1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grabbing the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 } 252 } 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 if (PageHuge(new)) { 256 pte = pte_mkhuge(pte); 257 pte = arch_make_huge_pte(pte, vma, new, 0); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 if (PageAnon(new)) 260 hugepage_add_anon_rmap(new, vma, pvmw.address); 261 else 262 page_dup_rmap(new, true); 263 } else 264 #endif 265 { 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 268 if (PageAnon(new)) 269 page_add_anon_rmap(new, vma, pvmw.address, false); 270 else 271 page_add_file_rmap(new, false); 272 } 273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 274 mlock_vma_page(new); 275 276 if (PageTransHuge(page) && PageMlocked(page)) 277 clear_page_mlock(page); 278 279 /* No need to invalidate - it was non-present before */ 280 update_mmu_cache(vma, pvmw.address, pvmw.pte); 281 } 282 283 return true; 284 } 285 286 /* 287 * Get rid of all migration entries and replace them by 288 * references to the indicated page. 289 */ 290 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 291 { 292 struct rmap_walk_control rwc = { 293 .rmap_one = remove_migration_pte, 294 .arg = old, 295 }; 296 297 if (locked) 298 rmap_walk_locked(new, &rwc); 299 else 300 rmap_walk(new, &rwc); 301 } 302 303 /* 304 * Something used the pte of a page under migration. We need to 305 * get to the page and wait until migration is finished. 306 * When we return from this function the fault will be retried. 307 */ 308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 309 spinlock_t *ptl) 310 { 311 pte_t pte; 312 swp_entry_t entry; 313 struct page *page; 314 315 spin_lock(ptl); 316 pte = *ptep; 317 if (!is_swap_pte(pte)) 318 goto out; 319 320 entry = pte_to_swp_entry(pte); 321 if (!is_migration_entry(entry)) 322 goto out; 323 324 page = migration_entry_to_page(entry); 325 326 /* 327 * Once page cache replacement of page migration started, page_count 328 * is zero; but we must not call put_and_wait_on_page_locked() without 329 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 330 */ 331 if (!get_page_unless_zero(page)) 332 goto out; 333 pte_unmap_unlock(ptep, ptl); 334 put_and_wait_on_page_locked(page); 335 return; 336 out: 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 341 unsigned long address) 342 { 343 spinlock_t *ptl = pte_lockptr(mm, pmd); 344 pte_t *ptep = pte_offset_map(pmd, address); 345 __migration_entry_wait(mm, ptep, ptl); 346 } 347 348 void migration_entry_wait_huge(struct vm_area_struct *vma, 349 struct mm_struct *mm, pte_t *pte) 350 { 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 352 __migration_entry_wait(mm, pte, ptl); 353 } 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 struct page *page; 360 361 ptl = pmd_lock(mm, pmd); 362 if (!is_pmd_migration_entry(*pmd)) 363 goto unlock; 364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 365 if (!get_page_unless_zero(page)) 366 goto unlock; 367 spin_unlock(ptl); 368 put_and_wait_on_page_locked(page); 369 return; 370 unlock: 371 spin_unlock(ptl); 372 } 373 #endif 374 375 static int expected_page_refs(struct address_space *mapping, struct page *page) 376 { 377 int expected_count = 1; 378 379 /* 380 * Device public or private pages have an extra refcount as they are 381 * ZONE_DEVICE pages. 382 */ 383 expected_count += is_device_private_page(page); 384 expected_count += is_device_public_page(page); 385 if (mapping) 386 expected_count += hpage_nr_pages(page) + page_has_private(page); 387 388 return expected_count; 389 } 390 391 /* 392 * Replace the page in the mapping. 393 * 394 * The number of remaining references must be: 395 * 1 for anonymous pages without a mapping 396 * 2 for pages with a mapping 397 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 398 */ 399 int migrate_page_move_mapping(struct address_space *mapping, 400 struct page *newpage, struct page *page, enum migrate_mode mode, 401 int extra_count) 402 { 403 XA_STATE(xas, &mapping->i_pages, page_index(page)); 404 struct zone *oldzone, *newzone; 405 int dirty; 406 int expected_count = expected_page_refs(mapping, page) + extra_count; 407 408 if (!mapping) { 409 /* Anonymous page without mapping */ 410 if (page_count(page) != expected_count) 411 return -EAGAIN; 412 413 /* No turning back from here */ 414 newpage->index = page->index; 415 newpage->mapping = page->mapping; 416 if (PageSwapBacked(page)) 417 __SetPageSwapBacked(newpage); 418 419 return MIGRATEPAGE_SUCCESS; 420 } 421 422 oldzone = page_zone(page); 423 newzone = page_zone(newpage); 424 425 xas_lock_irq(&xas); 426 if (page_count(page) != expected_count || xas_load(&xas) != page) { 427 xas_unlock_irq(&xas); 428 return -EAGAIN; 429 } 430 431 if (!page_ref_freeze(page, expected_count)) { 432 xas_unlock_irq(&xas); 433 return -EAGAIN; 434 } 435 436 /* 437 * Now we know that no one else is looking at the page: 438 * no turning back from here. 439 */ 440 newpage->index = page->index; 441 newpage->mapping = page->mapping; 442 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 443 if (PageSwapBacked(page)) { 444 __SetPageSwapBacked(newpage); 445 if (PageSwapCache(page)) { 446 SetPageSwapCache(newpage); 447 set_page_private(newpage, page_private(page)); 448 } 449 } else { 450 VM_BUG_ON_PAGE(PageSwapCache(page), page); 451 } 452 453 /* Move dirty while page refs frozen and newpage not yet exposed */ 454 dirty = PageDirty(page); 455 if (dirty) { 456 ClearPageDirty(page); 457 SetPageDirty(newpage); 458 } 459 460 xas_store(&xas, newpage); 461 if (PageTransHuge(page)) { 462 int i; 463 464 for (i = 1; i < HPAGE_PMD_NR; i++) { 465 xas_next(&xas); 466 xas_store(&xas, newpage + i); 467 } 468 } 469 470 /* 471 * Drop cache reference from old page by unfreezing 472 * to one less reference. 473 * We know this isn't the last reference. 474 */ 475 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 476 477 xas_unlock(&xas); 478 /* Leave irq disabled to prevent preemption while updating stats */ 479 480 /* 481 * If moved to a different zone then also account 482 * the page for that zone. Other VM counters will be 483 * taken care of when we establish references to the 484 * new page and drop references to the old page. 485 * 486 * Note that anonymous pages are accounted for 487 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 488 * are mapped to swap space. 489 */ 490 if (newzone != oldzone) { 491 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 492 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 493 if (PageSwapBacked(page) && !PageSwapCache(page)) { 494 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 495 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 496 } 497 if (dirty && mapping_cap_account_dirty(mapping)) { 498 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 499 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 500 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 501 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 502 } 503 } 504 local_irq_enable(); 505 506 return MIGRATEPAGE_SUCCESS; 507 } 508 EXPORT_SYMBOL(migrate_page_move_mapping); 509 510 /* 511 * The expected number of remaining references is the same as that 512 * of migrate_page_move_mapping(). 513 */ 514 int migrate_huge_page_move_mapping(struct address_space *mapping, 515 struct page *newpage, struct page *page) 516 { 517 XA_STATE(xas, &mapping->i_pages, page_index(page)); 518 int expected_count; 519 520 xas_lock_irq(&xas); 521 expected_count = 2 + page_has_private(page); 522 if (page_count(page) != expected_count || xas_load(&xas) != page) { 523 xas_unlock_irq(&xas); 524 return -EAGAIN; 525 } 526 527 if (!page_ref_freeze(page, expected_count)) { 528 xas_unlock_irq(&xas); 529 return -EAGAIN; 530 } 531 532 newpage->index = page->index; 533 newpage->mapping = page->mapping; 534 535 get_page(newpage); 536 537 xas_store(&xas, newpage); 538 539 page_ref_unfreeze(page, expected_count - 1); 540 541 xas_unlock_irq(&xas); 542 543 return MIGRATEPAGE_SUCCESS; 544 } 545 546 /* 547 * Gigantic pages are so large that we do not guarantee that page++ pointer 548 * arithmetic will work across the entire page. We need something more 549 * specialized. 550 */ 551 static void __copy_gigantic_page(struct page *dst, struct page *src, 552 int nr_pages) 553 { 554 int i; 555 struct page *dst_base = dst; 556 struct page *src_base = src; 557 558 for (i = 0; i < nr_pages; ) { 559 cond_resched(); 560 copy_highpage(dst, src); 561 562 i++; 563 dst = mem_map_next(dst, dst_base, i); 564 src = mem_map_next(src, src_base, i); 565 } 566 } 567 568 static void copy_huge_page(struct page *dst, struct page *src) 569 { 570 int i; 571 int nr_pages; 572 573 if (PageHuge(src)) { 574 /* hugetlbfs page */ 575 struct hstate *h = page_hstate(src); 576 nr_pages = pages_per_huge_page(h); 577 578 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 579 __copy_gigantic_page(dst, src, nr_pages); 580 return; 581 } 582 } else { 583 /* thp page */ 584 BUG_ON(!PageTransHuge(src)); 585 nr_pages = hpage_nr_pages(src); 586 } 587 588 for (i = 0; i < nr_pages; i++) { 589 cond_resched(); 590 copy_highpage(dst + i, src + i); 591 } 592 } 593 594 /* 595 * Copy the page to its new location 596 */ 597 void migrate_page_states(struct page *newpage, struct page *page) 598 { 599 int cpupid; 600 601 if (PageError(page)) 602 SetPageError(newpage); 603 if (PageReferenced(page)) 604 SetPageReferenced(newpage); 605 if (PageUptodate(page)) 606 SetPageUptodate(newpage); 607 if (TestClearPageActive(page)) { 608 VM_BUG_ON_PAGE(PageUnevictable(page), page); 609 SetPageActive(newpage); 610 } else if (TestClearPageUnevictable(page)) 611 SetPageUnevictable(newpage); 612 if (PageWorkingset(page)) 613 SetPageWorkingset(newpage); 614 if (PageChecked(page)) 615 SetPageChecked(newpage); 616 if (PageMappedToDisk(page)) 617 SetPageMappedToDisk(newpage); 