xref: /openbmc/linux/mm/migrate.c (revision a1e58bbd)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 
34 #include "internal.h"
35 
36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 
38 /*
39  * Isolate one page from the LRU lists. If successful put it onto
40  * the indicated list with elevated page count.
41  *
42  * Result:
43  *  -EBUSY: page not on LRU list
44  *  0: page removed from LRU list and added to the specified list.
45  */
46 int isolate_lru_page(struct page *page, struct list_head *pagelist)
47 {
48 	int ret = -EBUSY;
49 
50 	if (PageLRU(page)) {
51 		struct zone *zone = page_zone(page);
52 
53 		spin_lock_irq(&zone->lru_lock);
54 		if (PageLRU(page) && get_page_unless_zero(page)) {
55 			ret = 0;
56 			ClearPageLRU(page);
57 			if (PageActive(page))
58 				del_page_from_active_list(zone, page);
59 			else
60 				del_page_from_inactive_list(zone, page);
61 			list_add_tail(&page->lru, pagelist);
62 		}
63 		spin_unlock_irq(&zone->lru_lock);
64 	}
65 	return ret;
66 }
67 
68 /*
69  * migrate_prep() needs to be called before we start compiling a list of pages
70  * to be migrated using isolate_lru_page().
71  */
72 int migrate_prep(void)
73 {
74 	/*
75 	 * Clear the LRU lists so pages can be isolated.
76 	 * Note that pages may be moved off the LRU after we have
77 	 * drained them. Those pages will fail to migrate like other
78 	 * pages that may be busy.
79 	 */
80 	lru_add_drain_all();
81 
82 	return 0;
83 }
84 
85 static inline void move_to_lru(struct page *page)
86 {
87 	if (PageActive(page)) {
88 		/*
89 		 * lru_cache_add_active checks that
90 		 * the PG_active bit is off.
91 		 */
92 		ClearPageActive(page);
93 		lru_cache_add_active(page);
94 	} else {
95 		lru_cache_add(page);
96 	}
97 	put_page(page);
98 }
99 
100 /*
101  * Add isolated pages on the list back to the LRU.
102  *
103  * returns the number of pages put back.
104  */
105 int putback_lru_pages(struct list_head *l)
106 {
107 	struct page *page;
108 	struct page *page2;
109 	int count = 0;
110 
111 	list_for_each_entry_safe(page, page2, l, lru) {
112 		list_del(&page->lru);
113 		move_to_lru(page);
114 		count++;
115 	}
116 	return count;
117 }
118 
119 /*
120  * Restore a potential migration pte to a working pte entry
121  */
122 static void remove_migration_pte(struct vm_area_struct *vma,
123 		struct page *old, struct page *new)
124 {
125 	struct mm_struct *mm = vma->vm_mm;
126 	swp_entry_t entry;
127  	pgd_t *pgd;
128  	pud_t *pud;
129  	pmd_t *pmd;
130 	pte_t *ptep, pte;
131  	spinlock_t *ptl;
132 	unsigned long addr = page_address_in_vma(new, vma);
133 
134 	if (addr == -EFAULT)
135 		return;
136 
137  	pgd = pgd_offset(mm, addr);
138 	if (!pgd_present(*pgd))
139                 return;
140 
141 	pud = pud_offset(pgd, addr);
142 	if (!pud_present(*pud))
143                 return;
144 
145 	pmd = pmd_offset(pud, addr);
146 	if (!pmd_present(*pmd))
147 		return;
148 
149 	ptep = pte_offset_map(pmd, addr);
150 
151 	if (!is_swap_pte(*ptep)) {
152 		pte_unmap(ptep);
153  		return;
154  	}
155 
156  	ptl = pte_lockptr(mm, pmd);
157  	spin_lock(ptl);
158 	pte = *ptep;
159 	if (!is_swap_pte(pte))
160 		goto out;
161 
162 	entry = pte_to_swp_entry(pte);
163 
164 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
165 		goto out;
166 
167 	/*
168 	 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
169 	 * Failure is not an option here: we're now expected to remove every
170 	 * migration pte, and will cause crashes otherwise.  Normally this
171 	 * is not an issue: mem_cgroup_prepare_migration bumped up the old
172 	 * page_cgroup count for safety, that's now attached to the new page,
173 	 * so this charge should just be another incrementation of the count,
174 	 * to keep in balance with rmap.c's mem_cgroup_uncharging.  But if
175 	 * there's been a force_empty, those reference counts may no longer
176 	 * be reliable, and this charge can actually fail: oh well, we don't
177 	 * make the situation any worse by proceeding as if it had succeeded.
