1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 #include <linux/sched/mm.h> 44 45 #include <asm/tlbflush.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/migrate.h> 49 50 #include "internal.h" 51 52 /* 53 * migrate_prep() needs to be called before we start compiling a list of pages 54 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 55 * undesirable, use migrate_prep_local() 56 */ 57 int migrate_prep(void) 58 { 59 /* 60 * Clear the LRU lists so pages can be isolated. 61 * Note that pages may be moved off the LRU after we have 62 * drained them. Those pages will fail to migrate like other 63 * pages that may be busy. 64 */ 65 lru_add_drain_all(); 66 67 return 0; 68 } 69 70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 71 int migrate_prep_local(void) 72 { 73 lru_add_drain(); 74 75 return 0; 76 } 77 78 int isolate_movable_page(struct page *page, isolate_mode_t mode) 79 { 80 struct address_space *mapping; 81 82 /* 83 * Avoid burning cycles with pages that are yet under __free_pages(), 84 * or just got freed under us. 85 * 86 * In case we 'win' a race for a movable page being freed under us and 87 * raise its refcount preventing __free_pages() from doing its job 88 * the put_page() at the end of this block will take care of 89 * release this page, thus avoiding a nasty leakage. 90 */ 91 if (unlikely(!get_page_unless_zero(page))) 92 goto out; 93 94 /* 95 * Check PageMovable before holding a PG_lock because page's owner 96 * assumes anybody doesn't touch PG_lock of newly allocated page 97 * so unconditionally grapping the lock ruins page's owner side. 98 */ 99 if (unlikely(!__PageMovable(page))) 100 goto out_putpage; 101 /* 102 * As movable pages are not isolated from LRU lists, concurrent 103 * compaction threads can race against page migration functions 104 * as well as race against the releasing a page. 105 * 106 * In order to avoid having an already isolated movable page 107 * being (wrongly) re-isolated while it is under migration, 108 * or to avoid attempting to isolate pages being released, 109 * lets be sure we have the page lock 110 * before proceeding with the movable page isolation steps. 111 */ 112 if (unlikely(!trylock_page(page))) 113 goto out_putpage; 114 115 if (!PageMovable(page) || PageIsolated(page)) 116 goto out_no_isolated; 117 118 mapping = page_mapping(page); 119 VM_BUG_ON_PAGE(!mapping, page); 120 121 if (!mapping->a_ops->isolate_page(page, mode)) 122 goto out_no_isolated; 123 124 /* Driver shouldn't use PG_isolated bit of page->flags */ 125 WARN_ON_ONCE(PageIsolated(page)); 126 __SetPageIsolated(page); 127 unlock_page(page); 128 129 return 0; 130 131 out_no_isolated: 132 unlock_page(page); 133 out_putpage: 134 put_page(page); 135 out: 136 return -EBUSY; 137 } 138 139 /* It should be called on page which is PG_movable */ 140 void putback_movable_page(struct page *page) 141 { 142 struct address_space *mapping; 143 144 VM_BUG_ON_PAGE(!PageLocked(page), page); 145 VM_BUG_ON_PAGE(!PageMovable(page), page); 146 VM_BUG_ON_PAGE(!PageIsolated(page), page); 147 148 mapping = page_mapping(page); 149 mapping->a_ops->putback_page(page); 150 __ClearPageIsolated(page); 151 } 152 153 /* 154 * Put previously isolated pages back onto the appropriate lists 155 * from where they were once taken off for compaction/migration. 156 * 157 * This function shall be used whenever the isolated pageset has been 158 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 159 * and isolate_huge_page(). 160 */ 161 void putback_movable_pages(struct list_head *l) 162 { 163 struct page *page; 164 struct page *page2; 165 166 list_for_each_entry_safe(page, page2, l, lru) { 167 if (unlikely(PageHuge(page))) { 168 putback_active_hugepage(page); 169 continue; 170 } 171 list_del(&page->lru); 172 /* 173 * We isolated non-lru movable page so here we can use 174 * __PageMovable because LRU page's mapping cannot have 175 * PAGE_MAPPING_MOVABLE. 176 */ 177 if (unlikely(__PageMovable(page))) { 178 VM_BUG_ON_PAGE(!PageIsolated(page), page); 179 lock_page(page); 180 if (PageMovable(page)) 181 putback_movable_page(page); 182 else 183 __ClearPageIsolated(page); 184 unlock_page(page); 185 put_page(page); 186 } else { 187 putback_lru_page(page); 188 dec_node_page_state(page, NR_ISOLATED_ANON + 189 page_is_file_cache(page)); 190 } 191 } 192 } 193 194 /* 195 * Restore a potential migration pte to a working pte entry 196 */ 197 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma, 198 unsigned long addr, void *old) 199 { 200 struct page_vma_mapped_walk pvmw = { 201 .page = old, 202 .vma = vma, 203 .address = addr, 204 .flags = PVMW_SYNC | PVMW_MIGRATION, 205 }; 206 struct page *new; 207 pte_t pte; 208 swp_entry_t entry; 209 210 VM_BUG_ON_PAGE(PageTail(page), page); 211 while (page_vma_mapped_walk(&pvmw)) { 212 new = page - pvmw.page->index + 213 linear_page_index(vma, pvmw.address); 214 215 get_page(new); 216 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 217 if (pte_swp_soft_dirty(*pvmw.pte)) 218 pte = pte_mksoft_dirty(pte); 219 220 /* 221 * Recheck VMA as permissions can change since migration started 222 */ 223 entry = pte_to_swp_entry(*pvmw.pte); 224 if (is_write_migration_entry(entry)) 225 pte = maybe_mkwrite(pte, vma); 226 227 #ifdef CONFIG_HUGETLB_PAGE 228 if (PageHuge(new)) { 229 pte = pte_mkhuge(pte); 230 pte = arch_make_huge_pte(pte, vma, new, 0); 231 } 232 #endif 233 flush_dcache_page(new); 234 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 235 236 if (PageHuge(new)) { 237 if (PageAnon(new)) 238 hugepage_add_anon_rmap(new, vma, pvmw.address); 239 else 240 page_dup_rmap(new, true); 241 } else if (PageAnon(new)) 242 page_add_anon_rmap(new, vma, pvmw.address, false); 243 else 244 page_add_file_rmap(new, false); 245 246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 247 mlock_vma_page(new); 248 249 /* No need to invalidate - it was non-present before */ 250 update_mmu_cache(vma, pvmw.address, pvmw.pte); 251 } 252 253 return SWAP_AGAIN; 254 } 255 256 /* 257 * Get rid of all migration entries and replace them by 258 * references to the indicated page. 259 */ 260 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 261 { 262 struct rmap_walk_control rwc = { 263 .rmap_one = remove_migration_pte, 264 .arg = old, 265 }; 266 267 if (locked) 268 rmap_walk_locked(new, &rwc); 269 else 270 rmap_walk(new, &rwc); 271 } 272 273 /* 274 * Something used the pte of a page under migration. We need to 275 * get to the page and wait until migration is finished. 276 * When we return from this function the fault will be retried. 277 */ 278 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 279 spinlock_t *ptl) 280 { 281 pte_t pte; 282 swp_entry_t entry; 283 struct page *page; 284 285 spin_lock(ptl); 286 pte = *ptep; 287 if (!is_swap_pte(pte)) 288 goto out; 289 290 entry = pte_to_swp_entry(pte); 291 if (!is_migration_entry(entry)) 292 goto out; 293 294 page = migration_entry_to_page(entry); 295 296 /* 297 * Once radix-tree replacement of page migration started, page_count 298 * *must* be zero. And, we don't want to call wait_on_page_locked() 299 * against a page without get_page(). 