon entry and exit.
678  */
679 int migrate_page(struct address_space *mapping,
680 		struct page *newpage, struct page *page,
681 		enum migrate_mode mode)
682 {
683 	int rc;
684 
685 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
686 
687 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
688 
689 	if (rc != MIGRATEPAGE_SUCCESS)
690 		return rc;
691 
692 	if (mode != MIGRATE_SYNC_NO_COPY)
693 		migrate_page_copy(newpage, page);
694 	else
695 		migrate_page_states(newpage, page);
696 	return MIGRATEPAGE_SUCCESS;
697 }
698 EXPORT_SYMBOL(migrate_page);
699 
700 #ifdef CONFIG_BLOCK
701 /* Returns true if all buffers are successfully locked */
702 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
703 							enum migrate_mode mode)
704 {
705 	struct buffer_head *bh = head;
706 
707 	/* Simple case, sync compaction */
708 	if (mode != MIGRATE_ASYNC) {
709 		do {
710 			lock_buffer(bh);
711 			bh = bh->b_this_page;
712 
713 		} while (bh != head);
714 
715 		return true;
716 	}
717 
718 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
719 	do {
720 		if (!trylock_buffer(bh)) {
721 			/*
722 			 * We failed to lock the buffer and cannot stall in
723 			 * async migration. Release the taken locks
724 			 */
725 			struct buffer_head *failed_bh = bh;
726 			bh = head;
727 			while (bh != failed_bh) {
728 				unlock_buffer(bh);
729 				bh = bh->b_this_page;
730 			}
731 			return false;
732 		}
733 
734 		bh = bh->b_this_page;
735 	} while (bh != head);
736 	return true;
737 }
738 
739 static int __buffer_migrate_page(struct address_space *mapping,
740 		struct page *newpage, struct page *page, enum migrate_mode mode,
741 		bool check_refs)
742 {
743 	struct buffer_head *bh, *head;
744 	int rc;
745 	int expected_count;
746 
747 	if (!page_has_buffers(page))
748 		return migrate_page(mapping, newpage, page, mode);
749 
750 	/* Check whether page does not have extra refs before we do more work */
751 	expected_count = expected_page_refs(mapping, page);
752 	if (page_count(page) != expected_count)
753 		return -EAGAIN;
754 
755 	head = page_buffers(page);
756 	if (!buffer_migrate_lock_buffers(head, mode))
757 		return -EAGAIN;
758 
759 	if (check_refs) {
760 		bool busy;
761 		bool invalidated = false;
762 
763 recheck_buffers:
764 		busy = false;
765 		spin_lock(&mapping->private_lock);
766 		bh = head;
767 		do {
768 			if (atomic_read(&bh->b_count)) {
769 				busy = true;
770 				break;
771 			}
772 			bh = bh->b_this_page;
773 		} while (bh != head);
774 		if (busy) {
775 			if (invalidated) {
776 				rc = -EAGAIN;
777 				goto unlock_buffers;
778 			}
779 			spin_unlock(&mapping->private_lock);
780 			invalidate_bh_lrus();
781 			invalidated = true;
782 			goto recheck_buffers;
783 		}
784 	}
785 
786 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
787 	if (rc != MIGRATEPAGE_SUCCESS)
788 		goto unlock_buffers;
789 
790 	attach_page_private(newpage, detach_page_private(page));
791 
792 	bh = head;
793 	do {
794 		set_bh_page(bh, newpage, bh_offset(bh));
795 		bh = bh->b_this_page;
796 
797 	} while (bh != head);
798 
799 	if (mode != MIGRATE_SYNC_NO_COPY)
800 		migrate_page_copy(newpage, page);
801 	else
802 		migrate_page_states(newpage, page);
803 
804 	rc = MIGRATEPAGE_SUCCESS;
805 unlock_buffers:
806 	if (check_refs)
807 		spin_unlock(&mapping->private_lock);
808 	bh = head;
809 	do {
810 		unlock_buffer(bh);
811 		bh = bh->b_this_page;
812 
813 	} while (bh != head);
814 
815 	return rc;
816 }
817 
818 /*
819  * Migration function for pages with buffers. This function can only be used
820  * if the underlying filesystem guarantees that no other references to "page"
821  * exist. For example attached buffer heads are accessed only under page lock.
822  */
823 int buffer_migrate_page(struct address_space *mapping,
824 		struct page *newpage, struct page *page, enum migrate_mode mode)
825 {
826 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
827 }
828 EXPORT_SYMBOL(buffer_migrate_page);
829 
830 /*
831  * Same as above except that this variant is more careful and checks that there
832  * are also no buffer head references. This function is the right one for
833  * mappings where buffer heads are directly looked up and referenced (such as
834  * block device mappings).
835  */
836 int buffer_migrate_page_norefs(struct address_space *mapping,
837 		struct page *newpage, struct page *page, enum migrate_mode mode)
838 {
839 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
840 }
841 #endif
842 
843 /*
844  * Writeback a page to clean the dirty state
845  */
846 static int writeout(struct address_space *mapping, struct page *page)
847 {
848 	struct writeback_control wbc = {
849 		.sync_mode = WB_SYNC_NONE,
850 		.nr_to_write = 1,
851 		.range_start = 0,
852 		.range_end = LLONG_MAX,
853 		.for_reclaim = 1
854 	};
855 	int rc;
856 
857 	if (!mapping->a_ops->writepage)
858 		/* No write method for the address space */
859 		return -EINVAL;
860 
861 	if (!clear_page_dirty_for_io(page))
862 		/* Someone else already triggered a write */
863 		return -EAGAIN;
864 
865 	/*
866 	 * A dirty page may imply that the underlying filesystem has
867 	 * the page on some queue. So the page must be clean for
868 	 * migration. Writeout may mean we loose the lock and the
869 	 * page state is no longer what we checked for earlier.
870 	 * At this point we know that the migration attempt cannot
871 	 * be successful.
872 	 */
873 	remove_migration_ptes(page, page, false);
874 
875 	rc = mapping->a_ops->writepage(page, &wbc);
876 
877 	if (rc != AOP_WRITEPAGE_ACTIVATE)
878 		/* unlocked. Relock */
879 		lock_page(page);
880 
881 	return (rc < 0) ? -EIO : -EAGAIN;
882 }
883 
884 /*
885  * Default handling if a filesystem does not provide a migration function.
886  */
887 static int fallback_migrate_page(struct address_space *mapping,
888 	struct page *newpage, struct page *page, enum migrate_mode mode)
889 {
890 	if (PageDirty(page)) {
891 		/* Only writeback pages in full synchronous migration */
892 		switch (mode) {
893 		case MIGRATE_SYNC:
894 		case MIGRATE_SYNC_NO_COPY:
895 			break;
896 		default:
897 			return -EBUSY;
898 		}
899 		return writeout(mapping, page);
900 	}
901 
902 	/*
903 	 * Buffers may be managed in a filesystem specific way.
904 	 * We must have no buffers or drop them.
905 	 */
906 	if (page_has_private(page) &&
907 	    !try_to_release_page(page, GFP_KERNEL))
908 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
909 
910 	return migrate_page(mapping, newpage, page, mode);
911 }
912 
913 /*
914  * Move a page to a newly allocated page
915  * The page is locked and all ptes have been successfully removed.
916  *
917  * The new page will have replaced the old page if this function
918  * is successful.
919  *
920  * Return value:
921  *   < 0 - error code
922  *  MIGRATEPAGE_SUCCESS - success
923  */
924 static int move_to_new_page(struct page *newpage, struct page *page,
925 				enum migrate_mode mode)
926 {
927 	struct address_space *mapping;
928 	int rc = -EAGAIN;
929 	bool is_lru = !__PageMovable(page);
930 
931 	VM_BUG_ON_PAGE(!PageLocked(page), page);
932 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
933 
934 	mapping = page_mapping(page);
935 
936 	if (likely(is_lru)) {
937 		if (!mapping)
938 			rc = migrate_page(mapping, newpage, page, mode);
939 		else if (mapping->a_ops->migratepage)
940 			/*
941 			 * Most pages have a mapping and most filesystems
942 			 * provide a migratepage callback. Anonymous pages
943 			 * are part of swap space which also has its own
944 			 * migratepage callback. This is the most common path
945 			 * for page migration.
946 			 */
947 			rc = mapping->a_ops->migratepage(mapping, newpage,
948 							page, mode);
949 		else
950 			rc = fallback_migrate_page(mapping, newpage,
951 							page, mode);
952 	} else {
953 		/*
954 		 * In case of non-lru page, it could be released after
955 		 * isolation step. In that case, we shouldn't try migration.
956 		 */
957 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
958 		if (!PageMovable(page)) {
959 			rc = MIGRATEPAGE_SUCCESS;
960 			__ClearPageIsolated(page);
961 			goto out;
962 		}
963 
964 		rc = mapping->a_ops->migratepage(mapping, newpage,
965 						page, mode);
966 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967 			!PageIsolated(page));
968 	}
969 
970 	/*
971 	 * When successful, old pagecache page->mapping must be cleared before
972 	 * page is freed; but stats require that PageAnon be left as PageAnon.
973 	 */
974 	if (rc == MIGRATEPAGE_SUCCESS) {
975 		if (__PageMovable(page)) {
976 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
977 
978 			/*
979 			 * We clear PG_movable under page_lock so any compactor
980 			 * cannot try to migrate this page.