178 	 */
179 	mem_cgroup_charge(new, mm, GFP_ATOMIC);
180 
181 	get_page(new);
182 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
183 	if (is_write_migration_entry(entry))
184 		pte = pte_mkwrite(pte);
185 	flush_cache_page(vma, addr, pte_pfn(pte));
186 	set_pte_at(mm, addr, ptep, pte);
187 
188 	if (PageAnon(new))
189 		page_add_anon_rmap(new, vma, addr);
190 	else
191 		page_add_file_rmap(new);
192 
193 	/* No need to invalidate - it was non-present before */
194 	update_mmu_cache(vma, addr, pte);
195 
196 out:
197 	pte_unmap_unlock(ptep, ptl);
198 }
199 
200 /*
201  * Note that remove_file_migration_ptes will only work on regular mappings,
202  * Nonlinear mappings do not use migration entries.
203  */
204 static void remove_file_migration_ptes(struct page *old, struct page *new)
205 {
206 	struct vm_area_struct *vma;
207 	struct address_space *mapping = page_mapping(new);
208 	struct prio_tree_iter iter;
209 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
210 
211 	if (!mapping)
212 		return;
213 
214 	spin_lock(&mapping->i_mmap_lock);
215 
216 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
217 		remove_migration_pte(vma, old, new);
218 
219 	spin_unlock(&mapping->i_mmap_lock);
220 }
221 
222 /*
223  * Must hold mmap_sem lock on at least one of the vmas containing
224  * the page so that the anon_vma cannot vanish.
225  */
226 static void remove_anon_migration_ptes(struct page *old, struct page *new)
227 {
228 	struct anon_vma *anon_vma;
229 	struct vm_area_struct *vma;
230 	unsigned long mapping;
231 
232 	mapping = (unsigned long)new->mapping;
233 
234 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
235 		return;
236 
237 	/*
238 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
239 	 */
240 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
241 	spin_lock(&anon_vma->lock);
242 
243 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
244 		remove_migration_pte(vma, old, new);
245 
246 	spin_unlock(&anon_vma->lock);
247 }
248 
249 /*
250  * Get rid of all migration entries and replace them by
251  * references to the indicated page.
252  */
253 static void remove_migration_ptes(struct page *old, struct page *new)
254 {
255 	if (PageAnon(new))
256 		remove_anon_migration_ptes(old, new);
257 	else
258 		remove_file_migration_ptes(old, new);
259 }
260 
261 /*
262  * Something used the pte of a page under migration. We need to
263  * get to the page and wait until migration is finished.
264  * When we return from this function the fault will be retried.
265  *
266  * This function is called from do_swap_page().
267  */
268 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
269 				unsigned long address)
270 {
271 	pte_t *ptep, pte;
272 	spinlock_t *ptl;
273 	swp_entry_t entry;
274 	struct page *page;
275 
276 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
277 	pte = *ptep;
278 	if (!is_swap_pte(pte))
279 		goto out;
280 
281 	entry = pte_to_swp_entry(pte);
282 	if (!is_migration_entry(entry))
283 		goto out;
284 
285 	page = migration_entry_to_page(entry);
286 
287 	get_page(page);
288 	pte_unmap_unlock(ptep, ptl);
289 	wait_on_page_locked(page);
290 	put_page(page);
291 	return;
292 out:
293 	pte_unmap_unlock(ptep, ptl);
294 }
295 
296 /*
297  * Replace the page in the mapping.
