xref: /openbmc/linux/mm/migrate.c (revision 89eb946a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once page cache replacement of page migration started, page_count
327 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 	 * against a page without get_page().
329 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 	 * will occur again.
331 	 */
332 	if (!get_page_unless_zero(page))
333 		goto out;
334 	pte_unmap_unlock(ptep, ptl);
335 	wait_on_page_locked(page);
336 	put_page(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	wait_on_page_locked(page);
371 	put_page(page);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 							enum migrate_mode mode)
382 {
383 	struct buffer_head *bh = head;
384 
385 	/* Simple case, sync compaction */
386 	if (mode != MIGRATE_ASYNC) {
387 		do {
388 			get_bh(bh);
389 			lock_buffer(bh);
390 			bh = bh->b_this_page;
391 
392 		} while (bh != head);
393 
394 		return true;
395 	}
396 
397 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
398 	do {
399 		get_bh(bh);
400 		if (!trylock_buffer(bh)) {
401 			/*
402 			 * We failed to lock the buffer and cannot stall in
403 			 * async migration. Release the taken locks
404 			 */
405 			struct buffer_head *failed_bh = bh;
406 			put_bh(failed_bh);
407 			bh = head;
408 			while (bh != failed_bh) {
409 				unlock_buffer(bh);
410 				put_bh(bh);
411 				bh = bh->b_this_page;
412 			}
413 			return false;
414 		}
415 
416 		bh = bh->b_this_page;
417 	} while (bh != head);
418 	return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 							enum migrate_mode mode)
423 {
424 	return true;
425 }
426 #endif /* CONFIG_BLOCK */
427 
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 		struct page *newpage, struct page *page,
438 		struct buffer_head *head, enum migrate_mode mode,
439 		int extra_count)
440 {
441 	XA_STATE(xas, &mapping->i_pages, page_index(page));
442 	struct zone *oldzone, *newzone;
443 	int dirty;
444 	int expected_count = 1 + extra_count;
445 
446 	/*
447 	 * Device public or private pages have an extra refcount as they are
448 	 * ZONE_DEVICE pages.
449 	 */
450 	expected_count += is_device_private_page(page);
451 	expected_count += is_device_public_page(page);
452 
453 	if (!mapping) {
454 		/* Anonymous page without mapping */
455 		if (page_count(page) != expected_count)
456 			return -EAGAIN;
457 
458 		/* No turning back from here */
459 		newpage->index = page->index;
460 		newpage->mapping = page->mapping;
461 		if (PageSwapBacked(page))
462 			__SetPageSwapBacked(newpage);
463 
464 		return MIGRATEPAGE_SUCCESS;
465 	}
466 
467 	oldzone = page_zone(page);
468 	newzone = page_zone(newpage);
469 
470 	xas_lock_irq(&xas);
471 
472 	expected_count += hpage_nr_pages(page) + page_has_private(page);
473 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
474 		xas_unlock_irq(&xas);
475 		return -EAGAIN;
476 	}
477 
478 	if (!page_ref_freeze(page, expected_count)) {
479 		xas_unlock_irq(&xas);
480 		return -EAGAIN;
481 	}
482 
483 	/*
484 	 * In the async migration case of moving a page with buffers, lock the
485 	 * buffers using trylock before the mapping is moved. If the mapping
486 	 * was moved, we later failed to lock the buffers and could not move
487 	 * the mapping back due to an elevated page count, we would have to
488 	 * block waiting on other references to be dropped.
489 	 */
490 	if (mode == MIGRATE_ASYNC && head &&
491 			!buffer_migrate_lock_buffers(head, mode)) {
492 		page_ref_unfreeze(page, expected_count);
493 		xas_unlock_irq(&xas);
494 		return -EAGAIN;
495 	}
496 
497 	/*
498 	 * Now we know that no one else is looking at the page:
499 	 * no turning back from here.
500 	 */
501 	newpage->index = page->index;
502 	newpage->mapping = page->mapping;
503 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
504 	if (PageSwapBacked(page)) {
505 		__SetPageSwapBacked(newpage);
506 		if (PageSwapCache(page)) {
507 			SetPageSwapCache(newpage);
508 			set_page_private(newpage, page_private(page));
509 		}
510 	} else {
511 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
512 	}
513 
514 	/* Move dirty while page refs frozen and newpage not yet exposed */
515 	dirty = PageDirty(page);
516 	if (dirty) {
517 		ClearPageDirty(page);
518 		SetPageDirty(newpage);
519 	}
520 
521 	xas_store(&xas, newpage);
522 	if (PageTransHuge(page)) {
523 		int i;
524 
525 		for (i = 1; i < HPAGE_PMD_NR; i++) {
526 			xas_next(&xas);
527 			xas_store(&xas, newpage + i);
528 		}
529 	}
530 
531 	/*
532 	 * Drop cache reference from old page by unfreezing
533 	 * to one less reference.