981 			 */
982 			__ClearPageIsolated(page);
983 		}
984 
985 		/*
986 		 * Anonymous and movable page->mapping will be cleared by
987 		 * free_pages_prepare so don't reset it here for keeping
988 		 * the type to work PageAnon, for example.
989 		 */
990 		if (!PageMappingFlags(page))
991 			page->mapping = NULL;
992 
993 		if (likely(!is_zone_device_page(newpage)))
994 			flush_dcache_page(newpage);
995 
996 	}
997 out:
998 	return rc;
999 }
1000 
1001 static int __unmap_and_move(struct page *page, struct page *newpage,
1002 				int force, enum migrate_mode mode)
1003 {
1004 	int rc = -EAGAIN;
1005 	int page_was_mapped = 0;
1006 	struct anon_vma *anon_vma = NULL;
1007 	bool is_lru = !__PageMovable(page);
1008 
1009 	if (!trylock_page(page)) {
1010 		if (!force || mode == MIGRATE_ASYNC)
1011 			goto out;
1012 
1013 		/*
1014 		 * It's not safe for direct compaction to call lock_page.
1015 		 * For example, during page readahead pages are added locked
1016 		 * to the LRU. Later, when the IO completes the pages are
1017 		 * marked uptodate and unlocked. However, the queueing
1018 		 * could be merging multiple pages for one bio (e.g.
1019 		 * mpage_readahead). If an allocation happens for the
1020 		 * second or third page, the process can end up locking
1021 		 * the same page twice and deadlocking. Rather than
1022 		 * trying to be clever about what pages can be locked,
1023 		 * avoid the use of lock_page for direct compaction
1024 		 * altogether.
1025 		 */
1026 		if (current->flags & PF_MEMALLOC)
1027 			goto out;
1028 
1029 		lock_page(page);
1030 	}
1031 
1032 	if (PageWriteback(page)) {
1033 		/*
1034 		 * Only in the case of a full synchronous migration is it
1035 		 * necessary to wait for PageWriteback. In the async case,
1036 		 * the retry loop is too short and in the sync-light case,
1037 		 * the overhead of stalling is too much
1038 		 */
1039 		switch (mode) {
1040 		case MIGRATE_SYNC:
1041 		case MIGRATE_SYNC_NO_COPY:
1042 			break;
1043 		default:
1044 			rc = -EBUSY;
1045 			goto out_unlock;
1046 		}
1047 		if (!force)
1048 			goto out_unlock;
1049 		wait_on_page_writeback(page);
1050 	}
1051 
1052 	/*
1053 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054 	 * we cannot notice that anon_vma is freed while we migrates a page.
1055 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1056 	 * of migration. File cache pages are no problem because of page_lock()
1057 	 * File Caches may use write_page() or lock_page() in migration, then,
1058 	 * just care Anon page here.
1059 	 *
1060 	 * Only page_get_anon_vma() understands the subtleties of
1061 	 * getting a hold on an anon_vma from outside one of its mms.
1062 	 * But if we cannot get anon_vma, then we won't need it anyway,
1063 	 * because that implies that the anon page is no longer mapped
1064 	 * (and cannot be remapped so long as we hold the page lock).
1065 	 */
1066 	if (PageAnon(page) && !PageKsm(page))
1067 		anon_vma = page_get_anon_vma(page);
1068 
1069 	/*
1070 	 * Block others from accessing the new page when we get around to
1071 	 * establishing additional references. We are usually the only one
1072 	 * holding a reference to newpage at this point. We used to have a BUG
1073 	 * here if trylock_page(newpage) fails, but would like to allow for
1074 	 * cases where there might be a race with the previous use of newpage.
1075 	 * This is much like races on refcount of oldpage: just don't BUG().
1076 	 */
1077 	if (unlikely(!trylock_page(newpage)))
1078 		goto out_unlock;
1079 
1080 	if (unlikely(!is_lru)) {
1081 		rc = move_to_new_page(newpage, page, mode);
1082 		goto out_unlock_both;
1083 	}
1084 
1085 	/*
1086 	 * Corner case handling:
1087 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1088 	 * and treated as swapcache but it has no rmap yet.
1089 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1090 	 * trigger a BUG.  So handle it here.
1091 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1092 	 * fs-private metadata. The page can be picked up due to memory
1093 	 * offlining.  Everywhere else except page reclaim, the page is
1094 	 * invisible to the vm, so the page can not be migrated.  So try to
1095 	 * free the metadata, so the page can be freed.
1096 	 */
1097 	if (!page->mapping) {
1098 		VM_BUG_ON_PAGE(PageAnon(page), page);
1099 		if (page_has_private(page)) {
1100 			try_to_free_buffers(page);
1101 			goto out_unlock_both;
1102 		}
1103 	} else if (page_mapped(page)) {
1104 		/* Establish migration ptes */
1105 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1106 				page);
1107 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1108 		page_was_mapped = 1;
1109 	}
1110 
1111 	if (!page_mapped(page))
1112 		rc = move_to_new_page(newpage, page, mode);
1113 
1114 	if (page_was_mapped)
1115 		remove_migration_ptes(page,
1116 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1117 
1118 out_unlock_both:
1119 	unlock_page(newpage);
1120 out_unlock:
1121 	/* Drop an anon_vma reference if we took one */
1122 	if (anon_vma)
1123 		put_anon_vma(anon_vma);
1124 	unlock_page(page);
1125 out:
1126 	/*
1127 	 * If migration is successful, decrease refcount of the newpage
1128 	 * which will not free the page because new page owner increased
1129 	 * refcounter. As well, if it is LRU page, add the page to LRU
1130 	 * list in here. Use the old state of the isolated source page to
1131 	 * determine if we migrated a LRU page. newpage was already unlocked
1132 	 * and possibly modified by its owner - don't rely on the page
1133 	 * state.
1134 	 */
1135 	if (rc == MIGRATEPAGE_SUCCESS) {
1136 		if (unlikely(!is_lru))
1137 			put_page(newpage);
1138 		else
1139 			putback_lru_page(newpage);
1140 	}
1141 
1142 	return rc;
1143 }
1144 
1145 /*
1146  * Obtain the lock on page, remove all ptes and migrate the page
1147  * to the newly allocated page in newpage.
1148  */
1149 static int unmap_and_move(new_page_t get_new_page,
1150 				   free_page_t put_new_page,
1151 				   unsigned long private, struct page *page,
1152 				   int force, enum migrate_mode mode,
1153 				   enum migrate_reason reason,
1154 				   struct list_head *ret)
1155 {
1156 	int rc = MIGRATEPAGE_SUCCESS;
1157 	struct page *newpage = NULL;
1158 
1159 	if (!thp_migration_supported() && PageTransHuge(page))
1160 		return -ENOSYS;
1161 
1162 	if (page_count(page) == 1) {
1163 		/* page was freed from under us. So we are done. */
1164 		ClearPageActive(page);
1165 		ClearPageUnevictable(page);
1166 		if (unlikely(__PageMovable(page))) {
1167 			lock_page(page);
1168 			if (!PageMovable(page))
1169 				__ClearPageIsolated(page);
1170 			unlock_page(page);
1171 		}
1172 		goto out;
1173 	}
1174 
1175 	newpage = get_new_page(page, private);
1176 	if (!newpage)
1177 		return -ENOMEM;
1178 
1179 	rc = __unmap_and_move(page, newpage, force, mode);
1180 	if (rc == MIGRATEPAGE_SUCCESS)
1181 		set_page_owner_migrate_reason(newpage, reason);
1182 
1183 out:
1184 	if (rc != -EAGAIN) {
1185 		/*
1186 		 * A page that has been migrated has all references
1187 		 * removed and will be freed. A page that has not been
1188 		 * migrated will have kept its references and be restored.
1189 		 */
1190 		list_del(&page->lru);
1191 	}
1192 
1193 	/*
1194 	 * If migration is successful, releases reference grabbed during
1195 	 * isolation. Otherwise, restore the page to right list unless
1196 	 * we want to retry.
1197 	 */
1198 	if (rc == MIGRATEPAGE_SUCCESS) {
1199 		/*
1200 		 * Compaction can migrate also non-LRU pages which are
1201 		 * not accounted to NR_ISOLATED_*. They can be recognized
1202 		 * as __PageMovable
1203 		 */
1204 		if (likely(!__PageMovable(page)))
1205 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1206 					page_is_file_lru(page), -thp_nr_pages(page));
1207 
1208 		if (reason != MR_MEMORY_FAILURE)
1209 			/*
1210 			 * We release the page in page_handle_poison.
1211 			 */
1212 			put_page(page);
1213 	} else {
1214 		if (rc != -EAGAIN)
1215 			list_add_tail(&page->lru, ret);
1216 
1217 		if (put_new_page)
1218 			put_new_page(newpage, private);
1219 		else
1220 			put_page(newpage);
1221 	}
1222 
1223 	return rc;
1224 }
1225 
1226 /*
1227  * Counterpart of unmap_and_move_page() for hugepage migration.
1228  *
1229  * This function doesn't wait the completion of hugepage I/O
1230  * because there is no race between I/O and migration for hugepage.
1231  * Note that currently hugepage I/O occurs only in direct I/O
1232  * where no lock is held and PG_writeback is irrelevant,
1233  * and writeback status of all subpages are counted in the reference
1234  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1235  * under direct I/O, the reference of the head page is 512 and a bit more.)
1236  * This means that when we try to migrate hugepage whose subpages are
1237  * doing direct I/O, some references remain after try_to_unmap() and
1238  * hugepage migration fails without data corruption.