300 * So, we use get_page_unless_zero(), here. Even failed, page fault 301 * will occur again. 302 */ 303 if (!get_page_unless_zero(page)) 304 goto out; 305 pte_unmap_unlock(ptep, ptl); 306 wait_on_page_locked(page); 307 put_page(page); 308 return; 309 out: 310 pte_unmap_unlock(ptep, ptl); 311 } 312 313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 314 unsigned long address) 315 { 316 spinlock_t *ptl = pte_lockptr(mm, pmd); 317 pte_t *ptep = pte_offset_map(pmd, address); 318 __migration_entry_wait(mm, ptep, ptl); 319 } 320 321 void migration_entry_wait_huge(struct vm_area_struct *vma, 322 struct mm_struct *mm, pte_t *pte) 323 { 324 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 325 __migration_entry_wait(mm, pte, ptl); 326 } 327 328 #ifdef CONFIG_BLOCK 329 /* Returns true if all buffers are successfully locked */ 330 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 331 enum migrate_mode mode) 332 { 333 struct buffer_head *bh = head; 334 335 /* Simple case, sync compaction */ 336 if (mode != MIGRATE_ASYNC) { 337 do { 338 get_bh(bh); 339 lock_buffer(bh); 340 bh = bh->b_this_page; 341 342 } while (bh != head); 343 344 return true; 345 } 346 347 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 348 do { 349 get_bh(bh); 350 if (!trylock_buffer(bh)) { 351 /* 352 * We failed to lock the buffer and cannot stall in 353 * async migration. Release the taken locks 354 */ 355 struct buffer_head *failed_bh = bh; 356 put_bh(failed_bh); 357 bh = head; 358 while (bh != failed_bh) { 359 unlock_buffer(bh); 360 put_bh(bh); 361 bh = bh->b_this_page; 362 } 363 return false; 364 } 365 366 bh = bh->b_this_page; 367 } while (bh != head); 368 return true; 369 } 370 #else 371 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 372 enum migrate_mode mode) 373 { 374 return true; 375 } 376 #endif /* CONFIG_BLOCK */ 377 378 /* 379 * Replace the page in the mapping. 380 * 381 * The number of remaining references must be: 382 * 1 for anonymous pages without a mapping 383 * 2 for pages with a mapping 384 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 385 */ 386 int migrate_page_move_mapping(struct address_space *mapping, 387 struct page *newpage, struct page *page, 388 struct buffer_head *head, enum migrate_mode mode, 389 int extra_count) 390 { 391 struct zone *oldzone, *newzone; 392 int dirty; 393 int expected_count = 1 + extra_count; 394 void **pslot; 395 396 if (!mapping) { 397 /* Anonymous page without mapping */ 398 if (page_count(page) != expected_count) 399 return -EAGAIN; 400 401 /* No turning back from here */ 402 newpage->index = page->index; 403 newpage->mapping = page->mapping; 404 if (PageSwapBacked(page)) 405 __SetPageSwapBacked(newpage); 406 407 return MIGRATEPAGE_SUCCESS; 408 } 409 410 oldzone = page_zone(page); 411 newzone = page_zone(newpage); 412 413 spin_lock_irq(&mapping->tree_lock); 414 415 pslot = radix_tree_lookup_slot(&mapping->page_tree, 416 page_index(page)); 417 418 expected_count += 1 + page_has_private(page); 419 if (page_count(page) != expected_count || 420 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 421 spin_unlock_irq(&mapping->tree_lock); 422 return -EAGAIN; 423 } 424 425 if (!page_ref_freeze(page, expected_count)) { 426 spin_unlock_irq(&mapping->tree_lock); 427 return -EAGAIN; 428 } 429 430 /* 431 * In the async migration case of moving a page with buffers, lock the 432 * buffers using trylock before the mapping is moved. If the mapping 433 * was moved, we later failed to lock the buffers and could not move 434 * the mapping back due to an elevated page count, we would have to 435 * block waiting on other references to be dropped. 436 */ 437 if (mode == MIGRATE_ASYNC && head && 438 !buffer_migrate_lock_buffers(head, mode)) { 439 page_ref_unfreeze(page, expected_count); 440 spin_unlock_irq(&mapping->tree_lock); 441 return -EAGAIN; 442 } 443 444 /* 445 * Now we know that no one else is looking at the page: 446 * no turning back from here. 447 */ 448 newpage->index = page->index; 449 newpage->mapping = page->mapping; 450 get_page(newpage); /* add cache reference */ 451 if (PageSwapBacked(page)) { 452 __SetPageSwapBacked(newpage); 453 if (PageSwapCache(page)) { 454 SetPageSwapCache(newpage); 455 set_page_private(newpage, page_private(page)); 456 } 457 } else { 458 VM_BUG_ON_PAGE(PageSwapCache(page), page); 459 } 460 461 /* Move dirty while page refs frozen and newpage not yet exposed */ 462 dirty = PageDirty(page); 463 if (dirty) { 464 ClearPageDirty(page); 465 SetPageDirty(newpage); 466 } 467 468 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 469 470 /* 471 * Drop cache reference from old page by unfreezing 472 * to one less reference. 473 * We know this isn't the last reference. 474 */ 475 page_ref_unfreeze(page, expected_count - 1); 476 477 spin_unlock(&mapping->tree_lock); 478 /* Leave irq disabled to prevent preemption while updating stats */ 479 480 /* 481 * If moved to a different zone then also account 482 * the page for that zone. Other VM counters will be 483 * taken care of when we establish references to the 484 * new page and drop references to the old page. 485 * 486 * Note that anonymous pages are accounted for 487 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 488 * are mapped to swap space. 489 */ 490 if (newzone != oldzone) { 491 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 492 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 493 if (PageSwapBacked(page) && !PageSwapCache(page)) { 494 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 495 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 496 } 497 if (dirty && mapping_cap_account_dirty(mapping)) { 498 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 499 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 500 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 501 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 502 } 503 } 504 local_irq_enable(); 505 506 return MIGRATEPAGE_SUCCESS; 507 } 508 EXPORT_SYMBOL(migrate_page_move_mapping); 509 510 /* 511 * The expected number of remaining references is the same as that 512 * of migrate_page_move_mapping(). 513 */ 514 int migrate_huge_page_move_mapping(struct address_space *mapping, 515 struct page *newpage, struct page *page) 516 { 517 int expected_count; 518 void **pslot; 519 520 spin_lock_irq(&mapping->tree_lock); 521 522 pslot = radix_tree_lookup_slot(&mapping->page_tree, 523 page_index(page)); 524 525 expected_count = 2 + page_has_private(page); 526 if (page_count(page) != expected_count || 527 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 528 spin_unlock_irq(&mapping->tree_lock); 529 return -EAGAIN; 530 } 531 532 if (!page_ref_freeze(page, expected_count)) { 533 spin_unlock_irq(&mapping->tree_lock); 534 return -EAGAIN; 535 } 536 537 newpage->index = page->index; 538 newpage->mapping = page->mapping; 539 540 get_page(newpage); 541 542 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 543 544 page_ref_unfreeze(page, expected_count - 1); 545 546 spin_unlock_irq(&mapping->tree_lock); 547 548 return MIGRATEPAGE_SUCCESS; 549 } 550 551 /* 552 * Gigantic pages are so large that we do not guarantee that page++ pointer 553 * arithmetic will work across the entire page. We need something more 554 * specialized. 