1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter <clameter@sgi.com> 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/memcontrol.h> 33 34 #include "internal.h" 35 36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 37 38 /* 39 * Isolate one page from the LRU lists. If successful put it onto 40 * the indicated list with elevated page count. 41 * 42 * Result: 43 * -EBUSY: page not on LRU list 44 * 0: page removed from LRU list and added to the specified list. 45 */ 46 int isolate_lru_page(struct page *page, struct list_head *pagelist) 47 { 48 int ret = -EBUSY; 49 50 if (PageLRU(page)) { 51 struct zone *zone = page_zone(page); 52 53 spin_lock_irq(&zone->lru_lock); 54 if (PageLRU(page) && get_page_unless_zero(page)) { 55 ret = 0; 56 ClearPageLRU(page); 57 if (PageActive(page)) 58 del_page_from_active_list(zone, page); 59 else 60 del_page_from_inactive_list(zone, page); 61 list_add_tail(&page->lru, pagelist); 62 } 63 spin_unlock_irq(&zone->lru_lock); 64 } 65 return ret; 66 } 67 68 /* 69 * migrate_prep() needs to be called before we start compiling a list of pages 70 * to be migrated using isolate_lru_page(). 71 */ 72 int migrate_prep(void) 73 { 74 /* 75 * Clear the LRU lists so pages can be isolated. 76 * Note that pages may be moved off the LRU after we have 77 * drained them. Those pages will fail to migrate like other 78 * pages that may be busy. 79 */ 80 lru_add_drain_all(); 81 82 return 0; 83 } 84 85 static inline void move_to_lru(struct page *page) 86 { 87 if (PageActive(page)) { 88 /* 89 * lru_cache_add_active checks that 90 * the PG_active bit is off. 91 */ 92 ClearPageActive(page); 93 lru_cache_add_active(page); 94 } else { 95 lru_cache_add(page); 96 } 97 put_page(page); 98 } 99 100 /* 101 * Add isolated pages on the list back to the LRU. 102 * 103 * returns the number of pages put back. 104 */ 105 int putback_lru_pages(struct list_head *l) 106 { 107 struct page *page; 108 struct page *page2; 109 int count = 0; 110 111 list_for_each_entry_safe(page, page2, l, lru) { 112 list_del(&page->lru); 113 move_to_lru(page); 114 count++; 115 } 116 return count; 117 } 118 119 /* 120 * Restore a potential migration pte to a working pte entry 121 */ 122 static void remove_migration_pte(struct vm_area_struct *vma, 123 struct page *old, struct page *new) 124 { 125 struct mm_struct *mm = vma->vm_mm; 126 swp_entry_t entry; 127 pgd_t *pgd; 128 pud_t *pud; 129 pmd_t *pmd; 130 pte_t *ptep, pte; 131 spinlock_t *ptl; 132 unsigned long addr = page_address_in_vma(new, vma); 133 134 if (addr == -EFAULT) 135 return; 136 137 pgd = pgd_offset(mm, addr); 138 if (!pgd_present(*pgd)) 139 return; 140 141 pud = pud_offset(pgd, addr); 142 if (!pud_present(*pud)) 143 return; 144 145 pmd = pmd_offset(pud, addr); 146 if (!pmd_present(*pmd)) 147 return; 148 149 ptep = pte_offset_map(pmd, addr); 150 151 if (!is_swap_pte(*ptep)) { 152 pte_unmap(ptep); 153 return; 154 } 155 156 ptl = pte_lockptr(mm, pmd); 157 spin_lock(ptl); 158 pte = *ptep; 159 if (!is_swap_pte(pte)) 160 goto out; 161 162 entry = pte_to_swp_entry(pte); 163 164 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 165 goto out; 166 167 /* 168 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge. 169 * Failure is not an option here: we're now expected to remove every 170 * migration pte, and will cause crashes otherwise. Normally this 171 * is not an issue: mem_cgroup_prepare_migration bumped up the old 172 * page_cgroup count for safety, that's now attached to the new page, 173 * so this charge should just be another incrementation of the count, 174 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if 175 * there's been a force_empty, those reference counts may no longer 176 * be reliable, and this charge can actually fail: oh well, we don't 177 * make the situation any worse by proceeding as if it had succeeded. 