534 	 * We know this isn't the last reference.
535 	 */
536 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
537 
538 	xas_unlock(&xas);
539 	/* Leave irq disabled to prevent preemption while updating stats */
540 
541 	/*
542 	 * If moved to a different zone then also account
543 	 * the page for that zone. Other VM counters will be
544 	 * taken care of when we establish references to the
545 	 * new page and drop references to the old page.
546 	 *
547 	 * Note that anonymous pages are accounted for
548 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
549 	 * are mapped to swap space.
550 	 */
551 	if (newzone != oldzone) {
552 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
553 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
554 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
555 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
556 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
557 		}
558 		if (dirty && mapping_cap_account_dirty(mapping)) {
559 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
560 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
561 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
562 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
563 		}
564 	}
565 	local_irq_enable();
566 
567 	return MIGRATEPAGE_SUCCESS;
568 }
569 EXPORT_SYMBOL(migrate_page_move_mapping);
570 
571 /*
572  * The expected number of remaining references is the same as that
573  * of migrate_page_move_mapping().
574  */
575 int migrate_huge_page_move_mapping(struct address_space *mapping,
576 				   struct page *newpage, struct page *page)
577 {
578 	XA_STATE(xas, &mapping->i_pages, page_index(page));
579 	int expected_count;
580 
581 	xas_lock_irq(&xas);
582 	expected_count = 2 + page_has_private(page);
583 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
584 		xas_unlock_irq(&xas);
585 		return -EAGAIN;
586 	}
587 
588 	if (!page_ref_freeze(page, expected_count)) {
589 		xas_unlock_irq(&xas);
590 		return -EAGAIN;
591 	}
592 
593 	newpage->index = page->index;
594 	newpage->mapping = page->mapping;
595 
596 	get_page(newpage);
597 
598 	xas_store(&xas, newpage);
599 
600 	page_ref_unfreeze(page, expected_count - 1);
601 
602 	xas_unlock_irq(&xas);
603 
604 	return MIGRATEPAGE_SUCCESS;
605 }
606 
607 /*
608  * Gigantic pages are so large that we do not guarantee that page++ pointer
609  * arithmetic will work across the entire page.  We need something more
610  * specialized.
611  */
612 static void __copy_gigantic_page(struct page *dst, struct page *src,
613 				int nr_pages)
614 {
615 	int i;
616 	struct page *dst_base = dst;
617 	struct page *src_base = src;
618 
619 	for (i = 0; i < nr_pages; ) {
620 		cond_resched();
621 		copy_highpage(dst, src);
622 
623 		i++;
624 		dst = mem_map_next(dst, dst_base, i);
625 		src = mem_map_next(src, src_base, i);
626 	}
627 }
628 
629 static void copy_huge_page(struct page *dst, struct page *src)
630 {
631 	int i;
632 	int nr_pages;
633 
634 	if (PageHuge(src)) {
635 		/* hugetlbfs page */
636 		struct hstate *h = page_hstate(src);
637 		nr_pages = pages_per_huge_page(h);
638 
639 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
640 			__copy_gigantic_page(dst, src, nr_pages);
641 			return;
642 		}
643 	} else {
644 		/* thp page */
645 		BUG_ON(!PageTransHuge(src));
646 		nr_pages = hpage_nr_pages(src);
647 	}
648 
649 	for (i = 0; i < nr_pages; i++) {
650 		cond_resched();
651 		copy_highpage(dst + i, src + i);
652 	}
653 }
654 
655 /*
656  * Copy the page to its new location
657  */
658 void migrate_page_states(struct page *newpage, struct page *page)
659 {
660 	int cpupid;
661 
662 	if (PageError(page))
663 		SetPageError(newpage);
664 	if (PageReferenced(page))
665 		SetPageReferenced(newpage);
666 	if (PageUptodate(page))
667 		SetPageUptodate(newpage);
668 	if (TestClearPageActive(page)) {
669 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
670 		SetPageActive(newpage);
671 	} else if (TestClearPageUnevictable(page))
672 		SetPageUnevictable(newpage);
673 	if (PageChecked(page))
674 		SetPageChecked(newpage);
675 	if (PageMappedToDisk(page))
676 		SetPageMappedToDisk(newpage);
677 
678 	/* Move dirty on pages not done by migrate_page_move_mapping() */
679 	if (PageDirty(page))
680 		SetPageDirty(newpage);
681 
682 	if (page_is_young(page))
683 		set_page_young(newpage);
684 	if (page_is_idle(page))
685 		set_page_idle(newpage);
686 
687 	/*
688 	 * Copy NUMA information to the new page, to prevent over-eager
689 	 * future migrations of this same page.