555 */ 556 static void __copy_gigantic_page(struct page *dst, struct page *src, 557 int nr_pages) 558 { 559 int i; 560 struct page *dst_base = dst; 561 struct page *src_base = src; 562 563 for (i = 0; i < nr_pages; ) { 564 cond_resched(); 565 copy_highpage(dst, src); 566 567 i++; 568 dst = mem_map_next(dst, dst_base, i); 569 src = mem_map_next(src, src_base, i); 570 } 571 } 572 573 static void copy_huge_page(struct page *dst, struct page *src) 574 { 575 int i; 576 int nr_pages; 577 578 if (PageHuge(src)) { 579 /* hugetlbfs page */ 580 struct hstate *h = page_hstate(src); 581 nr_pages = pages_per_huge_page(h); 582 583 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 584 __copy_gigantic_page(dst, src, nr_pages); 585 return; 586 } 587 } else { 588 /* thp page */ 589 BUG_ON(!PageTransHuge(src)); 590 nr_pages = hpage_nr_pages(src); 591 } 592 593 for (i = 0; i < nr_pages; i++) { 594 cond_resched(); 595 copy_highpage(dst + i, src + i); 596 } 597 } 598 599 /* 600 * Copy the page to its new location 601 */ 602 void migrate_page_copy(struct page *newpage, struct page *page) 603 { 604 int cpupid; 605 606 if (PageHuge(page) || PageTransHuge(page)) 607 copy_huge_page(newpage, page); 608 else 609 copy_highpage(newpage, page); 610 611 if (PageError(page)) 612 SetPageError(newpage); 613 if (PageReferenced(page)) 614 SetPageReferenced(newpage); 615 if (PageUptodate(page)) 616 SetPageUptodate(newpage); 617 if (TestClearPageActive(page)) { 618 VM_BUG_ON_PAGE(PageUnevictable(page), page); 619 SetPageActive(newpage); 620 } else if (TestClearPageUnevictable(page)) 621 SetPageUnevictable(newpage); 622 if (PageChecked(page)) 623 SetPageChecked(newpage); 624 if (PageMappedToDisk(page)) 625 SetPageMappedToDisk(newpage); 626 627 /* Move dirty on pages not done by migrate_page_move_mapping() */ 628 if (PageDirty(page)) 629 SetPageDirty(newpage); 630 631 if (page_is_young(page)) 632 set_page_young(newpage); 633 if (page_is_idle(page)) 634 set_page_idle(newpage); 635 636 /* 637 * Copy NUMA information to the new page, to prevent over-eager 638 * future migrations of this same page. 639 */ 640 cpupid = page_cpupid_xchg_last(page, -1); 641 page_cpupid_xchg_last(newpage, cpupid); 642 643 ksm_migrate_page(newpage, page); 644 /* 645 * Please do not reorder this without considering how mm/ksm.c's 646 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 647 */ 648 if (PageSwapCache(page)) 649 ClearPageSwapCache(page); 650 ClearPagePrivate(page); 651 set_page_private(page, 0); 652 653 /* 654 * If any waiters have accumulated on the new page then 655 * wake them up. 656 */ 657 if (PageWriteback(newpage)) 658 end_page_writeback(newpage); 659 660 copy_page_owner(page, newpage); 661 662 mem_cgroup_migrate(page, newpage); 663 } 664 EXPORT_SYMBOL(migrate_page_copy); 665 666 /************************************************************ 667 * Migration functions 668 ***********************************************************/ 669 670 /* 671 * Common logic to directly migrate a single LRU page suitable for 672 * pages that do not use PagePrivate/PagePrivate2. 673 * 674 * Pages are locked upon entry and exit. 675 */ 676 int migrate_page(struct address_space *mapping, 677 struct page *newpage, struct page *page, 678 enum migrate_mode mode) 679 { 680 int rc; 681 682 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 683 684 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 685 686 if (rc != MIGRATEPAGE_SUCCESS) 687 return rc; 688 689 migrate_page_copy(newpage, page); 690 return MIGRATEPAGE_SUCCESS; 691 } 692 EXPORT_SYMBOL(migrate_page); 693 694 #ifdef CONFIG_BLOCK 695 /* 696 * Migration function for pages with buffers. This function can only be used 697 * if the underlying filesystem guarantees that no other references to "page" 698 * exist. 699 */ 700 int buffer_migrate_page(struct address_space *mapping, 701 struct page *newpage, struct page *page, enum migrate_mode mode) 702 { 703 struct buffer_head *bh, *head; 704 int rc; 705 706 if (!page_has_buffers(page)) 707 return migrate_page(mapping, newpage, page, mode); 708 709 head = page_buffers(page); 710 711 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 712 713 if (rc != MIGRATEPAGE_SUCCESS) 714 return rc; 715 716 /* 717 * In the async case, migrate_page_move_mapping locked the buffers 718 * with an IRQ-safe spinlock held. In the sync case, the buffers 719 * need to be locked now 720 */ 721 if (mode != MIGRATE_ASYNC) 722 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 723 724 ClearPagePrivate(page); 725 set_page_private(newpage, page_private(page)); 726 set_page_private(page, 0); 727 put_page(page); 728 get_page(newpage); 729 730 bh = head; 731 do { 732 set_bh_page(bh, newpage, bh_offset(bh)); 733 bh = bh->b_this_page; 734 735 } while (bh != head); 736 737 SetPagePrivate(newpage); 738 739 migrate_page_copy(newpage, page); 740 741 bh = head; 742 do { 743 unlock_buffer(bh); 744 put_bh(bh); 745 bh = bh->b_this_page; 746 747 } while (bh != head); 748 749 return MIGRATEPAGE_SUCCESS; 750 } 751 EXPORT_SYMBOL(buffer_migrate_page); 752 #endif 753 754 /* 755 * Writeback a page to clean the dirty state 756 */ 757 static int writeout(struct address_space *mapping, struct page *page) 758 { 759 struct writeback_control wbc = { 760 .sync_mode = WB_SYNC_NONE, 761 .nr_to_write = 1, 762 .range_start = 0, 763 .range_end = LLONG_MAX, 764 .for_reclaim = 1 765 }; 766 int rc; 767 768 if (!mapping->a_ops->writepage) 769 /* No write method for the address space */ 770 return -EINVAL; 771 772 if (!clear_page_dirty_for_io(page)) 773 /* Someone else already triggered a write */ 774 return -EAGAIN; 775 776 /* 777 * A dirty page may imply that the underlying filesystem has 778 * the page on some queue. So the page must be clean for 779 * migration. Writeout may mean we loose the lock and the 780 * page state is no longer what we checked for earlier. 781 * At this point we know that the migration attempt cannot 782 * be successful. 783 */ 784 remove_migration_ptes(page, page, false); 785 786 rc = mapping->a_ops->writepage(page, &wbc); 787 788 if (rc != AOP_WRITEPAGE_ACTIVATE) 789 /* unlocked. Relock */ 790 lock_page(page); 791 792 return (rc < 0) ? -EIO : -EAGAIN; 793 } 794 795 /* 796 * Default handling if a filesystem does not provide a migration function. 797 */ 798 static int fallback_migrate_page(struct address_space *mapping, 799 struct page *newpage, struct page *page, enum migrate_mode mode) 800 { 801 if (PageDirty(page)) { 802 /* Only writeback pages in full synchronous migration */ 803 if (mode != MIGRATE_SYNC) 804 return -EBUSY; 805 return writeout(mapping, page); 806 } 807 808 /* 809 * Buffers may be managed in a filesystem specific way. 810 * We must have no buffers or drop them. 811 */ 812 if (page_has_private(page) && 813 !try_to_release_page(page, GFP_KERNEL)) 814 return -EAGAIN; 815 816 return migrate_page(mapping, newpage, page, mode); 817 } 818 819 /* 820 * Move a page to a newly allocated page 821 * The page is locked and all ptes have been successfully removed. 822 * 823 * The new page will have replaced the old page if this function 824 * is successful. 