178 */ 179 mem_cgroup_charge(new, mm, GFP_ATOMIC); 180 181 get_page(new); 182 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 183 if (is_write_migration_entry(entry)) 184 pte = pte_mkwrite(pte); 185 flush_cache_page(vma, addr, pte_pfn(pte)); 186 set_pte_at(mm, addr, ptep, pte); 187 188 if (PageAnon(new)) 189 page_add_anon_rmap(new, vma, addr); 190 else 191 page_add_file_rmap(new); 192 193 /* No need to invalidate - it was non-present before */ 194 update_mmu_cache(vma, addr, pte); 195 196 out: 197 pte_unmap_unlock(ptep, ptl); 198 } 199 200 /* 201 * Note that remove_file_migration_ptes will only work on regular mappings, 202 * Nonlinear mappings do not use migration entries. 203 */ 204 static void remove_file_migration_ptes(struct page *old, struct page *new) 205 { 206 struct vm_area_struct *vma; 207 struct address_space *mapping = page_mapping(new); 208 struct prio_tree_iter iter; 209 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 210 211 if (!mapping) 212 return; 213 214 spin_lock(&mapping->i_mmap_lock); 215 216 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 217 remove_migration_pte(vma, old, new); 218 219 spin_unlock(&mapping->i_mmap_lock); 220 } 221 222 /* 223 * Must hold mmap_sem lock on at least one of the vmas containing 224 * the page so that the anon_vma cannot vanish. 225 */ 226 static void remove_anon_migration_ptes(struct page *old, struct page *new) 227 { 228 struct anon_vma *anon_vma; 229 struct vm_area_struct *vma; 230 unsigned long mapping; 231 232 mapping = (unsigned long)new->mapping; 233 234 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 235 return; 236 237 /* 238 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 239 */ 240 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 241 spin_lock(&anon_vma->lock); 242 243 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 244 remove_migration_pte(vma, old, new); 245 246 spin_unlock(&anon_vma->lock); 247 } 248 249 /* 250 * Get rid of all migration entries and replace them by 251 * references to the indicated page. 252 */ 253 static void remove_migration_ptes(struct page *old, struct page *new) 254 { 255 if (PageAnon(new)) 256 remove_anon_migration_ptes(old, new); 257 else 258 remove_file_migration_ptes(old, new); 259 } 260 261 /* 262 * Something used the pte of a page under migration. We need to 263 * get to the page and wait until migration is finished. 264 * When we return from this function the fault will be retried. 265 * 266 * This function is called from do_swap_page(). 267 */ 268 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 269 unsigned long address) 270 { 271 pte_t *ptep, pte; 272 spinlock_t *ptl; 273 swp_entry_t entry; 274 struct page *page; 275 276 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 277 pte = *ptep; 278 if (!is_swap_pte(pte)) 279 goto out; 280 281 entry = pte_to_swp_entry(pte); 282 if (!is_migration_entry(entry)) 283 goto out; 284 285 page = migration_entry_to_page(entry); 286 287 get_page(page); 288 pte_unmap_unlock(ptep, ptl); 289 wait_on_page_locked(page); 290 put_page(page); 291 return; 292 out: 293 pte_unmap_unlock(ptep, ptl); 294 } 295 296 /* 297 * Replace the page in the mapping. 298 * 299 * The number of remaining references must be: 300 * 1 for anonymous pages without a mapping 301 * 2 for pages with a mapping 302 * 3 for pages with a mapping and PagePrivate set. 303 */ 304 static int migrate_page_move_mapping(struct address_space *mapping, 305 struct page *newpage, struct page *page) 306 { 307 void **pslot; 308 309 if (!mapping) { 310 /* Anonymous page without mapping */ 311 if (page_count(page) != 1) 312 return -EAGAIN; 313 return 0; 314 } 315 316 write_lock_irq(&mapping->tree_lock); 317 318 pslot = radix_tree_lookup_slot(&mapping->page_tree, 319 page_index(page)); 