298  *
299  * The number of remaining references must be:
300  * 1 for anonymous pages without a mapping
301  * 2 for pages with a mapping
302  * 3 for pages with a mapping and PagePrivate set.
303  */
304 static int migrate_page_move_mapping(struct address_space *mapping,
305 		struct page *newpage, struct page *page)
306 {
307 	void **pslot;
308 
309 	if (!mapping) {
310 		/* Anonymous page without mapping */
311 		if (page_count(page) != 1)
312 			return -EAGAIN;
313 		return 0;
314 	}
315 
316 	write_lock_irq(&mapping->tree_lock);
317 
318 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
319  					page_index(page));
320 
321 	if (page_count(page) != 2 + !!PagePrivate(page) ||
322 			(struct page *)radix_tree_deref_slot(pslot) != page) {
323 		write_unlock_irq(&mapping->tree_lock);
324 		return -EAGAIN;
325 	}
326 
327 	/*
328 	 * Now we know that no one else is looking at the page.
329 	 */
330 	get_page(newpage);	/* add cache reference */
331 #ifdef CONFIG_SWAP
332 	if (PageSwapCache(page)) {
333 		SetPageSwapCache(newpage);
334 		set_page_private(newpage, page_private(page));
335 	}
336 #endif
337 
338 	radix_tree_replace_slot(pslot, newpage);
339 
340 	/*
341 	 * Drop cache reference from old page.
342 	 * We know this isn't the last reference.
343 	 */
344 	__put_page(page);
345 
346 	/*
347 	 * If moved to a different zone then also account
348 	 * the page for that zone. Other VM counters will be
349 	 * taken care of when we establish references to the
350 	 * new page and drop references to the old page.
351 	 *
352 	 * Note that anonymous pages are accounted for
353 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
354 	 * are mapped to swap space.
355 	 */
356 	__dec_zone_page_state(page, NR_FILE_PAGES);
357 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
358 
359 	write_unlock_irq(&mapping->tree_lock);
360 
361 	return 0;
362 }
363 
364 /*
365  * Copy the page to its new location
366  */
367 static void migrate_page_copy(struct page *newpage, struct page *page)
368 {
369 	copy_highpage(newpage, page);
370 
371 	if (PageError(page))
372 		SetPageError(newpage);
373 	if (PageReferenced(page))
374 		SetPageReferenced(newpage);
375 	if (PageUptodate(page))
376 		SetPageUptodate(newpage);
377 	if (PageActive(page))
378 		SetPageActive(newpage);
379 	if (PageChecked(page))
380 		SetPageChecked(newpage);
381 	if (PageMappedToDisk(page))
382 		SetPageMappedToDisk(newpage);
383 
384 	if (PageDirty(page)) {
385 		clear_page_dirty_for_io(page);
386 		set_page_dirty(newpage);
387  	}
388 
389 #ifdef CONFIG_SWAP
390 	ClearPageSwapCache(page);
391 #endif
392 	ClearPageActive(page);
393 	ClearPagePrivate(page);
394 	set_page_private(page, 0);
395 	page->mapping = NULL;
396 
397 	/*
398 	 * If any waiters have accumulated on the new page then
399 	 * wake them up.
400 	 */
401 	if (PageWriteback(newpage))
402 		end_page_writeback(newpage);
403 }
404 
405 /************************************************************
406  *                    Migration functions
407  ***********************************************************/
408 
409 /* Always fail migration. Used for mappings that are not movable */
410 int fail_migrate_page(struct address_space *mapping,
411 			struct page *newpage, struct page *page)
412 {
413 	return -EIO;
414 }
415 EXPORT_SYMBOL(fail_migrate_page);
416 
417 /*
418  * Common logic to directly migrate a single page suitable for
419  * pages that do not use PagePrivate.