1239  *
1240  * There is also no race when direct I/O is issued on the page under migration,
1241  * because then pte is replaced with migration swap entry and direct I/O code
1242  * will wait in the page fault for migration to complete.
1243  */
1244 static int unmap_and_move_huge_page(new_page_t get_new_page,
1245 				free_page_t put_new_page, unsigned long private,
1246 				struct page *hpage, int force,
1247 				enum migrate_mode mode, int reason,
1248 				struct list_head *ret)
1249 {
1250 	int rc = -EAGAIN;
1251 	int page_was_mapped = 0;
1252 	struct page *new_hpage;
1253 	struct anon_vma *anon_vma = NULL;
1254 	struct address_space *mapping = NULL;
1255 
1256 	/*
1257 	 * Migratability of hugepages depends on architectures and their size.
1258 	 * This check is necessary because some callers of hugepage migration
1259 	 * like soft offline and memory hotremove don't walk through page
1260 	 * tables or check whether the hugepage is pmd-based or not before
1261 	 * kicking migration.
1262 	 */
1263 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1264 		list_move_tail(&hpage->lru, ret);
1265 		return -ENOSYS;
1266 	}
1267 
1268 	if (page_count(hpage) == 1) {
1269 		/* page was freed from under us. So we are done. */
1270 		putback_active_hugepage(hpage);
1271 		return MIGRATEPAGE_SUCCESS;
1272 	}
1273 
1274 	new_hpage = get_new_page(hpage, private);
1275 	if (!new_hpage)
1276 		return -ENOMEM;
1277 
1278 	if (!trylock_page(hpage)) {
1279 		if (!force)
1280 			goto out;
1281 		switch (mode) {
1282 		case MIGRATE_SYNC:
1283 		case MIGRATE_SYNC_NO_COPY:
1284 			break;
1285 		default:
1286 			goto out;
1287 		}
1288 		lock_page(hpage);
1289 	}
1290 
1291 	/*
1292 	 * Check for pages which are in the process of being freed.  Without
1293 	 * page_mapping() set, hugetlbfs specific move page routine will not
1294 	 * be called and we could leak usage counts for subpools.
1295 	 */
1296 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1297 		rc = -EBUSY;
1298 		goto out_unlock;
1299 	}
1300 
1301 	if (PageAnon(hpage))
1302 		anon_vma = page_get_anon_vma(hpage);
1303 
1304 	if (unlikely(!trylock_page(new_hpage)))
1305 		goto put_anon;
1306 
1307 	if (page_mapped(hpage)) {
1308 		bool mapping_locked = false;
1309 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1310 
1311 		if (!PageAnon(hpage)) {
1312 			/*
1313 			 * In shared mappings, try_to_unmap could potentially
1314 			 * call huge_pmd_unshare.  Because of this, take
1315 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1316 			 * to let lower levels know we have taken the lock.
1317 			 */
1318 			mapping = hugetlb_page_mapping_lock_write(hpage);
1319 			if (unlikely(!mapping))
1320 				goto unlock_put_anon;
1321 
1322 			mapping_locked = true;
1323 			ttu |= TTU_RMAP_LOCKED;
1324 		}
1325 
1326 		try_to_unmap(hpage, ttu);
1327 		page_was_mapped = 1;
1328 
1329 		if (mapping_locked)
1330 			i_mmap_unlock_write(mapping);
1331 	}
1332 
1333 	if (!page_mapped(hpage))
1334 		rc = move_to_new_page(new_hpage, hpage, mode);
1335 
1336 	if (page_was_mapped)
1337 		remove_migration_ptes(hpage,
1338 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1339 
1340 unlock_put_anon:
1341 	unlock_page(new_hpage);
1342 
1343 put_anon:
1344 	if (anon_vma)
1345 		put_anon_vma(anon_vma);
1346 
1347 	if (rc == MIGRATEPAGE_SUCCESS) {
1348 		move_hugetlb_state(hpage, new_hpage, reason);
1349 		put_new_page = NULL;
1350 	}
1351 
1352 out_unlock:
1353 	unlock_page(hpage);
1354 out:
1355 	if (rc == MIGRATEPAGE_SUCCESS)
1356 		putback_active_hugepage(hpage);
1357 	else if (rc != -EAGAIN)
1358 		list_move_tail(&hpage->lru, ret);
1359 
1360 	/*
1361 	 * If migration was not successful and there's a freeing callback, use
1362 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1363 	 * isolation.
1364 	 */
1365 	if (put_new_page)
1366 		put_new_page(new_hpage, private);
1367 	else
1368 		putback_active_hugepage(new_hpage);
1369 
1370 	return rc;
1371 }
1372 
1373 static inline int try_split_thp(struct page *page, struct page **page2,
1374 				struct list_head *from)
1375 {
1376 	int rc = 0;
1377 
1378 	lock_page(page);
1379 	rc = split_huge_page_to_list(page, from);
1380 	unlock_page(page);
1381 	if (!rc)
1382 		list_safe_reset_next(page, *page2, lru);
1383 
1384 	return rc;
1385 }
1386 
1387 /*
1388  * migrate_pages - migrate the pages specified in a list, to the free pages
1389  *		   supplied as the target for the page migration
1390  *
1391  * @from:		The list of pages to be migrated.
1392  * @get_new_page:	The function used to allocate free pages to be used
1393  *			as the target of the page migration.
1394  * @put_new_page:	The function used to free target pages if migration
1395  *			fails, or NULL if no special handling is necessary.
1396  * @private:		Private data to be passed on to get_new_page()
1397  * @mode:		The migration mode that specifies the constraints for
1398  *			page migration, if any.
1399  * @reason:		The reason for page migration.
1400  *
1401  * The function returns after 10 attempts or if no pages are movable any more
1402  * because the list has become empty or no retryable pages exist any more.
1403  * It is caller's responsibility to call putback_movable_pages() to return pages
1404  * to the LRU or free list only if ret != 0.
1405  *
1406  * Returns the number of pages that were not migrated, or an error code.
1407  */
1408 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1409 		free_page_t put_new_page, unsigned long private,
1410 		enum migrate_mode mode, int reason)
1411 {
1412 	int retry = 1;
1413 	int thp_retry = 1;
1414 	int nr_failed = 0;
1415 	int nr_succeeded = 0;
1416 	int nr_thp_succeeded = 0;
1417 	int nr_thp_failed = 0;
1418 	int nr_thp_split = 0;
1419 	int pass = 0;
1420 	bool is_thp = false;
1421 	struct page *page;
1422 	struct page *page2;
1423 	int swapwrite = current->flags & PF_SWAPWRITE;
1424 	int rc, nr_subpages;
1425 	LIST_HEAD(ret_pages);
1426 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1427 
1428 	trace_mm_migrate_pages_start(mode, reason);
1429 
1430 	if (!swapwrite)
1431 		current->flags |= PF_SWAPWRITE;
1432 
1433 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1434 		retry = 0;
1435 		thp_retry = 0;
1436 
1437 		list_for_each_entry_safe(page, page2, from, lru) {
1438 retry:
1439 			/*
1440 			 * THP statistics is based on the source huge page.
1441 			 * Capture required information that might get lost
1442 			 * during migration.
1443 			 */
1444 			is_thp = PageTransHuge(page) && !PageHuge(page);
1445 			nr_subpages = thp_nr_pages(page);
1446 			cond_resched();
1447 
1448 			if (PageHuge(page))
1449 				rc = unmap_and_move_huge_page(get_new_page,
1450 						put_new_page, private, page,
1451 						pass > 2, mode, reason,
1452 						&ret_pages);
1453 			else
1454 				rc = unmap_and_move(get_new_page, put_new_page,
1455 						private, page, pass > 2, mode,
1456 						reason, &ret_pages);
1457 			/*
1458 			 * The rules are:
1459 			 *	Success: non hugetlb page will be freed, hugetlb
1460 			 *		 page will be put back
1461 			 *	-EAGAIN: stay on the from list
1462 			 *	-ENOMEM: stay on the from list
1463 			 *	Other errno: put on ret_pages list then splice to
1464 			 *		     from list
1465 			 */
1466 			switch(rc) {
1467 			/*
1468 			 * THP migration might be unsupported or the
1469 			 * allocation could've failed so we should
1470 			 * retry on the same page with the THP split
1471 			 * to base pages.
1472 			 *
1473 			 * Head page is retried immediately and tail
1474 			 * pages are added to the tail of the list so
1475 			 * we encounter them after the rest of the list
1476 			 * is processed.
1477 			 */
1478 			case -ENOSYS:
1479 				/* THP migration is unsupported */
1480 				if (is_thp) {
1481 					if (!try_split_thp(page, &page2, from)) {
1482 						nr_thp_split++;
1483 						goto retry;
1484 					}
1485 
1486 					nr_thp_failed++;
1487 					nr_failed += nr_subpages;
1488 					break;
1489 				}
1490 
1491 				/* Hugetlb migration is unsupported */
1492 				nr_failed++;
1493 				break;
1494 			case -ENOMEM:
1495 				/*
1496 				 * When memory is low, don't bother to try to migrate
1497 				 * other pages, just exit.
1498 				 * THP NUMA faulting doesn't split THP to retry.