320 321 if (page_count(page) != 2 + !!PagePrivate(page) || 322 (struct page *)radix_tree_deref_slot(pslot) != page) { 323 write_unlock_irq(&mapping->tree_lock); 324 return -EAGAIN; 325 } 326 327 /* 328 * Now we know that no one else is looking at the page. 329 */ 330 get_page(newpage); /* add cache reference */ 331 #ifdef CONFIG_SWAP 332 if (PageSwapCache(page)) { 333 SetPageSwapCache(newpage); 334 set_page_private(newpage, page_private(page)); 335 } 336 #endif 337 338 radix_tree_replace_slot(pslot, newpage); 339 340 /* 341 * Drop cache reference from old page. 342 * We know this isn't the last reference. 343 */ 344 __put_page(page); 345 346 /* 347 * If moved to a different zone then also account 348 * the page for that zone. Other VM counters will be 349 * taken care of when we establish references to the 350 * new page and drop references to the old page. 351 * 352 * Note that anonymous pages are accounted for 353 * via NR_FILE_PAGES and NR_ANON_PAGES if they 354 * are mapped to swap space. 355 */ 356 __dec_zone_page_state(page, NR_FILE_PAGES); 357 __inc_zone_page_state(newpage, NR_FILE_PAGES); 358 359 write_unlock_irq(&mapping->tree_lock); 360 361 return 0; 362 } 363 364 /* 365 * Copy the page to its new location 366 */ 367 static void migrate_page_copy(struct page *newpage, struct page *page) 368 { 369 copy_highpage(newpage, page); 370 371 if (PageError(page)) 372 SetPageError(newpage); 373 if (PageReferenced(page)) 374 SetPageReferenced(newpage); 375 if (PageUptodate(page)) 376 SetPageUptodate(newpage); 377 if (PageActive(page)) 378 SetPageActive(newpage); 379 if (PageChecked(page)) 380 SetPageChecked(newpage); 381 if (PageMappedToDisk(page)) 382 SetPageMappedToDisk(newpage); 383 384 if (PageDirty(page)) { 385 clear_page_dirty_for_io(page); 386 set_page_dirty(newpage); 387 } 388 389 #ifdef CONFIG_SWAP 390 ClearPageSwapCache(page); 391 #endif 392 ClearPageActive(page); 393 ClearPagePrivate(page); 394 set_page_private(page, 0); 395 page->mapping = NULL; 396 397 /* 398 * If any waiters have accumulated on the new page then 399 * wake them up. 400 */ 401 if (PageWriteback(newpage)) 402 end_page_writeback(newpage); 403 } 404 405 /************************************************************ 406 * Migration functions 407 ***********************************************************/ 408 409 /* Always fail migration. Used for mappings that are not movable */ 410 int fail_migrate_page(struct address_space *mapping, 411 struct page *newpage, struct page *page) 412 { 413 return -EIO; 414 } 415 EXPORT_SYMBOL(fail_migrate_page); 416 417 /* 418 * Common logic to directly migrate a single page suitable for 419 * pages that do not use PagePrivate. 420 * 421 * Pages are locked upon entry and exit. 422 */ 423 int migrate_page(struct address_space *mapping, 424 struct page *newpage, struct page *page) 425 { 426 int rc; 427 428 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 429 430 rc = migrate_page_move_mapping(mapping, newpage, page); 431 432 if (rc) 433 return rc; 434 435 migrate_page_copy(newpage, page); 436 return 0; 437 } 438 EXPORT_SYMBOL(migrate_page); 439 440 #ifdef CONFIG_BLOCK 441 /* 442 * Migration function for pages with buffers. This function can only be used 443 * if the underlying filesystem guarantees that no other references to "page" 444 * exist. 