420  *
421  * Pages are locked upon entry and exit.
422  */
423 int migrate_page(struct address_space *mapping,
424 		struct page *newpage, struct page *page)
425 {
426 	int rc;
427 
428 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
429 
430 	rc = migrate_page_move_mapping(mapping, newpage, page);
431 
432 	if (rc)
433 		return rc;
434 
435 	migrate_page_copy(newpage, page);
436 	return 0;
437 }
438 EXPORT_SYMBOL(migrate_page);
439 
440 #ifdef CONFIG_BLOCK
441 /*
442  * Migration function for pages with buffers. This function can only be used
443  * if the underlying filesystem guarantees that no other references to "page"
444  * exist.
445  */
446 int buffer_migrate_page(struct address_space *mapping,
447 		struct page *newpage, struct page *page)
448 {
449 	struct buffer_head *bh, *head;
450 	int rc;
451 
452 	if (!page_has_buffers(page))
453 		return migrate_page(mapping, newpage, page);
454 
455 	head = page_buffers(page);
456 
457 	rc = migrate_page_move_mapping(mapping, newpage, page);
458 
459 	if (rc)
460 		return rc;
461 
462 	bh = head;
463 	do {
464 		get_bh(bh);
465 		lock_buffer(bh);
466 		bh = bh->b_this_page;
467 
468 	} while (bh != head);
469 
470 	ClearPagePrivate(page);
471 	set_page_private(newpage, page_private(page));
472 	set_page_private(page, 0);
473 	put_page(page);
474 	get_page(newpage);
475 
476 	bh = head;
477 	do {
478 		set_bh_page(bh, newpage, bh_offset(bh));
479 		bh = bh->b_this_page;
480 
481 	} while (bh != head);
482 
483 	SetPagePrivate(newpage);
484 
485 	migrate_page_copy(newpage, page);
486 
487 	bh = head;
488 	do {
489 		unlock_buffer(bh);
490  		put_bh(bh);
491 		bh = bh->b_this_page;
492 
493 	} while (bh != head);
494 
495 	return 0;
496 }
497 EXPORT_SYMBOL(buffer_migrate_page);
498 #endif
499 
500 /*
501  * Writeback a page to clean the dirty state
502  */
503 static int writeout(struct address_space *mapping, struct page *page)
504 {
505 	struct writeback_control wbc = {
506 		.sync_mode = WB_SYNC_NONE,
507 		.nr_to_write = 1,
508 		.range_start = 0,
509 		.range_end = LLONG_MAX,
510 		.nonblocking = 1,
511 		.for_reclaim = 1
512 	};
513 	int rc;
514 
515 	if (!mapping->a_ops->writepage)
516 		/* No write method for the address space */
517 		return -EINVAL;
518 
519 	if (!clear_page_dirty_for_io(page))
520 		/* Someone else already triggered a write */
521 		return -EAGAIN;
522 
523 	/*
524 	 * A dirty page may imply that the underlying filesystem has
525 	 * the page on some queue. So the page must be clean for
526 	 * migration. Writeout may mean we loose the lock and the
527 	 * page state is no longer what we checked for earlier.
528 	 * At this point we know that the migration attempt cannot
529 	 * be successful.
530 	 */
531 	remove_migration_ptes(page, page);
532 
533 	rc = mapping->a_ops->writepage(page, &wbc);
534 	if (rc < 0)
535 		/* I/O Error writing */
536 		return -EIO;
537 
538 	if (rc != AOP_WRITEPAGE_ACTIVATE)
539 		/* unlocked. Relock */
540 		lock_page(page);
541 
542 	return -EAGAIN;
543 }
544 
545 /*
546  * Default handling if a filesystem does not provide a migration function.
