1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 void migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 void migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 } 81 82 int isolate_movable_page(struct page *page, isolate_mode_t mode) 83 { 84 struct address_space *mapping; 85 86 /* 87 * Avoid burning cycles with pages that are yet under __free_pages(), 88 * or just got freed under us. 89 * 90 * In case we 'win' a race for a movable page being freed under us and 91 * raise its refcount preventing __free_pages() from doing its job 92 * the put_page() at the end of this block will take care of 93 * release this page, thus avoiding a nasty leakage. 94 */ 95 if (unlikely(!get_page_unless_zero(page))) 96 goto out; 97 98 /* 99 * Check PageMovable before holding a PG_lock because page's owner 100 * assumes anybody doesn't touch PG_lock of newly allocated page 101 * so unconditionally grabbing the lock ruins page's owner side. 102 */ 103 if (unlikely(!__PageMovable(page))) 104 goto out_putpage; 105 /* 106 * As movable pages are not isolated from LRU lists, concurrent 107 * compaction threads can race against page migration functions 108 * as well as race against the releasing a page. 109 * 110 * In order to avoid having an already isolated movable page 111 * being (wrongly) re-isolated while it is under migration, 112 * or to avoid attempting to isolate pages being released, 113 * lets be sure we have the page lock 114 * before proceeding with the movable page isolation steps. 115 */ 116 if (unlikely(!trylock_page(page))) 117 goto out_putpage; 118 119 if (!PageMovable(page) || PageIsolated(page)) 120 goto out_no_isolated; 121 122 mapping = page_mapping(page); 123 VM_BUG_ON_PAGE(!mapping, page); 124 125 if (!mapping->a_ops->isolate_page(page, mode)) 126 goto out_no_isolated; 127 128 /* Driver shouldn't use PG_isolated bit of page->flags */ 129 WARN_ON_ONCE(PageIsolated(page)); 130 __SetPageIsolated(page); 131 unlock_page(page); 132 133 return 0; 134 135 out_no_isolated: 136 unlock_page(page); 137 out_putpage: 138 put_page(page); 139 out: 140 return -EBUSY; 141 } 142 143 /* It should be called on page which is PG_movable */ 144 void putback_movable_page(struct page *page) 145 { 146 struct address_space *mapping; 147 148 VM_BUG_ON_PAGE(!PageLocked(page), page); 149 VM_BUG_ON_PAGE(!PageMovable(page), page); 150 VM_BUG_ON_PAGE(!PageIsolated(page), page); 151 152 mapping = page_mapping(page); 153 mapping->a_ops->putback_page(page); 154 __ClearPageIsolated(page); 155 } 156 157 /* 158 * Put previously isolated pages back onto the appropriate lists 159 * from where they were once taken off for compaction/migration. 160 * 161 * This function shall be used whenever the isolated pageset has been 162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 163 * and isolate_huge_page(). 164 */ 165 void putback_movable_pages(struct list_head *l) 166 { 167 struct page *page; 168 struct page *page2; 169 170 list_for_each_entry_safe(page, page2, l, lru) { 171 if (unlikely(PageHuge(page))) { 172 putback_active_hugepage(page); 173 continue; 174 } 175 list_del(&page->lru); 176 /* 177 * We isolated non-lru movable page so here we can use 178 * __PageMovable because LRU page's mapping cannot have 179 * PAGE_MAPPING_MOVABLE. 180 */ 181 if (unlikely(__PageMovable(page))) { 182 VM_BUG_ON_PAGE(!PageIsolated(page), page); 183 lock_page(page); 184 if (PageMovable(page)) 185 putback_movable_page(page); 186 else 187 __ClearPageIsolated(page); 188 unlock_page(page); 189 put_page(page); 190 } else { 191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 192 page_is_file_lru(page), -thp_nr_pages(page)); 193 putback_lru_page(page); 194 } 195 } 196 } 197 198 /* 199 * Restore a potential migration pte to a working pte entry 200 */ 201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 202 unsigned long addr, void *old) 203 { 204 struct page_vma_mapped_walk pvmw = { 205 .page = old, 206 .vma = vma, 207 .address = addr, 208 .flags = PVMW_SYNC | PVMW_MIGRATION, 209 }; 210 struct page *new; 211 pte_t pte; 212 swp_entry_t entry; 213 214 VM_BUG_ON_PAGE(PageTail(page), page); 215 while (page_vma_mapped_walk(&pvmw)) { 216 if (PageKsm(page)) 217 new = page; 218 else 219 new = page - pvmw.page->index + 220 linear_page_index(vma, pvmw.address); 221 222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 223 /* PMD-mapped THP migration entry */ 224 if (!pvmw.pte) { 225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 226 remove_migration_pmd(&pvmw, new); 227 continue; 228 } 229 #endif 230 231 get_page(new); 232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 233 if (pte_swp_soft_dirty(*pvmw.pte)) 234 pte = pte_mksoft_dirty(pte); 235 236 /* 237 * Recheck VMA as permissions can change since migration started 238 */ 239 entry = pte_to_swp_entry(*pvmw.pte); 240 if (is_write_migration_entry(entry)) 241 pte = maybe_mkwrite(pte, vma); 242 else if (pte_swp_uffd_wp(*pvmw.pte)) 243 pte = pte_mkuffd_wp(pte); 244 245 if (unlikely(is_device_private_page(new))) { 246 entry = make_device_private_entry(new, pte_write(pte)); 247 pte = swp_entry_to_pte(entry); 248 if (pte_swp_soft_dirty(*pvmw.pte)) 249 pte = pte_swp_mksoft_dirty(pte); 250 if (pte_swp_uffd_wp(*pvmw.pte)) 251 pte = pte_swp_mkuffd_wp(pte); 252 } 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 if (PageHuge(new)) { 256 pte = pte_mkhuge(pte); 257 pte = arch_make_huge_pte(pte, vma, new, 0); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 if (PageAnon(new)) 260 hugepage_add_anon_rmap(new, vma, pvmw.address); 261 else 262 page_dup_rmap(new, true); 263 } else 264 #endif 265 { 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 268 if (PageAnon(new)) 269 page_add_anon_rmap(new, vma, pvmw.address, false); 270 else 271 page_add_file_rmap(new, false); 272 } 273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 274 mlock_vma_page(new); 275 276 if (PageTransHuge(page) && PageMlocked(page)) 277 clear_page_mlock(page); 278 279 /* No need to invalidate - it was non-present before */ 280 update_mmu_cache(vma, pvmw.address, pvmw.pte); 281 } 282 283 return true; 284 } 285 286 /* 287 * Get rid of all migration entries and replace them by 288 * references to the indicated page. 289 */ 290 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 291 { 292 struct rmap_walk_control rwc = { 293 .rmap_one = remove_migration_pte, 294 .arg = old, 295 }; 296 297 if (locked) 298 rmap_walk_locked(new, &rwc); 299 else 300 rmap_walk(new, &rwc); 301 } 302 303 /* 304 * Something used the pte of a page under migration. We need to 305 * get to the page and wait until migration is finished. 306 * When we return from this function the fault will be retried. 307 */ 308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 309 spinlock_t *ptl) 310 { 311 pte_t pte; 312 swp_entry_t entry; 313 struct page *page; 314 315 spin_lock(ptl); 316 pte = *ptep; 317 if (!is_swap_pte(pte)) 318 goto out; 319 320 entry = pte_to_swp_entry(pte); 321 if (!is_migration_entry(entry)) 322 goto out; 323 324 page = migration_entry_to_page(entry); 325 326 /* 327 * Once page cache replacement of page migration started, page_count 328 * is zero; but we must not call put_and_wait_on_page_locked() without 329 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 330 */ 331 if (!get_page_unless_zero(page)) 332 goto out; 333 pte_unmap_unlock(ptep, ptl); 334 put_and_wait_on_page_locked(page); 335 return; 336 out: 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 341 unsigned long address) 342 { 343 spinlock_t *ptl = pte_lockptr(mm, pmd); 344 pte_t *ptep = pte_offset_map(pmd, address); 345 __migration_entry_wait(mm, ptep, ptl); 346 } 347 348 void migration_entry_wait_huge(struct vm_area_struct *vma, 349 struct mm_struct *mm, pte_t *pte) 350 { 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 352 __migration_entry_wait(mm, pte, ptl); 353 } 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 struct page *page; 360 361 ptl = pmd_lock(mm, pmd); 362 if (!is_pmd_migration_entry(*pmd)) 363 goto unlock; 364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 365 if (!get_page_unless_zero(page)) 366 goto unlock; 367 spin_unlock(ptl); 368 put_and_wait_on_page_locked(page); 369 return; 370 unlock: 371 spin_unlock(ptl); 372 } 373 #endif 374 375 static int expected_page_refs(struct address_space *mapping, struct page *page) 376 { 377 int expected_count = 1; 378 379 /* 380 * Device private pages have an extra refcount as they are 381 * ZONE_DEVICE pages. 382 */ 383 expected_count += is_device_private_page(page); 384 if (mapping) 385 expected_count += thp_nr_pages(page) + page_has_private(page); 386 387 return expected_count; 388 } 389 390 /* 391 * Replace the page in the mapping. 392 * 393 * The number of remaining references must be: 394 * 1 for anonymous pages without a mapping 395 * 2 for pages with a mapping 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 397 */ 398 int migrate_page_move_mapping(struct address_space *mapping, 399 struct page *newpage, struct page *page, int extra_count) 400 { 401 XA_STATE(xas, &mapping->i_pages, page_index(page)); 402 struct zone *oldzone, *newzone; 403 int dirty; 404 int expected_count = expected_page_refs(mapping, page) + extra_count; 405 int nr = thp_nr_pages(page); 406 407 if (!mapping) { 408 /* Anonymous page without mapping */ 409 if (page_count(page) != expected_count) 410 return -EAGAIN; 411 412 /* No turning back from here */ 413 newpage->index = page->index; 414 newpage->mapping = page->mapping; 415 if (PageSwapBacked(page)) 416 __SetPageSwapBacked(newpage); 417 418 return MIGRATEPAGE_SUCCESS; 419 } 420 421 oldzone = page_zone(page); 422 newzone = page_zone(newpage); 423 424 xas_lock_irq(&xas); 425 if (page_count(page) != expected_count || xas_load(&xas) != page) { 426 xas_unlock_irq(&xas); 427 return -EAGAIN; 428 } 429 430 if (!page_ref_freeze(page, expected_count)) { 431 xas_unlock_irq(&xas); 432 return -EAGAIN; 433 } 434 435 /* 436 * Now we know that no one else is looking at the page: 437 * no turning back from here. 438 */ 439 newpage->index = page->index; 440 newpage->mapping = page->mapping; 441 page_ref_add(newpage, nr); /* add cache reference */ 442 if (PageSwapBacked(page)) { 443 __SetPageSwapBacked(newpage); 444 if (PageSwapCache(page)) { 445 SetPageSwapCache(newpage); 446 set_page_private(newpage, page_private(page)); 447 } 448 } else { 449 VM_BUG_ON_PAGE(PageSwapCache(page), page); 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = PageDirty(page); 454 if (dirty) { 455 ClearPageDirty(page); 456 SetPageDirty(newpage); 457 } 458 459 xas_store(&xas, newpage); 460 if (PageTransHuge(page)) { 461 int i; 462 463 for (i = 1; i < nr; i++) { 464 xas_next(&xas); 465 xas_store(&xas, newpage); 466 } 467 } 468 469 /* 470 * Drop cache reference from old page by unfreezing 471 * to one less reference. 472 * We know this isn't the last reference. 473 */ 474 page_ref_unfreeze(page, expected_count - nr); 475 476 xas_unlock(&xas); 477 /* Leave irq disabled to prevent preemption while updating stats */ 478 479 /* 480 * If moved to a different zone then also account 481 * the page for that zone. Other VM counters will be 482 * taken care of when we establish references to the 483 * new page and drop references to the old page. 484 * 485 * Note that anonymous pages are accounted for 486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 487 * are mapped to swap space. 