445 */ 446 int buffer_migrate_page(struct address_space *mapping, 447 struct page *newpage, struct page *page) 448 { 449 struct buffer_head *bh, *head; 450 int rc; 451 452 if (!page_has_buffers(page)) 453 return migrate_page(mapping, newpage, page); 454 455 head = page_buffers(page); 456 457 rc = migrate_page_move_mapping(mapping, newpage, page); 458 459 if (rc) 460 return rc; 461 462 bh = head; 463 do { 464 get_bh(bh); 465 lock_buffer(bh); 466 bh = bh->b_this_page; 467 468 } while (bh != head); 469 470 ClearPagePrivate(page); 471 set_page_private(newpage, page_private(page)); 472 set_page_private(page, 0); 473 put_page(page); 474 get_page(newpage); 475 476 bh = head; 477 do { 478 set_bh_page(bh, newpage, bh_offset(bh)); 479 bh = bh->b_this_page; 480 481 } while (bh != head); 482 483 SetPagePrivate(newpage); 484 485 migrate_page_copy(newpage, page); 486 487 bh = head; 488 do { 489 unlock_buffer(bh); 490 put_bh(bh); 491 bh = bh->b_this_page; 492 493 } while (bh != head); 494 495 return 0; 496 } 497 EXPORT_SYMBOL(buffer_migrate_page); 498 #endif 499 500 /* 501 * Writeback a page to clean the dirty state 502 */ 503 static int writeout(struct address_space *mapping, struct page *page) 504 { 505 struct writeback_control wbc = { 506 .sync_mode = WB_SYNC_NONE, 507 .nr_to_write = 1, 508 .range_start = 0, 509 .range_end = LLONG_MAX, 510 .nonblocking = 1, 511 .for_reclaim = 1 512 }; 513 int rc; 514 515 if (!mapping->a_ops->writepage) 516 /* No write method for the address space */ 517 return -EINVAL; 518 519 if (!clear_page_dirty_for_io(page)) 520 /* Someone else already triggered a write */ 521 return -EAGAIN; 522 523 /* 524 * A dirty page may imply that the underlying filesystem has 525 * the page on some queue. So the page must be clean for 526 * migration. Writeout may mean we loose the lock and the 527 * page state is no longer what we checked for earlier. 528 * At this point we know that the migration attempt cannot 529 * be successful. 530 */ 531 remove_migration_ptes(page, page); 532 533 rc = mapping->a_ops->writepage(page, &wbc); 534 if (rc < 0) 535 /* I/O Error writing */ 536 return -EIO; 537 538 if (rc != AOP_WRITEPAGE_ACTIVATE) 539 /* unlocked. Relock */ 540 lock_page(page); 541 542 return -EAGAIN; 543 } 544 545 /* 546 * Default handling if a filesystem does not provide a migration function. 547 */ 548 static int fallback_migrate_page(struct address_space *mapping, 549 struct page *newpage, struct page *page) 550 { 551 if (PageDirty(page)) 552 return writeout(mapping, page); 553 554 /* 555 * Buffers may be managed in a filesystem specific way. 556 * We must have no buffers or drop them. 557 */ 558 if (PagePrivate(page) && 559 !try_to_release_page(page, GFP_KERNEL)) 560 return -EAGAIN; 561 562 return migrate_page(mapping, newpage, page); 563 } 564 565 /* 566 * Move a page to a newly allocated page 567 * The page is locked and all ptes have been successfully removed. 568 * 569 * The new page will have replaced the old page if this function 570 * is successful. 571 */ 572 static int move_to_new_page(struct page *newpage, struct page *page) 573 { 574 struct address_space *mapping; 575 int rc; 576 577 /* 578 * Block others from accessing the page when we get around to 579 * establishing additional references. We are the only one 580 * holding a reference to the new page at this point. 581 */ 582 if (TestSetPageLocked(newpage)) 583 BUG(); 584 585 /* Prepare mapping for the new page.*/ 586 newpage->index = page->index; 587 newpage->mapping = page->mapping; 588 589 mapping = page_mapping(page); 590 if (!mapping) 591 rc = migrate_page(mapping, newpage, page); 592 else if (mapping->a_ops->migratepage) 593 /* 594 * Most pages have a mapping and most filesystems 595 * should provide a migration function. Anonymous 596 * pages are part of swap space which also has its 597 * own migration function. This is the most common 598 * path for page migration. 599 */ 600 rc = mapping->a_ops->migratepage(mapping, 601 newpage, page); 602 else 603 rc = fallback_migrate_page(mapping, newpage, page); 604 605 if (!rc) { 606 mem_cgroup_page_migration(page, newpage); 607 remove_migration_ptes(page, newpage); 608 } else 609 newpage->mapping = NULL; 610 611 unlock_page(newpage); 612 613 return rc; 614 } 615 616 /* 617 * Obtain the lock on page, remove all ptes and migrate the page 618 * to the newly allocated page in newpage. 