547  */
548 static int fallback_migrate_page(struct address_space *mapping,
549 	struct page *newpage, struct page *page)
550 {
551 	if (PageDirty(page))
552 		return writeout(mapping, page);
553 
554 	/*
555 	 * Buffers may be managed in a filesystem specific way.
556 	 * We must have no buffers or drop them.
557 	 */
558 	if (PagePrivate(page) &&
559 	    !try_to_release_page(page, GFP_KERNEL))
560 		return -EAGAIN;
561 
562 	return migrate_page(mapping, newpage, page);
563 }
564 
565 /*
566  * Move a page to a newly allocated page
567  * The page is locked and all ptes have been successfully removed.
568  *
569  * The new page will have replaced the old page if this function
570  * is successful.
571  */
572 static int move_to_new_page(struct page *newpage, struct page *page)
573 {
574 	struct address_space *mapping;
575 	int rc;
576 
577 	/*
578 	 * Block others from accessing the page when we get around to
579 	 * establishing additional references. We are the only one
580 	 * holding a reference to the new page at this point.
581 	 */
582 	if (TestSetPageLocked(newpage))
583 		BUG();
584 
585 	/* Prepare mapping for the new page.*/
586 	newpage->index = page->index;
587 	newpage->mapping = page->mapping;
588 
589 	mapping = page_mapping(page);
590 	if (!mapping)
591 		rc = migrate_page(mapping, newpage, page);
592 	else if (mapping->a_ops->migratepage)
593 		/*
594 		 * Most pages have a mapping and most filesystems
595 		 * should provide a migration function. Anonymous
596 		 * pages are part of swap space which also has its
597 		 * own migration function. This is the most common
598 		 * path for page migration.
599 		 */
600 		rc = mapping->a_ops->migratepage(mapping,
601 						newpage, page);
602 	else
603 		rc = fallback_migrate_page(mapping, newpage, page);
604 
605 	if (!rc) {
606 		mem_cgroup_page_migration(page, newpage);
607 		remove_migration_ptes(page, newpage);
608 	} else
609 		newpage->mapping = NULL;
610 
611 	unlock_page(newpage);
612 
613 	return rc;
614 }
615 
616 /*
617  * Obtain the lock on page, remove all ptes and migrate the page
618  * to the newly allocated page in newpage.
619  */
620 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
621 			struct page *page, int force)
622 {
623 	int rc = 0;
624 	int *result = NULL;
625 	struct page *newpage = get_new_page(page, private, &result);
626 	int rcu_locked = 0;
627 	int charge = 0;
628 
629 	if (!newpage)
630 		return -ENOMEM;
631 
632 	if (page_count(page) == 1)
633 		/* page was freed from under us. So we are done. */
634 		goto move_newpage;
635 
636 	rc = -EAGAIN;
637 	if (TestSetPageLocked(page)) {
638 		if (!force)
639 			goto move_newpage;
640 		lock_page(page);
641 	}
642 
643 	if (PageWriteback(page)) {
644 		if (!force)
645 			goto unlock;
646 		wait_on_page_writeback(page);
647 	}
648 	/*
649 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
650 	 * we cannot notice that anon_vma is freed while we migrates a page.
651 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
652 	 * of migration. File cache pages are no problem because of page_lock()
653 	 * File Caches may use write_page() or lock_page() in migration, then,
654 	 * just care Anon page here.
655 	 */
656 	if (PageAnon(page)) {
657 		rcu_read_lock();
658 		rcu_locked = 1;
659 	}
660 
661 	/*
662 	 * Corner case handling:
663 	 * 1. When a new swap-cache page is read into, it is added to the LRU
664 	 * and treated as swapcache but it has no rmap yet.
665 	 * Calling try_to_unmap() against a page->mapping==NULL page will
666 	 * trigger a BUG.  So handle it here.