618 619 /* Move dirty on pages not done by migrate_page_move_mapping() */ 620 if (PageDirty(page)) 621 SetPageDirty(newpage); 622 623 if (page_is_young(page)) 624 set_page_young(newpage); 625 if (page_is_idle(page)) 626 set_page_idle(newpage); 627 628 /* 629 * Copy NUMA information to the new page, to prevent over-eager 630 * future migrations of this same page. 631 */ 632 cpupid = page_cpupid_xchg_last(page, -1); 633 page_cpupid_xchg_last(newpage, cpupid); 634 635 ksm_migrate_page(newpage, page); 636 /* 637 * Please do not reorder this without considering how mm/ksm.c's 638 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 639 */ 640 if (PageSwapCache(page)) 641 ClearPageSwapCache(page); 642 ClearPagePrivate(page); 643 set_page_private(page, 0); 644 645 /* 646 * If any waiters have accumulated on the new page then 647 * wake them up. 648 */ 649 if (PageWriteback(newpage)) 650 end_page_writeback(newpage); 651 652 copy_page_owner(page, newpage); 653 654 mem_cgroup_migrate(page, newpage); 655 } 656 EXPORT_SYMBOL(migrate_page_states); 657 658 void migrate_page_copy(struct page *newpage, struct page *page) 659 { 660 if (PageHuge(page) || PageTransHuge(page)) 661 copy_huge_page(newpage, page); 662 else 663 copy_highpage(newpage, page); 664 665 migrate_page_states(newpage, page); 666 } 667 EXPORT_SYMBOL(migrate_page_copy); 668 669 /************************************************************ 670 * Migration functions 671 ***********************************************************/ 672 673 /* 674 * Common logic to directly migrate a single LRU page suitable for 675 * pages that do not use PagePrivate/PagePrivate2. 676 * 677 * Pages are locked upon entry and exit. 678 */ 679 int migrate_page(struct address_space *mapping, 680 struct page *newpage, struct page *page, 681 enum migrate_mode mode) 682 { 683 int rc; 684 685 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 686 687 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 688 689 if (rc != MIGRATEPAGE_SUCCESS) 690 return rc; 691 692 if (mode != MIGRATE_SYNC_NO_COPY) 693 migrate_page_copy(newpage, page); 694 else 695 migrate_page_states(newpage, page); 696 return MIGRATEPAGE_SUCCESS; 697 } 698 EXPORT_SYMBOL(migrate_page); 699 700 #ifdef CONFIG_BLOCK 701 /* Returns true if all buffers are successfully locked */ 702 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 703 enum migrate_mode mode) 704 { 705 struct buffer_head *bh = head; 706 707 /* Simple case, sync compaction */ 708 if (mode != MIGRATE_ASYNC) { 709 do { 710 lock_buffer(bh); 711 bh = bh->b_this_page; 712 713 } while (bh != head); 714 715 return true; 716 } 717 718 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 719 do { 720 if (!trylock_buffer(bh)) { 721 /* 722 * We failed to lock the buffer and cannot stall in 723 * async migration. Release the taken locks 724 */ 725 struct buffer_head *failed_bh = bh; 726 bh = head; 727 while (bh != failed_bh) { 728 unlock_buffer(bh); 729 bh = bh->b_this_page; 730 } 731 return false; 732 } 733 734 bh = bh->b_this_page; 735 } while (bh != head); 736 return true; 737 } 738 739 static int __buffer_migrate_page(struct address_space *mapping, 740 struct page *newpage, struct page *page, enum migrate_mode mode, 741 bool check_refs) 742 { 743 struct buffer_head *bh, *head; 744 int rc; 745 int expected_count; 746 747 if (!page_has_buffers(page)) 748 return migrate_page(mapping, newpage, page, mode); 749 750 /* Check whether page does not have extra refs before we do more work */ 751 expected_count = expected_page_refs(mapping, page); 752 if (page_count(page) != expected_count) 753 return -EAGAIN; 754 755 head = page_buffers(page); 756 if (!buffer_migrate_lock_buffers(head, mode)) 757 return -EAGAIN; 758 759 if (check_refs) { 760 bool busy; 761 bool invalidated = false; 762 763 recheck_buffers: 764 busy = false; 765 spin_lock(&mapping->private_lock); 766 bh = head; 767 do { 768 if (atomic_read(&bh->b_count)) { 769 busy = true; 770 break; 771 } 772 bh = bh->b_this_page; 773 } while (bh != head); 774 spin_unlock(&mapping->private_lock); 775 if (busy) { 776 if (invalidated) { 777 rc = -EAGAIN; 778 goto unlock_buffers; 779 } 780 invalidate_bh_lrus(); 781 invalidated = true; 782 goto recheck_buffers; 783 } 784 } 785 786 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 787 if (rc != MIGRATEPAGE_SUCCESS) 788 goto unlock_buffers; 789 790 ClearPagePrivate(page); 791 set_page_private(newpage, page_private(page)); 792 set_page_private(page, 0); 793 put_page(page); 794 get_page(newpage); 795 796 bh = head; 797 do { 798 set_bh_page(bh, newpage, bh_offset(bh)); 799 bh = bh->b_this_page; 800 801 } while (bh != head); 802 803 SetPagePrivate(newpage); 804 805 if (mode != MIGRATE_SYNC_NO_COPY) 806 migrate_page_copy(newpage, page); 807 else 808 migrate_page_states(newpage, page); 809 810 rc = MIGRATEPAGE_SUCCESS; 811 unlock_buffers: 812 bh = head; 813 do { 814 unlock_buffer(bh); 815 bh = bh->b_this_page; 816 817 } while (bh != head); 818 819 return rc; 820 } 821 822 /* 823 * Migration function for pages with buffers. This function can only be used 824 * if the underlying filesystem guarantees that no other references to "page" 825 * exist. For example attached buffer heads are accessed only under page lock. 826 */ 827 int buffer_migrate_page(struct address_space *mapping, 828 struct page *newpage, struct page *page, enum migrate_mode mode) 829 { 830 return __buffer_migrate_page(mapping, newpage, page, mode, false); 831 } 832 EXPORT_SYMBOL(buffer_migrate_page); 833 834 /* 835 * Same as above except that this variant is more careful and checks that there 836 * are also no buffer head references. This function is the right one for 837 * mappings where buffer heads are directly looked up and referenced (such as 838 * block device mappings). 839 */ 840 int buffer_migrate_page_norefs(struct address_space *mapping, 841 struct page *newpage, struct page *page, enum migrate_mode mode) 842 { 843 return __buffer_migrate_page(mapping, newpage, page, mode, true); 844 } 845 #endif 846 847 /* 848 * Writeback a page to clean the dirty state 849 */ 850 static int writeout(struct address_space *mapping, struct page *page) 851 { 852 struct writeback_control wbc = { 853 .sync_mode = WB_SYNC_NONE, 854 .nr_to_write = 1, 855 .range_start = 0, 856 .range_end = LLONG_MAX, 857 .for_reclaim = 1 858 }; 859 int rc; 860 861 if (!mapping->a_ops->writepage) 862 /* No write method for the address space */ 863 return -EINVAL; 864 865 if (!clear_page_dirty_for_io(page)) 866 /* Someone else already triggered a write */ 867 return -EAGAIN; 868 869 /* 870 * A dirty page may imply that the underlying filesystem has 871 * the page on some queue. So the page must be clean for 872 * migration. Writeout may mean we loose the lock and the 873 * page state is no longer what we checked for earlier. 874 * At this point we know that the migration attempt cannot 875 * be successful. 876 */ 877 remove_migration_ptes(page, page, false); 878 879 rc = mapping->a_ops->writepage(page, &wbc); 880 881 if (rc != AOP_WRITEPAGE_ACTIVATE) 882 /* unlocked. Relock */ 883 lock_page(page); 884 885 return (rc < 0) ? -EIO : -EAGAIN; 886 } 887 888 /* 889 * Default handling if a filesystem does not provide a migration function. 890 */ 891 static int fallback_migrate_page(struct address_space *mapping, 892 struct page *newpage, struct page *page, enum migrate_mode mode) 893 { 894 if (PageDirty(page)) { 895 /* Only writeback pages in full synchronous migration */ 896 switch (mode) { 897 case MIGRATE_SYNC: 898 case MIGRATE_SYNC_NO_COPY: 899 break; 900 default: 901 return -EBUSY; 902 } 903 return writeout(mapping, page); 904 } 905 906 /* 907 * Buffers may be managed in a filesystem specific way. 908 * We must have no buffers or drop them. 909 */ 910 if (page_has_private(page) && 911 !try_to_release_page(page, GFP_KERNEL)) 912 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 913 914 return migrate_page(mapping, newpage, page, mode); 915 } 916 917 /* 918 * Move a page to a newly allocated page 919 * The page is locked and all ptes have been successfully removed. 920 * 921 * The new page will have replaced the old page if this function 922 * is successful. 923 * 924 * Return value: 925 * < 0 - error code 926 * MIGRATEPAGE_SUCCESS - success 927 */ 928 static int move_to_new_page(struct page *newpage, struct page *page, 929 enum migrate_mode mode) 930 { 931 struct address_space *mapping; 932 int rc = -EAGAIN; 933 bool is_lru = !__PageMovable(page); 934 935 VM_BUG_ON_PAGE(!PageLocked(page), page); 936 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 937 938 mapping = page_mapping(page); 939 940 if (likely(is_lru)) { 941 if (!mapping) 942 rc = migrate_page(mapping, newpage, page, mode); 943 else if (mapping->a_ops->migratepage) 944 /* 945 * Most pages have a mapping and most filesystems 946 * provide a migratepage callback. Anonymous pages 947 * are part of swap space which also has its own 948 * migratepage callback. This is the most common path 949 * for page migration. 950 */ 951 rc = mapping->a_ops->migratepage(mapping, newpage, 952 page, mode); 953 else 954 rc = fallback_migrate_page(mapping, newpage, 955 page, mode); 956 } else { 957 /* 958 * In case of non-lru page, it could be released after 959 * isolation step. In that case, we shouldn't try migration. 960 */ 961 VM_BUG_ON_PAGE(!PageIsolated(page), page); 962 if (!PageMovable(page)) { 963 rc = MIGRATEPAGE_SUCCESS; 964 __ClearPageIsolated(page); 965 goto out; 966 } 967 968 rc = mapping->a_ops->migratepage(mapping, newpage, 969 page, mode); 970 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 971 !PageIsolated(page)); 972 } 973 974 /* 975 * When successful, old pagecache page->mapping must be cleared before 976 * page is freed; but stats require that PageAnon be left as PageAnon. 