825 * 826 * Return value: 827 * < 0 - error code 828 * MIGRATEPAGE_SUCCESS - success 829 */ 830 static int move_to_new_page(struct page *newpage, struct page *page, 831 enum migrate_mode mode) 832 { 833 struct address_space *mapping; 834 int rc = -EAGAIN; 835 bool is_lru = !__PageMovable(page); 836 837 VM_BUG_ON_PAGE(!PageLocked(page), page); 838 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 839 840 mapping = page_mapping(page); 841 842 if (likely(is_lru)) { 843 if (!mapping) 844 rc = migrate_page(mapping, newpage, page, mode); 845 else if (mapping->a_ops->migratepage) 846 /* 847 * Most pages have a mapping and most filesystems 848 * provide a migratepage callback. Anonymous pages 849 * are part of swap space which also has its own 850 * migratepage callback. This is the most common path 851 * for page migration. 852 */ 853 rc = mapping->a_ops->migratepage(mapping, newpage, 854 page, mode); 855 else 856 rc = fallback_migrate_page(mapping, newpage, 857 page, mode); 858 } else { 859 /* 860 * In case of non-lru page, it could be released after 861 * isolation step. In that case, we shouldn't try migration. 862 */ 863 VM_BUG_ON_PAGE(!PageIsolated(page), page); 864 if (!PageMovable(page)) { 865 rc = MIGRATEPAGE_SUCCESS; 866 __ClearPageIsolated(page); 867 goto out; 868 } 869 870 rc = mapping->a_ops->migratepage(mapping, newpage, 871 page, mode); 872 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 873 !PageIsolated(page)); 874 } 875 876 /* 877 * When successful, old pagecache page->mapping must be cleared before 878 * page is freed; but stats require that PageAnon be left as PageAnon. 879 */ 880 if (rc == MIGRATEPAGE_SUCCESS) { 881 if (__PageMovable(page)) { 882 VM_BUG_ON_PAGE(!PageIsolated(page), page); 883 884 /* 885 * We clear PG_movable under page_lock so any compactor 886 * cannot try to migrate this page. 887 */ 888 __ClearPageIsolated(page); 889 } 890 891 /* 892 * Anonymous and movable page->mapping will be cleard by 893 * free_pages_prepare so don't reset it here for keeping 894 * the type to work PageAnon, for example. 895 */ 896 if (!PageMappingFlags(page)) 897 page->mapping = NULL; 898 } 899 out: 900 return rc; 901 } 902 903 static int __unmap_and_move(struct page *page, struct page *newpage, 904 int force, enum migrate_mode mode) 905 { 906 int rc = -EAGAIN; 907 int page_was_mapped = 0; 908 struct anon_vma *anon_vma = NULL; 909 bool is_lru = !__PageMovable(page); 910 911 if (!trylock_page(page)) { 912 if (!force || mode == MIGRATE_ASYNC) 913 goto out; 914 915 /* 916 * It's not safe for direct compaction to call lock_page. 917 * For example, during page readahead pages are added locked 918 * to the LRU. Later, when the IO completes the pages are 919 * marked uptodate and unlocked. However, the queueing 920 * could be merging multiple pages for one bio (e.g. 921 * mpage_readpages). If an allocation happens for the 922 * second or third page, the process can end up locking 923 * the same page twice and deadlocking. Rather than 924 * trying to be clever about what pages can be locked, 925 * avoid the use of lock_page for direct compaction 926 * altogether. 927 */ 928 if (current->flags & PF_MEMALLOC) 929 goto out; 930 931 lock_page(page); 932 } 933 934 if (PageWriteback(page)) { 935 /* 936 * Only in the case of a full synchronous migration is it 937 * necessary to wait for PageWriteback. In the async case, 938 * the retry loop is too short and in the sync-light case, 939 * the overhead of stalling is too much 940 */ 941 if (mode != MIGRATE_SYNC) { 942 rc = -EBUSY; 943 goto out_unlock; 944 } 945 if (!force) 946 goto out_unlock; 947 wait_on_page_writeback(page); 948 } 949 950 /* 951 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 952 * we cannot notice that anon_vma is freed while we migrates a page. 953 * This get_anon_vma() delays freeing anon_vma pointer until the end 954 * of migration. File cache pages are no problem because of page_lock() 955 * File Caches may use write_page() or lock_page() in migration, then, 956 * just care Anon page here. 957 * 958 * Only page_get_anon_vma() understands the subtleties of 959 * getting a hold on an anon_vma from outside one of its mms. 960 * But if we cannot get anon_vma, then we won't need it anyway, 961 * because that implies that the anon page is no longer mapped 962 * (and cannot be remapped so long as we hold the page lock). 963 */ 964 if (PageAnon(page) && !PageKsm(page)) 965 anon_vma = page_get_anon_vma(page); 966 967 /* 968 * Block others from accessing the new page when we get around to 969 * establishing additional references. We are usually the only one 970 * holding a reference to newpage at this point. We used to have a BUG 971 * here if trylock_page(newpage) fails, but would like to allow for 972 * cases where there might be a race with the previous use of newpage. 973 * This is much like races on refcount of oldpage: just don't BUG(). 974 */ 975 if (unlikely(!trylock_page(newpage))) 976 goto out_unlock; 977 978 if (unlikely(!is_lru)) { 979 rc = move_to_new_page(newpage, page, mode); 980 goto out_unlock_both; 981 } 982 983 /* 984 * Corner case handling: 985 * 1. When a new swap-cache page is read into, it is added to the LRU 986 * and treated as swapcache but it has no rmap yet. 987 * Calling try_to_unmap() against a page->mapping==NULL page will 988 * trigger a BUG. So handle it here. 989 * 2. An orphaned page (see truncate_complete_page) might have 990 * fs-private metadata. The page can be picked up due to memory 991 * offlining. Everywhere else except page reclaim, the page is 992 * invisible to the vm, so the page can not be migrated. So try to 993 * free the metadata, so the page can be freed. 994 */ 995 if (!page->mapping) { 996 VM_BUG_ON_PAGE(PageAnon(page), page); 997 if (page_has_private(page)) { 998 try_to_free_buffers(page); 999 goto out_unlock_both; 1000 } 1001 } else if (page_mapped(page)) { 1002 /* Establish migration ptes */ 1003 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1004 page); 1005 try_to_unmap(page, 1006 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1007 page_was_mapped = 1; 1008 } 1009 1010 if (!page_mapped(page)) 1011 rc = move_to_new_page(newpage, page, mode); 1012 1013 if (page_was_mapped) 1014 remove_migration_ptes(page, 1015 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1016 1017 out_unlock_both: 1018 unlock_page(newpage); 1019 out_unlock: 1020 /* Drop an anon_vma reference if we took one */ 1021 if (anon_vma) 1022 put_anon_vma(anon_vma); 1023 unlock_page(page); 1024 out: 1025 /* 1026 * If migration is successful, decrease refcount of the newpage 1027 * which will not free the page because new page owner increased 1028 * refcounter. As well, if it is LRU page, add the page to LRU 1029 * list in here. 1030 */ 1031 if (rc == MIGRATEPAGE_SUCCESS) { 1032 if (unlikely(__PageMovable(newpage))) 1033 put_page(newpage); 1034 else 1035 putback_lru_page(newpage); 1036 } 1037 1038 return rc; 1039 } 1040 1041 /* 1042 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1043 * around it. 1044 */ 1045 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1046 #define ICE_noinline noinline 1047 #else 1048 #define ICE_noinline 1049 #endif 1050 1051 /* 1052 * Obtain the lock on page, remove all ptes and migrate the page 1053 * to the newly allocated page in newpage. 