690 	 */
691 	cpupid = page_cpupid_xchg_last(page, -1);
692 	page_cpupid_xchg_last(newpage, cpupid);
693 
694 	ksm_migrate_page(newpage, page);
695 	/*
696 	 * Please do not reorder this without considering how mm/ksm.c's
697 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
698 	 */
699 	if (PageSwapCache(page))
700 		ClearPageSwapCache(page);
701 	ClearPagePrivate(page);
702 	set_page_private(page, 0);
703 
704 	/*
705 	 * If any waiters have accumulated on the new page then
706 	 * wake them up.
707 	 */
708 	if (PageWriteback(newpage))
709 		end_page_writeback(newpage);
710 
711 	copy_page_owner(page, newpage);
712 
713 	mem_cgroup_migrate(page, newpage);
714 }
715 EXPORT_SYMBOL(migrate_page_states);
716 
717 void migrate_page_copy(struct page *newpage, struct page *page)
718 {
719 	if (PageHuge(page) || PageTransHuge(page))
720 		copy_huge_page(newpage, page);
721 	else
722 		copy_highpage(newpage, page);
723 
724 	migrate_page_states(newpage, page);
725 }
726 EXPORT_SYMBOL(migrate_page_copy);
727 
728 /************************************************************
729  *                    Migration functions
730  ***********************************************************/
731 
732 /*
733  * Common logic to directly migrate a single LRU page suitable for
734  * pages that do not use PagePrivate/PagePrivate2.
735  *
736  * Pages are locked upon entry and exit.
737  */
738 int migrate_page(struct address_space *mapping,
739 		struct page *newpage, struct page *page,
740 		enum migrate_mode mode)
741 {
742 	int rc;
743 
744 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
745 
746 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
747 
748 	if (rc != MIGRATEPAGE_SUCCESS)
749 		return rc;
750 
751 	if (mode != MIGRATE_SYNC_NO_COPY)
752 		migrate_page_copy(newpage, page);
753 	else
754 		migrate_page_states(newpage, page);
755 	return MIGRATEPAGE_SUCCESS;
756 }
757 EXPORT_SYMBOL(migrate_page);
758 
759 #ifdef CONFIG_BLOCK
760 /*
761  * Migration function for pages with buffers. This function can only be used
762  * if the underlying filesystem guarantees that no other references to "page"
763  * exist.
764  */
765 int buffer_migrate_page(struct address_space *mapping,
766 		struct page *newpage, struct page *page, enum migrate_mode mode)
767 {
768 	struct buffer_head *bh, *head;
769 	int rc;
770 
771 	if (!page_has_buffers(page))
772 		return migrate_page(mapping, newpage, page, mode);
773 
774 	head = page_buffers(page);
775 
776 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
777 
778 	if (rc != MIGRATEPAGE_SUCCESS)
779 		return rc;
780 
781 	/*
782 	 * In the async case, migrate_page_move_mapping locked the buffers
783 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
784 	 * need to be locked now
785 	 */
786 	if (mode != MIGRATE_ASYNC)
787 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
788 
789 	ClearPagePrivate(page);
790 	set_page_private(newpage, page_private(page));
791 	set_page_private(page, 0);
792 	put_page(page);
793 	get_page(newpage);
794 
795 	bh = head;
796 	do {
797 		set_bh_page(bh, newpage, bh_offset(bh));
798 		bh = bh->b_this_page;
799 
800 	} while (bh != head);
801 
802 	SetPagePrivate(newpage);
803 
804 	if (mode != MIGRATE_SYNC_NO_COPY)
805 		migrate_page_copy(newpage, page);
806 	else
807 		migrate_page_states(newpage, page);
808 
809 	bh = head;
810 	do {
811 		unlock_buffer(bh);
812 		put_bh(bh);
813 		bh = bh->b_this_page;
814 
815 	} while (bh != head);
816 
817 	return MIGRATEPAGE_SUCCESS;
818 }
819 EXPORT_SYMBOL(buffer_migrate_page);
820 #endif
821 
822 /*
823  * Writeback a page to clean the dirty state
824  */
825 static int writeout(struct address_space *mapping, struct page *page)
826 {
827 	struct writeback_control wbc = {
828 		.sync_mode = WB_SYNC_NONE,
829 		.nr_to_write = 1,
830 		.range_start = 0,
831 		.range_end = LLONG_MAX,
832 		.for_reclaim = 1
833 	};
834 	int rc;
835 
836 	if (!mapping->a_ops->writepage)
837 		/* No write method for the address space */
838 		return -EINVAL;
839 
840 	if (!clear_page_dirty_for_io(page))
841 		/* Someone else already triggered a write */
842 		return -EAGAIN;
843 
844 	/*
845 	 * A dirty page may imply that the underlying filesystem has
846 	 * the page on some queue. So the page must be clean for
847 	 * migration. Writeout may mean we loose the lock and the
848 	 * page state is no longer what we checked for earlier.
849 	 * At this point we know that the migration attempt cannot
850 	 * be successful.