667 	 * 2. An orphaned page (see truncate_complete_page) might have
668 	 * fs-private metadata. The page can be picked up due to memory
669 	 * offlining.  Everywhere else except page reclaim, the page is
670 	 * invisible to the vm, so the page can not be migrated.  So try to
671 	 * free the metadata, so the page can be freed.
672 	 */
673 	if (!page->mapping) {
674 		if (!PageAnon(page) && PagePrivate(page)) {
675 			/*
676 			 * Go direct to try_to_free_buffers() here because
677 			 * a) that's what try_to_release_page() would do anyway
678 			 * b) we may be under rcu_read_lock() here, so we can't
679 			 *    use GFP_KERNEL which is what try_to_release_page()
680 			 *    needs to be effective.
681 			 */
682 			try_to_free_buffers(page);
683 		}
684 		goto rcu_unlock;
685 	}
686 
687 	charge = mem_cgroup_prepare_migration(page);
688 	/* Establish migration ptes or remove ptes */
689 	try_to_unmap(page, 1);
690 
691 	if (!page_mapped(page))
692 		rc = move_to_new_page(newpage, page);
693 
694 	if (rc) {
695 		remove_migration_ptes(page, page);
696 		if (charge)
697 			mem_cgroup_end_migration(page);
698 	} else if (charge)
699  		mem_cgroup_end_migration(newpage);
700 rcu_unlock:
701 	if (rcu_locked)
702 		rcu_read_unlock();
703 
704 unlock:
705 
706 	unlock_page(page);
707 
708 	if (rc != -EAGAIN) {
709  		/*
710  		 * A page that has been migrated has all references
711  		 * removed and will be freed. A page that has not been
712  		 * migrated will have kepts its references and be
713  		 * restored.
714  		 */
715  		list_del(&page->lru);
716  		move_to_lru(page);
717 	}
718 
719 move_newpage:
720 	/*
721 	 * Move the new page to the LRU. If migration was not successful
722 	 * then this will free the page.
723 	 */
724 	move_to_lru(newpage);
725 	if (result) {
726 		if (rc)
727 			*result = rc;
728 		else
729 			*result = page_to_nid(newpage);
730 	}
731 	return rc;
732 }
733 
734 /*
735  * migrate_pages
736  *
737  * The function takes one list of pages to migrate and a function
738  * that determines from the page to be migrated and the private data
739  * the target of the move and allocates the page.
740  *
741  * The function returns after 10 attempts or if no pages
742  * are movable anymore because to has become empty
743  * or no retryable pages exist anymore. All pages will be
744  * returned to the LRU or freed.
745  *
746  * Return: Number of pages not migrated or error code.
747  */
748 int migrate_pages(struct list_head *from,
749 		new_page_t get_new_page, unsigned long private)
750 {
751 	int retry = 1;
752 	int nr_failed = 0;
753 	int pass = 0;
754 	struct page *page;
755 	struct page *page2;
756 	int swapwrite = current->flags & PF_SWAPWRITE;
757 	int rc;
758 
759 	if (!swapwrite)
760 		current->flags |= PF_SWAPWRITE;
761 
762 	for(pass = 0; pass < 10 && retry; pass++) {
763 		retry = 0;
764 
765 		list_for_each_entry_safe(page, page2, from, lru) {
766 			cond_resched();
767 
768 			rc = unmap_and_move(get_new_page, private,
769 						page, pass > 2);
770 
771 			switch(rc) {
772 			case -ENOMEM:
773 				goto out;
774 			case -EAGAIN:
775 				retry++;
776 				break;
777 			case 0:
778 				break;
779 			default:
780 				/* Permanent failure */
781 				nr_failed++;
782 				break;
783 			}
784 		}
785 	}
786 	rc = 0;
787 out:
788 	if (!swapwrite)
789 		current->flags &= ~PF_SWAPWRITE;
790 
791 	putback_lru_pages(from);
792 
793 	if (rc)
794 		return rc;
795 
796 	return nr_failed + retry;
797 }
798 
799 #ifdef CONFIG_NUMA
800 /*
801  * Move a list of individual pages
802  */
803 struct page_to_node {
804 	unsigned long addr;
805 	struct page *page;
806 	int node;
807 	int status;
808 };
809 
810 static struct page *new_page_node(struct page *p, unsigned long private,
811 		int **result)
812 {
813 	struct page_to_node *pm = (struct page_to_node *)private;
814 
815 	while (pm->node != MAX_NUMNODES && pm->page != p)
816 		pm++;
817 
818 	if (pm->node == MAX_NUMNODES)
819 		return NULL;
820 
821 	*result = &pm->status;
822 
823 	return alloc_pages_node(pm->node,
824 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
825 }
826 
827 /*
828  * Move a set of pages as indicated in the pm array. The addr
829  * field must be set to the virtual address of the page to be moved
830  * and the node number must contain a valid target node.