488 */ 489 if (newzone != oldzone) { 490 struct lruvec *old_lruvec, *new_lruvec; 491 struct mem_cgroup *memcg; 492 493 memcg = page_memcg(page); 494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 496 497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 499 if (PageSwapBacked(page) && !PageSwapCache(page)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 502 } 503 if (dirty && mapping_can_writeback(mapping)) { 504 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 505 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 506 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 507 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 508 } 509 } 510 local_irq_enable(); 511 512 return MIGRATEPAGE_SUCCESS; 513 } 514 EXPORT_SYMBOL(migrate_page_move_mapping); 515 516 /* 517 * The expected number of remaining references is the same as that 518 * of migrate_page_move_mapping(). 519 */ 520 int migrate_huge_page_move_mapping(struct address_space *mapping, 521 struct page *newpage, struct page *page) 522 { 523 XA_STATE(xas, &mapping->i_pages, page_index(page)); 524 int expected_count; 525 526 xas_lock_irq(&xas); 527 expected_count = 2 + page_has_private(page); 528 if (page_count(page) != expected_count || xas_load(&xas) != page) { 529 xas_unlock_irq(&xas); 530 return -EAGAIN; 531 } 532 533 if (!page_ref_freeze(page, expected_count)) { 534 xas_unlock_irq(&xas); 535 return -EAGAIN; 536 } 537 538 newpage->index = page->index; 539 newpage->mapping = page->mapping; 540 541 get_page(newpage); 542 543 xas_store(&xas, newpage); 544 545 page_ref_unfreeze(page, expected_count - 1); 546 547 xas_unlock_irq(&xas); 548 549 return MIGRATEPAGE_SUCCESS; 550 } 551 552 /* 553 * Gigantic pages are so large that we do not guarantee that page++ pointer 554 * arithmetic will work across the entire page. We need something more 555 * specialized. 556 */ 557 static void __copy_gigantic_page(struct page *dst, struct page *src, 558 int nr_pages) 559 { 560 int i; 561 struct page *dst_base = dst; 562 struct page *src_base = src; 563 564 for (i = 0; i < nr_pages; ) { 565 cond_resched(); 566 copy_highpage(dst, src); 567 568 i++; 569 dst = mem_map_next(dst, dst_base, i); 570 src = mem_map_next(src, src_base, i); 571 } 572 } 573 574 static void copy_huge_page(struct page *dst, struct page *src) 575 { 576 int i; 577 int nr_pages; 578 579 if (PageHuge(src)) { 580 /* hugetlbfs page */ 581 struct hstate *h = page_hstate(src); 582 nr_pages = pages_per_huge_page(h); 583 584 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 585 __copy_gigantic_page(dst, src, nr_pages); 586 return; 587 } 588 } else { 589 /* thp page */ 590 BUG_ON(!PageTransHuge(src)); 591 nr_pages = thp_nr_pages(src); 592 } 593 594 for (i = 0; i < nr_pages; i++) { 595 cond_resched(); 596 copy_highpage(dst + i, src + i); 597 } 598 } 599 600 /* 601 * Copy the page to its new location 602 */ 603 void migrate_page_states(struct page *newpage, struct page *page) 604 { 605 int cpupid; 606 607 if (PageError(page)) 608 SetPageError(newpage); 609 if (PageReferenced(page)) 610 SetPageReferenced(newpage); 611 if (PageUptodate(page)) 612 SetPageUptodate(newpage); 613 if (TestClearPageActive(page)) { 614 VM_BUG_ON_PAGE(PageUnevictable(page), page); 615 SetPageActive(newpage); 616 } else if (TestClearPageUnevictable(page)) 617 SetPageUnevictable(newpage); 618 if (PageWorkingset(page)) 619 SetPageWorkingset(newpage); 620 if (PageChecked(page)) 621 SetPageChecked(newpage); 622 if (PageMappedToDisk(page)) 623 SetPageMappedToDisk(newpage); 624 625 /* Move dirty on pages not done by migrate_page_move_mapping() */ 626 if (PageDirty(page)) 627 SetPageDirty(newpage); 628 629 if (page_is_young(page)) 630 set_page_young(newpage); 631 if (page_is_idle(page)) 632 set_page_idle(newpage); 633 634 /* 635 * Copy NUMA information to the new page, to prevent over-eager 636 * future migrations of this same page. 637 */ 638 cpupid = page_cpupid_xchg_last(page, -1); 639 page_cpupid_xchg_last(newpage, cpupid); 640 641 ksm_migrate_page(newpage, page); 642 /* 643 * Please do not reorder this without considering how mm/ksm.c's 644 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 645 */ 646 if (PageSwapCache(page)) 647 ClearPageSwapCache(page); 648 ClearPagePrivate(page); 649 set_page_private(page, 0); 650 651 /* 652 * If any waiters have accumulated on the new page then 653 * wake them up. 654 */ 655 if (PageWriteback(newpage)) 656 end_page_writeback(newpage); 657 658 /* 659 * PG_readahead shares the same bit with PG_reclaim. The above 660 * end_page_writeback() may clear PG_readahead mistakenly, so set the 661 * bit after that. 662 */ 663 if (PageReadahead(page)) 664 SetPageReadahead(newpage); 665 666 copy_page_owner(page, newpage); 667 668 if (!PageHuge(page)) 669 mem_cgroup_migrate(page, newpage); 670 } 671 EXPORT_SYMBOL(migrate_page_states); 672 673 void migrate_page_copy(struct page *newpage, struct page *page) 674 { 675 if (PageHuge(page) || PageTransHuge(page)) 676 copy_huge_page(newpage, page); 677 else 678 copy_highpage(newpage, page); 679 680 migrate_page_states(newpage, page); 681 } 682 EXPORT_SYMBOL(migrate_page_copy); 683 684 /************************************************************ 685 * Migration functions 686 ***********************************************************/ 687 688 /* 689 * Common logic to directly migrate a single LRU page suitable for 690 * pages that do not use PagePrivate/PagePrivate2. 691 * 692 * Pages are locked upon entry and exit. 693 */ 694 int migrate_page(struct address_space *mapping, 695 struct page *newpage, struct page *page, 696 enum migrate_mode mode) 697 { 698 int rc; 699 700 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 701 702 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 703 704 if (rc != MIGRATEPAGE_SUCCESS) 705 return rc; 706 707 if (mode != MIGRATE_SYNC_NO_COPY) 708 migrate_page_copy(newpage, page); 709 else 710 migrate_page_states(newpage, page); 711 return MIGRATEPAGE_SUCCESS; 712 } 713 EXPORT_SYMBOL(migrate_page); 714 715 #ifdef CONFIG_BLOCK 716 /* Returns true if all buffers are successfully locked */ 717 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 718 enum migrate_mode mode) 719 { 720 struct buffer_head *bh = head; 721 722 /* Simple case, sync compaction */ 723 if (mode != MIGRATE_ASYNC) { 724 do { 725 lock_buffer(bh); 726 bh = bh->b_this_page; 727 728 } while (bh != head); 729 730 return true; 731 } 732 733 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 734 do { 735 if (!trylock_buffer(bh)) { 736 /* 737 * We failed to lock the buffer and cannot stall in 738 * async migration. Release the taken locks 739 */ 740 struct buffer_head *failed_bh = bh; 741 bh = head; 742 while (bh != failed_bh) { 743 unlock_buffer(bh); 744 bh = bh->b_this_page; 745 } 746 return false; 747 } 748 749 bh = bh->b_this_page; 750 } while (bh != head); 751 return true; 752 } 753 754 static int __buffer_migrate_page(struct address_space *mapping, 755 struct page *newpage, struct page *page, enum migrate_mode mode, 756 bool check_refs) 757 { 758 struct buffer_head *bh, *head; 759 int rc; 760 int expected_count; 761 762 if (!page_has_buffers(page)) 763 return migrate_page(mapping, newpage, page, mode); 764 765 /* Check whether page does not have extra refs before we do more work */ 766 expected_count = expected_page_refs(mapping, page); 767 if (page_count(page) != expected_count) 768 return -EAGAIN; 769 770 head = page_buffers(page); 771 if (!buffer_migrate_lock_buffers(head, mode)) 772 return -EAGAIN; 773 774 if (check_refs) { 775 bool busy; 776 bool invalidated = false; 777 778 recheck_buffers: 779 busy = false; 780 spin_lock(&mapping->private_lock); 781 bh = head; 782 do { 783 if (atomic_read(&bh->b_count)) { 784 busy = true; 785 break; 786 } 787 bh = bh->b_this_page; 788 } while (bh != head); 789 if (busy) { 790 if (invalidated) { 791 rc = -EAGAIN; 792 goto unlock_buffers; 793 } 794 spin_unlock(&mapping->private_lock); 795 invalidate_bh_lrus(); 796 invalidated = true; 797 goto recheck_buffers; 798 } 799 } 800 801 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 802 if (rc != MIGRATEPAGE_SUCCESS) 803 goto unlock_buffers; 804 805 attach_page_private(newpage, detach_page_private(page)); 806 807 bh = head; 808 do { 809 set_bh_page(bh, newpage, bh_offset(bh)); 810 bh = bh->b_this_page; 811 812 } while (bh != head); 813 814 if (mode != MIGRATE_SYNC_NO_COPY) 815 migrate_page_copy(newpage, page); 816 else 817 migrate_page_states(newpage, page); 818 819 rc = MIGRATEPAGE_SUCCESS; 820 unlock_buffers: 821 if (check_refs) 822 spin_unlock(&mapping->private_lock); 823 bh = head; 824 do { 825 unlock_buffer(bh); 826 bh = bh->b_this_page; 827 828 } while (bh != head); 829 830 return rc; 831 } 832 833 /* 834 * Migration function for pages with buffers. This function can only be used 835 * if the underlying filesystem guarantees that no other references to "page" 836 * exist. For example attached buffer heads are accessed only under page lock. 837 */ 838 int buffer_migrate_page(struct address_space *mapping, 839 struct page *newpage, struct page *page, enum migrate_mode mode) 840 { 841 return __buffer_migrate_page(mapping, newpage, page, mode, false); 842 } 843 EXPORT_SYMBOL(buffer_migrate_page); 844 845 /* 846 * Same as above except that this variant is more careful and checks that there 847 * are also no buffer head references. This function is the right one for 848 * mappings where buffer heads are directly looked up and referenced (such as 849 * block device mappings). 850 */ 851 int buffer_migrate_page_norefs(struct address_space *mapping, 852 struct page *newpage, struct page *page, enum migrate_mode mode) 853 { 854 return __buffer_migrate_page(mapping, newpage, page, mode, true); 855 } 856 #endif 857 858 /* 859 * Writeback a page to clean the dirty state 860 */ 861 static int writeout(struct address_space *mapping, struct page *page) 862 { 863 struct writeback_control wbc = { 864 .sync_mode = WB_SYNC_NONE, 865 .nr_to_write = 1, 866 .range_start = 0, 867 .range_end = LLONG_MAX, 868 .for_reclaim = 1 869 }; 870 int rc; 871 872 if (!mapping->a_ops->writepage) 873 /* No write method for the address space */ 874 return -EINVAL; 875 876 if (!clear_page_dirty_for_io(page)) 877 /* Someone else already triggered a write */ 878 return -EAGAIN; 879 880 /* 881 * A dirty page may imply that the underlying filesystem has 882 * the page on some queue. So the page must be clean for 883 * migration. Writeout may mean we loose the lock and the 884 * page state is no longer what we checked for earlier. 885 * At this point we know that the migration attempt cannot 886 * be successful. 887 */ 888 remove_migration_ptes(page, page, false); 889 890 rc = mapping->a_ops->writepage(page, &wbc); 891 892 if (rc != AOP_WRITEPAGE_ACTIVATE) 893 /* unlocked. Relock */ 894 lock_page(page); 895 896 return (rc < 0) ? -EIO : -EAGAIN; 897 } 898 899 /* 900 * Default handling if a filesystem does not provide a migration function. 