977 */ 978 if (rc == MIGRATEPAGE_SUCCESS) { 979 if (__PageMovable(page)) { 980 VM_BUG_ON_PAGE(!PageIsolated(page), page); 981 982 /* 983 * We clear PG_movable under page_lock so any compactor 984 * cannot try to migrate this page. 985 */ 986 __ClearPageIsolated(page); 987 } 988 989 /* 990 * Anonymous and movable page->mapping will be cleard by 991 * free_pages_prepare so don't reset it here for keeping 992 * the type to work PageAnon, for example. 993 */ 994 if (!PageMappingFlags(page)) 995 page->mapping = NULL; 996 997 if (unlikely(is_zone_device_page(newpage))) { 998 if (is_device_public_page(newpage)) 999 flush_dcache_page(newpage); 1000 } else 1001 flush_dcache_page(newpage); 1002 1003 } 1004 out: 1005 return rc; 1006 } 1007 1008 static int __unmap_and_move(struct page *page, struct page *newpage, 1009 int force, enum migrate_mode mode) 1010 { 1011 int rc = -EAGAIN; 1012 int page_was_mapped = 0; 1013 struct anon_vma *anon_vma = NULL; 1014 bool is_lru = !__PageMovable(page); 1015 1016 if (!trylock_page(page)) { 1017 if (!force || mode == MIGRATE_ASYNC) 1018 goto out; 1019 1020 /* 1021 * It's not safe for direct compaction to call lock_page. 1022 * For example, during page readahead pages are added locked 1023 * to the LRU. Later, when the IO completes the pages are 1024 * marked uptodate and unlocked. However, the queueing 1025 * could be merging multiple pages for one bio (e.g. 1026 * mpage_readpages). If an allocation happens for the 1027 * second or third page, the process can end up locking 1028 * the same page twice and deadlocking. Rather than 1029 * trying to be clever about what pages can be locked, 1030 * avoid the use of lock_page for direct compaction 1031 * altogether. 1032 */ 1033 if (current->flags & PF_MEMALLOC) 1034 goto out; 1035 1036 lock_page(page); 1037 } 1038 1039 if (PageWriteback(page)) { 1040 /* 1041 * Only in the case of a full synchronous migration is it 1042 * necessary to wait for PageWriteback. In the async case, 1043 * the retry loop is too short and in the sync-light case, 1044 * the overhead of stalling is too much 1045 */ 1046 switch (mode) { 1047 case MIGRATE_SYNC: 1048 case MIGRATE_SYNC_NO_COPY: 1049 break; 1050 default: 1051 rc = -EBUSY; 1052 goto out_unlock; 1053 } 1054 if (!force) 1055 goto out_unlock; 1056 wait_on_page_writeback(page); 1057 } 1058 1059 /* 1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1061 * we cannot notice that anon_vma is freed while we migrates a page. 1062 * This get_anon_vma() delays freeing anon_vma pointer until the end 1063 * of migration. File cache pages are no problem because of page_lock() 1064 * File Caches may use write_page() or lock_page() in migration, then, 1065 * just care Anon page here. 1066 * 1067 * Only page_get_anon_vma() understands the subtleties of 1068 * getting a hold on an anon_vma from outside one of its mms. 1069 * But if we cannot get anon_vma, then we won't need it anyway, 1070 * because that implies that the anon page is no longer mapped 1071 * (and cannot be remapped so long as we hold the page lock). 1072 */ 1073 if (PageAnon(page) && !PageKsm(page)) 1074 anon_vma = page_get_anon_vma(page); 1075 1076 /* 1077 * Block others from accessing the new page when we get around to 1078 * establishing additional references. We are usually the only one 1079 * holding a reference to newpage at this point. We used to have a BUG 1080 * here if trylock_page(newpage) fails, but would like to allow for 1081 * cases where there might be a race with the previous use of newpage. 1082 * This is much like races on refcount of oldpage: just don't BUG(). 1083 */ 1084 if (unlikely(!trylock_page(newpage))) 1085 goto out_unlock; 1086 1087 if (unlikely(!is_lru)) { 1088 rc = move_to_new_page(newpage, page, mode); 1089 goto out_unlock_both; 1090 } 1091 1092 /* 1093 * Corner case handling: 1094 * 1. When a new swap-cache page is read into, it is added to the LRU 1095 * and treated as swapcache but it has no rmap yet. 1096 * Calling try_to_unmap() against a page->mapping==NULL page will 1097 * trigger a BUG. So handle it here. 1098 * 2. An orphaned page (see truncate_complete_page) might have 1099 * fs-private metadata. The page can be picked up due to memory 1100 * offlining. Everywhere else except page reclaim, the page is 1101 * invisible to the vm, so the page can not be migrated. So try to 1102 * free the metadata, so the page can be freed. 1103 */ 1104 if (!page->mapping) { 1105 VM_BUG_ON_PAGE(PageAnon(page), page); 1106 if (page_has_private(page)) { 1107 try_to_free_buffers(page); 1108 goto out_unlock_both; 1109 } 1110 } else if (page_mapped(page)) { 1111 /* Establish migration ptes */ 1112 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1113 page); 1114 try_to_unmap(page, 1115 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1116 page_was_mapped = 1; 1117 } 1118 1119 if (!page_mapped(page)) 1120 rc = move_to_new_page(newpage, page, mode); 1121 1122 if (page_was_mapped) 1123 remove_migration_ptes(page, 1124 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1125 1126 out_unlock_both: 1127 unlock_page(newpage); 1128 out_unlock: 1129 /* Drop an anon_vma reference if we took one */ 1130 if (anon_vma) 1131 put_anon_vma(anon_vma); 1132 unlock_page(page); 1133 out: 1134 /* 1135 * If migration is successful, decrease refcount of the newpage 1136 * which will not free the page because new page owner increased 1137 * refcounter. As well, if it is LRU page, add the page to LRU 1138 * list in here. Use the old state of the isolated source page to 1139 * determine if we migrated a LRU page. newpage was already unlocked 1140 * and possibly modified by its owner - don't rely on the page 1141 * state. 1142 */ 1143 if (rc == MIGRATEPAGE_SUCCESS) { 1144 if (unlikely(!is_lru)) 1145 put_page(newpage); 1146 else 1147 putback_lru_page(newpage); 1148 } 1149 1150 return rc; 1151 } 1152 1153 /* 1154 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1155 * around it. 1156 */ 1157 #if defined(CONFIG_ARM) && \ 1158 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1159 #define ICE_noinline noinline 1160 #else 1161 #define ICE_noinline 1162 #endif 1163 1164 /* 1165 * Obtain the lock on page, remove all ptes and migrate the page 1166 * to the newly allocated page in newpage. 1167 */ 1168 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1169 free_page_t put_new_page, 1170 unsigned long private, struct page *page, 1171 int force, enum migrate_mode mode, 1172 enum migrate_reason reason) 1173 { 1174 int rc = MIGRATEPAGE_SUCCESS; 1175 struct page *newpage; 1176 1177 if (!thp_migration_supported() && PageTransHuge(page)) 1178 return -ENOMEM; 1179 1180 newpage = get_new_page(page, private); 1181 if (!newpage) 1182 return -ENOMEM; 1183 1184 if (page_count(page) == 1) { 1185 /* page was freed from under us. So we are done. */ 1186 ClearPageActive(page); 1187 ClearPageUnevictable(page); 1188 if (unlikely(__PageMovable(page))) { 1189 lock_page(page); 1190 if (!PageMovable(page)) 1191 __ClearPageIsolated(page); 1192 unlock_page(page); 1193 } 1194 if (put_new_page) 1195 put_new_page(newpage, private); 1196 else 1197 put_page(newpage); 1198 goto out; 1199 } 1200 1201 rc = __unmap_and_move(page, newpage, force, mode); 1202 if (rc == MIGRATEPAGE_SUCCESS) 1203 set_page_owner_migrate_reason(newpage, reason); 1204 1205 out: 1206 if (rc != -EAGAIN) { 1207 /* 1208 * A page that has been migrated has all references 1209 * removed and will be freed. A page that has not been 1210 * migrated will have kepts its references and be 1211 * restored. 1212 */ 1213 list_del(&page->lru); 1214 1215 /* 1216 * Compaction can migrate also non-LRU pages which are 1217 * not accounted to NR_ISOLATED_*. They can be recognized 1218 * as __PageMovable 1219 */ 1220 if (likely(!__PageMovable(page))) 1221 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1222 page_is_file_cache(page), -hpage_nr_pages(page)); 1223 } 1224 1225 /* 1226 * If migration is successful, releases reference grabbed during 1227 * isolation. Otherwise, restore the page to right list unless 1228 * we want to retry. 1229 */ 1230 if (rc == MIGRATEPAGE_SUCCESS) { 1231 put_page(page); 1232 if (reason == MR_MEMORY_FAILURE) { 1233 /* 1234 * Set PG_HWPoison on just freed page 1235 * intentionally. Although it's rather weird, 1236 * it's how HWPoison flag works at the moment. 1237 */ 1238 if (set_hwpoison_free_buddy_page(page)) 1239 num_poisoned_pages_inc(); 1240 } 1241 } else { 1242 if (rc != -EAGAIN) { 1243 if (likely(!__PageMovable(page))) { 1244 putback_lru_page(page); 1245 goto put_new; 1246 } 1247 1248 lock_page(page); 1249 if (PageMovable(page)) 1250 putback_movable_page(page); 1251 else 1252 __ClearPageIsolated(page); 1253 unlock_page(page); 1254 put_page(page); 1255 } 1256 put_new: 1257 if (put_new_page) 1258 put_new_page(newpage, private); 1259 else 1260 put_page(newpage); 1261 } 1262 1263 return rc; 1264 } 1265 1266 /* 1267 * Counterpart of unmap_and_move_page() for hugepage migration. 1268 * 1269 * This function doesn't wait the completion of hugepage I/O 1270 * because there is no race between I/O and migration for hugepage. 1271 * Note that currently hugepage I/O occurs only in direct I/O 1272 * where no lock is held and PG_writeback is irrelevant, 1273 * and writeback status of all subpages are counted in the reference 1274 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1275 * under direct I/O, the reference of the head page is 512 and a bit more.) 1276 * This means that when we try to migrate hugepage whose subpages are 1277 * doing direct I/O, some references remain after try_to_unmap() and 1278 * hugepage migration fails without data corruption. 1279 * 1280 * There is also no race when direct I/O is issued on the page under migration, 1281 * because then pte is replaced with migration swap entry and direct I/O code 1282 * will wait in the page fault for migration to complete. 