619 */ 620 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 621 struct page *page, int force) 622 { 623 int rc = 0; 624 int *result = NULL; 625 struct page *newpage = get_new_page(page, private, &result); 626 int rcu_locked = 0; 627 int charge = 0; 628 629 if (!newpage) 630 return -ENOMEM; 631 632 if (page_count(page) == 1) 633 /* page was freed from under us. So we are done. */ 634 goto move_newpage; 635 636 rc = -EAGAIN; 637 if (TestSetPageLocked(page)) { 638 if (!force) 639 goto move_newpage; 640 lock_page(page); 641 } 642 643 if (PageWriteback(page)) { 644 if (!force) 645 goto unlock; 646 wait_on_page_writeback(page); 647 } 648 /* 649 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 650 * we cannot notice that anon_vma is freed while we migrates a page. 651 * This rcu_read_lock() delays freeing anon_vma pointer until the end 652 * of migration. File cache pages are no problem because of page_lock() 653 * File Caches may use write_page() or lock_page() in migration, then, 654 * just care Anon page here. 655 */ 656 if (PageAnon(page)) { 657 rcu_read_lock(); 658 rcu_locked = 1; 659 } 660 661 /* 662 * Corner case handling: 663 * 1. When a new swap-cache page is read into, it is added to the LRU 664 * and treated as swapcache but it has no rmap yet. 665 * Calling try_to_unmap() against a page->mapping==NULL page will 666 * trigger a BUG. So handle it here. 667 * 2. An orphaned page (see truncate_complete_page) might have 668 * fs-private metadata. The page can be picked up due to memory 669 * offlining. Everywhere else except page reclaim, the page is 670 * invisible to the vm, so the page can not be migrated. So try to 671 * free the metadata, so the page can be freed. 672 */ 673 if (!page->mapping) { 674 if (!PageAnon(page) && PagePrivate(page)) { 675 /* 676 * Go direct to try_to_free_buffers() here because 677 * a) that's what try_to_release_page() would do anyway 678 * b) we may be under rcu_read_lock() here, so we can't 679 * use GFP_KERNEL which is what try_to_release_page() 680 * needs to be effective. 681 */ 682 try_to_free_buffers(page); 683 } 684 goto rcu_unlock; 685 } 686 687 charge = mem_cgroup_prepare_migration(page); 688 /* Establish migration ptes or remove ptes */ 689 try_to_unmap(page, 1); 690 691 if (!page_mapped(page)) 692 rc = move_to_new_page(newpage, page); 693 694 if (rc) { 695 remove_migration_ptes(page, page); 696 if (charge) 697 mem_cgroup_end_migration(page); 698 } else if (charge) 699 mem_cgroup_end_migration(newpage); 700 rcu_unlock: 701 if (rcu_locked) 702 rcu_read_unlock(); 703 704 unlock: 705 706 unlock_page(page); 707 708 if (rc != -EAGAIN) { 709 /* 710 * A page that has been migrated has all references 711 * removed and will be freed. A page that has not been 712 * migrated will have kepts its references and be 713 * restored. 714 */ 715 list_del(&page->lru); 716 move_to_lru(page); 717 } 718 719 move_newpage: 720 /* 721 * Move the new page to the LRU. If migration was not successful 722 * then this will free the page. 723 */ 724 move_to_lru(newpage); 725 if (result) { 726 if (rc) 727 *result = rc; 728 else 729 *result = page_to_nid(newpage); 730 } 731 return rc; 732 } 733 734 /* 735 * migrate_pages 736 * 737 * The function takes one list of pages to migrate and a function 738 * that determines from the page to be migrated and the private data 739 * the target of the move and allocates the page. 740 * 741 * The function returns after 10 attempts or if no pages 742 * are movable anymore because to has become empty 743 * or no retryable pages exist anymore. All pages will be 744 * returned to the LRU or freed. 