1054 */ 1055 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1056 free_page_t put_new_page, 1057 unsigned long private, struct page *page, 1058 int force, enum migrate_mode mode, 1059 enum migrate_reason reason) 1060 { 1061 int rc = MIGRATEPAGE_SUCCESS; 1062 int *result = NULL; 1063 struct page *newpage; 1064 1065 newpage = get_new_page(page, private, &result); 1066 if (!newpage) 1067 return -ENOMEM; 1068 1069 if (page_count(page) == 1) { 1070 /* page was freed from under us. So we are done. */ 1071 ClearPageActive(page); 1072 ClearPageUnevictable(page); 1073 if (unlikely(__PageMovable(page))) { 1074 lock_page(page); 1075 if (!PageMovable(page)) 1076 __ClearPageIsolated(page); 1077 unlock_page(page); 1078 } 1079 if (put_new_page) 1080 put_new_page(newpage, private); 1081 else 1082 put_page(newpage); 1083 goto out; 1084 } 1085 1086 if (unlikely(PageTransHuge(page))) { 1087 lock_page(page); 1088 rc = split_huge_page(page); 1089 unlock_page(page); 1090 if (rc) 1091 goto out; 1092 } 1093 1094 rc = __unmap_and_move(page, newpage, force, mode); 1095 if (rc == MIGRATEPAGE_SUCCESS) 1096 set_page_owner_migrate_reason(newpage, reason); 1097 1098 out: 1099 if (rc != -EAGAIN) { 1100 /* 1101 * A page that has been migrated has all references 1102 * removed and will be freed. A page that has not been 1103 * migrated will have kepts its references and be 1104 * restored. 1105 */ 1106 list_del(&page->lru); 1107 1108 /* 1109 * Compaction can migrate also non-LRU pages which are 1110 * not accounted to NR_ISOLATED_*. They can be recognized 1111 * as __PageMovable 1112 */ 1113 if (likely(!__PageMovable(page))) 1114 dec_node_page_state(page, NR_ISOLATED_ANON + 1115 page_is_file_cache(page)); 1116 } 1117 1118 /* 1119 * If migration is successful, releases reference grabbed during 1120 * isolation. Otherwise, restore the page to right list unless 1121 * we want to retry. 1122 */ 1123 if (rc == MIGRATEPAGE_SUCCESS) { 1124 put_page(page); 1125 if (reason == MR_MEMORY_FAILURE) { 1126 /* 1127 * Set PG_HWPoison on just freed page 1128 * intentionally. Although it's rather weird, 1129 * it's how HWPoison flag works at the moment. 1130 */ 1131 if (!test_set_page_hwpoison(page)) 1132 num_poisoned_pages_inc(); 1133 } 1134 } else { 1135 if (rc != -EAGAIN) { 1136 if (likely(!__PageMovable(page))) { 1137 putback_lru_page(page); 1138 goto put_new; 1139 } 1140 1141 lock_page(page); 1142 if (PageMovable(page)) 1143 putback_movable_page(page); 1144 else 1145 __ClearPageIsolated(page); 1146 unlock_page(page); 1147 put_page(page); 1148 } 1149 put_new: 1150 if (put_new_page) 1151 put_new_page(newpage, private); 1152 else 1153 put_page(newpage); 1154 } 1155 1156 if (result) { 1157 if (rc) 1158 *result = rc; 1159 else 1160 *result = page_to_nid(newpage); 1161 } 1162 return rc; 1163 } 1164 1165 /* 1166 * Counterpart of unmap_and_move_page() for hugepage migration. 1167 * 1168 * This function doesn't wait the completion of hugepage I/O 1169 * because there is no race between I/O and migration for hugepage. 1170 * Note that currently hugepage I/O occurs only in direct I/O 1171 * where no lock is held and PG_writeback is irrelevant, 1172 * and writeback status of all subpages are counted in the reference 1173 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1174 * under direct I/O, the reference of the head page is 512 and a bit more.) 1175 * This means that when we try to migrate hugepage whose subpages are 1176 * doing direct I/O, some references remain after try_to_unmap() and 1177 * hugepage migration fails without data corruption. 1178 * 1179 * There is also no race when direct I/O is issued on the page under migration, 1180 * because then pte is replaced with migration swap entry and direct I/O code 1181 * will wait in the page fault for migration to complete. 1182 */ 1183 static int unmap_and_move_huge_page(new_page_t get_new_page, 1184 free_page_t put_new_page, unsigned long private, 1185 struct page *hpage, int force, 1186 enum migrate_mode mode, int reason) 1187 { 1188 int rc = -EAGAIN; 1189 int *result = NULL; 1190 int page_was_mapped = 0; 1191 struct page *new_hpage; 1192 struct anon_vma *anon_vma = NULL; 1193 1194 /* 1195 * Movability of hugepages depends on architectures and hugepage size. 1196 * This check is necessary because some callers of hugepage migration 1197 * like soft offline and memory hotremove don't walk through page 1198 * tables or check whether the hugepage is pmd-based or not before 1199 * kicking migration. 1200 */ 1201 if (!hugepage_migration_supported(page_hstate(hpage))) { 1202 putback_active_hugepage(hpage); 1203 return -ENOSYS; 1204 } 1205 1206 new_hpage = get_new_page(hpage, private, &result); 1207 if (!new_hpage) 1208 return -ENOMEM; 1209 1210 if (!trylock_page(hpage)) { 1211 if (!force || mode != MIGRATE_SYNC) 1212 goto out; 1213 lock_page(hpage); 1214 } 1215 1216 if (PageAnon(hpage)) 1217 anon_vma = page_get_anon_vma(hpage); 1218 1219 if (unlikely(!trylock_page(new_hpage))) 1220 goto put_anon; 1221 1222 if (page_mapped(hpage)) { 1223 try_to_unmap(hpage, 1224 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1225 page_was_mapped = 1; 1226 } 1227 1228 if (!page_mapped(hpage)) 1229 rc = move_to_new_page(new_hpage, hpage, mode); 1230 1231 if (page_was_mapped) 1232 remove_migration_ptes(hpage, 1233 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1234 1235 unlock_page(new_hpage); 1236 1237 put_anon: 1238 if (anon_vma) 1239 put_anon_vma(anon_vma); 1240 1241 if (rc == MIGRATEPAGE_SUCCESS) { 1242 hugetlb_cgroup_migrate(hpage, new_hpage); 1243 put_new_page = NULL; 1244 set_page_owner_migrate_reason(new_hpage, reason); 1245 } 1246 1247 unlock_page(hpage); 1248 out: 1249 if (rc != -EAGAIN) 1250 putback_active_hugepage(hpage); 1251 1252 /* 1253 * If migration was not successful and there's a freeing callback, use 1254 * it. Otherwise, put_page() will drop the reference grabbed during 1255 * isolation. 1256 */ 1257 if (put_new_page) 1258 put_new_page(new_hpage, private); 1259 else 1260 putback_active_hugepage(new_hpage); 1261 1262 if (result) { 1263 if (rc) 1264 *result = rc; 1265 else 1266 *result = page_to_nid(new_hpage); 1267 } 1268 return rc; 1269 } 1270 1271 /* 1272 * migrate_pages - migrate the pages specified in a list, to the free pages 1273 * supplied as the target for the page migration 1274 * 1275 * @from: The list of pages to be migrated. 1276 * @get_new_page: The function used to allocate free pages to be used 1277 * as the target of the page migration. 1278 * @put_new_page: The function used to free target pages if migration 1279 * fails, or NULL if no special handling is necessary. 1280 * @private: Private data to be passed on to get_new_page() 1281 * @mode: The migration mode that specifies the constraints for 1282 * page migration, if any. 1283 * @reason: The reason for page migration. 