1283 */ 1284 static int unmap_and_move_huge_page(new_page_t get_new_page, 1285 free_page_t put_new_page, unsigned long private, 1286 struct page *hpage, int force, 1287 enum migrate_mode mode, int reason) 1288 { 1289 int rc = -EAGAIN; 1290 int page_was_mapped = 0; 1291 struct page *new_hpage; 1292 struct anon_vma *anon_vma = NULL; 1293 1294 /* 1295 * Migratability of hugepages depends on architectures and their size. 1296 * This check is necessary because some callers of hugepage migration 1297 * like soft offline and memory hotremove don't walk through page 1298 * tables or check whether the hugepage is pmd-based or not before 1299 * kicking migration. 1300 */ 1301 if (!hugepage_migration_supported(page_hstate(hpage))) { 1302 putback_active_hugepage(hpage); 1303 return -ENOSYS; 1304 } 1305 1306 new_hpage = get_new_page(hpage, private); 1307 if (!new_hpage) 1308 return -ENOMEM; 1309 1310 if (!trylock_page(hpage)) { 1311 if (!force) 1312 goto out; 1313 switch (mode) { 1314 case MIGRATE_SYNC: 1315 case MIGRATE_SYNC_NO_COPY: 1316 break; 1317 default: 1318 goto out; 1319 } 1320 lock_page(hpage); 1321 } 1322 1323 /* 1324 * Check for pages which are in the process of being freed. Without 1325 * page_mapping() set, hugetlbfs specific move page routine will not 1326 * be called and we could leak usage counts for subpools. 1327 */ 1328 if (page_private(hpage) && !page_mapping(hpage)) { 1329 rc = -EBUSY; 1330 goto out_unlock; 1331 } 1332 1333 if (PageAnon(hpage)) 1334 anon_vma = page_get_anon_vma(hpage); 1335 1336 if (unlikely(!trylock_page(new_hpage))) 1337 goto put_anon; 1338 1339 if (page_mapped(hpage)) { 1340 try_to_unmap(hpage, 1341 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1342 page_was_mapped = 1; 1343 } 1344 1345 if (!page_mapped(hpage)) 1346 rc = move_to_new_page(new_hpage, hpage, mode); 1347 1348 if (page_was_mapped) 1349 remove_migration_ptes(hpage, 1350 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1351 1352 unlock_page(new_hpage); 1353 1354 put_anon: 1355 if (anon_vma) 1356 put_anon_vma(anon_vma); 1357 1358 if (rc == MIGRATEPAGE_SUCCESS) { 1359 move_hugetlb_state(hpage, new_hpage, reason); 1360 put_new_page = NULL; 1361 } 1362 1363 out_unlock: 1364 unlock_page(hpage); 1365 out: 1366 if (rc != -EAGAIN) 1367 putback_active_hugepage(hpage); 1368 1369 /* 1370 * If migration was not successful and there's a freeing callback, use 1371 * it. Otherwise, put_page() will drop the reference grabbed during 1372 * isolation. 1373 */ 1374 if (put_new_page) 1375 put_new_page(new_hpage, private); 1376 else 1377 putback_active_hugepage(new_hpage); 1378 1379 return rc; 1380 } 1381 1382 /* 1383 * migrate_pages - migrate the pages specified in a list, to the free pages 1384 * supplied as the target for the page migration 1385 * 1386 * @from: The list of pages to be migrated. 1387 * @get_new_page: The function used to allocate free pages to be used 1388 * as the target of the page migration. 1389 * @put_new_page: The function used to free target pages if migration 1390 * fails, or NULL if no special handling is necessary. 1391 * @private: Private data to be passed on to get_new_page() 1392 * @mode: The migration mode that specifies the constraints for 1393 * page migration, if any. 1394 * @reason: The reason for page migration. 1395 * 1396 * The function returns after 10 attempts or if no pages are movable any more 1397 * because the list has become empty or no retryable pages exist any more. 1398 * The caller should call putback_movable_pages() to return pages to the LRU 1399 * or free list only if ret != 0. 1400 * 1401 * Returns the number of pages that were not migrated, or an error code. 1402 */ 1403 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1404 free_page_t put_new_page, unsigned long private, 1405 enum migrate_mode mode, int reason) 1406 { 1407 int retry = 1; 1408 int nr_failed = 0; 1409 int nr_succeeded = 0; 1410 int pass = 0; 1411 struct page *page; 1412 struct page *page2; 1413 int swapwrite = current->flags & PF_SWAPWRITE; 1414 int rc; 1415 1416 if (!swapwrite) 1417 current->flags |= PF_SWAPWRITE; 1418 1419 for(pass = 0; pass < 10 && retry; pass++) { 1420 retry = 0; 1421 1422 list_for_each_entry_safe(page, page2, from, lru) { 1423 retry: 1424 cond_resched(); 1425 1426 if (PageHuge(page)) 1427 rc = unmap_and_move_huge_page(get_new_page, 1428 put_new_page, private, page, 1429 pass > 2, mode, reason); 1430 else 1431 rc = unmap_and_move(get_new_page, put_new_page, 1432 private, page, pass > 2, mode, 1433 reason); 1434 1435 switch(rc) { 1436 case -ENOMEM: 1437 /* 1438 * THP migration might be unsupported or the 1439 * allocation could've failed so we should 1440 * retry on the same page with the THP split 1441 * to base pages. 1442 * 1443 * Head page is retried immediately and tail 1444 * pages are added to the tail of the list so 1445 * we encounter them after the rest of the list 1446 * is processed. 1447 */ 1448 if (PageTransHuge(page) && !PageHuge(page)) { 1449 lock_page(page); 1450 rc = split_huge_page_to_list(page, from); 1451 unlock_page(page); 1452 if (!rc) { 1453 list_safe_reset_next(page, page2, lru); 1454 goto retry; 1455 } 1456 } 1457 nr_failed++; 1458 goto out; 1459 case -EAGAIN: 1460 retry++; 1461 break; 1462 case MIGRATEPAGE_SUCCESS: 1463 nr_succeeded++; 1464 break; 1465 default: 1466 /* 1467 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1468 * unlike -EAGAIN case, the failed page is 1469 * removed from migration page list and not 1470 * retried in the next outer loop. 1471 */ 1472 nr_failed++; 1473 break; 1474 } 1475 } 1476 } 1477 nr_failed += retry; 1478 rc = nr_failed; 1479 out: 1480 if (nr_succeeded) 1481 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1482 if (nr_failed) 1483 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1484 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1485 1486 if (!swapwrite) 1487 current->flags &= ~PF_SWAPWRITE; 1488 1489 return rc; 1490 } 1491 1492 #ifdef CONFIG_NUMA 1493 1494 static int store_status(int __user *status, int start, int value, int nr) 1495 { 1496 while (nr-- > 0) { 1497 if (put_user(value, status + start)) 1498 return -EFAULT; 1499 start++; 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int do_move_pages_to_node(struct mm_struct *mm, 1506 struct list_head *pagelist, int node) 1507 { 1508 int err; 1509 1510 if (list_empty(pagelist)) 1511 return 0; 1512 1513 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1514 MIGRATE_SYNC, MR_SYSCALL); 1515 if (err) 1516 putback_movable_pages(pagelist); 1517 return err; 1518 } 1519 1520 /* 1521 * Resolves the given address to a struct page, isolates it from the LRU and 1522 * puts it to the given pagelist. 1523 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1524 * queued or the page doesn't need to be migrated because it is already on 1525 * the target node 1526 */ 1527 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1528 int node, struct list_head *pagelist, bool migrate_all) 1529 { 1530 struct vm_area_struct *vma; 1531 struct page *page; 1532 unsigned int follflags; 1533 int err; 1534 1535 down_read(&mm->mmap_sem); 1536 err = -EFAULT; 1537 vma = find_vma(mm, addr); 1538 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1539 goto out; 1540 1541 /* FOLL_DUMP to ignore special (like zero) pages */ 1542 follflags = FOLL_GET | FOLL_DUMP; 1543 page = follow_page(vma, addr, follflags); 1544 1545 err = PTR_ERR(page); 1546 if (IS_ERR(page)) 1547 goto out; 1548 1549 err = -ENOENT; 1550 if (!page) 1551 goto out; 1552 1553 err = 0; 1554 if (page_to_nid(page) == node) 1555 goto out_putpage; 1556 1557 err = -EACCES; 1558 if (page_mapcount(page) > 1 && !migrate_all) 1559 goto out_putpage; 1560 1561 if (PageHuge(page)) { 1562 if (PageHead(page)) { 1563 isolate_huge_page(page, pagelist); 1564 err = 0; 1565 } 1566 } else { 1567 struct page *head; 1568 1569 head = compound_head(page); 1570 err = isolate_lru_page(head); 1571 if (err) 1572 goto out_putpage; 1573 1574 err = 0; 1575 list_add_tail(&head->lru, pagelist); 1576 mod_node_page_state(page_pgdat(head), 1577 NR_ISOLATED_ANON + page_is_file_cache(head), 1578 hpage_nr_pages(head)); 1579 } 1580 out_putpage: 1581 /* 1582 * Either remove the duplicate refcount from 1583 * isolate_lru_page() or drop the page ref if it was 1584 * not isolated. 1585 */ 1586 put_page(page); 1587 out: 1588 up_read(&mm->mmap_sem); 1589 return err; 1590 } 1591 1592 /* 1593 * Migrate an array of page address onto an array of nodes and fill 1594 * the corresponding array of status. 1595 */ 1596 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1597 unsigned long nr_pages, 1598 const void __user * __user *pages, 1599 const int __user *nodes, 1600 int __user *status, int flags) 1601 { 1602 int current_node = NUMA_NO_NODE; 1603 LIST_HEAD(pagelist); 1604 int start, i; 1605 int err = 0, err1; 1606 1607 migrate_prep(); 1608 1609 for (i = start = 0; i < nr_pages; i++) { 1610 const void __user *p; 1611 unsigned long addr; 1612 int node; 1613 1614 err = -EFAULT; 1615 if (get_user(p, pages + i)) 1616 goto out_flush; 1617 if (get_user(node, nodes + i)) 1618 goto out_flush; 1619 addr = (unsigned long)p; 1620 1621 err = -ENODEV; 1622 if (node < 0 || node >= MAX_NUMNODES) 1623 goto out_flush; 1624 if (!node_state(node, N_MEMORY)) 1625 goto out_flush; 1626 1627 err = -EACCES; 1628 if (!node_isset(node, task_nodes)) 1629 goto out_flush; 1630 1631 if (current_node == NUMA_NO_NODE) { 1632 current_node = node; 1633 start = i; 1634 } else if (node != current_node) { 1635 err = do_move_pages_to_node(mm, &pagelist, current_node); 1636 if (err) 1637 goto out; 1638 err = store_status(status, start, current_node, i - start); 1639 if (err) 1640 goto out; 1641 start = i; 1642 current_node = node; 1643 } 1644 1645 /* 1646 * Errors in the page lookup or isolation are not fatal and we simply 1647 * report them via status 1648 */ 1649 err = add_page_for_migration(mm, addr, current_node, 1650 &pagelist, flags & MPOL_MF_MOVE_ALL); 1651 if (!err) 1652 continue; 1653 1654 err = store_status(status, i, err, 1); 1655 if (err) 1656 goto out_flush; 1657 1658 err = do_move_pages_to_node(mm, &pagelist, current_node); 1659 if (err) 1660 goto out; 1661 if (i > start) { 1662 err = store_status(status, start, current_node, i - start); 1663 if (err) 1664 goto out; 1665 } 1666 current_node = NUMA_NO_NODE; 1667 } 1668 out_flush: 1669 if (list_empty(&pagelist)) 1670 return err; 1671 1672 /* Make sure we do not overwrite the existing error */ 1673 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1674 if (!err1) 1675 err1 = store_status(status, start, current_node, i - start); 1676 if (!err) 1677 err = err1; 1678 out: 1679 return err; 1680 } 1681 1682 /* 1683 * Determine the nodes of an array of pages and store it in an array of status. 