1499 				 */
1500 				if (is_thp && !nosplit) {
1501 					if (!try_split_thp(page, &page2, from)) {
1502 						nr_thp_split++;
1503 						goto retry;
1504 					}
1505 
1506 					nr_thp_failed++;
1507 					nr_failed += nr_subpages;
1508 					goto out;
1509 				}
1510 				nr_failed++;
1511 				goto out;
1512 			case -EAGAIN:
1513 				if (is_thp) {
1514 					thp_retry++;
1515 					break;
1516 				}
1517 				retry++;
1518 				break;
1519 			case MIGRATEPAGE_SUCCESS:
1520 				if (is_thp) {
1521 					nr_thp_succeeded++;
1522 					nr_succeeded += nr_subpages;
1523 					break;
1524 				}
1525 				nr_succeeded++;
1526 				break;
1527 			default:
1528 				/*
1529 				 * Permanent failure (-EBUSY, etc.):
1530 				 * unlike -EAGAIN case, the failed page is
1531 				 * removed from migration page list and not
1532 				 * retried in the next outer loop.
1533 				 */
1534 				if (is_thp) {
1535 					nr_thp_failed++;
1536 					nr_failed += nr_subpages;
1537 					break;
1538 				}
1539 				nr_failed++;
1540 				break;
1541 			}
1542 		}
1543 	}
1544 	nr_failed += retry + thp_retry;
1545 	nr_thp_failed += thp_retry;
1546 	rc = nr_failed;
1547 out:
1548 	/*
1549 	 * Put the permanent failure page back to migration list, they
1550 	 * will be put back to the right list by the caller.
1551 	 */
1552 	list_splice(&ret_pages, from);
1553 
1554 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1555 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1556 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1557 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1558 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1559 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1560 			       nr_thp_failed, nr_thp_split, mode, reason);
1561 
1562 	if (!swapwrite)
1563 		current->flags &= ~PF_SWAPWRITE;
1564 
1565 	return rc;
1566 }
1567 
1568 struct page *alloc_migration_target(struct page *page, unsigned long private)
1569 {
1570 	struct migration_target_control *mtc;
1571 	gfp_t gfp_mask;
1572 	unsigned int order = 0;
1573 	struct page *new_page = NULL;
1574 	int nid;
1575 	int zidx;
1576 
1577 	mtc = (struct migration_target_control *)private;
1578 	gfp_mask = mtc->gfp_mask;
1579 	nid = mtc->nid;
1580 	if (nid == NUMA_NO_NODE)
1581 		nid = page_to_nid(page);
1582 
1583 	if (PageHuge(page)) {
1584 		struct hstate *h = page_hstate(compound_head(page));
1585 
1586 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1587 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1588 	}
1589 
1590 	if (PageTransHuge(page)) {
1591 		/*
1592 		 * clear __GFP_RECLAIM to make the migration callback
1593 		 * consistent with regular THP allocations.
1594 		 */
1595 		gfp_mask &= ~__GFP_RECLAIM;
1596 		gfp_mask |= GFP_TRANSHUGE;
1597 		order = HPAGE_PMD_ORDER;
1598 	}
1599 	zidx = zone_idx(page_zone(page));
1600 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1601 		gfp_mask |= __GFP_HIGHMEM;
1602 
1603 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1604 
1605 	if (new_page && PageTransHuge(new_page))
1606 		prep_transhuge_page(new_page);
1607 
1608 	return new_page;
1609 }
1610 
1611 #ifdef CONFIG_NUMA
1612 
1613 static int store_status(int __user *status, int start, int value, int nr)
1614 {
1615 	while (nr-- > 0) {
1616 		if (put_user(value, status + start))
1617 			return -EFAULT;
1618 		start++;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static int do_move_pages_to_node(struct mm_struct *mm,
1625 		struct list_head *pagelist, int node)
1626 {
1627 	int err;
1628 	struct migration_target_control mtc = {
1629 		.nid = node,
1630 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1631 	};
1632 
1633 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1634 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1635 	if (err)
1636 		putback_movable_pages(pagelist);
1637 	return err;
1638 }
1639 
1640 /*
1641  * Resolves the given address to a struct page, isolates it from the LRU and
1642  * puts it to the given pagelist.
1643  * Returns:
1644  *     errno - if the page cannot be found/isolated
1645  *     0 - when it doesn't have to be migrated because it is already on the
1646  *         target node
1647  *     1 - when it has been queued
1648  */
1649 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1650 		int node, struct list_head *pagelist, bool migrate_all)
1651 {
1652 	struct vm_area_struct *vma;
1653 	struct page *page;
1654 	unsigned int follflags;
1655 	int err;
1656 
1657 	mmap_read_lock(mm);
1658 	err = -EFAULT;
1659 	vma = find_vma(mm, addr);
1660 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1661 		goto out;
1662 
1663 	/* FOLL_DUMP to ignore special (like zero) pages */
1664 	follflags = FOLL_GET | FOLL_DUMP;
1665 	page = follow_page(vma, addr, follflags);
1666 
1667 	err = PTR_ERR(page);
1668 	if (IS_ERR(page))
1669 		goto out;
1670 
1671 	err = -ENOENT;
1672 	if (!page)
1673 		goto out;
1674 
1675 	err = 0;
1676 	if (page_to_nid(page) == node)
1677 		goto out_putpage;
1678 
1679 	err = -EACCES;
1680 	if (page_mapcount(page) > 1 && !migrate_all)
1681 		goto out_putpage;
1682 
1683 	if (PageHuge(page)) {
1684 		if (PageHead(page)) {
1685 			isolate_huge_page(page, pagelist);
1686 			err = 1;
1687 		}
1688 	} else {
1689 		struct page *head;
1690 
1691 		head = compound_head(page);
1692 		err = isolate_lru_page(head);
1693 		if (err)
1694 			goto out_putpage;
1695 
1696 		err = 1;
1697 		list_add_tail(&head->lru, pagelist);
1698 		mod_node_page_state(page_pgdat(head),
1699 			NR_ISOLATED_ANON + page_is_file_lru(head),
1700 			thp_nr_pages(head));
1701 	}
1702 out_putpage:
1703 	/*
1704 	 * Either remove the duplicate refcount from
1705 	 * isolate_lru_page() or drop the page ref if it was
1706 	 * not isolated.
1707 	 */
1708 	put_page(page);
1709 out:
1710 	mmap_read_unlock(mm);
1711 	return err;
1712 }
1713 
1714 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1715 		struct list_head *pagelist, int __user *status,
1716 		int start, int i, unsigned long nr_pages)
1717 {
1718 	int err;
1719 
1720 	if (list_empty(pagelist))
1721 		return 0;
1722 
1723 	err = do_move_pages_to_node(mm, pagelist, node);
1724 	if (err) {
1725 		/*
1726 		 * Positive err means the number of failed
1727 		 * pages to migrate.  Since we are going to
1728 		 * abort and return the number of non-migrated
1729 		 * pages, so need to include the rest of the
1730 		 * nr_pages that have not been attempted as
1731 		 * well.
1732 		 */
1733 		if (err > 0)
1734 			err += nr_pages - i - 1;
1735 		return err;
1736 	}
1737 	return store_status(status, start, node, i - start);
1738 }
1739 
1740 /*
1741  * Migrate an array of page address onto an array of nodes and fill
1742  * the corresponding array of status.
1743  */
1744 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1745 			 unsigned long nr_pages,
1746 			 const void __user * __user *pages,
1747 			 const int __user *nodes,
1748 			 int __user *status, int flags)
1749 {
1750 	int current_node = NUMA_NO_NODE;
1751 	LIST_HEAD(pagelist);
1752 	int start, i;
1753 	int err = 0, err1;
1754 
1755 	lru_cache_disable();
1756 
1757 	for (i = start = 0; i < nr_pages; i++) {
1758 		const void __user *p;
1759 		unsigned long addr;
1760 		int node;
1761 
1762 		err = -EFAULT;
1763 		if (get_user(p, pages + i))
1764 			goto out_flush;
1765 		if (get_user(node, nodes + i))
1766 			goto out_flush;
1767 		addr = (unsigned long)untagged_addr(p);
1768 
1769 		err = -ENODEV;
1770 		if (node < 0 || node >= MAX_NUMNODES)
1771 			goto out_flush;
1772 		if (!node_state(node, N_MEMORY))
1773 			goto out_flush;
1774 
1775 		err = -EACCES;
1776 		if (!node_isset(node, task_nodes))
1777 			goto out_flush;
1778 
1779 		if (current_node == NUMA_NO_NODE) {
1780 			current_node = node;
1781 			start = i;
1782 		} else if (node != current_node) {
1783 			err = move_pages_and_store_status(mm, current_node,
1784 					&pagelist, status, start, i, nr_pages);
1785 			if (err)
1786 				goto out;
1787 			start = i;
1788 			current_node = node;
1789 		}
1790 
1791 		/*
1792 		 * Errors in the page lookup or isolation are not fatal and we simply
1793 		 * report them via status
1794 		 */
1795 		err = add_page_for_migration(mm, addr, current_node,
1796 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1797 
1798 		if (err > 0) {
1799 			/* The page is successfully queued for migration */
1800 			continue;
1801 		}
1802 
1803 		/*
1804 		 * If the page is already on the target node (!err), store the
1805 		 * node, otherwise, store the err.