745 * 746 * Return: Number of pages not migrated or error code. 747 */ 748 int migrate_pages(struct list_head *from, 749 new_page_t get_new_page, unsigned long private) 750 { 751 int retry = 1; 752 int nr_failed = 0; 753 int pass = 0; 754 struct page *page; 755 struct page *page2; 756 int swapwrite = current->flags & PF_SWAPWRITE; 757 int rc; 758 759 if (!swapwrite) 760 current->flags |= PF_SWAPWRITE; 761 762 for(pass = 0; pass < 10 && retry; pass++) { 763 retry = 0; 764 765 list_for_each_entry_safe(page, page2, from, lru) { 766 cond_resched(); 767 768 rc = unmap_and_move(get_new_page, private, 769 page, pass > 2); 770 771 switch(rc) { 772 case -ENOMEM: 773 goto out; 774 case -EAGAIN: 775 retry++; 776 break; 777 case 0: 778 break; 779 default: 780 /* Permanent failure */ 781 nr_failed++; 782 break; 783 } 784 } 785 } 786 rc = 0; 787 out: 788 if (!swapwrite) 789 current->flags &= ~PF_SWAPWRITE; 790 791 putback_lru_pages(from); 792 793 if (rc) 794 return rc; 795 796 return nr_failed + retry; 797 } 798 799 #ifdef CONFIG_NUMA 800 /* 801 * Move a list of individual pages 802 */ 803 struct page_to_node { 804 unsigned long addr; 805 struct page *page; 806 int node; 807 int status; 808 }; 809 810 static struct page *new_page_node(struct page *p, unsigned long private, 811 int **result) 812 { 813 struct page_to_node *pm = (struct page_to_node *)private; 814 815 while (pm->node != MAX_NUMNODES && pm->page != p) 816 pm++; 817 818 if (pm->node == MAX_NUMNODES) 819 return NULL; 820 821 *result = &pm->status; 822 823 return alloc_pages_node(pm->node, 824 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 825 } 826 827 /* 828 * Move a set of pages as indicated in the pm array. The addr 829 * field must be set to the virtual address of the page to be moved 830 * and the node number must contain a valid target node. 831 */ 832 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, 833 int migrate_all) 834 { 835 int err; 836 struct page_to_node *pp; 837 LIST_HEAD(pagelist); 838 839 down_read(&mm->mmap_sem); 840 841 /* 842 * Build a list of pages to migrate 843 */ 844 migrate_prep(); 845 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 846 struct vm_area_struct *vma; 847 struct page *page; 848 849 /* 850 * A valid page pointer that will not match any of the 851 * pages that will be moved. 852 */ 853 pp->page = ZERO_PAGE(0); 854 855 err = -EFAULT; 856 vma = find_vma(mm, pp->addr); 857 if (!vma || !vma_migratable(vma)) 858 goto set_status; 859 860 page = follow_page(vma, pp->addr, FOLL_GET); 861 err = -ENOENT; 862 if (!page) 863 goto set_status; 864 865 if (PageReserved(page)) /* Check for zero page */ 866 goto put_and_set; 867 868 pp->page = page; 869 err = page_to_nid(page); 870 871 if (err == pp->node) 872 /* 873 * Node already in the right place 874 */ 875 goto put_and_set; 876 877 err = -EACCES; 878 if (page_mapcount(page) > 1 && 879 !migrate_all) 880 goto put_and_set; 881 882 err = isolate_lru_page(page, &pagelist); 883 put_and_set: 884 /* 885 * Either remove the duplicate refcount from 886 * isolate_lru_page() or drop the page ref if it was 887 * not isolated. 888 */ 889 put_page(page); 890 set_status: 891 pp->status = err; 892 } 893 894 if (!list_empty(&pagelist)) 895 err = migrate_pages(&pagelist, new_page_node, 896 (unsigned long)pm); 897 else 898 err = -ENOENT; 899 900 up_read(&mm->mmap_sem); 901 return err; 902 } 903 904 /* 905 * Determine the nodes of a list of pages. The addr in the pm array 906 * must have been set to the virtual address of which we want to determine 907 * the node number. 