1684 */ 1685 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1686 const void __user **pages, int *status) 1687 { 1688 unsigned long i; 1689 1690 down_read(&mm->mmap_sem); 1691 1692 for (i = 0; i < nr_pages; i++) { 1693 unsigned long addr = (unsigned long)(*pages); 1694 struct vm_area_struct *vma; 1695 struct page *page; 1696 int err = -EFAULT; 1697 1698 vma = find_vma(mm, addr); 1699 if (!vma || addr < vma->vm_start) 1700 goto set_status; 1701 1702 /* FOLL_DUMP to ignore special (like zero) pages */ 1703 page = follow_page(vma, addr, FOLL_DUMP); 1704 1705 err = PTR_ERR(page); 1706 if (IS_ERR(page)) 1707 goto set_status; 1708 1709 err = page ? page_to_nid(page) : -ENOENT; 1710 set_status: 1711 *status = err; 1712 1713 pages++; 1714 status++; 1715 } 1716 1717 up_read(&mm->mmap_sem); 1718 } 1719 1720 /* 1721 * Determine the nodes of a user array of pages and store it in 1722 * a user array of status. 1723 */ 1724 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1725 const void __user * __user *pages, 1726 int __user *status) 1727 { 1728 #define DO_PAGES_STAT_CHUNK_NR 16 1729 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1730 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1731 1732 while (nr_pages) { 1733 unsigned long chunk_nr; 1734 1735 chunk_nr = nr_pages; 1736 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1737 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1738 1739 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1740 break; 1741 1742 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1743 1744 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1745 break; 1746 1747 pages += chunk_nr; 1748 status += chunk_nr; 1749 nr_pages -= chunk_nr; 1750 } 1751 return nr_pages ? -EFAULT : 0; 1752 } 1753 1754 /* 1755 * Move a list of pages in the address space of the currently executing 1756 * process. 1757 */ 1758 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1759 const void __user * __user *pages, 1760 const int __user *nodes, 1761 int __user *status, int flags) 1762 { 1763 struct task_struct *task; 1764 struct mm_struct *mm; 1765 int err; 1766 nodemask_t task_nodes; 1767 1768 /* Check flags */ 1769 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1770 return -EINVAL; 1771 1772 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1773 return -EPERM; 1774 1775 /* Find the mm_struct */ 1776 rcu_read_lock(); 1777 task = pid ? find_task_by_vpid(pid) : current; 1778 if (!task) { 1779 rcu_read_unlock(); 1780 return -ESRCH; 1781 } 1782 get_task_struct(task); 1783 1784 /* 1785 * Check if this process has the right to modify the specified 1786 * process. Use the regular "ptrace_may_access()" checks. 1787 */ 1788 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1789 rcu_read_unlock(); 1790 err = -EPERM; 1791 goto out; 1792 } 1793 rcu_read_unlock(); 1794 1795 err = security_task_movememory(task); 1796 if (err) 1797 goto out; 1798 1799 task_nodes = cpuset_mems_allowed(task); 1800 mm = get_task_mm(task); 1801 put_task_struct(task); 1802 1803 if (!mm) 1804 return -EINVAL; 1805 1806 if (nodes) 1807 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1808 nodes, status, flags); 1809 else 1810 err = do_pages_stat(mm, nr_pages, pages, status); 1811 1812 mmput(mm); 1813 return err; 1814 1815 out: 1816 put_task_struct(task); 1817 return err; 1818 } 1819 1820 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1821 const void __user * __user *, pages, 1822 const int __user *, nodes, 1823 int __user *, status, int, flags) 1824 { 1825 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1826 } 1827 1828 #ifdef CONFIG_COMPAT 1829 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1830 compat_uptr_t __user *, pages32, 1831 const int __user *, nodes, 1832 int __user *, status, 1833 int, flags) 1834 { 1835 const void __user * __user *pages; 1836 int i; 1837 1838 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1839 for (i = 0; i < nr_pages; i++) { 1840 compat_uptr_t p; 1841 1842 if (get_user(p, pages32 + i) || 1843 put_user(compat_ptr(p), pages + i)) 1844 return -EFAULT; 1845 } 1846 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1847 } 1848 #endif /* CONFIG_COMPAT */ 1849 1850 #ifdef CONFIG_NUMA_BALANCING 1851 /* 1852 * Returns true if this is a safe migration target node for misplaced NUMA 1853 * pages. Currently it only checks the watermarks which crude 1854 */ 1855 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1856 unsigned long nr_migrate_pages) 1857 { 1858 int z; 1859 1860 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1861 struct zone *zone = pgdat->node_zones + z; 1862 1863 if (!populated_zone(zone)) 1864 continue; 1865 1866 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1867 if (!zone_watermark_ok(zone, 0, 1868 high_wmark_pages(zone) + 1869 nr_migrate_pages, 1870 0, 0)) 1871 continue; 1872 return true; 1873 } 1874 return false; 1875 } 1876 1877 static struct page *alloc_misplaced_dst_page(struct page *page, 1878 unsigned long data) 1879 { 1880 int nid = (int) data; 1881 struct page *newpage; 1882 1883 newpage = __alloc_pages_node(nid, 1884 (GFP_HIGHUSER_MOVABLE | 1885 __GFP_THISNODE | __GFP_NOMEMALLOC | 1886 __GFP_NORETRY | __GFP_NOWARN) & 1887 ~__GFP_RECLAIM, 0); 1888 1889 return newpage; 1890 } 1891 1892 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1893 { 1894 int page_lru; 1895 1896 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1897 1898 /* Avoid migrating to a node that is nearly full */ 1899 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1900 return 0; 1901 1902 if (isolate_lru_page(page)) 1903 return 0; 1904 1905 /* 1906 * migrate_misplaced_transhuge_page() skips page migration's usual 1907 * check on page_count(), so we must do it here, now that the page 1908 * has been isolated: a GUP pin, or any other pin, prevents migration. 1909 * The expected page count is 3: 1 for page's mapcount and 1 for the 1910 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1911 */ 1912 if (PageTransHuge(page) && page_count(page) != 3) { 1913 putback_lru_page(page); 1914 return 0; 1915 } 1916 1917 page_lru = page_is_file_cache(page); 1918 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1919 hpage_nr_pages(page)); 1920 1921 /* 1922 * Isolating the page has taken another reference, so the 1923 * caller's reference can be safely dropped without the page 1924 * disappearing underneath us during migration. 1925 */ 1926 put_page(page); 1927 return 1; 1928 } 1929 1930 bool pmd_trans_migrating(pmd_t pmd) 1931 { 1932 struct page *page = pmd_page(pmd); 1933 return PageLocked(page); 1934 } 1935 1936 /* 1937 * Attempt to migrate a misplaced page to the specified destination 1938 * node. Caller is expected to have an elevated reference count on 1939 * the page that will be dropped by this function before returning. 1940 */ 1941 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1942 int node) 1943 { 1944 pg_data_t *pgdat = NODE_DATA(node); 1945 int isolated; 1946 int nr_remaining; 1947 LIST_HEAD(migratepages); 1948 1949 /* 1950 * Don't migrate file pages that are mapped in multiple processes 1951 * with execute permissions as they are probably shared libraries. 1952 */ 1953 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1954 (vma->vm_flags & VM_EXEC)) 1955 goto out; 1956 1957 /* 1958 * Also do not migrate dirty pages as not all filesystems can move 1959 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1960 */ 1961 if (page_is_file_cache(page) && PageDirty(page)) 1962 goto out; 1963 1964 isolated = numamigrate_isolate_page(pgdat, page); 1965 if (!isolated) 1966 goto out; 1967 1968 list_add(&page->lru, &migratepages); 1969 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1970 NULL, node, MIGRATE_ASYNC, 1971 MR_NUMA_MISPLACED); 1972 if (nr_remaining) { 1973 if (!list_empty(&migratepages)) { 1974 list_del(&page->lru); 1975 dec_node_page_state(page, NR_ISOLATED_ANON + 1976 page_is_file_cache(page)); 1977 putback_lru_page(page); 1978 } 1979 isolated = 0; 1980 } else 1981 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1982 BUG_ON(!list_empty(&migratepages)); 1983 return isolated; 1984 1985 out: 1986 put_page(page); 1987 return 0; 1988 } 1989 #endif /* CONFIG_NUMA_BALANCING */ 1990 1991 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1992 /* 1993 * Migrates a THP to a given target node. page must be locked and is unlocked 1994 * before returning. 