1806 		 */
1807 		err = store_status(status, i, err ? : current_node, 1);
1808 		if (err)
1809 			goto out_flush;
1810 
1811 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1812 				status, start, i, nr_pages);
1813 		if (err)
1814 			goto out;
1815 		current_node = NUMA_NO_NODE;
1816 	}
1817 out_flush:
1818 	/* Make sure we do not overwrite the existing error */
1819 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1820 				status, start, i, nr_pages);
1821 	if (err >= 0)
1822 		err = err1;
1823 out:
1824 	lru_cache_enable();
1825 	return err;
1826 }
1827 
1828 /*
1829  * Determine the nodes of an array of pages and store it in an array of status.
1830  */
1831 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1832 				const void __user **pages, int *status)
1833 {
1834 	unsigned long i;
1835 
1836 	mmap_read_lock(mm);
1837 
1838 	for (i = 0; i < nr_pages; i++) {
1839 		unsigned long addr = (unsigned long)(*pages);
1840 		struct vm_area_struct *vma;
1841 		struct page *page;
1842 		int err = -EFAULT;
1843 
1844 		vma = vma_lookup(mm, addr);
1845 		if (!vma)
1846 			goto set_status;
1847 
1848 		/* FOLL_DUMP to ignore special (like zero) pages */
1849 		page = follow_page(vma, addr, FOLL_DUMP);
1850 
1851 		err = PTR_ERR(page);
1852 		if (IS_ERR(page))
1853 			goto set_status;
1854 
1855 		err = page ? page_to_nid(page) : -ENOENT;
1856 set_status:
1857 		*status = err;
1858 
1859 		pages++;
1860 		status++;
1861 	}
1862 
1863 	mmap_read_unlock(mm);
1864 }
1865 
1866 /*
1867  * Determine the nodes of a user array of pages and store it in
1868  * a user array of status.
1869  */
1870 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1871 			 const void __user * __user *pages,
1872 			 int __user *status)
1873 {
1874 #define DO_PAGES_STAT_CHUNK_NR 16
1875 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1876 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1877 
1878 	while (nr_pages) {
1879 		unsigned long chunk_nr;
1880 
1881 		chunk_nr = nr_pages;
1882 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1883 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1884 
1885 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1886 			break;
1887 
1888 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1889 
1890 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1891 			break;
1892 
1893 		pages += chunk_nr;
1894 		status += chunk_nr;
1895 		nr_pages -= chunk_nr;
1896 	}
1897 	return nr_pages ? -EFAULT : 0;
1898 }
1899 
1900 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1901 {
1902 	struct task_struct *task;
1903 	struct mm_struct *mm;
1904 
1905 	/*
1906 	 * There is no need to check if current process has the right to modify
1907 	 * the specified process when they are same.
1908 	 */
1909 	if (!pid) {
1910 		mmget(current->mm);
1911 		*mem_nodes = cpuset_mems_allowed(current);
1912 		return current->mm;
1913 	}
1914 
1915 	/* Find the mm_struct */
1916 	rcu_read_lock();
1917 	task = find_task_by_vpid(pid);
1918 	if (!task) {
1919 		rcu_read_unlock();
1920 		return ERR_PTR(-ESRCH);
1921 	}
1922 	get_task_struct(task);
1923 
1924 	/*
1925 	 * Check if this process has the right to modify the specified
1926 	 * process. Use the regular "ptrace_may_access()" checks.
1927 	 */
1928 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1929 		rcu_read_unlock();
1930 		mm = ERR_PTR(-EPERM);
1931 		goto out;
1932 	}
1933 	rcu_read_unlock();
1934 
1935 	mm = ERR_PTR(security_task_movememory(task));
1936 	if (IS_ERR(mm))
1937 		goto out;
1938 	*mem_nodes = cpuset_mems_allowed(task);
1939 	mm = get_task_mm(task);
1940 out:
1941 	put_task_struct(task);
1942 	if (!mm)
1943 		mm = ERR_PTR(-EINVAL);
1944 	return mm;
1945 }
1946 
1947 /*
1948  * Move a list of pages in the address space of the currently executing
1949  * process.
1950  */
1951 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1952 			     const void __user * __user *pages,
1953 			     const int __user *nodes,
1954 			     int __user *status, int flags)
1955 {
1956 	struct mm_struct *mm;
1957 	int err;
1958 	nodemask_t task_nodes;
1959 
1960 	/* Check flags */
1961 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1962 		return -EINVAL;
1963 
1964 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1965 		return -EPERM;
1966 
1967 	mm = find_mm_struct(pid, &task_nodes);
1968 	if (IS_ERR(mm))
1969 		return PTR_ERR(mm);
1970 
1971 	if (nodes)
1972 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1973 				    nodes, status, flags);
1974 	else
1975 		err = do_pages_stat(mm, nr_pages, pages, status);
1976 
1977 	mmput(mm);
1978 	return err;
1979 }
1980 
1981 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1982 		const void __user * __user *, pages,
1983 		const int __user *, nodes,
1984 		int __user *, status, int, flags)
1985 {
1986 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1987 }
1988 
1989 #ifdef CONFIG_COMPAT
1990 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1991 		       compat_uptr_t __user *, pages32,
1992 		       const int __user *, nodes,
1993 		       int __user *, status,
1994 		       int, flags)
1995 {
1996 	const void __user * __user *pages;
1997 	int i;
1998 
1999 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2000 	for (i = 0; i < nr_pages; i++) {
2001 		compat_uptr_t p;
2002 
2003 		if (get_user(p, pages32 + i) ||
2004 			put_user(compat_ptr(p), pages + i))
2005 			return -EFAULT;
2006 	}
2007 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2008 }
2009 #endif /* CONFIG_COMPAT */
2010 
2011 #ifdef CONFIG_NUMA_BALANCING
2012 /*
2013  * Returns true if this is a safe migration target node for misplaced NUMA
2014  * pages. Currently it only checks the watermarks which crude
2015  */
2016 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2017 				   unsigned long nr_migrate_pages)
2018 {
2019 	int z;
2020 
2021 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2022 		struct zone *zone = pgdat->node_zones + z;
2023 
2024 		if (!populated_zone(zone))
2025 			continue;
2026 
2027 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2028 		if (!zone_watermark_ok(zone, 0,
2029 				       high_wmark_pages(zone) +
2030 				       nr_migrate_pages,
2031 				       ZONE_MOVABLE, 0))
2032 			continue;
2033 		return true;
2034 	}
2035 	return false;
2036 }
2037 
2038 static struct page *alloc_misplaced_dst_page(struct page *page,
2039 					   unsigned long data)
2040 {
2041 	int nid = (int) data;
2042 	struct page *newpage;
2043 
2044 	newpage = __alloc_pages_node(nid,
2045 					 (GFP_HIGHUSER_MOVABLE |
2046 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2047 					  __GFP_NORETRY | __GFP_NOWARN) &
2048 					 ~__GFP_RECLAIM, 0);
2049 
2050 	return newpage;
2051 }
2052 
2053 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2054 						 unsigned long data)
2055 {
2056 	int nid = (int) data;
2057 	struct page *newpage;
2058 
2059 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2060 				   HPAGE_PMD_ORDER);
2061 	if (!newpage)
2062 		goto out;
2063 
2064 	prep_transhuge_page(newpage);
2065 
2066 out:
2067 	return newpage;
2068 }
2069 
2070 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2071 {
2072 	int page_lru;
2073 
2074 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2075 
2076 	/* Avoid migrating to a node that is nearly full */
2077 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2078 		return 0;
2079 
2080 	if (isolate_lru_page(page))
2081 		return 0;
2082 
2083 	/*
2084 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2085 	 * check on page_count(), so we must do it here, now that the page
2086 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2087 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2088 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2089 	 */
2090 	if (PageTransHuge(page) && page_count(page) != 3) {
2091 		putback_lru_page(page);
2092 		return 0;
2093 	}
2094 
2095 	page_lru = page_is_file_lru(page);
2096 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2097 				thp_nr_pages(page));
2098 
2099 	/*
2100 	 * Isolating the page has taken another reference, so the
2101 	 * caller's reference can be safely dropped without the page
2102 	 * disappearing underneath us during migration.
2103 	 */
2104 	put_page(page);
2105 	return 1;
2106 }
2107 
2108 /*
2109  * Attempt to migrate a misplaced page to the specified destination
2110  * node. Caller is expected to have an elevated reference count on
2111  * the page that will be dropped by this function before returning.
2112  */
2113 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2114 			   int node)
2115 {
2116 	pg_data_t *pgdat = NODE_DATA(node);
2117 	int isolated;
2118 	int nr_remaining;
2119 	LIST_HEAD(migratepages);
2120 	new_page_t *new;
2121 	bool compound;
2122 	unsigned int nr_pages = thp_nr_pages(page);
2123 
2124 	/*
2125 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2126 	 * be either base page or THP.  And it must be head page if it is
2127 	 * THP.
2128 	 */
2129 	compound = PageTransHuge(page);
2130 
2131 	if (compound)
2132 		new = alloc_misplaced_dst_page_thp;
2133 	else
2134 		new = alloc_misplaced_dst_page;
2135 
2136 	/*
2137 	 * Don't migrate file pages that are mapped in multiple processes
2138 	 * with execute permissions as they are probably shared libraries.