908 */ 909 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) 910 { 911 down_read(&mm->mmap_sem); 912 913 for ( ; pm->node != MAX_NUMNODES; pm++) { 914 struct vm_area_struct *vma; 915 struct page *page; 916 int err; 917 918 err = -EFAULT; 919 vma = find_vma(mm, pm->addr); 920 if (!vma) 921 goto set_status; 922 923 page = follow_page(vma, pm->addr, 0); 924 err = -ENOENT; 925 /* Use PageReserved to check for zero page */ 926 if (!page || PageReserved(page)) 927 goto set_status; 928 929 err = page_to_nid(page); 930 set_status: 931 pm->status = err; 932 } 933 934 up_read(&mm->mmap_sem); 935 return 0; 936 } 937 938 /* 939 * Move a list of pages in the address space of the currently executing 940 * process. 941 */ 942 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 943 const void __user * __user *pages, 944 const int __user *nodes, 945 int __user *status, int flags) 946 { 947 int err = 0; 948 int i; 949 struct task_struct *task; 950 nodemask_t task_nodes; 951 struct mm_struct *mm; 952 struct page_to_node *pm = NULL; 953 954 /* Check flags */ 955 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 956 return -EINVAL; 957 958 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 959 return -EPERM; 960 961 /* Find the mm_struct */ 962 read_lock(&tasklist_lock); 963 task = pid ? find_task_by_vpid(pid) : current; 964 if (!task) { 965 read_unlock(&tasklist_lock); 966 return -ESRCH; 967 } 968 mm = get_task_mm(task); 969 read_unlock(&tasklist_lock); 970 971 if (!mm) 972 return -EINVAL; 973 974 /* 975 * Check if this process has the right to modify the specified 976 * process. The right exists if the process has administrative 977 * capabilities, superuser privileges or the same 978 * userid as the target process. 979 */ 980 if ((current->euid != task->suid) && (current->euid != task->uid) && 981 (current->uid != task->suid) && (current->uid != task->uid) && 982 !capable(CAP_SYS_NICE)) { 983 err = -EPERM; 984 goto out2; 985 } 986 987 err = security_task_movememory(task); 988 if (err) 989 goto out2; 990 991 992 task_nodes = cpuset_mems_allowed(task); 993 994 /* Limit nr_pages so that the multiplication may not overflow */ 995 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 996 err = -E2BIG; 997 goto out2; 998 } 999 1000 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 1001 if (!pm) { 1002 err = -ENOMEM; 1003 goto out2; 1004 } 1005 1006 /* 1007 * Get parameters from user space and initialize the pm 1008 * array. Return various errors if the user did something wrong. 1009 */ 1010 for (i = 0; i < nr_pages; i++) { 1011 const void __user *p; 1012 1013 err = -EFAULT; 1014 if (get_user(p, pages + i)) 1015 goto out; 1016 1017 pm[i].addr = (unsigned long)p; 1018 if (nodes) { 1019 int node; 1020 1021 if (get_user(node, nodes + i)) 1022 goto out; 1023 1024 err = -ENODEV; 1025 if (!node_state(node, N_HIGH_MEMORY)) 1026 goto out; 1027 1028 err = -EACCES; 1029 if (!node_isset(node, task_nodes)) 1030 goto out; 1031 1032 pm[i].node = node; 1033 } else 1034 pm[i].node = 0; /* anything to not match MAX_NUMNODES */ 1035 } 1036 /* End marker */ 1037 pm[nr_pages].node = MAX_NUMNODES; 1038 1039 if (nodes) 1040 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); 1041 else 1042 err = do_pages_stat(mm, pm); 1043 1044 if (err >= 0) 1045 /* Return status information */ 1046 for (i = 0; i < nr_pages; i++) 1047 if (put_user(pm[i].status, status + i)) 1048 err = -EFAULT; 1049 1050 out: 1051 vfree(pm); 1052 out2: 1053 mmput(mm); 1054 return err; 1055 } 1056 #endif 1057 1058 /* 1059 * Call migration functions in the vma_ops that may prepare 1060 * memory in a vm for migration. migration functions may perform 1061 * the migration for vmas that do not have an underlying page struct. 1062 */ 1063 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1064 const nodemask_t *from, unsigned long flags) 1065 { 1066 struct vm_area_struct *vma; 1067 int err = 0; 1068 1069 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 1070 if (vma->vm_ops && vma->vm_ops->migrate) { 1071 err = vma->vm_ops->migrate(vma, to, from, flags); 1072 if (err) 1073 break; 1074 } 1075 } 1076 return err; 1077 } 1078