1995 */ 1996 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1997 struct vm_area_struct *vma, 1998 pmd_t *pmd, pmd_t entry, 1999 unsigned long address, 2000 struct page *page, int node) 2001 { 2002 spinlock_t *ptl; 2003 pg_data_t *pgdat = NODE_DATA(node); 2004 int isolated = 0; 2005 struct page *new_page = NULL; 2006 int page_lru = page_is_file_cache(page); 2007 unsigned long start = address & HPAGE_PMD_MASK; 2008 2009 new_page = alloc_pages_node(node, 2010 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2011 HPAGE_PMD_ORDER); 2012 if (!new_page) 2013 goto out_fail; 2014 prep_transhuge_page(new_page); 2015 2016 isolated = numamigrate_isolate_page(pgdat, page); 2017 if (!isolated) { 2018 put_page(new_page); 2019 goto out_fail; 2020 } 2021 2022 /* Prepare a page as a migration target */ 2023 __SetPageLocked(new_page); 2024 if (PageSwapBacked(page)) 2025 __SetPageSwapBacked(new_page); 2026 2027 /* anon mapping, we can simply copy page->mapping to the new page: */ 2028 new_page->mapping = page->mapping; 2029 new_page->index = page->index; 2030 /* flush the cache before copying using the kernel virtual address */ 2031 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2032 migrate_page_copy(new_page, page); 2033 WARN_ON(PageLRU(new_page)); 2034 2035 /* Recheck the target PMD */ 2036 ptl = pmd_lock(mm, pmd); 2037 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2038 spin_unlock(ptl); 2039 2040 /* Reverse changes made by migrate_page_copy() */ 2041 if (TestClearPageActive(new_page)) 2042 SetPageActive(page); 2043 if (TestClearPageUnevictable(new_page)) 2044 SetPageUnevictable(page); 2045 2046 unlock_page(new_page); 2047 put_page(new_page); /* Free it */ 2048 2049 /* Retake the callers reference and putback on LRU */ 2050 get_page(page); 2051 putback_lru_page(page); 2052 mod_node_page_state(page_pgdat(page), 2053 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2054 2055 goto out_unlock; 2056 } 2057 2058 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2059 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2060 2061 /* 2062 * Overwrite the old entry under pagetable lock and establish 2063 * the new PTE. Any parallel GUP will either observe the old 2064 * page blocking on the page lock, block on the page table 2065 * lock or observe the new page. The SetPageUptodate on the 2066 * new page and page_add_new_anon_rmap guarantee the copy is 2067 * visible before the pagetable update. 2068 */ 2069 page_add_anon_rmap(new_page, vma, start, true); 2070 /* 2071 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2072 * has already been flushed globally. So no TLB can be currently 2073 * caching this non present pmd mapping. There's no need to clear the 2074 * pmd before doing set_pmd_at(), nor to flush the TLB after 2075 * set_pmd_at(). Clearing the pmd here would introduce a race 2076 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2077 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2078 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2079 * pmd. 2080 */ 2081 set_pmd_at(mm, start, pmd, entry); 2082 update_mmu_cache_pmd(vma, address, &entry); 2083 2084 page_ref_unfreeze(page, 2); 2085 mlock_migrate_page(new_page, page); 2086 page_remove_rmap(page, true); 2087 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2088 2089 spin_unlock(ptl); 2090 2091 /* Take an "isolate" reference and put new page on the LRU. */ 2092 get_page(new_page); 2093 putback_lru_page(new_page); 2094 2095 unlock_page(new_page); 2096 unlock_page(page); 2097 put_page(page); /* Drop the rmap reference */ 2098 put_page(page); /* Drop the LRU isolation reference */ 2099 2100 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2101 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2102 2103 mod_node_page_state(page_pgdat(page), 2104 NR_ISOLATED_ANON + page_lru, 2105 -HPAGE_PMD_NR); 2106 return isolated; 2107 2108 out_fail: 2109 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2110 ptl = pmd_lock(mm, pmd); 2111 if (pmd_same(*pmd, entry)) { 2112 entry = pmd_modify(entry, vma->vm_page_prot); 2113 set_pmd_at(mm, start, pmd, entry); 2114 update_mmu_cache_pmd(vma, address, &entry); 2115 } 2116 spin_unlock(ptl); 2117 2118 out_unlock: 2119 unlock_page(page); 2120 put_page(page); 2121 return 0; 2122 } 2123 #endif /* CONFIG_NUMA_BALANCING */ 2124 2125 #endif /* CONFIG_NUMA */ 2126 2127 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2128 struct migrate_vma { 2129 struct vm_area_struct *vma; 2130 unsigned long *dst; 2131 unsigned long *src; 2132 unsigned long cpages; 2133 unsigned long npages; 2134 unsigned long start; 2135 unsigned long end; 2136 }; 2137 2138 static int migrate_vma_collect_hole(unsigned long start, 2139 unsigned long end, 2140 struct mm_walk *walk) 2141 { 2142 struct migrate_vma *migrate = walk->private; 2143 unsigned long addr; 2144 2145 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2146 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2147 migrate->dst[migrate->npages] = 0; 2148 migrate->npages++; 2149 migrate->cpages++; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static int migrate_vma_collect_skip(unsigned long start, 2156 unsigned long end, 2157 struct mm_walk *walk) 2158 { 2159 struct migrate_vma *migrate = walk->private; 2160 unsigned long addr; 2161 2162 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2163 migrate->dst[migrate->npages] = 0; 2164 migrate->src[migrate->npages++] = 0; 2165 } 2166 2167 return 0; 2168 } 2169 2170 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2171 unsigned long start, 2172 unsigned long end, 2173 struct mm_walk *walk) 2174 { 2175 struct migrate_vma *migrate = walk->private; 2176 struct vm_area_struct *vma = walk->vma; 2177 struct mm_struct *mm = vma->vm_mm; 2178 unsigned long addr = start, unmapped = 0; 2179 spinlock_t *ptl; 2180 pte_t *ptep; 2181 2182 again: 2183 if (pmd_none(*pmdp)) 2184 return migrate_vma_collect_hole(start, end, walk); 2185 2186 if (pmd_trans_huge(*pmdp)) { 2187 struct page *page; 2188 2189 ptl = pmd_lock(mm, pmdp); 2190 if (unlikely(!pmd_trans_huge(*pmdp))) { 2191 spin_unlock(ptl); 2192 goto again; 2193 } 2194 2195 page = pmd_page(*pmdp); 2196 if (is_huge_zero_page(page)) { 2197 spin_unlock(ptl); 2198 split_huge_pmd(vma, pmdp, addr); 2199 if (pmd_trans_unstable(pmdp)) 2200 return migrate_vma_collect_skip(start, end, 2201 walk); 2202 } else { 2203 int ret; 2204 2205 get_page(page); 2206 spin_unlock(ptl); 2207 if (unlikely(!trylock_page(page))) 2208 return migrate_vma_collect_skip(start, end, 2209 walk); 2210 ret = split_huge_page(page); 2211 unlock_page(page); 2212 put_page(page); 2213 if (ret) 2214 return migrate_vma_collect_skip(start, end, 2215 walk); 2216 if (pmd_none(*pmdp)) 2217 return migrate_vma_collect_hole(start, end, 2218 walk); 2219 } 2220 } 2221 2222 if (unlikely(pmd_bad(*pmdp))) 2223 return migrate_vma_collect_skip(start, end, walk); 2224 2225 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2226 arch_enter_lazy_mmu_mode(); 2227 2228 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2229 unsigned long mpfn, pfn; 2230 struct page *page; 2231 swp_entry_t entry; 2232 pte_t pte; 2233 2234 pte = *ptep; 2235 pfn = pte_pfn(pte); 2236 2237 if (pte_none(pte)) { 2238 mpfn = MIGRATE_PFN_MIGRATE; 2239 migrate->cpages++; 2240 pfn = 0; 2241 goto next; 2242 } 2243 2244 if (!pte_present(pte)) { 2245 mpfn = pfn = 0; 2246 2247 /* 2248 * Only care about unaddressable device page special 2249 * page table entry. Other special swap entries are not 2250 * migratable, and we ignore regular swapped page. 2251 */ 2252 entry = pte_to_swp_entry(pte); 2253 if (!is_device_private_entry(entry)) 2254 goto next; 2255 2256 page = device_private_entry_to_page(entry); 2257 mpfn = migrate_pfn(page_to_pfn(page))| 2258 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2259 if (is_write_device_private_entry(entry)) 2260 mpfn |= MIGRATE_PFN_WRITE; 2261 } else { 2262 if (is_zero_pfn(pfn)) { 2263 mpfn = MIGRATE_PFN_MIGRATE; 2264 migrate->cpages++; 2265 pfn = 0; 2266 goto next; 2267 } 2268 page = _vm_normal_page(migrate->vma, addr, pte, true); 2269 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2270 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2271 } 2272 2273 /* FIXME support THP */ 2274 if (!page || !page->mapping || PageTransCompound(page)) { 2275 mpfn = pfn = 0; 2276 goto next; 2277 } 2278 pfn = page_to_pfn(page); 2279 2280 /* 2281 * By getting a reference on the page we pin it and that blocks 2282 * any kind of migration. Side effect is that it "freezes" the 2283 * pte. 2284 * 2285 * We drop this reference after isolating the page from the lru 2286 * for non device page (device page are not on the lru and thus 2287 * can't be dropped from it). 2288 */ 2289 get_page(page); 2290 migrate->cpages++; 2291 2292 /* 2293 * Optimize for the common case where page is only mapped once 2294 * in one process. If we can lock the page, then we can safely 2295 * set up a special migration page table entry now. 2296 */ 2297 if (trylock_page(page)) { 2298 pte_t swp_pte; 2299 2300 mpfn |= MIGRATE_PFN_LOCKED; 2301 ptep_get_and_clear(mm, addr, ptep); 2302 2303 /* Setup special migration page table entry */ 2304 entry = make_migration_entry(page, mpfn & 2305 MIGRATE_PFN_WRITE); 2306 swp_pte = swp_entry_to_pte(entry); 2307 if (pte_soft_dirty(pte)) 2308 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2309 set_pte_at(mm, addr, ptep, swp_pte); 2310 2311 /* 2312 * This is like regular unmap: we remove the rmap and 2313 * drop page refcount. Page won't be freed, as we took 2314 * a reference just above. 