2139 	 */
2140 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2141 	    (vma->vm_flags & VM_EXEC))
2142 		goto out;
2143 
2144 	/*
2145 	 * Also do not migrate dirty pages as not all filesystems can move
2146 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2147 	 */
2148 	if (page_is_file_lru(page) && PageDirty(page))
2149 		goto out;
2150 
2151 	isolated = numamigrate_isolate_page(pgdat, page);
2152 	if (!isolated)
2153 		goto out;
2154 
2155 	list_add(&page->lru, &migratepages);
2156 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2157 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2158 	if (nr_remaining) {
2159 		if (!list_empty(&migratepages)) {
2160 			list_del(&page->lru);
2161 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2162 					page_is_file_lru(page), -nr_pages);
2163 			putback_lru_page(page);
2164 		}
2165 		isolated = 0;
2166 	} else
2167 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2168 	BUG_ON(!list_empty(&migratepages));
2169 	return isolated;
2170 
2171 out:
2172 	put_page(page);
2173 	return 0;
2174 }
2175 #endif /* CONFIG_NUMA_BALANCING */
2176 #endif /* CONFIG_NUMA */
2177 
2178 #ifdef CONFIG_DEVICE_PRIVATE
2179 static int migrate_vma_collect_skip(unsigned long start,
2180 				    unsigned long end,
2181 				    struct mm_walk *walk)
2182 {
2183 	struct migrate_vma *migrate = walk->private;
2184 	unsigned long addr;
2185 
2186 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2187 		migrate->dst[migrate->npages] = 0;
2188 		migrate->src[migrate->npages++] = 0;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 static int migrate_vma_collect_hole(unsigned long start,
2195 				    unsigned long end,
2196 				    __always_unused int depth,
2197 				    struct mm_walk *walk)
2198 {
2199 	struct migrate_vma *migrate = walk->private;
2200 	unsigned long addr;
2201 
2202 	/* Only allow populating anonymous memory. */
2203 	if (!vma_is_anonymous(walk->vma))
2204 		return migrate_vma_collect_skip(start, end, walk);
2205 
2206 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2207 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2208 		migrate->dst[migrate->npages] = 0;
2209 		migrate->npages++;
2210 		migrate->cpages++;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2217 				   unsigned long start,
2218 				   unsigned long end,
2219 				   struct mm_walk *walk)
2220 {
2221 	struct migrate_vma *migrate = walk->private;
2222 	struct vm_area_struct *vma = walk->vma;
2223 	struct mm_struct *mm = vma->vm_mm;
2224 	unsigned long addr = start, unmapped = 0;
2225 	spinlock_t *ptl;
2226 	pte_t *ptep;
2227 
2228 again:
2229 	if (pmd_none(*pmdp))
2230 		return migrate_vma_collect_hole(start, end, -1, walk);
2231 
2232 	if (pmd_trans_huge(*pmdp)) {
2233 		struct page *page;
2234 
2235 		ptl = pmd_lock(mm, pmdp);
2236 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2237 			spin_unlock(ptl);
2238 			goto again;
2239 		}
2240 
2241 		page = pmd_page(*pmdp);
2242 		if (is_huge_zero_page(page)) {
2243 			spin_unlock(ptl);
2244 			split_huge_pmd(vma, pmdp, addr);
2245 			if (pmd_trans_unstable(pmdp))
2246 				return migrate_vma_collect_skip(start, end,
2247 								walk);
2248 		} else {
2249 			int ret;
2250 
2251 			get_page(page);
2252 			spin_unlock(ptl);
2253 			if (unlikely(!trylock_page(page)))
2254 				return migrate_vma_collect_skip(start, end,
2255 								walk);
2256 			ret = split_huge_page(page);
2257 			unlock_page(page);
2258 			put_page(page);
2259 			if (ret)
2260 				return migrate_vma_collect_skip(start, end,
2261 								walk);
2262 			if (pmd_none(*pmdp))
2263 				return migrate_vma_collect_hole(start, end, -1,
2264 								walk);
2265 		}
2266 	}
2267 
2268 	if (unlikely(pmd_bad(*pmdp)))
2269 		return migrate_vma_collect_skip(start, end, walk);
2270 
2271 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2272 	arch_enter_lazy_mmu_mode();
2273 
2274 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2275 		unsigned long mpfn = 0, pfn;
2276 		struct page *page;
2277 		swp_entry_t entry;
2278 		pte_t pte;
2279 
2280 		pte = *ptep;
2281 
2282 		if (pte_none(pte)) {
2283 			if (vma_is_anonymous(vma)) {
2284 				mpfn = MIGRATE_PFN_MIGRATE;
2285 				migrate->cpages++;
2286 			}
2287 			goto next;
2288 		}
2289 
2290 		if (!pte_present(pte)) {
2291 			/*
2292 			 * Only care about unaddressable device page special
2293 			 * page table entry. Other special swap entries are not
2294 			 * migratable, and we ignore regular swapped page.
2295 			 */
2296 			entry = pte_to_swp_entry(pte);
2297 			if (!is_device_private_entry(entry))
2298 				goto next;
2299 
2300 			page = device_private_entry_to_page(entry);
2301 			if (!(migrate->flags &
2302 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2303 			    page->pgmap->owner != migrate->pgmap_owner)
2304 				goto next;
2305 
2306 			mpfn = migrate_pfn(page_to_pfn(page)) |
2307 					MIGRATE_PFN_MIGRATE;
2308 			if (is_write_device_private_entry(entry))
2309 				mpfn |= MIGRATE_PFN_WRITE;
2310 		} else {
2311 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2312 				goto next;
2313 			pfn = pte_pfn(pte);
2314 			if (is_zero_pfn(pfn)) {
2315 				mpfn = MIGRATE_PFN_MIGRATE;
2316 				migrate->cpages++;
2317 				goto next;
2318 			}
2319 			page = vm_normal_page(migrate->vma, addr, pte);
2320 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2321 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2322 		}
2323 
2324 		/* FIXME support THP */
2325 		if (!page || !page->mapping || PageTransCompound(page)) {
2326 			mpfn = 0;
2327 			goto next;
2328 		}
2329 
2330 		/*
2331 		 * By getting a reference on the page we pin it and that blocks
2332 		 * any kind of migration. Side effect is that it "freezes" the
2333 		 * pte.
2334 		 *
2335 		 * We drop this reference after isolating the page from the lru
2336 		 * for non device page (device page are not on the lru and thus
2337 		 * can't be dropped from it).
2338 		 */
2339 		get_page(page);
2340 		migrate->cpages++;
2341 
2342 		/*
2343 		 * Optimize for the common case where page is only mapped once
2344 		 * in one process. If we can lock the page, then we can safely
2345 		 * set up a special migration page table entry now.
2346 		 */
2347 		if (trylock_page(page)) {
2348 			pte_t swp_pte;
2349 
2350 			mpfn |= MIGRATE_PFN_LOCKED;
2351 			ptep_get_and_clear(mm, addr, ptep);
2352 
2353 			/* Setup special migration page table entry */
2354 			entry = make_migration_entry(page, mpfn &
2355 						     MIGRATE_PFN_WRITE);
2356 			swp_pte = swp_entry_to_pte(entry);
2357 			if (pte_present(pte)) {
2358 				if (pte_soft_dirty(pte))
2359 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2360 				if (pte_uffd_wp(pte))
2361 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2362 			} else {
2363 				if (pte_swp_soft_dirty(pte))
2364 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2365 				if (pte_swp_uffd_wp(pte))
2366 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2367 			}
2368 			set_pte_at(mm, addr, ptep, swp_pte);
2369 
2370 			/*
2371 			 * This is like regular unmap: we remove the rmap and
2372 			 * drop page refcount. Page won't be freed, as we took
2373 			 * a reference just above.
2374 			 */
2375 			page_remove_rmap(page, false);
2376 			put_page(page);
2377 
2378 			if (pte_present(pte))
2379 				unmapped++;
2380 		}
2381 
2382 next:
2383 		migrate->dst[migrate->npages] = 0;
2384 		migrate->src[migrate->npages++] = mpfn;
2385 	}
2386 	arch_leave_lazy_mmu_mode();
2387 	pte_unmap_unlock(ptep - 1, ptl);
2388 
2389 	/* Only flush the TLB if we actually modified any entries */
2390 	if (unmapped)
2391 		flush_tlb_range(walk->vma, start, end);
2392 
2393 	return 0;
2394 }
2395 
2396 static const struct mm_walk_ops migrate_vma_walk_ops = {
2397 	.pmd_entry		= migrate_vma_collect_pmd,
2398 	.pte_hole		= migrate_vma_collect_hole,
2399 };
2400 
2401 /*
2402  * migrate_vma_collect() - collect pages over a range of virtual addresses
2403  * @migrate: migrate struct containing all migration information
2404  *
2405  * This will walk the CPU page table. For each virtual address backed by a
2406  * valid page, it updates the src array and takes a reference on the page, in
2407  * order to pin the page until we lock it and unmap it.
2408  */
2409 static void migrate_vma_collect(struct migrate_vma *migrate)
2410 {
2411 	struct mmu_notifier_range range;
2412 
2413 	/*
2414 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2415 	 * that the registered device driver can skip invalidating device
2416 	 * private page mappings that won't be migrated.
2417 	 */
2418 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2419 		migrate->vma->vm_mm, migrate->start, migrate->end,
2420 		migrate->pgmap_owner);
2421 	mmu_notifier_invalidate_range_start(&range);
2422 
2423 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2424 			&migrate_vma_walk_ops, migrate);
2425 
2426 	mmu_notifier_invalidate_range_end(&range);
2427 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2428 }
2429 
2430 /*
2431  * migrate_vma_check_page() - check if page is pinned or not
2432  * @page: struct page to check
2433  *
2434  * Pinned pages cannot be migrated. This is the same test as in
2435  * migrate_page_move_mapping(), except that here we allow migration of a
2436  * ZONE_DEVICE page.