901 */ 902 static int fallback_migrate_page(struct address_space *mapping, 903 struct page *newpage, struct page *page, enum migrate_mode mode) 904 { 905 if (PageDirty(page)) { 906 /* Only writeback pages in full synchronous migration */ 907 switch (mode) { 908 case MIGRATE_SYNC: 909 case MIGRATE_SYNC_NO_COPY: 910 break; 911 default: 912 return -EBUSY; 913 } 914 return writeout(mapping, page); 915 } 916 917 /* 918 * Buffers may be managed in a filesystem specific way. 919 * We must have no buffers or drop them. 920 */ 921 if (page_has_private(page) && 922 !try_to_release_page(page, GFP_KERNEL)) 923 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 924 925 return migrate_page(mapping, newpage, page, mode); 926 } 927 928 /* 929 * Move a page to a newly allocated page 930 * The page is locked and all ptes have been successfully removed. 931 * 932 * The new page will have replaced the old page if this function 933 * is successful. 934 * 935 * Return value: 936 * < 0 - error code 937 * MIGRATEPAGE_SUCCESS - success 938 */ 939 static int move_to_new_page(struct page *newpage, struct page *page, 940 enum migrate_mode mode) 941 { 942 struct address_space *mapping; 943 int rc = -EAGAIN; 944 bool is_lru = !__PageMovable(page); 945 946 VM_BUG_ON_PAGE(!PageLocked(page), page); 947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 948 949 mapping = page_mapping(page); 950 951 if (likely(is_lru)) { 952 if (!mapping) 953 rc = migrate_page(mapping, newpage, page, mode); 954 else if (mapping->a_ops->migratepage) 955 /* 956 * Most pages have a mapping and most filesystems 957 * provide a migratepage callback. Anonymous pages 958 * are part of swap space which also has its own 959 * migratepage callback. This is the most common path 960 * for page migration. 961 */ 962 rc = mapping->a_ops->migratepage(mapping, newpage, 963 page, mode); 964 else 965 rc = fallback_migrate_page(mapping, newpage, 966 page, mode); 967 } else { 968 /* 969 * In case of non-lru page, it could be released after 970 * isolation step. In that case, we shouldn't try migration. 971 */ 972 VM_BUG_ON_PAGE(!PageIsolated(page), page); 973 if (!PageMovable(page)) { 974 rc = MIGRATEPAGE_SUCCESS; 975 __ClearPageIsolated(page); 976 goto out; 977 } 978 979 rc = mapping->a_ops->migratepage(mapping, newpage, 980 page, mode); 981 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 982 !PageIsolated(page)); 983 } 984 985 /* 986 * When successful, old pagecache page->mapping must be cleared before 987 * page is freed; but stats require that PageAnon be left as PageAnon. 988 */ 989 if (rc == MIGRATEPAGE_SUCCESS) { 990 if (__PageMovable(page)) { 991 VM_BUG_ON_PAGE(!PageIsolated(page), page); 992 993 /* 994 * We clear PG_movable under page_lock so any compactor 995 * cannot try to migrate this page. 996 */ 997 __ClearPageIsolated(page); 998 } 999 1000 /* 1001 * Anonymous and movable page->mapping will be cleared by 1002 * free_pages_prepare so don't reset it here for keeping 1003 * the type to work PageAnon, for example. 1004 */ 1005 if (!PageMappingFlags(page)) 1006 page->mapping = NULL; 1007 1008 if (likely(!is_zone_device_page(newpage))) 1009 flush_dcache_page(newpage); 1010 1011 } 1012 out: 1013 return rc; 1014 } 1015 1016 static int __unmap_and_move(struct page *page, struct page *newpage, 1017 int force, enum migrate_mode mode) 1018 { 1019 int rc = -EAGAIN; 1020 int page_was_mapped = 0; 1021 struct anon_vma *anon_vma = NULL; 1022 bool is_lru = !__PageMovable(page); 1023 1024 if (!trylock_page(page)) { 1025 if (!force || mode == MIGRATE_ASYNC) 1026 goto out; 1027 1028 /* 1029 * It's not safe for direct compaction to call lock_page. 1030 * For example, during page readahead pages are added locked 1031 * to the LRU. Later, when the IO completes the pages are 1032 * marked uptodate and unlocked. However, the queueing 1033 * could be merging multiple pages for one bio (e.g. 1034 * mpage_readahead). If an allocation happens for the 1035 * second or third page, the process can end up locking 1036 * the same page twice and deadlocking. Rather than 1037 * trying to be clever about what pages can be locked, 1038 * avoid the use of lock_page for direct compaction 1039 * altogether. 1040 */ 1041 if (current->flags & PF_MEMALLOC) 1042 goto out; 1043 1044 lock_page(page); 1045 } 1046 1047 if (PageWriteback(page)) { 1048 /* 1049 * Only in the case of a full synchronous migration is it 1050 * necessary to wait for PageWriteback. In the async case, 1051 * the retry loop is too short and in the sync-light case, 1052 * the overhead of stalling is too much 1053 */ 1054 switch (mode) { 1055 case MIGRATE_SYNC: 1056 case MIGRATE_SYNC_NO_COPY: 1057 break; 1058 default: 1059 rc = -EBUSY; 1060 goto out_unlock; 1061 } 1062 if (!force) 1063 goto out_unlock; 1064 wait_on_page_writeback(page); 1065 } 1066 1067 /* 1068 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1069 * we cannot notice that anon_vma is freed while we migrates a page. 1070 * This get_anon_vma() delays freeing anon_vma pointer until the end 1071 * of migration. File cache pages are no problem because of page_lock() 1072 * File Caches may use write_page() or lock_page() in migration, then, 1073 * just care Anon page here. 1074 * 1075 * Only page_get_anon_vma() understands the subtleties of 1076 * getting a hold on an anon_vma from outside one of its mms. 1077 * But if we cannot get anon_vma, then we won't need it anyway, 1078 * because that implies that the anon page is no longer mapped 1079 * (and cannot be remapped so long as we hold the page lock). 1080 */ 1081 if (PageAnon(page) && !PageKsm(page)) 1082 anon_vma = page_get_anon_vma(page); 1083 1084 /* 1085 * Block others from accessing the new page when we get around to 1086 * establishing additional references. We are usually the only one 1087 * holding a reference to newpage at this point. We used to have a BUG 1088 * here if trylock_page(newpage) fails, but would like to allow for 1089 * cases where there might be a race with the previous use of newpage. 1090 * This is much like races on refcount of oldpage: just don't BUG(). 1091 */ 1092 if (unlikely(!trylock_page(newpage))) 1093 goto out_unlock; 1094 1095 if (unlikely(!is_lru)) { 1096 rc = move_to_new_page(newpage, page, mode); 1097 goto out_unlock_both; 1098 } 1099 1100 /* 1101 * Corner case handling: 1102 * 1. When a new swap-cache page is read into, it is added to the LRU 1103 * and treated as swapcache but it has no rmap yet. 1104 * Calling try_to_unmap() against a page->mapping==NULL page will 1105 * trigger a BUG. So handle it here. 1106 * 2. An orphaned page (see truncate_cleanup_page) might have 1107 * fs-private metadata. The page can be picked up due to memory 1108 * offlining. Everywhere else except page reclaim, the page is 1109 * invisible to the vm, so the page can not be migrated. So try to 1110 * free the metadata, so the page can be freed. 1111 */ 1112 if (!page->mapping) { 1113 VM_BUG_ON_PAGE(PageAnon(page), page); 1114 if (page_has_private(page)) { 1115 try_to_free_buffers(page); 1116 goto out_unlock_both; 1117 } 1118 } else if (page_mapped(page)) { 1119 /* Establish migration ptes */ 1120 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1121 page); 1122 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK); 1123 page_was_mapped = 1; 1124 } 1125 1126 if (!page_mapped(page)) 1127 rc = move_to_new_page(newpage, page, mode); 1128 1129 if (page_was_mapped) 1130 remove_migration_ptes(page, 1131 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1132 1133 out_unlock_both: 1134 unlock_page(newpage); 1135 out_unlock: 1136 /* Drop an anon_vma reference if we took one */ 1137 if (anon_vma) 1138 put_anon_vma(anon_vma); 1139 unlock_page(page); 1140 out: 1141 /* 1142 * If migration is successful, decrease refcount of the newpage 1143 * which will not free the page because new page owner increased 1144 * refcounter. As well, if it is LRU page, add the page to LRU 1145 * list in here. Use the old state of the isolated source page to 1146 * determine if we migrated a LRU page. newpage was already unlocked 1147 * and possibly modified by its owner - don't rely on the page 1148 * state. 1149 */ 1150 if (rc == MIGRATEPAGE_SUCCESS) { 1151 if (unlikely(!is_lru)) 1152 put_page(newpage); 1153 else 1154 putback_lru_page(newpage); 1155 } 1156 1157 return rc; 1158 } 1159 1160 /* 1161 * Obtain the lock on page, remove all ptes and migrate the page 1162 * to the newly allocated page in newpage. 1163 */ 1164 static int unmap_and_move(new_page_t get_new_page, 1165 free_page_t put_new_page, 1166 unsigned long private, struct page *page, 1167 int force, enum migrate_mode mode, 1168 enum migrate_reason reason, 1169 struct list_head *ret) 1170 { 1171 int rc = MIGRATEPAGE_SUCCESS; 1172 struct page *newpage = NULL; 1173 1174 if (!thp_migration_supported() && PageTransHuge(page)) 1175 return -ENOSYS; 1176 1177 if (page_count(page) == 1) { 1178 /* page was freed from under us. So we are done. */ 1179 ClearPageActive(page); 1180 ClearPageUnevictable(page); 1181 if (unlikely(__PageMovable(page))) { 1182 lock_page(page); 1183 if (!PageMovable(page)) 1184 __ClearPageIsolated(page); 1185 unlock_page(page); 1186 } 1187 goto out; 1188 } 1189 1190 newpage = get_new_page(page, private); 1191 if (!newpage) 1192 return -ENOMEM; 1193 1194 rc = __unmap_and_move(page, newpage, force, mode); 1195 if (rc == MIGRATEPAGE_SUCCESS) 1196 set_page_owner_migrate_reason(newpage, reason); 1197 1198 out: 1199 if (rc != -EAGAIN) { 1200 /* 1201 * A page that has been migrated has all references 1202 * removed and will be freed. A page that has not been 1203 * migrated will have kept its references and be restored. 1204 */ 1205 list_del(&page->lru); 1206 } 1207 1208 /* 1209 * If migration is successful, releases reference grabbed during 1210 * isolation. Otherwise, restore the page to right list unless 1211 * we want to retry. 1212 */ 1213 if (rc == MIGRATEPAGE_SUCCESS) { 1214 /* 1215 * Compaction can migrate also non-LRU pages which are 1216 * not accounted to NR_ISOLATED_*. They can be recognized 1217 * as __PageMovable 1218 */ 1219 if (likely(!__PageMovable(page))) 1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1221 page_is_file_lru(page), -thp_nr_pages(page)); 1222 1223 if (reason != MR_MEMORY_FAILURE) 1224 /* 1225 * We release the page in page_handle_poison. 1226 */ 1227 put_page(page); 1228 } else { 1229 if (rc != -EAGAIN) 1230 list_add_tail(&page->lru, ret); 1231 1232 if (put_new_page) 1233 put_new_page(newpage, private); 1234 else 1235 put_page(newpage); 1236 } 1237 1238 return rc; 1239 } 1240 1241 /* 1242 * Counterpart of unmap_and_move_page() for hugepage migration. 1243 * 1244 * This function doesn't wait the completion of hugepage I/O 1245 * because there is no race between I/O and migration for hugepage. 1246 * Note that currently hugepage I/O occurs only in direct I/O 1247 * where no lock is held and PG_writeback is irrelevant, 1248 * and writeback status of all subpages are counted in the reference 1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1250 * under direct I/O, the reference of the head page is 512 and a bit more.) 1251 * This means that when we try to migrate hugepage whose subpages are 1252 * doing direct I/O, some references remain after try_to_unmap() and 1253 * hugepage migration fails without data corruption. 