851 	 */
852 	remove_migration_ptes(page, page, false);
853 
854 	rc = mapping->a_ops->writepage(page, &wbc);
855 
856 	if (rc != AOP_WRITEPAGE_ACTIVATE)
857 		/* unlocked. Relock */
858 		lock_page(page);
859 
860 	return (rc < 0) ? -EIO : -EAGAIN;
861 }
862 
863 /*
864  * Default handling if a filesystem does not provide a migration function.
865  */
866 static int fallback_migrate_page(struct address_space *mapping,
867 	struct page *newpage, struct page *page, enum migrate_mode mode)
868 {
869 	if (PageDirty(page)) {
870 		/* Only writeback pages in full synchronous migration */
871 		switch (mode) {
872 		case MIGRATE_SYNC:
873 		case MIGRATE_SYNC_NO_COPY:
874 			break;
875 		default:
876 			return -EBUSY;
877 		}
878 		return writeout(mapping, page);
879 	}
880 
881 	/*
882 	 * Buffers may be managed in a filesystem specific way.
883 	 * We must have no buffers or drop them.
884 	 */
885 	if (page_has_private(page) &&
886 	    !try_to_release_page(page, GFP_KERNEL))
887 		return -EAGAIN;
888 
889 	return migrate_page(mapping, newpage, page, mode);
890 }
891 
892 /*
893  * Move a page to a newly allocated page
894  * The page is locked and all ptes have been successfully removed.
895  *
896  * The new page will have replaced the old page if this function
897  * is successful.
898  *
899  * Return value:
900  *   < 0 - error code
901  *  MIGRATEPAGE_SUCCESS - success
902  */
903 static int move_to_new_page(struct page *newpage, struct page *page,
904 				enum migrate_mode mode)
905 {
906 	struct address_space *mapping;
907 	int rc = -EAGAIN;
908 	bool is_lru = !__PageMovable(page);
909 
910 	VM_BUG_ON_PAGE(!PageLocked(page), page);
911 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
912 
913 	mapping = page_mapping(page);
914 
915 	if (likely(is_lru)) {
916 		if (!mapping)
917 			rc = migrate_page(mapping, newpage, page, mode);
918 		else if (mapping->a_ops->migratepage)
919 			/*
920 			 * Most pages have a mapping and most filesystems
921 			 * provide a migratepage callback. Anonymous pages
922 			 * are part of swap space which also has its own
923 			 * migratepage callback. This is the most common path
924 			 * for page migration.
925 			 */
926 			rc = mapping->a_ops->migratepage(mapping, newpage,
927 							page, mode);
928 		else
929 			rc = fallback_migrate_page(mapping, newpage,
930 							page, mode);
931 	} else {
932 		/*
933 		 * In case of non-lru page, it could be released after
934 		 * isolation step. In that case, we shouldn't try migration.
935 		 */
936 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
937 		if (!PageMovable(page)) {
938 			rc = MIGRATEPAGE_SUCCESS;
939 			__ClearPageIsolated(page);
940 			goto out;
941 		}
942 
943 		rc = mapping->a_ops->migratepage(mapping, newpage,
944 						page, mode);
945 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
946 			!PageIsolated(page));
947 	}
948 
949 	/*
950 	 * When successful, old pagecache page->mapping must be cleared before
951 	 * page is freed; but stats require that PageAnon be left as PageAnon.
952 	 */
953 	if (rc == MIGRATEPAGE_SUCCESS) {
954 		if (__PageMovable(page)) {
955 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
956 
957 			/*
958 			 * We clear PG_movable under page_lock so any compactor
959 			 * cannot try to migrate this page.
960 			 */
961 			__ClearPageIsolated(page);
962 		}
963 
964 		/*
965 		 * Anonymous and movable page->mapping will be cleard by
966 		 * free_pages_prepare so don't reset it here for keeping
967 		 * the type to work PageAnon, for example.
968 		 */
969 		if (!PageMappingFlags(page))
970 			page->mapping = NULL;
971 	}
972 out:
973 	return rc;
974 }
975 
976 static int __unmap_and_move(struct page *page, struct page *newpage,
977 				int force, enum migrate_mode mode)
978 {
979 	int rc = -EAGAIN;
980 	int page_was_mapped = 0;
981 	struct anon_vma *anon_vma = NULL;
982 	bool is_lru = !__PageMovable(page);
983 
984 	if (!trylock_page(page)) {
985 		if (!force || mode == MIGRATE_ASYNC)
986 			goto out;
987 
988 		/*
989 		 * It's not safe for direct compaction to call lock_page.
990 		 * For example, during page readahead pages are added locked
991 		 * to the LRU. Later, when the IO completes the pages are
992 		 * marked uptodate and unlocked. However, the queueing
993 		 * could be merging multiple pages for one bio (e.g.