831  */
832 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
833 				int migrate_all)
834 {
835 	int err;
836 	struct page_to_node *pp;
837 	LIST_HEAD(pagelist);
838 
839 	down_read(&mm->mmap_sem);
840 
841 	/*
842 	 * Build a list of pages to migrate
843 	 */
844 	migrate_prep();
845 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
846 		struct vm_area_struct *vma;
847 		struct page *page;
848 
849 		/*
850 		 * A valid page pointer that will not match any of the
851 		 * pages that will be moved.
852 		 */
853 		pp->page = ZERO_PAGE(0);
854 
855 		err = -EFAULT;
856 		vma = find_vma(mm, pp->addr);
857 		if (!vma || !vma_migratable(vma))
858 			goto set_status;
859 
860 		page = follow_page(vma, pp->addr, FOLL_GET);
861 		err = -ENOENT;
862 		if (!page)
863 			goto set_status;
864 
865 		if (PageReserved(page))		/* Check for zero page */
866 			goto put_and_set;
867 
868 		pp->page = page;
869 		err = page_to_nid(page);
870 
871 		if (err == pp->node)
872 			/*
873 			 * Node already in the right place
874 			 */
875 			goto put_and_set;
876 
877 		err = -EACCES;
878 		if (page_mapcount(page) > 1 &&
879 				!migrate_all)
880 			goto put_and_set;
881 
882 		err = isolate_lru_page(page, &pagelist);
883 put_and_set:
884 		/*
885 		 * Either remove the duplicate refcount from
886 		 * isolate_lru_page() or drop the page ref if it was
887 		 * not isolated.
888 		 */
889 		put_page(page);
890 set_status:
891 		pp->status = err;
892 	}
893 
894 	if (!list_empty(&pagelist))
895 		err = migrate_pages(&pagelist, new_page_node,
896 				(unsigned long)pm);
897 	else
898 		err = -ENOENT;
899 
900 	up_read(&mm->mmap_sem);
901 	return err;
902 }
903 
904 /*
905  * Determine the nodes of a list of pages. The addr in the pm array
906  * must have been set to the virtual address of which we want to determine
907  * the node number.
908  */
909 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
910 {
911 	down_read(&mm->mmap_sem);
912 
913 	for ( ; pm->node != MAX_NUMNODES; pm++) {
914 		struct vm_area_struct *vma;
915 		struct page *page;
916 		int err;
917 
918 		err = -EFAULT;
919 		vma = find_vma(mm, pm->addr);
920 		if (!vma)
921 			goto set_status;
922 
923 		page = follow_page(vma, pm->addr, 0);
924 		err = -ENOENT;
925 		/* Use PageReserved to check for zero page */
926 		if (!page || PageReserved(page))
927 			goto set_status;
928 
929 		err = page_to_nid(page);
930 set_status:
931 		pm->status = err;
932 	}
933 
934 	up_read(&mm->mmap_sem);
935 	return 0;
936 }
937 
938 /*
939  * Move a list of pages in the address space of the currently executing
940  * process.