1254 * 1255 * There is also no race when direct I/O is issued on the page under migration, 1256 * because then pte is replaced with migration swap entry and direct I/O code 1257 * will wait in the page fault for migration to complete. 1258 */ 1259 static int unmap_and_move_huge_page(new_page_t get_new_page, 1260 free_page_t put_new_page, unsigned long private, 1261 struct page *hpage, int force, 1262 enum migrate_mode mode, int reason, 1263 struct list_head *ret) 1264 { 1265 int rc = -EAGAIN; 1266 int page_was_mapped = 0; 1267 struct page *new_hpage; 1268 struct anon_vma *anon_vma = NULL; 1269 struct address_space *mapping = NULL; 1270 1271 /* 1272 * Migratability of hugepages depends on architectures and their size. 1273 * This check is necessary because some callers of hugepage migration 1274 * like soft offline and memory hotremove don't walk through page 1275 * tables or check whether the hugepage is pmd-based or not before 1276 * kicking migration. 1277 */ 1278 if (!hugepage_migration_supported(page_hstate(hpage))) { 1279 list_move_tail(&hpage->lru, ret); 1280 return -ENOSYS; 1281 } 1282 1283 new_hpage = get_new_page(hpage, private); 1284 if (!new_hpage) 1285 return -ENOMEM; 1286 1287 if (!trylock_page(hpage)) { 1288 if (!force) 1289 goto out; 1290 switch (mode) { 1291 case MIGRATE_SYNC: 1292 case MIGRATE_SYNC_NO_COPY: 1293 break; 1294 default: 1295 goto out; 1296 } 1297 lock_page(hpage); 1298 } 1299 1300 /* 1301 * Check for pages which are in the process of being freed. Without 1302 * page_mapping() set, hugetlbfs specific move page routine will not 1303 * be called and we could leak usage counts for subpools. 1304 */ 1305 if (page_private(hpage) && !page_mapping(hpage)) { 1306 rc = -EBUSY; 1307 goto out_unlock; 1308 } 1309 1310 if (PageAnon(hpage)) 1311 anon_vma = page_get_anon_vma(hpage); 1312 1313 if (unlikely(!trylock_page(new_hpage))) 1314 goto put_anon; 1315 1316 if (page_mapped(hpage)) { 1317 bool mapping_locked = false; 1318 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK; 1319 1320 if (!PageAnon(hpage)) { 1321 /* 1322 * In shared mappings, try_to_unmap could potentially 1323 * call huge_pmd_unshare. Because of this, take 1324 * semaphore in write mode here and set TTU_RMAP_LOCKED 1325 * to let lower levels know we have taken the lock. 1326 */ 1327 mapping = hugetlb_page_mapping_lock_write(hpage); 1328 if (unlikely(!mapping)) 1329 goto unlock_put_anon; 1330 1331 mapping_locked = true; 1332 ttu |= TTU_RMAP_LOCKED; 1333 } 1334 1335 try_to_unmap(hpage, ttu); 1336 page_was_mapped = 1; 1337 1338 if (mapping_locked) 1339 i_mmap_unlock_write(mapping); 1340 } 1341 1342 if (!page_mapped(hpage)) 1343 rc = move_to_new_page(new_hpage, hpage, mode); 1344 1345 if (page_was_mapped) 1346 remove_migration_ptes(hpage, 1347 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1348 1349 unlock_put_anon: 1350 unlock_page(new_hpage); 1351 1352 put_anon: 1353 if (anon_vma) 1354 put_anon_vma(anon_vma); 1355 1356 if (rc == MIGRATEPAGE_SUCCESS) { 1357 move_hugetlb_state(hpage, new_hpage, reason); 1358 put_new_page = NULL; 1359 } 1360 1361 out_unlock: 1362 unlock_page(hpage); 1363 out: 1364 if (rc == MIGRATEPAGE_SUCCESS) 1365 putback_active_hugepage(hpage); 1366 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS) 1367 list_move_tail(&hpage->lru, ret); 1368 1369 /* 1370 * If migration was not successful and there's a freeing callback, use 1371 * it. Otherwise, put_page() will drop the reference grabbed during 1372 * isolation. 1373 */ 1374 if (put_new_page) 1375 put_new_page(new_hpage, private); 1376 else 1377 putback_active_hugepage(new_hpage); 1378 1379 return rc; 1380 } 1381 1382 static inline int try_split_thp(struct page *page, struct page **page2, 1383 struct list_head *from) 1384 { 1385 int rc = 0; 1386 1387 lock_page(page); 1388 rc = split_huge_page_to_list(page, from); 1389 unlock_page(page); 1390 if (!rc) 1391 list_safe_reset_next(page, *page2, lru); 1392 1393 return rc; 1394 } 1395 1396 /* 1397 * migrate_pages - migrate the pages specified in a list, to the free pages 1398 * supplied as the target for the page migration 1399 * 1400 * @from: The list of pages to be migrated. 1401 * @get_new_page: The function used to allocate free pages to be used 1402 * as the target of the page migration. 1403 * @put_new_page: The function used to free target pages if migration 1404 * fails, or NULL if no special handling is necessary. 1405 * @private: Private data to be passed on to get_new_page() 1406 * @mode: The migration mode that specifies the constraints for 1407 * page migration, if any. 1408 * @reason: The reason for page migration. 1409 * 1410 * The function returns after 10 attempts or if no pages are movable any more 1411 * because the list has become empty or no retryable pages exist any more. 1412 * It is caller's responsibility to call putback_movable_pages() to return pages 1413 * to the LRU or free list only if ret != 0. 1414 * 1415 * Returns the number of pages that were not migrated, or an error code. 1416 */ 1417 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1418 free_page_t put_new_page, unsigned long private, 1419 enum migrate_mode mode, int reason) 1420 { 1421 int retry = 1; 1422 int thp_retry = 1; 1423 int nr_failed = 0; 1424 int nr_succeeded = 0; 1425 int nr_thp_succeeded = 0; 1426 int nr_thp_failed = 0; 1427 int nr_thp_split = 0; 1428 int pass = 0; 1429 bool is_thp = false; 1430 struct page *page; 1431 struct page *page2; 1432 int swapwrite = current->flags & PF_SWAPWRITE; 1433 int rc, nr_subpages; 1434 LIST_HEAD(ret_pages); 1435 1436 if (!swapwrite) 1437 current->flags |= PF_SWAPWRITE; 1438 1439 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1440 retry = 0; 1441 thp_retry = 0; 1442 1443 list_for_each_entry_safe(page, page2, from, lru) { 1444 retry: 1445 /* 1446 * THP statistics is based on the source huge page. 1447 * Capture required information that might get lost 1448 * during migration. 1449 */ 1450 is_thp = PageTransHuge(page) && !PageHuge(page); 1451 nr_subpages = thp_nr_pages(page); 1452 cond_resched(); 1453 1454 if (PageHuge(page)) 1455 rc = unmap_and_move_huge_page(get_new_page, 1456 put_new_page, private, page, 1457 pass > 2, mode, reason, 1458 &ret_pages); 1459 else 1460 rc = unmap_and_move(get_new_page, put_new_page, 1461 private, page, pass > 2, mode, 1462 reason, &ret_pages); 1463 /* 1464 * The rules are: 1465 * Success: non hugetlb page will be freed, hugetlb 1466 * page will be put back 1467 * -EAGAIN: stay on the from list 1468 * -ENOMEM: stay on the from list 1469 * Other errno: put on ret_pages list then splice to 1470 * from list 1471 */ 1472 switch(rc) { 1473 /* 1474 * THP migration might be unsupported or the 1475 * allocation could've failed so we should 1476 * retry on the same page with the THP split 1477 * to base pages. 1478 * 1479 * Head page is retried immediately and tail 1480 * pages are added to the tail of the list so 1481 * we encounter them after the rest of the list 1482 * is processed. 1483 */ 1484 case -ENOSYS: 1485 /* THP migration is unsupported */ 1486 if (is_thp) { 1487 if (!try_split_thp(page, &page2, from)) { 1488 nr_thp_split++; 1489 goto retry; 1490 } 1491 1492 nr_thp_failed++; 1493 nr_failed += nr_subpages; 1494 break; 1495 } 1496 1497 /* Hugetlb migration is unsupported */ 1498 nr_failed++; 1499 break; 1500 case -ENOMEM: 1501 /* 1502 * When memory is low, don't bother to try to migrate 1503 * other pages, just exit. 1504 */ 1505 if (is_thp) { 1506 if (!try_split_thp(page, &page2, from)) { 1507 nr_thp_split++; 1508 goto retry; 1509 } 1510 1511 nr_thp_failed++; 1512 nr_failed += nr_subpages; 1513 goto out; 1514 } 1515 nr_failed++; 1516 goto out; 1517 case -EAGAIN: 1518 if (is_thp) { 1519 thp_retry++; 1520 break; 1521 } 1522 retry++; 1523 break; 1524 case MIGRATEPAGE_SUCCESS: 1525 if (is_thp) { 1526 nr_thp_succeeded++; 1527 nr_succeeded += nr_subpages; 1528 break; 1529 } 1530 nr_succeeded++; 1531 break; 1532 default: 1533 /* 1534 * Permanent failure (-EBUSY, etc.): 1535 * unlike -EAGAIN case, the failed page is 1536 * removed from migration page list and not 1537 * retried in the next outer loop. 1538 */ 1539 if (is_thp) { 1540 nr_thp_failed++; 1541 nr_failed += nr_subpages; 1542 break; 1543 } 1544 nr_failed++; 1545 break; 1546 } 1547 } 1548 } 1549 nr_failed += retry + thp_retry; 1550 nr_thp_failed += thp_retry; 1551 rc = nr_failed; 1552 out: 1553 /* 1554 * Put the permanent failure page back to migration list, they 1555 * will be put back to the right list by the caller. 1556 */ 1557 list_splice(&ret_pages, from); 1558 1559 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1560 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1561 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1562 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1563 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1564 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1565 nr_thp_failed, nr_thp_split, mode, reason); 1566 1567 if (!swapwrite) 1568 current->flags &= ~PF_SWAPWRITE; 1569 1570 return rc; 1571 } 1572 1573 struct page *alloc_migration_target(struct page *page, unsigned long private) 1574 { 1575 struct migration_target_control *mtc; 1576 gfp_t gfp_mask; 1577 unsigned int order = 0; 1578 struct page *new_page = NULL; 1579 int nid; 1580 int zidx; 1581 1582 mtc = (struct migration_target_control *)private; 1583 gfp_mask = mtc->gfp_mask; 1584 nid = mtc->nid; 1585 if (nid == NUMA_NO_NODE) 1586 nid = page_to_nid(page); 1587 1588 if (PageHuge(page)) { 1589 struct hstate *h = page_hstate(compound_head(page)); 1590 1591 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1592 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1593 } 1594 1595 if (PageTransHuge(page)) { 1596 /* 1597 * clear __GFP_RECLAIM to make the migration callback 1598 * consistent with regular THP allocations. 1599 */ 1600 gfp_mask &= ~__GFP_RECLAIM; 1601 gfp_mask |= GFP_TRANSHUGE; 1602 order = HPAGE_PMD_ORDER; 1603 } 1604 zidx = zone_idx(page_zone(page)); 1605 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1606 gfp_mask |= __GFP_HIGHMEM; 1607 1608 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1609 1610 if (new_page && PageTransHuge(new_page)) 1611 prep_transhuge_page(new_page); 1612 1613 return new_page; 1614 } 1615 1616 #ifdef CONFIG_NUMA 1617 1618 static int store_status(int __user *status, int start, int value, int nr) 1619 { 1620 while (nr-- > 0) { 1621 if (put_user(value, status + start)) 1622 return -EFAULT; 1623 start++; 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int do_move_pages_to_node(struct mm_struct *mm, 1630 struct list_head *pagelist, int node) 1631 { 1632 int err; 1633 struct migration_target_control mtc = { 1634 .nid = node, 1635 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1636 }; 1637 1638 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1639 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1640 if (err) 1641 putback_movable_pages(pagelist); 1642 return err; 1643 } 1644 1645 /* 1646 * Resolves the given address to a struct page, isolates it from the LRU and 1647 * puts it to the given pagelist. 