994 		 * mpage_readpages). If an allocation happens for the
995 		 * second or third page, the process can end up locking
996 		 * the same page twice and deadlocking. Rather than
997 		 * trying to be clever about what pages can be locked,
998 		 * avoid the use of lock_page for direct compaction
999 		 * altogether.
1000 		 */
1001 		if (current->flags & PF_MEMALLOC)
1002 			goto out;
1003 
1004 		lock_page(page);
1005 	}
1006 
1007 	if (PageWriteback(page)) {
1008 		/*
1009 		 * Only in the case of a full synchronous migration is it
1010 		 * necessary to wait for PageWriteback. In the async case,
1011 		 * the retry loop is too short and in the sync-light case,
1012 		 * the overhead of stalling is too much
1013 		 */
1014 		switch (mode) {
1015 		case MIGRATE_SYNC:
1016 		case MIGRATE_SYNC_NO_COPY:
1017 			break;
1018 		default:
1019 			rc = -EBUSY;
1020 			goto out_unlock;
1021 		}
1022 		if (!force)
1023 			goto out_unlock;
1024 		wait_on_page_writeback(page);
1025 	}
1026 
1027 	/*
1028 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1029 	 * we cannot notice that anon_vma is freed while we migrates a page.
1030 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1031 	 * of migration. File cache pages are no problem because of page_lock()
1032 	 * File Caches may use write_page() or lock_page() in migration, then,
1033 	 * just care Anon page here.
1034 	 *
1035 	 * Only page_get_anon_vma() understands the subtleties of
1036 	 * getting a hold on an anon_vma from outside one of its mms.
1037 	 * But if we cannot get anon_vma, then we won't need it anyway,
1038 	 * because that implies that the anon page is no longer mapped
1039 	 * (and cannot be remapped so long as we hold the page lock).
1040 	 */
1041 	if (PageAnon(page) && !PageKsm(page))
1042 		anon_vma = page_get_anon_vma(page);
1043 
1044 	/*
1045 	 * Block others from accessing the new page when we get around to
1046 	 * establishing additional references. We are usually the only one
1047 	 * holding a reference to newpage at this point. We used to have a BUG
1048 	 * here if trylock_page(newpage) fails, but would like to allow for
1049 	 * cases where there might be a race with the previous use of newpage.
1050 	 * This is much like races on refcount of oldpage: just don't BUG().
1051 	 */
1052 	if (unlikely(!trylock_page(newpage)))
1053 		goto out_unlock;
1054 
1055 	if (unlikely(!is_lru)) {
1056 		rc = move_to_new_page(newpage, page, mode);
1057 		goto out_unlock_both;
1058 	}
1059 
1060 	/*
1061 	 * Corner case handling:
1062 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1063 	 * and treated as swapcache but it has no rmap yet.
1064 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1065 	 * trigger a BUG.  So handle it here.
1066 	 * 2. An orphaned page (see truncate_complete_page) might have
1067 	 * fs-private metadata. The page can be picked up due to memory
1068 	 * offlining.  Everywhere else except page reclaim, the page is
1069 	 * invisible to the vm, so the page can not be migrated.  So try to
1070 	 * free the metadata, so the page can be freed.
1071 	 */
1072 	if (!page->mapping) {
1073 		VM_BUG_ON_PAGE(PageAnon(page), page);
1074 		if (page_has_private(page)) {
1075 			try_to_free_buffers(page);
1076 			goto out_unlock_both;
1077 		}
1078 	} else if (page_mapped(page)) {
1079 		/* Establish migration ptes */
1080 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1081 				page);
1082 		try_to_unmap(page,
1083 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1084 		page_was_mapped = 1;
1085 	}
1086 
1087 	if (!page_mapped(page))
1088 		rc = move_to_new_page(newpage, page, mode);
1089 
1090 	if (page_was_mapped)
1091 		remove_migration_ptes(page,
1092 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1093 
1094 out_unlock_both:
1095 	unlock_page(newpage);
1096 out_unlock:
1097 	/* Drop an anon_vma reference if we took one */
1098 	if (anon_vma)
1099 		put_anon_vma(anon_vma);
1100 	unlock_page(page);
1101 out:
1102 	/*
1103 	 * If migration is successful, decrease refcount of the newpage
1104 	 * which will not free the page because new page owner increased
1105 	 * refcounter. As well, if it is LRU page, add the page to LRU
1106 	 * list in here.
1107 	 */
1108 	if (rc == MIGRATEPAGE_SUCCESS) {
1109 		if (unlikely(__PageMovable(newpage)))
1110 			put_page(newpage);
1111 		else
1112 			putback_lru_page(newpage);
1113 	}
1114 
1115 	return rc;
1116 }
1117 
1118 /*
1119  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1120  * around it.
1121  */
1122 #if defined(CONFIG_ARM) && \
1123 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1128 
1129 /*
1130  * Obtain the lock on page, remove all ptes and migrate the page
1131  * to the newly allocated page in newpage.