2437  */
2438 static bool migrate_vma_check_page(struct page *page)
2439 {
2440 	/*
2441 	 * One extra ref because caller holds an extra reference, either from
2442 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2443 	 * a device page.
2444 	 */
2445 	int extra = 1;
2446 
2447 	/*
2448 	 * FIXME support THP (transparent huge page), it is bit more complex to
2449 	 * check them than regular pages, because they can be mapped with a pmd
2450 	 * or with a pte (split pte mapping).
2451 	 */
2452 	if (PageCompound(page))
2453 		return false;
2454 
2455 	/* Page from ZONE_DEVICE have one extra reference */
2456 	if (is_zone_device_page(page)) {
2457 		/*
2458 		 * Private page can never be pin as they have no valid pte and
2459 		 * GUP will fail for those. Yet if there is a pending migration
2460 		 * a thread might try to wait on the pte migration entry and
2461 		 * will bump the page reference count. Sadly there is no way to
2462 		 * differentiate a regular pin from migration wait. Hence to
2463 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2464 		 * infinite loop (one stopping migration because the other is
2465 		 * waiting on pte migration entry). We always return true here.
2466 		 *
2467 		 * FIXME proper solution is to rework migration_entry_wait() so
2468 		 * it does not need to take a reference on page.
2469 		 */
2470 		return is_device_private_page(page);
2471 	}
2472 
2473 	/* For file back page */
2474 	if (page_mapping(page))
2475 		extra += 1 + page_has_private(page);
2476 
2477 	if ((page_count(page) - extra) > page_mapcount(page))
2478 		return false;
2479 
2480 	return true;
2481 }
2482 
2483 /*
2484  * migrate_vma_prepare() - lock pages and isolate them from the lru
2485  * @migrate: migrate struct containing all migration information
2486  *
2487  * This locks pages that have been collected by migrate_vma_collect(). Once each
2488  * page is locked it is isolated from the lru (for non-device pages). Finally,
2489  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2490  * migrated by concurrent kernel threads.
2491  */
2492 static void migrate_vma_prepare(struct migrate_vma *migrate)
2493 {
2494 	const unsigned long npages = migrate->npages;
2495 	const unsigned long start = migrate->start;
2496 	unsigned long addr, i, restore = 0;
2497 	bool allow_drain = true;
2498 
2499 	lru_add_drain();
2500 
2501 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2502 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2503 		bool remap = true;
2504 
2505 		if (!page)
2506 			continue;
2507 
2508 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2509 			/*
2510 			 * Because we are migrating several pages there can be
2511 			 * a deadlock between 2 concurrent migration where each
2512 			 * are waiting on each other page lock.
2513 			 *
2514 			 * Make migrate_vma() a best effort thing and backoff
2515 			 * for any page we can not lock right away.
2516 			 */
2517 			if (!trylock_page(page)) {
2518 				migrate->src[i] = 0;
2519 				migrate->cpages--;
2520 				put_page(page);
2521 				continue;
2522 			}
2523 			remap = false;
2524 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2525 		}
2526 
2527 		/* ZONE_DEVICE pages are not on LRU */
2528 		if (!is_zone_device_page(page)) {
2529 			if (!PageLRU(page) && allow_drain) {
2530 				/* Drain CPU's pagevec */
2531 				lru_add_drain_all();
2532 				allow_drain = false;
2533 			}
2534 
2535 			if (isolate_lru_page(page)) {
2536 				if (remap) {
2537 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2538 					migrate->cpages--;
2539 					restore++;
2540 				} else {
2541 					migrate->src[i] = 0;
2542 					unlock_page(page);
2543 					migrate->cpages--;
2544 					put_page(page);
2545 				}
2546 				continue;
2547 			}
2548 
2549 			/* Drop the reference we took in collect */
2550 			put_page(page);
2551 		}
2552 
2553 		if (!migrate_vma_check_page(page)) {
2554 			if (remap) {
2555 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2556 				migrate->cpages--;
2557 				restore++;
2558 
2559 				if (!is_zone_device_page(page)) {
2560 					get_page(page);
2561 					putback_lru_page(page);
2562 				}
2563 			} else {
2564 				migrate->src[i] = 0;
2565 				unlock_page(page);
2566 				migrate->cpages--;
2567 
2568 				if (!is_zone_device_page(page))
2569 					putback_lru_page(page);
2570 				else
2571 					put_page(page);
2572 			}
2573 		}
2574 	}
2575 
2576 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2577 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578 
2579 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 			continue;
2581 
2582 		remove_migration_pte(page, migrate->vma, addr, page);
2583 
2584 		migrate->src[i] = 0;
2585 		unlock_page(page);
2586 		put_page(page);
2587 		restore--;
2588 	}
2589 }
2590 
2591 /*
2592  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2593  * @migrate: migrate struct containing all migration information
2594  *
2595  * Replace page mapping (CPU page table pte) with a special migration pte entry
2596  * and check again if it has been pinned. Pinned pages are restored because we
2597  * cannot migrate them.
2598  *
2599  * This is the last step before we call the device driver callback to allocate
2600  * destination memory and copy contents of original page over to new page.
2601  */
2602 static void migrate_vma_unmap(struct migrate_vma *migrate)
2603 {
2604 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2605 	const unsigned long npages = migrate->npages;
2606 	const unsigned long start = migrate->start;
2607 	unsigned long addr, i, restore = 0;
2608 
2609 	for (i = 0; i < npages; i++) {
2610 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2611 
2612 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2613 			continue;
2614 
2615 		if (page_mapped(page)) {
2616 			try_to_unmap(page, flags);
2617 			if (page_mapped(page))
2618 				goto restore;
2619 		}
2620 
2621 		if (migrate_vma_check_page(page))
2622 			continue;
2623 
2624 restore:
2625 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2626 		migrate->cpages--;
2627 		restore++;
2628 	}
2629 
2630 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2631 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2632 
2633 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2634 			continue;
2635 
2636 		remove_migration_ptes(page, page, false);
2637 
2638 		migrate->src[i] = 0;
2639 		unlock_page(page);
2640 		restore--;
2641 
2642 		if (is_zone_device_page(page))
2643 			put_page(page);
2644 		else
2645 			putback_lru_page(page);
2646 	}
2647 }
2648 
2649 /**
2650  * migrate_vma_setup() - prepare to migrate a range of memory
2651  * @args: contains the vma, start, and pfns arrays for the migration
2652  *
2653  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2654  * without an error.
2655  *
2656  * Prepare to migrate a range of memory virtual address range by collecting all
2657  * the pages backing each virtual address in the range, saving them inside the
2658  * src array.  Then lock those pages and unmap them. Once the pages are locked
2659  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2660  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2661  * corresponding src array entry.  Then restores any pages that are pinned, by
2662  * remapping and unlocking those pages.
2663  *
2664  * The caller should then allocate destination memory and copy source memory to
2665  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2666  * flag set).  Once these are allocated and copied, the caller must update each
2667  * corresponding entry in the dst array with the pfn value of the destination
2668  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2669  * (destination pages must have their struct pages locked, via lock_page()).
2670  *
2671  * Note that the caller does not have to migrate all the pages that are marked
2672  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2673  * device memory to system memory.  If the caller cannot migrate a device page
2674  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2675  * consequences for the userspace process, so it must be avoided if at all
2676  * possible.
2677  *
2678  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2679  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2680  * allowing the caller to allocate device memory for those unbacked virtual
2681  * addresses.  For this the caller simply has to allocate device memory and
2682  * properly set the destination entry like for regular migration.  Note that
2683  * this can still fail, and thus inside the device driver you must check if the
2684  * migration was successful for those entries after calling migrate_vma_pages(),
2685  * just like for regular migration.
2686  *
2687  * After that, the callers must call migrate_vma_pages() to go over each entry
2688  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2689  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2690  * then migrate_vma_pages() to migrate struct page information from the source
2691  * struct page to the destination struct page.  If it fails to migrate the
2692  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2693  * src array.
2694  *
2695  * At this point all successfully migrated pages have an entry in the src
2696  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2697  * array entry with MIGRATE_PFN_VALID flag set.
2698  *
2699  * Once migrate_vma_pages() returns the caller may inspect which pages were
2700  * successfully migrated, and which were not.  Successfully migrated pages will
2701  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2702  *
2703  * It is safe to update device page table after migrate_vma_pages() because
2704  * both destination and source page are still locked, and the mmap_lock is held
2705  * in read mode (hence no one can unmap the range being migrated).
2706  *
2707  * Once the caller is done cleaning up things and updating its page table (if it
2708  * chose to do so, this is not an obligation) it finally calls
2709  * migrate_vma_finalize() to update the CPU page table to point to new pages
2710  * for successfully migrated pages or otherwise restore the CPU page table to
2711  * point to the original source pages.
2712  */
2713 int migrate_vma_setup(struct migrate_vma *args)
2714 {
2715 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2716 
2717 	args->start &= PAGE_MASK;
2718 	args->end &= PAGE_MASK;
2719 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2720 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2721 		return -EINVAL;
2722 	if (nr_pages <= 0)
2723 		return -EINVAL;
2724 	if (args->start < args->vma->vm_start ||
2725 	    args->start >= args->vma->vm_end)
2726 		return -EINVAL;
2727 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2728 		return -EINVAL;
2729 	if (!args->src || !args->dst)
2730 		return -EINVAL;
2731 
2732 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2733 	args->cpages = 0;
2734 	args->npages = 0;
2735 
2736 	migrate_vma_collect(args);
2737 
2738 	if (args->cpages)
2739 		migrate_vma_prepare(args);
2740 	if (args->cpages)
2741 		migrate_vma_unmap(args);
2742 
2743 	/*
2744 	 * At this point pages are locked and unmapped, and thus they have
2745 	 * stable content and can safely be copied to destination memory that
2746 	 * is allocated by the drivers.