1284 * 1285 * The function returns after 10 attempts or if no pages are movable any more 1286 * because the list has become empty or no retryable pages exist any more. 1287 * The caller should call putback_movable_pages() to return pages to the LRU 1288 * or free list only if ret != 0. 1289 * 1290 * Returns the number of pages that were not migrated, or an error code. 1291 */ 1292 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1293 free_page_t put_new_page, unsigned long private, 1294 enum migrate_mode mode, int reason) 1295 { 1296 int retry = 1; 1297 int nr_failed = 0; 1298 int nr_succeeded = 0; 1299 int pass = 0; 1300 struct page *page; 1301 struct page *page2; 1302 int swapwrite = current->flags & PF_SWAPWRITE; 1303 int rc; 1304 1305 if (!swapwrite) 1306 current->flags |= PF_SWAPWRITE; 1307 1308 for(pass = 0; pass < 10 && retry; pass++) { 1309 retry = 0; 1310 1311 list_for_each_entry_safe(page, page2, from, lru) { 1312 cond_resched(); 1313 1314 if (PageHuge(page)) 1315 rc = unmap_and_move_huge_page(get_new_page, 1316 put_new_page, private, page, 1317 pass > 2, mode, reason); 1318 else 1319 rc = unmap_and_move(get_new_page, put_new_page, 1320 private, page, pass > 2, mode, 1321 reason); 1322 1323 switch(rc) { 1324 case -ENOMEM: 1325 nr_failed++; 1326 goto out; 1327 case -EAGAIN: 1328 retry++; 1329 break; 1330 case MIGRATEPAGE_SUCCESS: 1331 nr_succeeded++; 1332 break; 1333 default: 1334 /* 1335 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1336 * unlike -EAGAIN case, the failed page is 1337 * removed from migration page list and not 1338 * retried in the next outer loop. 1339 */ 1340 nr_failed++; 1341 break; 1342 } 1343 } 1344 } 1345 nr_failed += retry; 1346 rc = nr_failed; 1347 out: 1348 if (nr_succeeded) 1349 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1350 if (nr_failed) 1351 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1352 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1353 1354 if (!swapwrite) 1355 current->flags &= ~PF_SWAPWRITE; 1356 1357 return rc; 1358 } 1359 1360 #ifdef CONFIG_NUMA 1361 /* 1362 * Move a list of individual pages 1363 */ 1364 struct page_to_node { 1365 unsigned long addr; 1366 struct page *page; 1367 int node; 1368 int status; 1369 }; 1370 1371 static struct page *new_page_node(struct page *p, unsigned long private, 1372 int **result) 1373 { 1374 struct page_to_node *pm = (struct page_to_node *)private; 1375 1376 while (pm->node != MAX_NUMNODES && pm->page != p) 1377 pm++; 1378 1379 if (pm->node == MAX_NUMNODES) 1380 return NULL; 1381 1382 *result = &pm->status; 1383 1384 if (PageHuge(p)) 1385 return alloc_huge_page_node(page_hstate(compound_head(p)), 1386 pm->node); 1387 else 1388 return __alloc_pages_node(pm->node, 1389 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1390 } 1391 1392 /* 1393 * Move a set of pages as indicated in the pm array. The addr 1394 * field must be set to the virtual address of the page to be moved 1395 * and the node number must contain a valid target node. 1396 * The pm array ends with node = MAX_NUMNODES. 1397 */ 1398 static int do_move_page_to_node_array(struct mm_struct *mm, 1399 struct page_to_node *pm, 1400 int migrate_all) 1401 { 1402 int err; 1403 struct page_to_node *pp; 1404 LIST_HEAD(pagelist); 1405 1406 down_read(&mm->mmap_sem); 1407 1408 /* 1409 * Build a list of pages to migrate 1410 */ 1411 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1412 struct vm_area_struct *vma; 1413 struct page *page; 1414 1415 err = -EFAULT; 1416 vma = find_vma(mm, pp->addr); 1417 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1418 goto set_status; 1419 1420 /* FOLL_DUMP to ignore special (like zero) pages */ 1421 page = follow_page(vma, pp->addr, 1422 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1423 1424 err = PTR_ERR(page); 1425 if (IS_ERR(page)) 1426 goto set_status; 1427 1428 err = -ENOENT; 1429 if (!page) 1430 goto set_status; 1431 1432 pp->page = page; 1433 err = page_to_nid(page); 1434 1435 if (err == pp->node) 1436 /* 1437 * Node already in the right place 1438 */ 1439 goto put_and_set; 1440 1441 err = -EACCES; 1442 if (page_mapcount(page) > 1 && 1443 !migrate_all) 1444 goto put_and_set; 1445 1446 if (PageHuge(page)) { 1447 if (PageHead(page)) 1448 isolate_huge_page(page, &pagelist); 1449 goto put_and_set; 1450 } 1451 1452 err = isolate_lru_page(page); 1453 if (!err) { 1454 list_add_tail(&page->lru, &pagelist); 1455 inc_node_page_state(page, NR_ISOLATED_ANON + 1456 page_is_file_cache(page)); 1457 } 1458 put_and_set: 1459 /* 1460 * Either remove the duplicate refcount from 1461 * isolate_lru_page() or drop the page ref if it was 1462 * not isolated. 1463 */ 1464 put_page(page); 1465 set_status: 1466 pp->status = err; 1467 } 1468 1469 err = 0; 1470 if (!list_empty(&pagelist)) { 1471 err = migrate_pages(&pagelist, new_page_node, NULL, 1472 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1473 if (err) 1474 putback_movable_pages(&pagelist); 1475 } 1476 1477 up_read(&mm->mmap_sem); 1478 return err; 1479 } 1480 1481 /* 1482 * Migrate an array of page address onto an array of nodes and fill 1483 * the corresponding array of status. 1484 */ 1485 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1486 unsigned long nr_pages, 1487 const void __user * __user *pages, 1488 const int __user *nodes, 1489 int __user *status, int flags) 1490 { 1491 struct page_to_node *pm; 1492 unsigned long chunk_nr_pages; 1493 unsigned long chunk_start; 1494 int err; 1495 1496 err = -ENOMEM; 1497 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1498 if (!pm) 1499 goto out; 1500 1501 migrate_prep(); 1502 1503 /* 1504 * Store a chunk of page_to_node array in a page, 1505 * but keep the last one as a marker 1506 */ 1507 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1508 1509 for (chunk_start = 0; 1510 chunk_start < nr_pages; 1511 chunk_start += chunk_nr_pages) { 1512 int j; 1513 1514 if (chunk_start + chunk_nr_pages > nr_pages) 1515 chunk_nr_pages = nr_pages - chunk_start; 1516 1517 /* fill the chunk pm with addrs and nodes from user-space */ 1518 for (j = 0; j < chunk_nr_pages; j++) { 1519 const void __user *p; 1520 int node; 1521 1522 err = -EFAULT; 1523 if (get_user(p, pages + j + chunk_start)) 1524 goto out_pm; 1525 pm[j].addr = (unsigned long) p; 1526 1527 if (get_user(node, nodes + j + chunk_start)) 1528 goto out_pm; 1529 1530 err = -ENODEV; 1531 if (node < 0 || node >= MAX_NUMNODES) 1532 goto out_pm; 1533 1534 if (!node_state(node, N_MEMORY)) 1535 goto out_pm; 1536 1537 err = -EACCES; 1538 if (!node_isset(node, task_nodes)) 1539 goto out_pm; 1540 1541 pm[j].node = node; 1542 } 1543 1544 /* End marker for this chunk */ 1545 pm[chunk_nr_pages].node = MAX_NUMNODES; 1546 1547 /* Migrate this chunk */ 1548 err = do_move_page_to_node_array(mm, pm, 1549 flags & MPOL_MF_MOVE_ALL); 1550 if (err < 0) 1551 goto out_pm; 1552 1553 /* Return status information */ 1554 for (j = 0; j < chunk_nr_pages; j++) 1555 if (put_user(pm[j].status, status + j + chunk_start)) { 1556 err = -EFAULT; 1557 goto out_pm; 1558 } 1559 } 1560 err = 0; 1561 1562 out_pm: 1563 free_page((unsigned long)pm); 1564 out: 1565 return err; 1566 } 1567 1568 /* 1569 * Determine the nodes of an array of pages and store it in an array of status. 