2315 */ 2316 page_remove_rmap(page, false); 2317 put_page(page); 2318 2319 if (pte_present(pte)) 2320 unmapped++; 2321 } 2322 2323 next: 2324 migrate->dst[migrate->npages] = 0; 2325 migrate->src[migrate->npages++] = mpfn; 2326 } 2327 arch_leave_lazy_mmu_mode(); 2328 pte_unmap_unlock(ptep - 1, ptl); 2329 2330 /* Only flush the TLB if we actually modified any entries */ 2331 if (unmapped) 2332 flush_tlb_range(walk->vma, start, end); 2333 2334 return 0; 2335 } 2336 2337 /* 2338 * migrate_vma_collect() - collect pages over a range of virtual addresses 2339 * @migrate: migrate struct containing all migration information 2340 * 2341 * This will walk the CPU page table. For each virtual address backed by a 2342 * valid page, it updates the src array and takes a reference on the page, in 2343 * order to pin the page until we lock it and unmap it. 2344 */ 2345 static void migrate_vma_collect(struct migrate_vma *migrate) 2346 { 2347 struct mmu_notifier_range range; 2348 struct mm_walk mm_walk; 2349 2350 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2351 mm_walk.pte_entry = NULL; 2352 mm_walk.pte_hole = migrate_vma_collect_hole; 2353 mm_walk.hugetlb_entry = NULL; 2354 mm_walk.test_walk = NULL; 2355 mm_walk.vma = migrate->vma; 2356 mm_walk.mm = migrate->vma->vm_mm; 2357 mm_walk.private = migrate; 2358 2359 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start, 2360 migrate->end); 2361 mmu_notifier_invalidate_range_start(&range); 2362 walk_page_range(migrate->start, migrate->end, &mm_walk); 2363 mmu_notifier_invalidate_range_end(&range); 2364 2365 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2366 } 2367 2368 /* 2369 * migrate_vma_check_page() - check if page is pinned or not 2370 * @page: struct page to check 2371 * 2372 * Pinned pages cannot be migrated. This is the same test as in 2373 * migrate_page_move_mapping(), except that here we allow migration of a 2374 * ZONE_DEVICE page. 2375 */ 2376 static bool migrate_vma_check_page(struct page *page) 2377 { 2378 /* 2379 * One extra ref because caller holds an extra reference, either from 2380 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2381 * a device page. 2382 */ 2383 int extra = 1; 2384 2385 /* 2386 * FIXME support THP (transparent huge page), it is bit more complex to 2387 * check them than regular pages, because they can be mapped with a pmd 2388 * or with a pte (split pte mapping). 2389 */ 2390 if (PageCompound(page)) 2391 return false; 2392 2393 /* Page from ZONE_DEVICE have one extra reference */ 2394 if (is_zone_device_page(page)) { 2395 /* 2396 * Private page can never be pin as they have no valid pte and 2397 * GUP will fail for those. Yet if there is a pending migration 2398 * a thread might try to wait on the pte migration entry and 2399 * will bump the page reference count. Sadly there is no way to 2400 * differentiate a regular pin from migration wait. Hence to 2401 * avoid 2 racing thread trying to migrate back to CPU to enter 2402 * infinite loop (one stoping migration because the other is 2403 * waiting on pte migration entry). We always return true here. 2404 * 2405 * FIXME proper solution is to rework migration_entry_wait() so 2406 * it does not need to take a reference on page. 2407 */ 2408 if (is_device_private_page(page)) 2409 return true; 2410 2411 /* 2412 * Only allow device public page to be migrated and account for 2413 * the extra reference count imply by ZONE_DEVICE pages. 2414 */ 2415 if (!is_device_public_page(page)) 2416 return false; 2417 extra++; 2418 } 2419 2420 /* For file back page */ 2421 if (page_mapping(page)) 2422 extra += 1 + page_has_private(page); 2423 2424 if ((page_count(page) - extra) > page_mapcount(page)) 2425 return false; 2426 2427 return true; 2428 } 2429 2430 /* 2431 * migrate_vma_prepare() - lock pages and isolate them from the lru 2432 * @migrate: migrate struct containing all migration information 2433 * 2434 * This locks pages that have been collected by migrate_vma_collect(). Once each 2435 * page is locked it is isolated from the lru (for non-device pages). Finally, 2436 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2437 * migrated by concurrent kernel threads. 2438 */ 2439 static void migrate_vma_prepare(struct migrate_vma *migrate) 2440 { 2441 const unsigned long npages = migrate->npages; 2442 const unsigned long start = migrate->start; 2443 unsigned long addr, i, restore = 0; 2444 bool allow_drain = true; 2445 2446 lru_add_drain(); 2447 2448 for (i = 0; (i < npages) && migrate->cpages; i++) { 2449 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2450 bool remap = true; 2451 2452 if (!page) 2453 continue; 2454 2455 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2456 /* 2457 * Because we are migrating several pages there can be 2458 * a deadlock between 2 concurrent migration where each 2459 * are waiting on each other page lock. 2460 * 2461 * Make migrate_vma() a best effort thing and backoff 2462 * for any page we can not lock right away. 2463 */ 2464 if (!trylock_page(page)) { 2465 migrate->src[i] = 0; 2466 migrate->cpages--; 2467 put_page(page); 2468 continue; 2469 } 2470 remap = false; 2471 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2472 } 2473 2474 /* ZONE_DEVICE pages are not on LRU */ 2475 if (!is_zone_device_page(page)) { 2476 if (!PageLRU(page) && allow_drain) { 2477 /* Drain CPU's pagevec */ 2478 lru_add_drain_all(); 2479 allow_drain = false; 2480 } 2481 2482 if (isolate_lru_page(page)) { 2483 if (remap) { 2484 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2485 migrate->cpages--; 2486 restore++; 2487 } else { 2488 migrate->src[i] = 0; 2489 unlock_page(page); 2490 migrate->cpages--; 2491 put_page(page); 2492 } 2493 continue; 2494 } 2495 2496 /* Drop the reference we took in collect */ 2497 put_page(page); 2498 } 2499 2500 if (!migrate_vma_check_page(page)) { 2501 if (remap) { 2502 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2503 migrate->cpages--; 2504 restore++; 2505 2506 if (!is_zone_device_page(page)) { 2507 get_page(page); 2508 putback_lru_page(page); 2509 } 2510 } else { 2511 migrate->src[i] = 0; 2512 unlock_page(page); 2513 migrate->cpages--; 2514 2515 if (!is_zone_device_page(page)) 2516 putback_lru_page(page); 2517 else 2518 put_page(page); 2519 } 2520 } 2521 } 2522 2523 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2524 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2525 2526 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2527 continue; 2528 2529 remove_migration_pte(page, migrate->vma, addr, page); 2530 2531 migrate->src[i] = 0; 2532 unlock_page(page); 2533 put_page(page); 2534 restore--; 2535 } 2536 } 2537 2538 /* 2539 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2540 * @migrate: migrate struct containing all migration information 2541 * 2542 * Replace page mapping (CPU page table pte) with a special migration pte entry 2543 * and check again if it has been pinned. Pinned pages are restored because we 2544 * cannot migrate them. 2545 * 2546 * This is the last step before we call the device driver callback to allocate 2547 * destination memory and copy contents of original page over to new page. 2548 */ 2549 static void migrate_vma_unmap(struct migrate_vma *migrate) 2550 { 2551 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2552 const unsigned long npages = migrate->npages; 2553 const unsigned long start = migrate->start; 2554 unsigned long addr, i, restore = 0; 2555 2556 for (i = 0; i < npages; i++) { 2557 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2558 2559 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2560 continue; 2561 2562 if (page_mapped(page)) { 2563 try_to_unmap(page, flags); 2564 if (page_mapped(page)) 2565 goto restore; 2566 } 2567 2568 if (migrate_vma_check_page(page)) 2569 continue; 2570 2571 restore: 2572 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2573 migrate->cpages--; 2574 restore++; 2575 } 2576 2577 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2578 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2579 2580 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2581 continue; 2582 2583 remove_migration_ptes(page, page, false); 2584 2585 migrate->src[i] = 0; 2586 unlock_page(page); 2587 restore--; 2588 2589 if (is_zone_device_page(page)) 2590 put_page(page); 2591 else 2592 putback_lru_page(page); 2593 } 2594 } 2595 2596 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2597 unsigned long addr, 2598 struct page *page, 2599 unsigned long *src, 2600 unsigned long *dst) 2601 { 2602 struct vm_area_struct *vma = migrate->vma; 2603 struct mm_struct *mm = vma->vm_mm; 2604 struct mem_cgroup *memcg; 2605 bool flush = false; 2606 spinlock_t *ptl; 2607 pte_t entry; 2608 pgd_t *pgdp; 2609 p4d_t *p4dp; 2610 pud_t *pudp; 2611 pmd_t *pmdp; 2612 pte_t *ptep; 2613 2614 /* Only allow populating anonymous memory */ 2615 if (!vma_is_anonymous(vma)) 2616 goto abort; 2617 2618 pgdp = pgd_offset(mm, addr); 2619 p4dp = p4d_alloc(mm, pgdp, addr); 2620 if (!p4dp) 2621 goto abort; 2622 pudp = pud_alloc(mm, p4dp, addr); 2623 if (!pudp) 2624 goto abort; 2625 pmdp = pmd_alloc(mm, pudp, addr); 2626 if (!pmdp) 2627 goto abort; 2628 2629 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2630 goto abort; 2631 2632 /* 2633 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2634 * pte_offset_map() on pmds where a huge pmd might be created 2635 * from a different thread. 2636 * 2637 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2638 * parallel threads are excluded by other means. 2639 * 2640 * Here we only have down_read(mmap_sem). 2641 */ 2642 if (pte_alloc(mm, pmdp)) 2643 goto abort; 2644 2645 /* See the comment in pte_alloc_one_map() */ 2646 if (unlikely(pmd_trans_unstable(pmdp))) 2647 goto abort; 2648 2649 if (unlikely(anon_vma_prepare(vma))) 2650 goto abort; 2651 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2652 goto abort; 2653 2654 /* 2655 * The memory barrier inside __SetPageUptodate makes sure that 2656 * preceding stores to the page contents become visible before 2657 * the set_pte_at() write. 