1648 * Returns: 1649 * errno - if the page cannot be found/isolated 1650 * 0 - when it doesn't have to be migrated because it is already on the 1651 * target node 1652 * 1 - when it has been queued 1653 */ 1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1655 int node, struct list_head *pagelist, bool migrate_all) 1656 { 1657 struct vm_area_struct *vma; 1658 struct page *page; 1659 unsigned int follflags; 1660 int err; 1661 1662 mmap_read_lock(mm); 1663 err = -EFAULT; 1664 vma = find_vma(mm, addr); 1665 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1666 goto out; 1667 1668 /* FOLL_DUMP to ignore special (like zero) pages */ 1669 follflags = FOLL_GET | FOLL_DUMP; 1670 page = follow_page(vma, addr, follflags); 1671 1672 err = PTR_ERR(page); 1673 if (IS_ERR(page)) 1674 goto out; 1675 1676 err = -ENOENT; 1677 if (!page) 1678 goto out; 1679 1680 err = 0; 1681 if (page_to_nid(page) == node) 1682 goto out_putpage; 1683 1684 err = -EACCES; 1685 if (page_mapcount(page) > 1 && !migrate_all) 1686 goto out_putpage; 1687 1688 if (PageHuge(page)) { 1689 if (PageHead(page)) { 1690 isolate_huge_page(page, pagelist); 1691 err = 1; 1692 } 1693 } else { 1694 struct page *head; 1695 1696 head = compound_head(page); 1697 err = isolate_lru_page(head); 1698 if (err) 1699 goto out_putpage; 1700 1701 err = 1; 1702 list_add_tail(&head->lru, pagelist); 1703 mod_node_page_state(page_pgdat(head), 1704 NR_ISOLATED_ANON + page_is_file_lru(head), 1705 thp_nr_pages(head)); 1706 } 1707 out_putpage: 1708 /* 1709 * Either remove the duplicate refcount from 1710 * isolate_lru_page() or drop the page ref if it was 1711 * not isolated. 1712 */ 1713 put_page(page); 1714 out: 1715 mmap_read_unlock(mm); 1716 return err; 1717 } 1718 1719 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1720 struct list_head *pagelist, int __user *status, 1721 int start, int i, unsigned long nr_pages) 1722 { 1723 int err; 1724 1725 if (list_empty(pagelist)) 1726 return 0; 1727 1728 err = do_move_pages_to_node(mm, pagelist, node); 1729 if (err) { 1730 /* 1731 * Positive err means the number of failed 1732 * pages to migrate. Since we are going to 1733 * abort and return the number of non-migrated 1734 * pages, so need to include the rest of the 1735 * nr_pages that have not been attempted as 1736 * well. 1737 */ 1738 if (err > 0) 1739 err += nr_pages - i - 1; 1740 return err; 1741 } 1742 return store_status(status, start, node, i - start); 1743 } 1744 1745 /* 1746 * Migrate an array of page address onto an array of nodes and fill 1747 * the corresponding array of status. 1748 */ 1749 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1750 unsigned long nr_pages, 1751 const void __user * __user *pages, 1752 const int __user *nodes, 1753 int __user *status, int flags) 1754 { 1755 int current_node = NUMA_NO_NODE; 1756 LIST_HEAD(pagelist); 1757 int start, i; 1758 int err = 0, err1; 1759 1760 migrate_prep(); 1761 1762 for (i = start = 0; i < nr_pages; i++) { 1763 const void __user *p; 1764 unsigned long addr; 1765 int node; 1766 1767 err = -EFAULT; 1768 if (get_user(p, pages + i)) 1769 goto out_flush; 1770 if (get_user(node, nodes + i)) 1771 goto out_flush; 1772 addr = (unsigned long)untagged_addr(p); 1773 1774 err = -ENODEV; 1775 if (node < 0 || node >= MAX_NUMNODES) 1776 goto out_flush; 1777 if (!node_state(node, N_MEMORY)) 1778 goto out_flush; 1779 1780 err = -EACCES; 1781 if (!node_isset(node, task_nodes)) 1782 goto out_flush; 1783 1784 if (current_node == NUMA_NO_NODE) { 1785 current_node = node; 1786 start = i; 1787 } else if (node != current_node) { 1788 err = move_pages_and_store_status(mm, current_node, 1789 &pagelist, status, start, i, nr_pages); 1790 if (err) 1791 goto out; 1792 start = i; 1793 current_node = node; 1794 } 1795 1796 /* 1797 * Errors in the page lookup or isolation are not fatal and we simply 1798 * report them via status 1799 */ 1800 err = add_page_for_migration(mm, addr, current_node, 1801 &pagelist, flags & MPOL_MF_MOVE_ALL); 1802 1803 if (err > 0) { 1804 /* The page is successfully queued for migration */ 1805 continue; 1806 } 1807 1808 /* 1809 * If the page is already on the target node (!err), store the 1810 * node, otherwise, store the err. 1811 */ 1812 err = store_status(status, i, err ? : current_node, 1); 1813 if (err) 1814 goto out_flush; 1815 1816 err = move_pages_and_store_status(mm, current_node, &pagelist, 1817 status, start, i, nr_pages); 1818 if (err) 1819 goto out; 1820 current_node = NUMA_NO_NODE; 1821 } 1822 out_flush: 1823 /* Make sure we do not overwrite the existing error */ 1824 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1825 status, start, i, nr_pages); 1826 if (err >= 0) 1827 err = err1; 1828 out: 1829 return err; 1830 } 1831 1832 /* 1833 * Determine the nodes of an array of pages and store it in an array of status. 1834 */ 1835 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1836 const void __user **pages, int *status) 1837 { 1838 unsigned long i; 1839 1840 mmap_read_lock(mm); 1841 1842 for (i = 0; i < nr_pages; i++) { 1843 unsigned long addr = (unsigned long)(*pages); 1844 struct vm_area_struct *vma; 1845 struct page *page; 1846 int err = -EFAULT; 1847 1848 vma = find_vma(mm, addr); 1849 if (!vma || addr < vma->vm_start) 1850 goto set_status; 1851 1852 /* FOLL_DUMP to ignore special (like zero) pages */ 1853 page = follow_page(vma, addr, FOLL_DUMP); 1854 1855 err = PTR_ERR(page); 1856 if (IS_ERR(page)) 1857 goto set_status; 1858 1859 err = page ? page_to_nid(page) : -ENOENT; 1860 set_status: 1861 *status = err; 1862 1863 pages++; 1864 status++; 1865 } 1866 1867 mmap_read_unlock(mm); 1868 } 1869 1870 /* 1871 * Determine the nodes of a user array of pages and store it in 1872 * a user array of status. 1873 */ 1874 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1875 const void __user * __user *pages, 1876 int __user *status) 1877 { 1878 #define DO_PAGES_STAT_CHUNK_NR 16 1879 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1880 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1881 1882 while (nr_pages) { 1883 unsigned long chunk_nr; 1884 1885 chunk_nr = nr_pages; 1886 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1887 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1888 1889 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1890 break; 1891 1892 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1893 1894 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1895 break; 1896 1897 pages += chunk_nr; 1898 status += chunk_nr; 1899 nr_pages -= chunk_nr; 1900 } 1901 return nr_pages ? -EFAULT : 0; 1902 } 1903 1904 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1905 { 1906 struct task_struct *task; 1907 struct mm_struct *mm; 1908 1909 /* 1910 * There is no need to check if current process has the right to modify 1911 * the specified process when they are same. 1912 */ 1913 if (!pid) { 1914 mmget(current->mm); 1915 *mem_nodes = cpuset_mems_allowed(current); 1916 return current->mm; 1917 } 1918 1919 /* Find the mm_struct */ 1920 rcu_read_lock(); 1921 task = find_task_by_vpid(pid); 1922 if (!task) { 1923 rcu_read_unlock(); 1924 return ERR_PTR(-ESRCH); 1925 } 1926 get_task_struct(task); 1927 1928 /* 1929 * Check if this process has the right to modify the specified 1930 * process. Use the regular "ptrace_may_access()" checks. 1931 */ 1932 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1933 rcu_read_unlock(); 1934 mm = ERR_PTR(-EPERM); 1935 goto out; 1936 } 1937 rcu_read_unlock(); 1938 1939 mm = ERR_PTR(security_task_movememory(task)); 1940 if (IS_ERR(mm)) 1941 goto out; 1942 *mem_nodes = cpuset_mems_allowed(task); 1943 mm = get_task_mm(task); 1944 out: 1945 put_task_struct(task); 1946 if (!mm) 1947 mm = ERR_PTR(-EINVAL); 1948 return mm; 1949 } 1950 1951 /* 1952 * Move a list of pages in the address space of the currently executing 1953 * process. 1954 */ 1955 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1956 const void __user * __user *pages, 1957 const int __user *nodes, 1958 int __user *status, int flags) 1959 { 1960 struct mm_struct *mm; 1961 int err; 1962 nodemask_t task_nodes; 1963 1964 /* Check flags */ 1965 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1966 return -EINVAL; 1967 1968 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1969 return -EPERM; 1970 1971 mm = find_mm_struct(pid, &task_nodes); 1972 if (IS_ERR(mm)) 1973 return PTR_ERR(mm); 1974 1975 if (nodes) 1976 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1977 nodes, status, flags); 1978 else 1979 err = do_pages_stat(mm, nr_pages, pages, status); 1980 1981 mmput(mm); 1982 return err; 1983 } 1984 1985 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1986 const void __user * __user *, pages, 1987 const int __user *, nodes, 1988 int __user *, status, int, flags) 1989 { 1990 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1991 } 1992 1993 #ifdef CONFIG_COMPAT 1994 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1995 compat_uptr_t __user *, pages32, 1996 const int __user *, nodes, 1997 int __user *, status, 1998 int, flags) 1999 { 2000 const void __user * __user *pages; 2001 int i; 2002 2003 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 2004 for (i = 0; i < nr_pages; i++) { 2005 compat_uptr_t p; 2006 2007 if (get_user(p, pages32 + i) || 2008 put_user(compat_ptr(p), pages + i)) 2009 return -EFAULT; 2010 } 2011 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2012 } 2013 #endif /* CONFIG_COMPAT */ 2014 2015 #ifdef CONFIG_NUMA_BALANCING 2016 /* 2017 * Returns true if this is a safe migration target node for misplaced NUMA 2018 * pages. Currently it only checks the watermarks which crude 2019 */ 2020 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2021 unsigned long nr_migrate_pages) 2022 { 2023 int z; 2024 2025 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2026 struct zone *zone = pgdat->node_zones + z; 2027 2028 if (!populated_zone(zone)) 2029 continue; 2030 2031 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2032 if (!zone_watermark_ok(zone, 0, 2033 high_wmark_pages(zone) + 2034 nr_migrate_pages, 2035 ZONE_MOVABLE, 0)) 2036 continue; 2037 return true; 2038 } 2039 return false; 2040 } 2041 2042 static struct page *alloc_misplaced_dst_page(struct page *page, 2043 unsigned long data) 2044 { 2045 int nid = (int) data; 2046 struct page *newpage; 2047 2048 newpage = __alloc_pages_node(nid, 2049 (GFP_HIGHUSER_MOVABLE | 2050 __GFP_THISNODE | __GFP_NOMEMALLOC | 2051 __GFP_NORETRY | __GFP_NOWARN) & 2052 ~__GFP_RECLAIM, 0); 2053 2054 return newpage; 2055 } 2056 2057 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2058 { 2059 int page_lru; 2060 2061 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2062 2063 /* Avoid migrating to a node that is nearly full */ 2064 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2065 return 0; 2066 2067 if (isolate_lru_page(page)) 2068 return 0; 2069 2070 /* 2071 * migrate_misplaced_transhuge_page() skips page migration's usual 2072 * check on page_count(), so we must do it here, now that the page 2073 * has been isolated: a GUP pin, or any other pin, prevents migration. 