941  */
942 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
943 			const void __user * __user *pages,
944 			const int __user *nodes,
945 			int __user *status, int flags)
946 {
947 	int err = 0;
948 	int i;
949 	struct task_struct *task;
950 	nodemask_t task_nodes;
951 	struct mm_struct *mm;
952 	struct page_to_node *pm = NULL;
953 
954 	/* Check flags */
955 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
956 		return -EINVAL;
957 
958 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
959 		return -EPERM;
960 
961 	/* Find the mm_struct */
962 	read_lock(&tasklist_lock);
963 	task = pid ? find_task_by_vpid(pid) : current;
964 	if (!task) {
965 		read_unlock(&tasklist_lock);
966 		return -ESRCH;
967 	}
968 	mm = get_task_mm(task);
969 	read_unlock(&tasklist_lock);
970 
971 	if (!mm)
972 		return -EINVAL;
973 
974 	/*
975 	 * Check if this process has the right to modify the specified
976 	 * process. The right exists if the process has administrative
977 	 * capabilities, superuser privileges or the same
978 	 * userid as the target process.
979 	 */
980 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
981 	    (current->uid != task->suid) && (current->uid != task->uid) &&
982 	    !capable(CAP_SYS_NICE)) {
983 		err = -EPERM;
984 		goto out2;
985 	}
986 
987  	err = security_task_movememory(task);
988  	if (err)
989  		goto out2;
990 
991 
992 	task_nodes = cpuset_mems_allowed(task);
993 
994 	/* Limit nr_pages so that the multiplication may not overflow */
995 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
996 		err = -E2BIG;
997 		goto out2;
998 	}
999 
1000 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1001 	if (!pm) {
1002 		err = -ENOMEM;
1003 		goto out2;
1004 	}
1005 
1006 	/*
1007 	 * Get parameters from user space and initialize the pm
1008 	 * array. Return various errors if the user did something wrong.
1009 	 */
1010 	for (i = 0; i < nr_pages; i++) {
1011 		const void __user *p;
1012 
1013 		err = -EFAULT;
1014 		if (get_user(p, pages + i))
1015 			goto out;
1016 
1017 		pm[i].addr = (unsigned long)p;
1018 		if (nodes) {
1019 			int node;
1020 
1021 			if (get_user(node, nodes + i))
1022 				goto out;
1023 
1024 			err = -ENODEV;
1025 			if (!node_state(node, N_HIGH_MEMORY))
1026 				goto out;
1027 
1028 			err = -EACCES;
1029 			if (!node_isset(node, task_nodes))
1030 				goto out;
1031 
1032 			pm[i].node = node;
1033 		} else
1034 			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
1035 	}
1036 	/* End marker */
1037 	pm[nr_pages].node = MAX_NUMNODES;
1038 
1039 	if (nodes)
1040 		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1041 	else
1042 		err = do_pages_stat(mm, pm);
1043 
1044 	if (err >= 0)
1045 		/* Return status information */
1046 		for (i = 0; i < nr_pages; i++)
1047 			if (put_user(pm[i].status, status + i))
1048 				err = -EFAULT;
1049 
1050 out:
1051 	vfree(pm);
1052 out2:
1053 	mmput(mm);
1054 	return err;
1055 }
1056 #endif
1057 
1058 /*
1059  * Call migration functions in the vma_ops that may prepare
1060  * memory in a vm for migration. migration functions may perform
1061  * the migration for vmas that do not have an underlying page struct.
1062  */
1063 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1064 	const nodemask_t *from, unsigned long flags)
1065 {
1066  	struct vm_area_struct *vma;
1067  	int err = 0;
1068 
1069  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1070  		if (vma->vm_ops && vma->vm_ops->migrate) {
1071  			err = vma->vm_ops->migrate(vma, to, from, flags);
1072  			if (err)
1073  				break;
1074  		}
1075  	}
1076  	return err;
1077 }
1078