1132  */
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134 				   free_page_t put_new_page,
1135 				   unsigned long private, struct page *page,
1136 				   int force, enum migrate_mode mode,
1137 				   enum migrate_reason reason)
1138 {
1139 	int rc = MIGRATEPAGE_SUCCESS;
1140 	struct page *newpage;
1141 
1142 	if (!thp_migration_supported() && PageTransHuge(page))
1143 		return -ENOMEM;
1144 
1145 	newpage = get_new_page(page, private);
1146 	if (!newpage)
1147 		return -ENOMEM;
1148 
1149 	if (page_count(page) == 1) {
1150 		/* page was freed from under us. So we are done. */
1151 		ClearPageActive(page);
1152 		ClearPageUnevictable(page);
1153 		if (unlikely(__PageMovable(page))) {
1154 			lock_page(page);
1155 			if (!PageMovable(page))
1156 				__ClearPageIsolated(page);
1157 			unlock_page(page);
1158 		}
1159 		if (put_new_page)
1160 			put_new_page(newpage, private);
1161 		else
1162 			put_page(newpage);
1163 		goto out;
1164 	}
1165 
1166 	rc = __unmap_and_move(page, newpage, force, mode);
1167 	if (rc == MIGRATEPAGE_SUCCESS)
1168 		set_page_owner_migrate_reason(newpage, reason);
1169 
1170 out:
1171 	if (rc != -EAGAIN) {
1172 		/*
1173 		 * A page that has been migrated has all references
1174 		 * removed and will be freed. A page that has not been
1175 		 * migrated will have kepts its references and be
1176 		 * restored.
1177 		 */
1178 		list_del(&page->lru);
1179 
1180 		/*
1181 		 * Compaction can migrate also non-LRU pages which are
1182 		 * not accounted to NR_ISOLATED_*. They can be recognized
1183 		 * as __PageMovable
1184 		 */
1185 		if (likely(!__PageMovable(page)))
1186 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1187 					page_is_file_cache(page), -hpage_nr_pages(page));
1188 	}
1189 
1190 	/*
1191 	 * If migration is successful, releases reference grabbed during
1192 	 * isolation. Otherwise, restore the page to right list unless
1193 	 * we want to retry.
1194 	 */
1195 	if (rc == MIGRATEPAGE_SUCCESS) {
1196 		put_page(page);
1197 		if (reason == MR_MEMORY_FAILURE) {
1198 			/*
1199 			 * Set PG_HWPoison on just freed page
1200 			 * intentionally. Although it's rather weird,
1201 			 * it's how HWPoison flag works at the moment.
1202 			 */
1203 			if (set_hwpoison_free_buddy_page(page))
1204 				num_poisoned_pages_inc();
1205 		}
1206 	} else {
1207 		if (rc != -EAGAIN) {
1208 			if (likely(!__PageMovable(page))) {
1209 				putback_lru_page(page);
1210 				goto put_new;
1211 			}
1212 
1213 			lock_page(page);
1214 			if (PageMovable(page))
1215 				putback_movable_page(page);
1216 			else
1217 				__ClearPageIsolated(page);
1218 			unlock_page(page);
1219 			put_page(page);
1220 		}
1221 put_new:
1222 		if (put_new_page)
1223 			put_new_page(newpage, private);
1224 		else
1225 			put_page(newpage);
1226 	}
1227 
1228 	return rc;
1229 }
1230 
1231 /*
1232  * Counterpart of unmap_and_move_page() for hugepage migration.
1233  *
1234  * This function doesn't wait the completion of hugepage I/O
1235  * because there is no race between I/O and migration for hugepage.
1236  * Note that currently hugepage I/O occurs only in direct I/O
1237  * where no lock is held and PG_writeback is irrelevant,
1238  * and writeback status of all subpages are counted in the reference
1239  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240  * under direct I/O, the reference of the head page is 512 and a bit more.)
1241  * This means that when we try to migrate hugepage whose subpages are
1242  * doing direct I/O, some references remain after try_to_unmap() and
1243  * hugepage migration fails without data corruption.
1244  *
1245  * There is also no race when direct I/O is issued on the page under migration,
1246  * because then pte is replaced with migration swap entry and direct I/O code
1247  * will wait in the page fault for migration to complete.
1248  */
1249 static int unmap_and_move_huge_page(new_page_t get_new_page,
1250 				free_page_t put_new_page, unsigned long private,
1251 				struct page *hpage, int force,
1252 				enum migrate_mode mode, int reason)
1253 {
1254 	int rc = -EAGAIN;
1255 	int page_was_mapped = 0;
1256 	struct page *new_hpage;
1257 	struct anon_vma *anon_vma = NULL;
1258 
1259 	/*
1260 	 * Movability of hugepages depends on architectures and hugepage size.
1261 	 * This check is necessary because some callers of hugepage migration
1262 	 * like soft offline and memory hotremove don't walk through page
1263 	 * tables or check whether the hugepage is pmd-based or not before
1264 	 * kicking migration.