2747 	 */
2748 	return 0;
2749 
2750 }
2751 EXPORT_SYMBOL(migrate_vma_setup);
2752 
2753 /*
2754  * This code closely matches the code in:
2755  *   __handle_mm_fault()
2756  *     handle_pte_fault()
2757  *       do_anonymous_page()
2758  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2759  * private page.
2760  */
2761 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2762 				    unsigned long addr,
2763 				    struct page *page,
2764 				    unsigned long *src)
2765 {
2766 	struct vm_area_struct *vma = migrate->vma;
2767 	struct mm_struct *mm = vma->vm_mm;
2768 	bool flush = false;
2769 	spinlock_t *ptl;
2770 	pte_t entry;
2771 	pgd_t *pgdp;
2772 	p4d_t *p4dp;
2773 	pud_t *pudp;
2774 	pmd_t *pmdp;
2775 	pte_t *ptep;
2776 
2777 	/* Only allow populating anonymous memory */
2778 	if (!vma_is_anonymous(vma))
2779 		goto abort;
2780 
2781 	pgdp = pgd_offset(mm, addr);
2782 	p4dp = p4d_alloc(mm, pgdp, addr);
2783 	if (!p4dp)
2784 		goto abort;
2785 	pudp = pud_alloc(mm, p4dp, addr);
2786 	if (!pudp)
2787 		goto abort;
2788 	pmdp = pmd_alloc(mm, pudp, addr);
2789 	if (!pmdp)
2790 		goto abort;
2791 
2792 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2793 		goto abort;
2794 
2795 	/*
2796 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2797 	 * pte_offset_map() on pmds where a huge pmd might be created
2798 	 * from a different thread.
2799 	 *
2800 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2801 	 * parallel threads are excluded by other means.
2802 	 *
2803 	 * Here we only have mmap_read_lock(mm).
2804 	 */
2805 	if (pte_alloc(mm, pmdp))
2806 		goto abort;
2807 
2808 	/* See the comment in pte_alloc_one_map() */
2809 	if (unlikely(pmd_trans_unstable(pmdp)))
2810 		goto abort;
2811 
2812 	if (unlikely(anon_vma_prepare(vma)))
2813 		goto abort;
2814 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2815 		goto abort;
2816 
2817 	/*
2818 	 * The memory barrier inside __SetPageUptodate makes sure that
2819 	 * preceding stores to the page contents become visible before
2820 	 * the set_pte_at() write.
2821 	 */
2822 	__SetPageUptodate(page);
2823 
2824 	if (is_zone_device_page(page)) {
2825 		if (is_device_private_page(page)) {
2826 			swp_entry_t swp_entry;
2827 
2828 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2829 			entry = swp_entry_to_pte(swp_entry);
2830 		} else {
2831 			/*
2832 			 * For now we only support migrating to un-addressable
2833 			 * device memory.
2834 			 */
2835 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2836 			goto abort;
2837 		}
2838 	} else {
2839 		entry = mk_pte(page, vma->vm_page_prot);
2840 		if (vma->vm_flags & VM_WRITE)
2841 			entry = pte_mkwrite(pte_mkdirty(entry));
2842 	}
2843 
2844 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2845 
2846 	if (check_stable_address_space(mm))
2847 		goto unlock_abort;
2848 
2849 	if (pte_present(*ptep)) {
2850 		unsigned long pfn = pte_pfn(*ptep);
2851 
2852 		if (!is_zero_pfn(pfn))
2853 			goto unlock_abort;
2854 		flush = true;
2855 	} else if (!pte_none(*ptep))
2856 		goto unlock_abort;
2857 
2858 	/*
2859 	 * Check for userfaultfd but do not deliver the fault. Instead,
2860 	 * just back off.
2861 	 */
2862 	if (userfaultfd_missing(vma))
2863 		goto unlock_abort;
2864 
2865 	inc_mm_counter(mm, MM_ANONPAGES);
2866 	page_add_new_anon_rmap(page, vma, addr, false);
2867 	if (!is_zone_device_page(page))
2868 		lru_cache_add_inactive_or_unevictable(page, vma);
2869 	get_page(page);
2870 
2871 	if (flush) {
2872 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2873 		ptep_clear_flush_notify(vma, addr, ptep);
2874 		set_pte_at_notify(mm, addr, ptep, entry);
2875 		update_mmu_cache(vma, addr, ptep);
2876 	} else {
2877 		/* No need to invalidate - it was non-present before */
2878 		set_pte_at(mm, addr, ptep, entry);
2879 		update_mmu_cache(vma, addr, ptep);
2880 	}
2881 
2882 	pte_unmap_unlock(ptep, ptl);
2883 	*src = MIGRATE_PFN_MIGRATE;
2884 	return;
2885 
2886 unlock_abort:
2887 	pte_unmap_unlock(ptep, ptl);
2888 abort:
2889 	*src &= ~MIGRATE_PFN_MIGRATE;
2890 }
2891 
2892 /**
2893  * migrate_vma_pages() - migrate meta-data from src page to dst page
2894  * @migrate: migrate struct containing all migration information
2895  *
2896  * This migrates struct page meta-data from source struct page to destination
2897  * struct page. This effectively finishes the migration from source page to the
2898  * destination page.
2899  */
2900 void migrate_vma_pages(struct migrate_vma *migrate)
2901 {
2902 	const unsigned long npages = migrate->npages;
2903 	const unsigned long start = migrate->start;
2904 	struct mmu_notifier_range range;
2905 	unsigned long addr, i;
2906 	bool notified = false;
2907 
2908 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2909 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2910 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2911 		struct address_space *mapping;
2912 		int r;
2913 
2914 		if (!newpage) {
2915 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2916 			continue;
2917 		}
2918 
2919 		if (!page) {
2920 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2921 				continue;
2922 			if (!notified) {
2923 				notified = true;
2924 
2925 				mmu_notifier_range_init_migrate(&range, 0,
2926 					migrate->vma, migrate->vma->vm_mm,
2927 					addr, migrate->end,
2928 					migrate->pgmap_owner);
2929 				mmu_notifier_invalidate_range_start(&range);
2930 			}
2931 			migrate_vma_insert_page(migrate, addr, newpage,
2932 						&migrate->src[i]);
2933 			continue;
2934 		}
2935 
2936 		mapping = page_mapping(page);
2937 
2938 		if (is_zone_device_page(newpage)) {
2939 			if (is_device_private_page(newpage)) {
2940 				/*
2941 				 * For now only support private anonymous when
2942 				 * migrating to un-addressable device memory.
2943 				 */
2944 				if (mapping) {
2945 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2946 					continue;
2947 				}
2948 			} else {
2949 				/*
2950 				 * Other types of ZONE_DEVICE page are not
2951 				 * supported.
2952 				 */
2953 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2954 				continue;
2955 			}
2956 		}
2957 
2958 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2959 		if (r != MIGRATEPAGE_SUCCESS)
2960 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2961 	}
2962 
2963 	/*
2964 	 * No need to double call mmu_notifier->invalidate_range() callback as
2965 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2966 	 * did already call it.
2967 	 */
2968 	if (notified)
2969 		mmu_notifier_invalidate_range_only_end(&range);
2970 }
2971 EXPORT_SYMBOL(migrate_vma_pages);
2972 
2973 /**
2974  * migrate_vma_finalize() - restore CPU page table entry
2975  * @migrate: migrate struct containing all migration information
2976  *
2977  * This replaces the special migration pte entry with either a mapping to the
2978  * new page if migration was successful for that page, or to the original page
2979  * otherwise.
2980  *
2981  * This also unlocks the pages and puts them back on the lru, or drops the extra
2982  * refcount, for device pages.
2983  */
2984 void migrate_vma_finalize(struct migrate_vma *migrate)
2985 {
2986 	const unsigned long npages = migrate->npages;
2987 	unsigned long i;
2988 
2989 	for (i = 0; i < npages; i++) {
2990 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2991 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2992 
2993 		if (!page) {
2994 			if (newpage) {
2995 				unlock_page(newpage);
2996 				put_page(newpage);
2997 			}
2998 			continue;
2999 		}
3000 
3001 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3002 			if (newpage) {
3003 				unlock_page(newpage);
3004 				put_page(newpage);
3005 			}
3006 			newpage = page;
3007 		}
3008 
3009 		remove_migration_ptes(page, newpage, false);
3010 		unlock_page(page);
3011 
3012 		if (is_zone_device_page(page))
3013 			put_page(page);
3014 		else
3015 			putback_lru_page(page);
3016 
3017 		if (newpage != page) {
3018 			unlock_page(newpage);
3019 			if (is_zone_device_page(newpage))
3020 				put_page(newpage);
3021 			else
3022 				putback_lru_page(newpage);
3023 		}
3024 	}
3025 }
3026 EXPORT_SYMBOL(migrate_vma_finalize);
3027 #endif /* CONFIG_DEVICE_PRIVATE */
3028