1570 */ 1571 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1572 const void __user **pages, int *status) 1573 { 1574 unsigned long i; 1575 1576 down_read(&mm->mmap_sem); 1577 1578 for (i = 0; i < nr_pages; i++) { 1579 unsigned long addr = (unsigned long)(*pages); 1580 struct vm_area_struct *vma; 1581 struct page *page; 1582 int err = -EFAULT; 1583 1584 vma = find_vma(mm, addr); 1585 if (!vma || addr < vma->vm_start) 1586 goto set_status; 1587 1588 /* FOLL_DUMP to ignore special (like zero) pages */ 1589 page = follow_page(vma, addr, FOLL_DUMP); 1590 1591 err = PTR_ERR(page); 1592 if (IS_ERR(page)) 1593 goto set_status; 1594 1595 err = page ? page_to_nid(page) : -ENOENT; 1596 set_status: 1597 *status = err; 1598 1599 pages++; 1600 status++; 1601 } 1602 1603 up_read(&mm->mmap_sem); 1604 } 1605 1606 /* 1607 * Determine the nodes of a user array of pages and store it in 1608 * a user array of status. 1609 */ 1610 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1611 const void __user * __user *pages, 1612 int __user *status) 1613 { 1614 #define DO_PAGES_STAT_CHUNK_NR 16 1615 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1616 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1617 1618 while (nr_pages) { 1619 unsigned long chunk_nr; 1620 1621 chunk_nr = nr_pages; 1622 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1623 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1624 1625 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1626 break; 1627 1628 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1629 1630 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1631 break; 1632 1633 pages += chunk_nr; 1634 status += chunk_nr; 1635 nr_pages -= chunk_nr; 1636 } 1637 return nr_pages ? -EFAULT : 0; 1638 } 1639 1640 /* 1641 * Move a list of pages in the address space of the currently executing 1642 * process. 1643 */ 1644 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1645 const void __user * __user *, pages, 1646 const int __user *, nodes, 1647 int __user *, status, int, flags) 1648 { 1649 const struct cred *cred = current_cred(), *tcred; 1650 struct task_struct *task; 1651 struct mm_struct *mm; 1652 int err; 1653 nodemask_t task_nodes; 1654 1655 /* Check flags */ 1656 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1657 return -EINVAL; 1658 1659 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1660 return -EPERM; 1661 1662 /* Find the mm_struct */ 1663 rcu_read_lock(); 1664 task = pid ? find_task_by_vpid(pid) : current; 1665 if (!task) { 1666 rcu_read_unlock(); 1667 return -ESRCH; 1668 } 1669 get_task_struct(task); 1670 1671 /* 1672 * Check if this process has the right to modify the specified 1673 * process. The right exists if the process has administrative 1674 * capabilities, superuser privileges or the same 1675 * userid as the target process. 1676 */ 1677 tcred = __task_cred(task); 1678 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1679 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1680 !capable(CAP_SYS_NICE)) { 1681 rcu_read_unlock(); 1682 err = -EPERM; 1683 goto out; 1684 } 1685 rcu_read_unlock(); 1686 1687 err = security_task_movememory(task); 1688 if (err) 1689 goto out; 1690 1691 task_nodes = cpuset_mems_allowed(task); 1692 mm = get_task_mm(task); 1693 put_task_struct(task); 1694 1695 if (!mm) 1696 return -EINVAL; 1697 1698 if (nodes) 1699 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1700 nodes, status, flags); 1701 else 1702 err = do_pages_stat(mm, nr_pages, pages, status); 1703 1704 mmput(mm); 1705 return err; 1706 1707 out: 1708 put_task_struct(task); 1709 return err; 1710 } 1711 1712 #ifdef CONFIG_NUMA_BALANCING 1713 /* 1714 * Returns true if this is a safe migration target node for misplaced NUMA 1715 * pages. Currently it only checks the watermarks which crude 1716 */ 1717 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1718 unsigned long nr_migrate_pages) 1719 { 1720 int z; 1721 1722 if (!pgdat_reclaimable(pgdat)) 1723 return false; 1724 1725 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1726 struct zone *zone = pgdat->node_zones + z; 1727 1728 if (!populated_zone(zone)) 1729 continue; 1730 1731 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1732 if (!zone_watermark_ok(zone, 0, 1733 high_wmark_pages(zone) + 1734 nr_migrate_pages, 1735 0, 0)) 1736 continue; 1737 return true; 1738 } 1739 return false; 1740 } 1741 1742 static struct page *alloc_misplaced_dst_page(struct page *page, 1743 unsigned long data, 1744 int **result) 1745 { 1746 int nid = (int) data; 1747 struct page *newpage; 1748 1749 newpage = __alloc_pages_node(nid, 1750 (GFP_HIGHUSER_MOVABLE | 1751 __GFP_THISNODE | __GFP_NOMEMALLOC | 1752 __GFP_NORETRY | __GFP_NOWARN) & 1753 ~__GFP_RECLAIM, 0); 1754 1755 return newpage; 1756 } 1757 1758 /* 1759 * page migration rate limiting control. 1760 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1761 * window of time. Default here says do not migrate more than 1280M per second. 1762 */ 1763 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1765 1766 /* Returns true if the node is migrate rate-limited after the update */ 1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1768 unsigned long nr_pages) 1769 { 1770 /* 1771 * Rate-limit the amount of data that is being migrated to a node. 1772 * Optimal placement is no good if the memory bus is saturated and 1773 * all the time is being spent migrating! 1774 */ 1775 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1776 spin_lock(&pgdat->numabalancing_migrate_lock); 1777 pgdat->numabalancing_migrate_nr_pages = 0; 1778 pgdat->numabalancing_migrate_next_window = jiffies + 1779 msecs_to_jiffies(migrate_interval_millisecs); 1780 spin_unlock(&pgdat->numabalancing_migrate_lock); 1781 } 1782 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1783 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1784 nr_pages); 1785 return true; 1786 } 1787 1788 /* 1789 * This is an unlocked non-atomic update so errors are possible. 1790 * The consequences are failing to migrate when we potentiall should 1791 * have which is not severe enough to warrant locking. If it is ever 1792 * a problem, it can be converted to a per-cpu counter. 1793 */ 1794 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1795 return false; 1796 } 1797 1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1799 { 1800 int page_lru; 1801 1802 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1803 1804 /* Avoid migrating to a node that is nearly full */ 1805 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1806 return 0; 1807 1808 if (isolate_lru_page(page)) 1809 return 0; 1810 1811 /* 1812 * migrate_misplaced_transhuge_page() skips page migration's usual 1813 * check on page_count(), so we must do it here, now that the page 1814 * has been isolated: a GUP pin, or any other pin, prevents migration. 1815 * The expected page count is 3: 1 for page's mapcount and 1 for the 1816 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1817 */ 1818 if (PageTransHuge(page) && page_count(page) != 3) { 1819 putback_lru_page(page); 1820 return 0; 1821 } 1822 1823 page_lru = page_is_file_cache(page); 1824 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1825 hpage_nr_pages(page)); 1826 1827 /* 1828 * Isolating the page has taken another reference, so the 1829 * caller's reference can be safely dropped without the page 1830 * disappearing underneath us during migration. 