2074 * The expected page count is 3: 1 for page's mapcount and 1 for the 2075 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2076 */ 2077 if (PageTransHuge(page) && page_count(page) != 3) { 2078 putback_lru_page(page); 2079 return 0; 2080 } 2081 2082 page_lru = page_is_file_lru(page); 2083 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2084 thp_nr_pages(page)); 2085 2086 /* 2087 * Isolating the page has taken another reference, so the 2088 * caller's reference can be safely dropped without the page 2089 * disappearing underneath us during migration. 2090 */ 2091 put_page(page); 2092 return 1; 2093 } 2094 2095 bool pmd_trans_migrating(pmd_t pmd) 2096 { 2097 struct page *page = pmd_page(pmd); 2098 return PageLocked(page); 2099 } 2100 2101 static inline bool is_shared_exec_page(struct vm_area_struct *vma, 2102 struct page *page) 2103 { 2104 if (page_mapcount(page) != 1 && 2105 (page_is_file_lru(page) || vma_is_shmem(vma)) && 2106 (vma->vm_flags & VM_EXEC)) 2107 return true; 2108 2109 return false; 2110 } 2111 2112 /* 2113 * Attempt to migrate a misplaced page to the specified destination 2114 * node. Caller is expected to have an elevated reference count on 2115 * the page that will be dropped by this function before returning. 2116 */ 2117 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2118 int node) 2119 { 2120 pg_data_t *pgdat = NODE_DATA(node); 2121 int isolated; 2122 int nr_remaining; 2123 LIST_HEAD(migratepages); 2124 2125 /* 2126 * Don't migrate file pages that are mapped in multiple processes 2127 * with execute permissions as they are probably shared libraries. 2128 */ 2129 if (is_shared_exec_page(vma, page)) 2130 goto out; 2131 2132 /* 2133 * Also do not migrate dirty pages as not all filesystems can move 2134 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2135 */ 2136 if (page_is_file_lru(page) && PageDirty(page)) 2137 goto out; 2138 2139 isolated = numamigrate_isolate_page(pgdat, page); 2140 if (!isolated) 2141 goto out; 2142 2143 list_add(&page->lru, &migratepages); 2144 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2145 NULL, node, MIGRATE_ASYNC, 2146 MR_NUMA_MISPLACED); 2147 if (nr_remaining) { 2148 if (!list_empty(&migratepages)) { 2149 list_del(&page->lru); 2150 dec_node_page_state(page, NR_ISOLATED_ANON + 2151 page_is_file_lru(page)); 2152 putback_lru_page(page); 2153 } 2154 isolated = 0; 2155 } else 2156 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2157 BUG_ON(!list_empty(&migratepages)); 2158 return isolated; 2159 2160 out: 2161 put_page(page); 2162 return 0; 2163 } 2164 #endif /* CONFIG_NUMA_BALANCING */ 2165 2166 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2167 /* 2168 * Migrates a THP to a given target node. page must be locked and is unlocked 2169 * before returning. 2170 */ 2171 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2172 struct vm_area_struct *vma, 2173 pmd_t *pmd, pmd_t entry, 2174 unsigned long address, 2175 struct page *page, int node) 2176 { 2177 spinlock_t *ptl; 2178 pg_data_t *pgdat = NODE_DATA(node); 2179 int isolated = 0; 2180 struct page *new_page = NULL; 2181 int page_lru = page_is_file_lru(page); 2182 unsigned long start = address & HPAGE_PMD_MASK; 2183 2184 if (is_shared_exec_page(vma, page)) 2185 goto out; 2186 2187 new_page = alloc_pages_node(node, 2188 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2189 HPAGE_PMD_ORDER); 2190 if (!new_page) 2191 goto out_fail; 2192 prep_transhuge_page(new_page); 2193 2194 isolated = numamigrate_isolate_page(pgdat, page); 2195 if (!isolated) { 2196 put_page(new_page); 2197 goto out_fail; 2198 } 2199 2200 /* Prepare a page as a migration target */ 2201 __SetPageLocked(new_page); 2202 if (PageSwapBacked(page)) 2203 __SetPageSwapBacked(new_page); 2204 2205 /* anon mapping, we can simply copy page->mapping to the new page: */ 2206 new_page->mapping = page->mapping; 2207 new_page->index = page->index; 2208 /* flush the cache before copying using the kernel virtual address */ 2209 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2210 migrate_page_copy(new_page, page); 2211 WARN_ON(PageLRU(new_page)); 2212 2213 /* Recheck the target PMD */ 2214 ptl = pmd_lock(mm, pmd); 2215 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2216 spin_unlock(ptl); 2217 2218 /* Reverse changes made by migrate_page_copy() */ 2219 if (TestClearPageActive(new_page)) 2220 SetPageActive(page); 2221 if (TestClearPageUnevictable(new_page)) 2222 SetPageUnevictable(page); 2223 2224 unlock_page(new_page); 2225 put_page(new_page); /* Free it */ 2226 2227 /* Retake the callers reference and putback on LRU */ 2228 get_page(page); 2229 putback_lru_page(page); 2230 mod_node_page_state(page_pgdat(page), 2231 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2232 2233 goto out_unlock; 2234 } 2235 2236 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2237 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2238 2239 /* 2240 * Overwrite the old entry under pagetable lock and establish 2241 * the new PTE. Any parallel GUP will either observe the old 2242 * page blocking on the page lock, block on the page table 2243 * lock or observe the new page. The SetPageUptodate on the 2244 * new page and page_add_new_anon_rmap guarantee the copy is 2245 * visible before the pagetable update. 2246 */ 2247 page_add_anon_rmap(new_page, vma, start, true); 2248 /* 2249 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2250 * has already been flushed globally. So no TLB can be currently 2251 * caching this non present pmd mapping. There's no need to clear the 2252 * pmd before doing set_pmd_at(), nor to flush the TLB after 2253 * set_pmd_at(). Clearing the pmd here would introduce a race 2254 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2255 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2256 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2257 * pmd. 2258 */ 2259 set_pmd_at(mm, start, pmd, entry); 2260 update_mmu_cache_pmd(vma, address, &entry); 2261 2262 page_ref_unfreeze(page, 2); 2263 mlock_migrate_page(new_page, page); 2264 page_remove_rmap(page, true); 2265 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2266 2267 spin_unlock(ptl); 2268 2269 /* Take an "isolate" reference and put new page on the LRU. */ 2270 get_page(new_page); 2271 putback_lru_page(new_page); 2272 2273 unlock_page(new_page); 2274 unlock_page(page); 2275 put_page(page); /* Drop the rmap reference */ 2276 put_page(page); /* Drop the LRU isolation reference */ 2277 2278 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2279 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2280 2281 mod_node_page_state(page_pgdat(page), 2282 NR_ISOLATED_ANON + page_lru, 2283 -HPAGE_PMD_NR); 2284 return isolated; 2285 2286 out_fail: 2287 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2288 ptl = pmd_lock(mm, pmd); 2289 if (pmd_same(*pmd, entry)) { 2290 entry = pmd_modify(entry, vma->vm_page_prot); 2291 set_pmd_at(mm, start, pmd, entry); 2292 update_mmu_cache_pmd(vma, address, &entry); 2293 } 2294 spin_unlock(ptl); 2295 2296 out_unlock: 2297 unlock_page(page); 2298 out: 2299 put_page(page); 2300 return 0; 2301 } 2302 #endif /* CONFIG_NUMA_BALANCING */ 2303 2304 #endif /* CONFIG_NUMA */ 2305 2306 #ifdef CONFIG_DEVICE_PRIVATE 2307 static int migrate_vma_collect_hole(unsigned long start, 2308 unsigned long end, 2309 __always_unused int depth, 2310 struct mm_walk *walk) 2311 { 2312 struct migrate_vma *migrate = walk->private; 2313 unsigned long addr; 2314 2315 /* Only allow populating anonymous memory. */ 2316 if (!vma_is_anonymous(walk->vma)) { 2317 for (addr = start; addr < end; addr += PAGE_SIZE) { 2318 migrate->src[migrate->npages] = 0; 2319 migrate->dst[migrate->npages] = 0; 2320 migrate->npages++; 2321 } 2322 return 0; 2323 } 2324 2325 for (addr = start; addr < end; addr += PAGE_SIZE) { 2326 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2327 migrate->dst[migrate->npages] = 0; 2328 migrate->npages++; 2329 migrate->cpages++; 2330 } 2331 2332 return 0; 2333 } 2334 2335 static int migrate_vma_collect_skip(unsigned long start, 2336 unsigned long end, 2337 struct mm_walk *walk) 2338 { 2339 struct migrate_vma *migrate = walk->private; 2340 unsigned long addr; 2341 2342 for (addr = start; addr < end; addr += PAGE_SIZE) { 2343 migrate->dst[migrate->npages] = 0; 2344 migrate->src[migrate->npages++] = 0; 2345 } 2346 2347 return 0; 2348 } 2349 2350 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2351 unsigned long start, 2352 unsigned long end, 2353 struct mm_walk *walk) 2354 { 2355 struct migrate_vma *migrate = walk->private; 2356 struct vm_area_struct *vma = walk->vma; 2357 struct mm_struct *mm = vma->vm_mm; 2358 unsigned long addr = start, unmapped = 0; 2359 spinlock_t *ptl; 2360 pte_t *ptep; 2361 2362 again: 2363 if (pmd_none(*pmdp)) 2364 return migrate_vma_collect_hole(start, end, -1, walk); 2365 2366 if (pmd_trans_huge(*pmdp)) { 2367 struct page *page; 2368 2369 ptl = pmd_lock(mm, pmdp); 2370 if (unlikely(!pmd_trans_huge(*pmdp))) { 2371 spin_unlock(ptl); 2372 goto again; 2373 } 2374 2375 page = pmd_page(*pmdp); 2376 if (is_huge_zero_page(page)) { 2377 spin_unlock(ptl); 2378 split_huge_pmd(vma, pmdp, addr); 2379 if (pmd_trans_unstable(pmdp)) 2380 return migrate_vma_collect_skip(start, end, 2381 walk); 2382 } else { 2383 int ret; 2384 2385 get_page(page); 2386 spin_unlock(ptl); 2387 if (unlikely(!trylock_page(page))) 2388 return migrate_vma_collect_skip(start, end, 2389 walk); 2390 ret = split_huge_page(page); 2391 unlock_page(page); 2392 put_page(page); 2393 if (ret) 2394 return migrate_vma_collect_skip(start, end, 2395 walk); 2396 if (pmd_none(*pmdp)) 2397 return migrate_vma_collect_hole(start, end, -1, 2398 walk); 2399 } 2400 } 2401 2402 if (unlikely(pmd_bad(*pmdp))) 2403 return migrate_vma_collect_skip(start, end, walk); 2404 2405 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2406 arch_enter_lazy_mmu_mode(); 2407 2408 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2409 unsigned long mpfn = 0, pfn; 2410 struct page *page; 2411 swp_entry_t entry; 2412 pte_t pte; 2413 2414 pte = *ptep; 2415 2416 if (pte_none(pte)) { 2417 if (vma_is_anonymous(vma)) { 2418 mpfn = MIGRATE_PFN_MIGRATE; 2419 migrate->cpages++; 2420 } 2421 goto next; 2422 } 2423 2424 if (!pte_present(pte)) { 2425 /* 2426 * Only care about unaddressable device page special 2427 * page table entry. Other special swap entries are not 2428 * migratable, and we ignore regular swapped page. 2429 */ 2430 entry = pte_to_swp_entry(pte); 2431 if (!is_device_private_entry(entry)) 2432 goto next; 2433 2434 page = device_private_entry_to_page(entry); 2435 if (!