1265 	 */
1266 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1267 		putback_active_hugepage(hpage);
1268 		return -ENOSYS;
1269 	}
1270 
1271 	new_hpage = get_new_page(hpage, private);
1272 	if (!new_hpage)
1273 		return -ENOMEM;
1274 
1275 	if (!trylock_page(hpage)) {
1276 		if (!force)
1277 			goto out;
1278 		switch (mode) {
1279 		case MIGRATE_SYNC:
1280 		case MIGRATE_SYNC_NO_COPY:
1281 			break;
1282 		default:
1283 			goto out;
1284 		}
1285 		lock_page(hpage);
1286 	}
1287 
1288 	if (PageAnon(hpage))
1289 		anon_vma = page_get_anon_vma(hpage);
1290 
1291 	if (unlikely(!trylock_page(new_hpage)))
1292 		goto put_anon;
1293 
1294 	if (page_mapped(hpage)) {
1295 		try_to_unmap(hpage,
1296 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1297 		page_was_mapped = 1;
1298 	}
1299 
1300 	if (!page_mapped(hpage))
1301 		rc = move_to_new_page(new_hpage, hpage, mode);
1302 
1303 	if (page_was_mapped)
1304 		remove_migration_ptes(hpage,
1305 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1306 
1307 	unlock_page(new_hpage);
1308 
1309 put_anon:
1310 	if (anon_vma)
1311 		put_anon_vma(anon_vma);
1312 
1313 	if (rc == MIGRATEPAGE_SUCCESS) {
1314 		move_hugetlb_state(hpage, new_hpage, reason);
1315 		put_new_page = NULL;
1316 	}
1317 
1318 	unlock_page(hpage);
1319 out:
1320 	if (rc != -EAGAIN)
1321 		putback_active_hugepage(hpage);
1322 
1323 	/*
1324 	 * If migration was not successful and there's a freeing callback, use
1325 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1326 	 * isolation.
1327 	 */
1328 	if (put_new_page)
1329 		put_new_page(new_hpage, private);
1330 	else
1331 		putback_active_hugepage(new_hpage);
1332 
1333 	return rc;
1334 }
1335 
1336 /*
1337  * migrate_pages - migrate the pages specified in a list, to the free pages
1338  *		   supplied as the target for the page migration
1339  *
1340  * @from:		The list of pages to be migrated.
1341  * @get_new_page:	The function used to allocate free pages to be used
1342  *			as the target of the page migration.
1343  * @put_new_page:	The function used to free target pages if migration
1344  *			fails, or NULL if no special handling is necessary.
1345  * @private:		Private data to be passed on to get_new_page()
1346  * @mode:		The migration mode that specifies the constraints for
1347  *			page migration, if any.
1348  * @reason:		The reason for page migration.
1349  *
1350  * The function returns after 10 attempts or if no pages are movable any more
1351  * because the list has become empty or no retryable pages exist any more.
1352  * The caller should call putback_movable_pages() to return pages to the LRU
1353  * or free list only if ret != 0.
1354  *
1355  * Returns the number of pages that were not migrated, or an error code.
1356  */
1357 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1358 		free_page_t put_new_page, unsigned long private,
1359 		enum migrate_mode mode, int reason)
1360 {
1361 	int retry = 1;
1362 	int nr_failed = 0;
1363 	int nr_succeeded = 0;
1364 	int pass = 0;
1365 	struct page *page;
1366 	struct page *page2;
1367 	int swapwrite = current->flags & PF_SWAPWRITE;
1368 	int rc;
1369 
1370 	if (!swapwrite)
1371 		current->flags |= PF_SWAPWRITE;
1372 
1373 	for(pass = 0; pass < 10 && retry; pass++) {
1374 		retry = 0;
1375 
1376 		list_for_each_entry_safe(page, page2, from, lru) {
1377 retry:
1378 			cond_resched();
1379 
1380 			if (PageHuge(page))
1381 				rc = unmap_and_move_huge_page(get_new_page,
1382 						put_new_page, private, page,
1383 						pass > 2, mode, reason);
1384 			else
1385 				rc = unmap_and_move(get_new_page, put_new_page,
1386 						private, page, pass > 2, mode,
1387 						reason);
1388 
1389 			switch(rc) {
1390 			case -ENOMEM:
1391 				/*
1392 				 * THP migration might be unsupported or the
1393 				 * allocation could've failed so we should
1394 				 * retry on the same page with the THP split
1395 				 * to base pages.
1396 				 *
1397 				 * Head page is retried immediately and tail
1398 				 * pages are added to the tail of the list so
1399 				 * we encounter them after the rest of the list
1400 				 * is processed.