1831 */ 1832 put_page(page); 1833 return 1; 1834 } 1835 1836 bool pmd_trans_migrating(pmd_t pmd) 1837 { 1838 struct page *page = pmd_page(pmd); 1839 return PageLocked(page); 1840 } 1841 1842 /* 1843 * Attempt to migrate a misplaced page to the specified destination 1844 * node. Caller is expected to have an elevated reference count on 1845 * the page that will be dropped by this function before returning. 1846 */ 1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1848 int node) 1849 { 1850 pg_data_t *pgdat = NODE_DATA(node); 1851 int isolated; 1852 int nr_remaining; 1853 LIST_HEAD(migratepages); 1854 1855 /* 1856 * Don't migrate file pages that are mapped in multiple processes 1857 * with execute permissions as they are probably shared libraries. 1858 */ 1859 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1860 (vma->vm_flags & VM_EXEC)) 1861 goto out; 1862 1863 /* 1864 * Rate-limit the amount of data that is being migrated to a node. 1865 * Optimal placement is no good if the memory bus is saturated and 1866 * all the time is being spent migrating! 1867 */ 1868 if (numamigrate_update_ratelimit(pgdat, 1)) 1869 goto out; 1870 1871 isolated = numamigrate_isolate_page(pgdat, page); 1872 if (!isolated) 1873 goto out; 1874 1875 list_add(&page->lru, &migratepages); 1876 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1877 NULL, node, MIGRATE_ASYNC, 1878 MR_NUMA_MISPLACED); 1879 if (nr_remaining) { 1880 if (!list_empty(&migratepages)) { 1881 list_del(&page->lru); 1882 dec_node_page_state(page, NR_ISOLATED_ANON + 1883 page_is_file_cache(page)); 1884 putback_lru_page(page); 1885 } 1886 isolated = 0; 1887 } else 1888 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1889 BUG_ON(!list_empty(&migratepages)); 1890 return isolated; 1891 1892 out: 1893 put_page(page); 1894 return 0; 1895 } 1896 #endif /* CONFIG_NUMA_BALANCING */ 1897 1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1899 /* 1900 * Migrates a THP to a given target node. page must be locked and is unlocked 1901 * before returning. 1902 */ 1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1904 struct vm_area_struct *vma, 1905 pmd_t *pmd, pmd_t entry, 1906 unsigned long address, 1907 struct page *page, int node) 1908 { 1909 spinlock_t *ptl; 1910 pg_data_t *pgdat = NODE_DATA(node); 1911 int isolated = 0; 1912 struct page *new_page = NULL; 1913 int page_lru = page_is_file_cache(page); 1914 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1915 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1916 pmd_t orig_entry; 1917 1918 /* 1919 * Rate-limit the amount of data that is being migrated to a node. 1920 * Optimal placement is no good if the memory bus is saturated and 1921 * all the time is being spent migrating! 1922 */ 1923 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1924 goto out_dropref; 1925 1926 new_page = alloc_pages_node(node, 1927 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1928 HPAGE_PMD_ORDER); 1929 if (!new_page) 1930 goto out_fail; 1931 prep_transhuge_page(new_page); 1932 1933 isolated = numamigrate_isolate_page(pgdat, page); 1934 if (!isolated) { 1935 put_page(new_page); 1936 goto out_fail; 1937 } 1938 /* 1939 * We are not sure a pending tlb flush here is for a huge page 1940 * mapping or not. Hence use the tlb range variant 1941 */ 1942 if (mm_tlb_flush_pending(mm)) 1943 flush_tlb_range(vma, mmun_start, mmun_end); 1944 1945 /* Prepare a page as a migration target */ 1946 __SetPageLocked(new_page); 1947 __SetPageSwapBacked(new_page); 1948 1949 /* anon mapping, we can simply copy page->mapping to the new page: */ 1950 new_page->mapping = page->mapping; 1951 new_page->index = page->index; 1952 migrate_page_copy(new_page, page); 1953 WARN_ON(PageLRU(new_page)); 1954 1955 /* Recheck the target PMD */ 1956 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1957 ptl = pmd_lock(mm, pmd); 1958 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1959 fail_putback: 1960 spin_unlock(ptl); 1961 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1962 1963 /* Reverse changes made by migrate_page_copy() */ 1964 if (TestClearPageActive(new_page)) 1965 SetPageActive(page); 1966 if (TestClearPageUnevictable(new_page)) 1967 SetPageUnevictable(page); 1968 1969 unlock_page(new_page); 1970 put_page(new_page); /* Free it */ 1971 1972 /* Retake the callers reference and putback on LRU */ 1973 get_page(page); 1974 putback_lru_page(page); 1975 mod_node_page_state(page_pgdat(page), 1976 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1977 1978 goto out_unlock; 1979 } 1980 1981 orig_entry = *pmd; 1982 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1983 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1984 1985 /* 1986 * Clear the old entry under pagetable lock and establish the new PTE. 1987 * Any parallel GUP will either observe the old page blocking on the 1988 * page lock, block on the page table lock or observe the new page. 1989 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1990 * guarantee the copy is visible before the pagetable update. 1991 */ 1992 flush_cache_range(vma, mmun_start, mmun_end); 1993 page_add_anon_rmap(new_page, vma, mmun_start, true); 1994 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1995 set_pmd_at(mm, mmun_start, pmd, entry); 1996 update_mmu_cache_pmd(vma, address, &entry); 1997 1998 if (page_count(page) != 2) { 1999 set_pmd_at(mm, mmun_start, pmd, orig_entry); 2000 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 2001 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2002 update_mmu_cache_pmd(vma, address, &entry); 2003 page_remove_rmap(new_page, true); 2004 goto fail_putback; 2005 } 2006 2007 mlock_migrate_page(new_page, page); 2008 page_remove_rmap(page, true); 2009 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2010 2011 spin_unlock(ptl); 2012 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2013 2014 /* Take an "isolate" reference and put new page on the LRU. */ 2015 get_page(new_page); 2016 putback_lru_page(new_page); 2017 2018 unlock_page(new_page); 2019 unlock_page(page); 2020 put_page(page); /* Drop the rmap reference */ 2021 put_page(page); /* Drop the LRU isolation reference */ 2022 2023 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2024 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2025 2026 mod_node_page_state(page_pgdat(page), 2027 NR_ISOLATED_ANON + page_lru, 2028 -HPAGE_PMD_NR); 2029 return isolated; 2030 2031 out_fail: 2032 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2033 out_dropref: 2034 ptl = pmd_lock(mm, pmd); 2035 if (pmd_same(*pmd, entry)) { 2036 entry = pmd_modify(entry, vma->vm_page_prot); 2037 set_pmd_at(mm, mmun_start, pmd, entry); 2038 update_mmu_cache_pmd(vma, address, &entry); 2039 } 2040 spin_unlock(ptl); 2041 2042 out_unlock: 2043 unlock_page(page); 2044 put_page(page); 2045 return 0; 2046 } 2047 #endif /* CONFIG_NUMA_BALANCING */ 2048 2049 #endif /* CONFIG_NUMA */ 2050