(migrate->flags & 2436 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2437 page->pgmap->owner != migrate->pgmap_owner) 2438 goto next; 2439 2440 mpfn = migrate_pfn(page_to_pfn(page)) | 2441 MIGRATE_PFN_MIGRATE; 2442 if (is_write_device_private_entry(entry)) 2443 mpfn |= MIGRATE_PFN_WRITE; 2444 } else { 2445 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2446 goto next; 2447 pfn = pte_pfn(pte); 2448 if (is_zero_pfn(pfn)) { 2449 mpfn = MIGRATE_PFN_MIGRATE; 2450 migrate->cpages++; 2451 goto next; 2452 } 2453 page = vm_normal_page(migrate->vma, addr, pte); 2454 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2455 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2456 } 2457 2458 /* FIXME support THP */ 2459 if (!page || !page->mapping || PageTransCompound(page)) { 2460 mpfn = 0; 2461 goto next; 2462 } 2463 2464 /* 2465 * By getting a reference on the page we pin it and that blocks 2466 * any kind of migration. Side effect is that it "freezes" the 2467 * pte. 2468 * 2469 * We drop this reference after isolating the page from the lru 2470 * for non device page (device page are not on the lru and thus 2471 * can't be dropped from it). 2472 */ 2473 get_page(page); 2474 migrate->cpages++; 2475 2476 /* 2477 * Optimize for the common case where page is only mapped once 2478 * in one process. If we can lock the page, then we can safely 2479 * set up a special migration page table entry now. 2480 */ 2481 if (trylock_page(page)) { 2482 pte_t swp_pte; 2483 2484 mpfn |= MIGRATE_PFN_LOCKED; 2485 ptep_get_and_clear(mm, addr, ptep); 2486 2487 /* Setup special migration page table entry */ 2488 entry = make_migration_entry(page, mpfn & 2489 MIGRATE_PFN_WRITE); 2490 swp_pte = swp_entry_to_pte(entry); 2491 if (pte_present(pte)) { 2492 if (pte_soft_dirty(pte)) 2493 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2494 if (pte_uffd_wp(pte)) 2495 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2496 } else { 2497 if (pte_swp_soft_dirty(pte)) 2498 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2499 if (pte_swp_uffd_wp(pte)) 2500 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2501 } 2502 set_pte_at(mm, addr, ptep, swp_pte); 2503 2504 /* 2505 * This is like regular unmap: we remove the rmap and 2506 * drop page refcount. Page won't be freed, as we took 2507 * a reference just above. 2508 */ 2509 page_remove_rmap(page, false); 2510 put_page(page); 2511 2512 if (pte_present(pte)) 2513 unmapped++; 2514 } 2515 2516 next: 2517 migrate->dst[migrate->npages] = 0; 2518 migrate->src[migrate->npages++] = mpfn; 2519 } 2520 arch_leave_lazy_mmu_mode(); 2521 pte_unmap_unlock(ptep - 1, ptl); 2522 2523 /* Only flush the TLB if we actually modified any entries */ 2524 if (unmapped) 2525 flush_tlb_range(walk->vma, start, end); 2526 2527 return 0; 2528 } 2529 2530 static const struct mm_walk_ops migrate_vma_walk_ops = { 2531 .pmd_entry = migrate_vma_collect_pmd, 2532 .pte_hole = migrate_vma_collect_hole, 2533 }; 2534 2535 /* 2536 * migrate_vma_collect() - collect pages over a range of virtual addresses 2537 * @migrate: migrate struct containing all migration information 2538 * 2539 * This will walk the CPU page table. For each virtual address backed by a 2540 * valid page, it updates the src array and takes a reference on the page, in 2541 * order to pin the page until we lock it and unmap it. 2542 */ 2543 static void migrate_vma_collect(struct migrate_vma *migrate) 2544 { 2545 struct mmu_notifier_range range; 2546 2547 /* 2548 * Note that the pgmap_owner is passed to the mmu notifier callback so 2549 * that the registered device driver can skip invalidating device 2550 * private page mappings that won't be migrated. 2551 */ 2552 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2553 migrate->vma->vm_mm, migrate->start, migrate->end, 2554 migrate->pgmap_owner); 2555 mmu_notifier_invalidate_range_start(&range); 2556 2557 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2558 &migrate_vma_walk_ops, migrate); 2559 2560 mmu_notifier_invalidate_range_end(&range); 2561 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2562 } 2563 2564 /* 2565 * migrate_vma_check_page() - check if page is pinned or not 2566 * @page: struct page to check 2567 * 2568 * Pinned pages cannot be migrated. This is the same test as in 2569 * migrate_page_move_mapping(), except that here we allow migration of a 2570 * ZONE_DEVICE page. 2571 */ 2572 static bool migrate_vma_check_page(struct page *page) 2573 { 2574 /* 2575 * One extra ref because caller holds an extra reference, either from 2576 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2577 * a device page. 2578 */ 2579 int extra = 1; 2580 2581 /* 2582 * FIXME support THP (transparent huge page), it is bit more complex to 2583 * check them than regular pages, because they can be mapped with a pmd 2584 * or with a pte (split pte mapping). 2585 */ 2586 if (PageCompound(page)) 2587 return false; 2588 2589 /* Page from ZONE_DEVICE have one extra reference */ 2590 if (is_zone_device_page(page)) { 2591 /* 2592 * Private page can never be pin as they have no valid pte and 2593 * GUP will fail for those. Yet if there is a pending migration 2594 * a thread might try to wait on the pte migration entry and 2595 * will bump the page reference count. Sadly there is no way to 2596 * differentiate a regular pin from migration wait. Hence to 2597 * avoid 2 racing thread trying to migrate back to CPU to enter 2598 * infinite loop (one stopping migration because the other is 2599 * waiting on pte migration entry). We always return true here. 2600 * 2601 * FIXME proper solution is to rework migration_entry_wait() so 2602 * it does not need to take a reference on page. 2603 */ 2604 return is_device_private_page(page); 2605 } 2606 2607 /* For file back page */ 2608 if (page_mapping(page)) 2609 extra += 1 + page_has_private(page); 2610 2611 if ((page_count(page) - extra) > page_mapcount(page)) 2612 return false; 2613 2614 return true; 2615 } 2616 2617 /* 2618 * migrate_vma_prepare() - lock pages and isolate them from the lru 2619 * @migrate: migrate struct containing all migration information 2620 * 2621 * This locks pages that have been collected by migrate_vma_collect(). Once each 2622 * page is locked it is isolated from the lru (for non-device pages). Finally, 2623 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2624 * migrated by concurrent kernel threads. 2625 */ 2626 static void migrate_vma_prepare(struct migrate_vma *migrate) 2627 { 2628 const unsigned long npages = migrate->npages; 2629 const unsigned long start = migrate->start; 2630 unsigned long addr, i, restore = 0; 2631 bool allow_drain = true; 2632 2633 lru_add_drain(); 2634 2635 for (i = 0; (i < npages) && migrate->cpages; i++) { 2636 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2637 bool remap = true; 2638 2639 if (!page) 2640 continue; 2641 2642 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2643 /* 2644 * Because we are migrating several pages there can be 2645 * a deadlock between 2 concurrent migration where each 2646 * are waiting on each other page lock. 2647 * 2648 * Make migrate_vma() a best effort thing and backoff 2649 * for any page we can not lock right away. 2650 */ 2651 if (!trylock_page(page)) { 2652 migrate->src[i] = 0; 2653 migrate->cpages--; 2654 put_page(page); 2655 continue; 2656 } 2657 remap = false; 2658 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2659 } 2660 2661 /* ZONE_DEVICE pages are not on LRU */ 2662 if (!is_zone_device_page(page)) { 2663 if (!PageLRU(page) && allow_drain) { 2664 /* Drain CPU's pagevec */ 2665 lru_add_drain_all(); 2666 allow_drain = false; 2667 } 2668 2669 if (isolate_lru_page(page)) { 2670 if (remap) { 2671 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2672 migrate->cpages--; 2673 restore++; 2674 } else { 2675 migrate->src[i] = 0; 2676 unlock_page(page); 2677 migrate->cpages--; 2678 put_page(page); 2679 } 2680 continue; 2681 } 2682 2683 /* Drop the reference we took in collect */ 2684 put_page(page); 2685 } 2686 2687 if (!migrate_vma_check_page(page)) { 2688 if (remap) { 2689 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2690 migrate->cpages--; 2691 restore++; 2692 2693 if (!is_zone_device_page(page)) { 2694 get_page(page); 2695 putback_lru_page(page); 2696 } 2697 } else { 2698 migrate->src[i] = 0; 2699 unlock_page(page); 2700 migrate->cpages--; 2701 2702 if (!is_zone_device_page(page)) 2703 putback_lru_page(page); 2704 else 2705 put_page(page); 2706 } 2707 } 2708 } 2709 2710 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2711 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2712 2713 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2714 continue; 2715 2716 remove_migration_pte(page, migrate->vma, addr, page); 2717 2718 migrate->src[i] = 0; 2719 unlock_page(page); 2720 put_page(page); 2721 restore--; 2722 } 2723 } 2724 2725 /* 2726 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2727 * @migrate: migrate struct containing all migration information 2728 * 2729 * Replace page mapping (CPU page table pte) with a special migration pte entry 2730 * and check again if it has been pinned. Pinned pages are restored because we 2731 * cannot migrate them. 2732 * 2733 * This is the last step before we call the device driver callback to allocate 2734 * destination memory and copy contents of original page over to new page. 2735 */ 2736 static void migrate_vma_unmap(struct migrate_vma *migrate) 2737 { 2738 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK; 2739 const unsigned long npages = migrate->npages; 2740 const unsigned long start = migrate->start; 2741 unsigned long addr, i, restore = 0; 2742 2743 for (i = 0; i < npages; i++) { 2744 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2745 2746 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2747 continue; 2748 2749 if (page_mapped(page)) { 2750 try_to_unmap(page, flags); 2751 if (page_mapped(page)) 2752 goto restore; 2753 } 2754 2755 if (migrate_vma_check_page(page)) 2756 continue; 2757 2758 restore: 2759 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2760 migrate->cpages--; 2761 restore++; 2762 } 2763 2764 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2765 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2766 2767 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2768 continue; 2769 2770 remove_migration_ptes(page, page, false); 2771 2772 migrate->src[i] = 0; 2773 unlock_page(page); 2774 restore--; 2775 2776 if (is_zone_device_page(page)) 2777 put_page(page); 2778 else 2779 putback_lru_page(page); 2780 } 2781 } 2782 2783 /** 2784 * migrate_vma_setup() - prepare to migrate a range of memory 2785 * @args: contains the vma, start, and pfns arrays for the migration 2786 * 2787 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2788 * without an error. 2789 * 2790 * Prepare to migrate a range of memory virtual address range by collecting all 2791 * the pages backing each virtual address in the range, saving them inside the 2792 * src array. Then lock those pages and unmap them. Once the pages are locked 2793 * and unmapped, check whether each page is pinned or not. Pages that aren't 2794 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2795 * corresponding src array entry. Then restores any pages that are pinned, by 2796 * remapping and unlocking those pages. 2797 * 2798 * The caller should then allocate destination memory and copy source memory to 2799 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2800 * flag set). Once these are allocated and copied, the caller must update each 2801 * corresponding entry in the dst array with the pfn value of the destination 2802 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2803 * (destination pages must have their struct pages locked, via lock_page()). 