2658 */ 2659 __SetPageUptodate(page); 2660 2661 if (is_zone_device_page(page)) { 2662 if (is_device_private_page(page)) { 2663 swp_entry_t swp_entry; 2664 2665 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2666 entry = swp_entry_to_pte(swp_entry); 2667 } else if (is_device_public_page(page)) { 2668 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2669 if (vma->vm_flags & VM_WRITE) 2670 entry = pte_mkwrite(pte_mkdirty(entry)); 2671 entry = pte_mkdevmap(entry); 2672 } 2673 } else { 2674 entry = mk_pte(page, vma->vm_page_prot); 2675 if (vma->vm_flags & VM_WRITE) 2676 entry = pte_mkwrite(pte_mkdirty(entry)); 2677 } 2678 2679 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2680 2681 if (pte_present(*ptep)) { 2682 unsigned long pfn = pte_pfn(*ptep); 2683 2684 if (!is_zero_pfn(pfn)) { 2685 pte_unmap_unlock(ptep, ptl); 2686 mem_cgroup_cancel_charge(page, memcg, false); 2687 goto abort; 2688 } 2689 flush = true; 2690 } else if (!pte_none(*ptep)) { 2691 pte_unmap_unlock(ptep, ptl); 2692 mem_cgroup_cancel_charge(page, memcg, false); 2693 goto abort; 2694 } 2695 2696 /* 2697 * Check for usefaultfd but do not deliver the fault. Instead, 2698 * just back off. 2699 */ 2700 if (userfaultfd_missing(vma)) { 2701 pte_unmap_unlock(ptep, ptl); 2702 mem_cgroup_cancel_charge(page, memcg, false); 2703 goto abort; 2704 } 2705 2706 inc_mm_counter(mm, MM_ANONPAGES); 2707 page_add_new_anon_rmap(page, vma, addr, false); 2708 mem_cgroup_commit_charge(page, memcg, false, false); 2709 if (!is_zone_device_page(page)) 2710 lru_cache_add_active_or_unevictable(page, vma); 2711 get_page(page); 2712 2713 if (flush) { 2714 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2715 ptep_clear_flush_notify(vma, addr, ptep); 2716 set_pte_at_notify(mm, addr, ptep, entry); 2717 update_mmu_cache(vma, addr, ptep); 2718 } else { 2719 /* No need to invalidate - it was non-present before */ 2720 set_pte_at(mm, addr, ptep, entry); 2721 update_mmu_cache(vma, addr, ptep); 2722 } 2723 2724 pte_unmap_unlock(ptep, ptl); 2725 *src = MIGRATE_PFN_MIGRATE; 2726 return; 2727 2728 abort: 2729 *src &= ~MIGRATE_PFN_MIGRATE; 2730 } 2731 2732 /* 2733 * migrate_vma_pages() - migrate meta-data from src page to dst page 2734 * @migrate: migrate struct containing all migration information 2735 * 2736 * This migrates struct page meta-data from source struct page to destination 2737 * struct page. This effectively finishes the migration from source page to the 2738 * destination page. 2739 */ 2740 static void migrate_vma_pages(struct migrate_vma *migrate) 2741 { 2742 const unsigned long npages = migrate->npages; 2743 const unsigned long start = migrate->start; 2744 struct mmu_notifier_range range; 2745 unsigned long addr, i; 2746 bool notified = false; 2747 2748 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2749 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2750 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2751 struct address_space *mapping; 2752 int r; 2753 2754 if (!newpage) { 2755 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2756 continue; 2757 } 2758 2759 if (!page) { 2760 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2761 continue; 2762 } 2763 if (!notified) { 2764 notified = true; 2765 2766 mmu_notifier_range_init(&range, 2767 migrate->vma->vm_mm, 2768 addr, migrate->end); 2769 mmu_notifier_invalidate_range_start(&range); 2770 } 2771 migrate_vma_insert_page(migrate, addr, newpage, 2772 &migrate->src[i], 2773 &migrate->dst[i]); 2774 continue; 2775 } 2776 2777 mapping = page_mapping(page); 2778 2779 if (is_zone_device_page(newpage)) { 2780 if (is_device_private_page(newpage)) { 2781 /* 2782 * For now only support private anonymous when 2783 * migrating to un-addressable device memory. 2784 */ 2785 if (mapping) { 2786 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2787 continue; 2788 } 2789 } else if (!is_device_public_page(newpage)) { 2790 /* 2791 * Other types of ZONE_DEVICE page are not 2792 * supported. 2793 */ 2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2795 continue; 2796 } 2797 } 2798 2799 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2800 if (r != MIGRATEPAGE_SUCCESS) 2801 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2802 } 2803 2804 /* 2805 * No need to double call mmu_notifier->invalidate_range() callback as 2806 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2807 * did already call it. 2808 */ 2809 if (notified) 2810 mmu_notifier_invalidate_range_only_end(&range); 2811 } 2812 2813 /* 2814 * migrate_vma_finalize() - restore CPU page table entry 2815 * @migrate: migrate struct containing all migration information 2816 * 2817 * This replaces the special migration pte entry with either a mapping to the 2818 * new page if migration was successful for that page, or to the original page 2819 * otherwise. 2820 * 2821 * This also unlocks the pages and puts them back on the lru, or drops the extra 2822 * refcount, for device pages. 2823 */ 2824 static void migrate_vma_finalize(struct migrate_vma *migrate) 2825 { 2826 const unsigned long npages = migrate->npages; 2827 unsigned long i; 2828 2829 for (i = 0; i < npages; i++) { 2830 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2831 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2832 2833 if (!page) { 2834 if (newpage) { 2835 unlock_page(newpage); 2836 put_page(newpage); 2837 } 2838 continue; 2839 } 2840 2841 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2842 if (newpage) { 2843 unlock_page(newpage); 2844 put_page(newpage); 2845 } 2846 newpage = page; 2847 } 2848 2849 remove_migration_ptes(page, newpage, false); 2850 unlock_page(page); 2851 migrate->cpages--; 2852 2853 if (is_zone_device_page(page)) 2854 put_page(page); 2855 else 2856 putback_lru_page(page); 2857 2858 if (newpage != page) { 2859 unlock_page(newpage); 2860 if (is_zone_device_page(newpage)) 2861 put_page(newpage); 2862 else 2863 putback_lru_page(newpage); 2864 } 2865 } 2866 } 2867 2868 /* 2869 * migrate_vma() - migrate a range of memory inside vma 2870 * 2871 * @ops: migration callback for allocating destination memory and copying 2872 * @vma: virtual memory area containing the range to be migrated 2873 * @start: start address of the range to migrate (inclusive) 2874 * @end: end address of the range to migrate (exclusive) 2875 * @src: array of hmm_pfn_t containing source pfns 2876 * @dst: array of hmm_pfn_t containing destination pfns 2877 * @private: pointer passed back to each of the callback 2878 * Returns: 0 on success, error code otherwise 2879 * 2880 * This function tries to migrate a range of memory virtual address range, using 2881 * callbacks to allocate and copy memory from source to destination. First it 2882 * collects all the pages backing each virtual address in the range, saving this 2883 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2884 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2885 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2886 * in the corresponding src array entry. It then restores any pages that are 2887 * pinned, by remapping and unlocking those pages. 2888 * 2889 * At this point it calls the alloc_and_copy() callback. For documentation on 2890 * what is expected from that callback, see struct migrate_vma_ops comments in 2891 * include/linux/migrate.h 2892 * 2893 * After the alloc_and_copy() callback, this function goes over each entry in 2894 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2895 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2896 * then the function tries to migrate struct page information from the source 2897 * struct page to the destination struct page. If it fails to migrate the struct 2898 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2899 * array. 2900 * 2901 * At this point all successfully migrated pages have an entry in the src 2902 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2903 * array entry with MIGRATE_PFN_VALID flag set. 2904 * 2905 * It then calls the finalize_and_map() callback. See comments for "struct 2906 * migrate_vma_ops", in include/linux/migrate.h for details about 2907 * finalize_and_map() behavior. 2908 * 2909 * After the finalize_and_map() callback, for successfully migrated pages, this 2910 * function updates the CPU page table to point to new pages, otherwise it 2911 * restores the CPU page table to point to the original source pages. 2912 * 2913 * Function returns 0 after the above steps, even if no pages were migrated 2914 * (The function only returns an error if any of the arguments are invalid.) 2915 * 2916 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2917 * unsigned long entries. 2918 */ 2919 int migrate_vma(const struct migrate_vma_ops *ops, 2920 struct vm_area_struct *vma, 2921 unsigned long start, 2922 unsigned long end, 2923 unsigned long *src, 2924 unsigned long *dst, 2925 void *private) 2926 { 2927 struct migrate_vma migrate; 2928 2929 /* Sanity check the arguments */ 2930 start &= PAGE_MASK; 2931 end &= PAGE_MASK; 2932 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2933 vma_is_dax(vma)) 2934 return -EINVAL; 2935 if (start < vma->vm_start || start >= vma->vm_end) 2936 return -EINVAL; 2937 if (end <= vma->vm_start || end > vma->vm_end) 2938 return -EINVAL; 2939 if (!ops || !src || !dst || start >= end) 2940 return -EINVAL; 2941 2942 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2943 migrate.src = src; 2944 migrate.dst = dst; 2945 migrate.start = start; 2946 migrate.npages = 0; 2947 migrate.cpages = 0; 2948 migrate.end = end; 2949 migrate.vma = vma; 2950 2951 /* Collect, and try to unmap source pages */ 2952 migrate_vma_collect(&migrate); 2953 if (!migrate.cpages) 2954 return 0; 2955 2956 /* Lock and isolate page */ 2957 migrate_vma_prepare(&migrate); 2958 if (!migrate.cpages) 2959 return 0; 2960 2961 /* Unmap pages */ 2962 migrate_vma_unmap(&migrate); 2963 if (!migrate.cpages) 2964 return 0; 2965 2966 /* 2967 * At this point pages are locked and unmapped, and thus they have 2968 * stable content and can safely be copied to destination memory that 2969 * is allocated by the callback. 2970 * 2971 * Note that migration can fail in migrate_vma_struct_page() for each 2972 * individual page. 2973 */ 2974 ops->alloc_and_copy(vma, src, dst, start, end, private); 2975 2976 /* This does the real migration of struct page */ 2977 migrate_vma_pages(&migrate); 2978 2979 ops->finalize_and_map(vma, src, dst, start, end, private); 2980 2981 /* Unlock and remap pages */ 2982 migrate_vma_finalize(&migrate); 2983 2984 return 0; 2985 } 2986 EXPORT_SYMBOL(migrate_vma); 2987 #endif /* defined(MIGRATE_VMA_HELPER) */ 2988