2804 * 2805 * Note that the caller does not have to migrate all the pages that are marked 2806 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2807 * device memory to system memory. If the caller cannot migrate a device page 2808 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2809 * consequences for the userspace process, so it must be avoided if at all 2810 * possible. 2811 * 2812 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2813 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2814 * allowing the caller to allocate device memory for those unback virtual 2815 * address. For this the caller simply has to allocate device memory and 2816 * properly set the destination entry like for regular migration. Note that 2817 * this can still fails and thus inside the device driver must check if the 2818 * migration was successful for those entries after calling migrate_vma_pages() 2819 * just like for regular migration. 2820 * 2821 * After that, the callers must call migrate_vma_pages() to go over each entry 2822 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2823 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2824 * then migrate_vma_pages() to migrate struct page information from the source 2825 * struct page to the destination struct page. If it fails to migrate the 2826 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2827 * src array. 2828 * 2829 * At this point all successfully migrated pages have an entry in the src 2830 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2831 * array entry with MIGRATE_PFN_VALID flag set. 2832 * 2833 * Once migrate_vma_pages() returns the caller may inspect which pages were 2834 * successfully migrated, and which were not. Successfully migrated pages will 2835 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2836 * 2837 * It is safe to update device page table after migrate_vma_pages() because 2838 * both destination and source page are still locked, and the mmap_lock is held 2839 * in read mode (hence no one can unmap the range being migrated). 2840 * 2841 * Once the caller is done cleaning up things and updating its page table (if it 2842 * chose to do so, this is not an obligation) it finally calls 2843 * migrate_vma_finalize() to update the CPU page table to point to new pages 2844 * for successfully migrated pages or otherwise restore the CPU page table to 2845 * point to the original source pages. 2846 */ 2847 int migrate_vma_setup(struct migrate_vma *args) 2848 { 2849 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2850 2851 args->start &= PAGE_MASK; 2852 args->end &= PAGE_MASK; 2853 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2854 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2855 return -EINVAL; 2856 if (nr_pages <= 0) 2857 return -EINVAL; 2858 if (args->start < args->vma->vm_start || 2859 args->start >= args->vma->vm_end) 2860 return -EINVAL; 2861 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2862 return -EINVAL; 2863 if (!args->src || !args->dst) 2864 return -EINVAL; 2865 2866 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2867 args->cpages = 0; 2868 args->npages = 0; 2869 2870 migrate_vma_collect(args); 2871 2872 if (args->cpages) 2873 migrate_vma_prepare(args); 2874 if (args->cpages) 2875 migrate_vma_unmap(args); 2876 2877 /* 2878 * At this point pages are locked and unmapped, and thus they have 2879 * stable content and can safely be copied to destination memory that 2880 * is allocated by the drivers. 2881 */ 2882 return 0; 2883 2884 } 2885 EXPORT_SYMBOL(migrate_vma_setup); 2886 2887 /* 2888 * This code closely matches the code in: 2889 * __handle_mm_fault() 2890 * handle_pte_fault() 2891 * do_anonymous_page() 2892 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2893 * private page. 2894 */ 2895 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2896 unsigned long addr, 2897 struct page *page, 2898 unsigned long *src) 2899 { 2900 struct vm_area_struct *vma = migrate->vma; 2901 struct mm_struct *mm = vma->vm_mm; 2902 bool flush = false; 2903 spinlock_t *ptl; 2904 pte_t entry; 2905 pgd_t *pgdp; 2906 p4d_t *p4dp; 2907 pud_t *pudp; 2908 pmd_t *pmdp; 2909 pte_t *ptep; 2910 2911 /* Only allow populating anonymous memory */ 2912 if (!vma_is_anonymous(vma)) 2913 goto abort; 2914 2915 pgdp = pgd_offset(mm, addr); 2916 p4dp = p4d_alloc(mm, pgdp, addr); 2917 if (!p4dp) 2918 goto abort; 2919 pudp = pud_alloc(mm, p4dp, addr); 2920 if (!pudp) 2921 goto abort; 2922 pmdp = pmd_alloc(mm, pudp, addr); 2923 if (!pmdp) 2924 goto abort; 2925 2926 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2927 goto abort; 2928 2929 /* 2930 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2931 * pte_offset_map() on pmds where a huge pmd might be created 2932 * from a different thread. 2933 * 2934 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2935 * parallel threads are excluded by other means. 2936 * 2937 * Here we only have mmap_read_lock(mm). 2938 */ 2939 if (pte_alloc(mm, pmdp)) 2940 goto abort; 2941 2942 /* See the comment in pte_alloc_one_map() */ 2943 if (unlikely(pmd_trans_unstable(pmdp))) 2944 goto abort; 2945 2946 if (unlikely(anon_vma_prepare(vma))) 2947 goto abort; 2948 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2949 goto abort; 2950 2951 /* 2952 * The memory barrier inside __SetPageUptodate makes sure that 2953 * preceding stores to the page contents become visible before 2954 * the set_pte_at() write. 2955 */ 2956 __SetPageUptodate(page); 2957 2958 if (is_zone_device_page(page)) { 2959 if (is_device_private_page(page)) { 2960 swp_entry_t swp_entry; 2961 2962 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2963 entry = swp_entry_to_pte(swp_entry); 2964 } 2965 } else { 2966 entry = mk_pte(page, vma->vm_page_prot); 2967 if (vma->vm_flags & VM_WRITE) 2968 entry = pte_mkwrite(pte_mkdirty(entry)); 2969 } 2970 2971 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2972 2973 if (check_stable_address_space(mm)) 2974 goto unlock_abort; 2975 2976 if (pte_present(*ptep)) { 2977 unsigned long pfn = pte_pfn(*ptep); 2978 2979 if (!is_zero_pfn(pfn)) 2980 goto unlock_abort; 2981 flush = true; 2982 } else if (!pte_none(*ptep)) 2983 goto unlock_abort; 2984 2985 /* 2986 * Check for userfaultfd but do not deliver the fault. Instead, 2987 * just back off. 2988 */ 2989 if (userfaultfd_missing(vma)) 2990 goto unlock_abort; 2991 2992 inc_mm_counter(mm, MM_ANONPAGES); 2993 page_add_new_anon_rmap(page, vma, addr, false); 2994 if (!is_zone_device_page(page)) 2995 lru_cache_add_inactive_or_unevictable(page, vma); 2996 get_page(page); 2997 2998 if (flush) { 2999 flush_cache_page(vma, addr, pte_pfn(*ptep)); 3000 ptep_clear_flush_notify(vma, addr, ptep); 3001 set_pte_at_notify(mm, addr, ptep, entry); 3002 update_mmu_cache(vma, addr, ptep); 3003 } else { 3004 /* No need to invalidate - it was non-present before */ 3005 set_pte_at(mm, addr, ptep, entry); 3006 update_mmu_cache(vma, addr, ptep); 3007 } 3008 3009 pte_unmap_unlock(ptep, ptl); 3010 *src = MIGRATE_PFN_MIGRATE; 3011 return; 3012 3013 unlock_abort: 3014 pte_unmap_unlock(ptep, ptl); 3015 abort: 3016 *src &= ~MIGRATE_PFN_MIGRATE; 3017 } 3018 3019 /** 3020 * migrate_vma_pages() - migrate meta-data from src page to dst page 3021 * @migrate: migrate struct containing all migration information 3022 * 3023 * This migrates struct page meta-data from source struct page to destination 3024 * struct page. This effectively finishes the migration from source page to the 3025 * destination page. 3026 */ 3027 void migrate_vma_pages(struct migrate_vma *migrate) 3028 { 3029 const unsigned long npages = migrate->npages; 3030 const unsigned long start = migrate->start; 3031 struct mmu_notifier_range range; 3032 unsigned long addr, i; 3033 bool notified = false; 3034 3035 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 3036 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3037 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3038 struct address_space *mapping; 3039 int r; 3040 3041 if (!newpage) { 3042 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3043 continue; 3044 } 3045 3046 if (!page) { 3047 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3048 continue; 3049 if (!notified) { 3050 notified = true; 3051 3052 mmu_notifier_range_init_migrate(&range, 0, 3053 migrate->vma, migrate->vma->vm_mm, 3054 addr, migrate->end, 3055 migrate->pgmap_owner); 3056 mmu_notifier_invalidate_range_start(&range); 3057 } 3058 migrate_vma_insert_page(migrate, addr, newpage, 3059 &migrate->src[i]); 3060 continue; 3061 } 3062 3063 mapping = page_mapping(page); 3064 3065 if (is_zone_device_page(newpage)) { 3066 if (is_device_private_page(newpage)) { 3067 /* 3068 * For now only support private anonymous when 3069 * migrating to un-addressable device memory. 3070 */ 3071 if (mapping) { 3072 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3073 continue; 3074 } 3075 } else { 3076 /* 3077 * Other types of ZONE_DEVICE page are not 3078 * supported. 3079 */ 3080 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3081 continue; 3082 } 3083 } 3084 3085 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3086 if (r != MIGRATEPAGE_SUCCESS) 3087 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3088 } 3089 3090 /* 3091 * No need to double call mmu_notifier->invalidate_range() callback as 3092 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3093 * did already call it. 3094 */ 3095 if (notified) 3096 mmu_notifier_invalidate_range_only_end(&range); 3097 } 3098 EXPORT_SYMBOL(migrate_vma_pages); 3099 3100 /** 3101 * migrate_vma_finalize() - restore CPU page table entry 3102 * @migrate: migrate struct containing all migration information 3103 * 3104 * This replaces the special migration pte entry with either a mapping to the 3105 * new page if migration was successful for that page, or to the original page 3106 * otherwise. 3107 * 3108 * This also unlocks the pages and puts them back on the lru, or drops the extra 3109 * refcount, for device pages. 3110 */ 3111 void migrate_vma_finalize(struct migrate_vma *migrate) 3112 { 3113 const unsigned long npages = migrate->npages; 3114 unsigned long i; 3115 3116 for (i = 0; i < npages; i++) { 3117 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3118 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3119 3120 if (!page) { 3121 if (newpage) { 3122 unlock_page(newpage); 3123 put_page(newpage); 3124 } 3125 continue; 3126 } 3127 3128 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3129 if (newpage) { 3130 unlock_page(newpage); 3131 put_page(newpage); 3132 } 3133 newpage = page; 3134 } 3135 3136 remove_migration_ptes(page, newpage, false); 3137 unlock_page(page); 3138 3139 if (is_zone_device_page(page)) 3140 put_page(page); 3141 else 3142 putback_lru_page(page); 3143 3144 if (newpage != page) { 3145 unlock_page(newpage); 3146 if (is_zone_device_page(newpage)) 3147 put_page(newpage); 3148 else 3149 putback_lru_page(newpage); 3150 } 3151 } 3152 } 3153 EXPORT_SYMBOL(migrate_vma_finalize); 3154 #endif /* CONFIG_DEVICE_PRIVATE */ 3155