1401 				 */
1402 				if (PageTransHuge(page)) {
1403 					lock_page(page);
1404 					rc = split_huge_page_to_list(page, from);
1405 					unlock_page(page);
1406 					if (!rc) {
1407 						list_safe_reset_next(page, page2, lru);
1408 						goto retry;
1409 					}
1410 				}
1411 				nr_failed++;
1412 				goto out;
1413 			case -EAGAIN:
1414 				retry++;
1415 				break;
1416 			case MIGRATEPAGE_SUCCESS:
1417 				nr_succeeded++;
1418 				break;
1419 			default:
1420 				/*
1421 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 				 * unlike -EAGAIN case, the failed page is
1423 				 * removed from migration page list and not
1424 				 * retried in the next outer loop.
1425 				 */
1426 				nr_failed++;
1427 				break;
1428 			}
1429 		}
1430 	}
1431 	nr_failed += retry;
1432 	rc = nr_failed;
1433 out:
1434 	if (nr_succeeded)
1435 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1436 	if (nr_failed)
1437 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1438 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1439 
1440 	if (!swapwrite)
1441 		current->flags &= ~PF_SWAPWRITE;
1442 
1443 	return rc;
1444 }
1445 
1446 #ifdef CONFIG_NUMA
1447 
1448 static int store_status(int __user *status, int start, int value, int nr)
1449 {
1450 	while (nr-- > 0) {
1451 		if (put_user(value, status + start))
1452 			return -EFAULT;
1453 		start++;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 static int do_move_pages_to_node(struct mm_struct *mm,
1460 		struct list_head *pagelist, int node)
1461 {
1462 	int err;
1463 
1464 	if (list_empty(pagelist))
1465 		return 0;
1466 
1467 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1468 			MIGRATE_SYNC, MR_SYSCALL);
1469 	if (err)
1470 		putback_movable_pages(pagelist);
1471 	return err;
1472 }
1473 
1474 /*
1475  * Resolves the given address to a struct page, isolates it from the LRU and
1476  * puts it to the given pagelist.
1477  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1478  * queued or the page doesn't need to be migrated because it is already on
1479  * the target node
1480  */
1481 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1482 		int node, struct list_head *pagelist, bool migrate_all)
1483 {
1484 	struct vm_area_struct *vma;
1485 	struct page *page;
1486 	unsigned int follflags;
1487 	int err;
1488 
1489 	down_read(&mm->mmap_sem);
1490 	err = -EFAULT;
1491 	vma = find_vma(mm, addr);
1492 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1493 		goto out;
1494 
1495 	/* FOLL_DUMP to ignore special (like zero) pages */
1496 	follflags = FOLL_GET | FOLL_DUMP;
1497 	page = follow_page(vma, addr, follflags);
1498 
1499 	err = PTR_ERR(page);
1500 	if (IS_ERR(page))
1501 		goto out;
1502 
1503 	err = -ENOENT;
1504 	if (!page)
1505 		goto out;
1506 
1507 	err = 0;
1508 	if (page_to_nid(page) == node)
1509 		goto out_putpage;
1510 
1511 	err = -EACCES;
1512 	if (page_mapcount(page) > 1 && !migrate_all)
1513 		goto out_putpage;
1514 
1515 	if (PageHuge(page)) {
1516 		if (PageHead(page)) {
1517 			isolate_huge_page(page, pagelist);
1518 			err = 0;
1519 		}
1520 	} else {
1521 		struct page *head;
1522 
1523 		head = compound_head(page);
1524 		err = isolate_lru_page(head);
1525 		if (err)
1526 			goto out_putpage;
1527 
1528 		err = 0;
1529 		list_add_tail(&head->lru, pagelist);
1530 		mod_node_page_state(page_pgdat(head),
1531 			NR_ISOLATED_ANON + page_is_file_cache(head),
1532 			hpage_nr_pages(head));
1533 	}
1534 out_putpage:
1535 	/*
1536 	 * Either remove the duplicate refcount from
1537 	 * isolate_lru_page() or drop the page ref if it was
1538 	 * not isolated.
1539 	 */
1540 	put_page(page);
1541 out:
1542 	up_read(&mm->mmap_sem);
1543 	return err;
1544 }
1545 
1546 /*
1547  * Migrate an array of page address onto an array of nodes and fill
1548  * the corresponding array of status.
1549  */
1550 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1551 			 unsigned long nr_pages,
1552 			 const void __user * __user *pages,
1553 			 const int __user *nodes,
1554 			 int __user *status, int flags)
1555 {
1556 	int current_node = NUMA_NO_NODE;
1557 	LIST_HEAD(pagelist);
1558 	int start, i;
1559 	int err = 0, err1;
1560 
1561 	migrate_prep();
1562 
1563 	for (i = start = 0; i < nr_pages; i++) {
1564 		const void __user *p;
1565 		unsigned long addr;
1566 		int node;
1567 
1568 		err = -EFAULT;
1569 		if (get_user(p, pages + i))
1570 			goto out_flush;
1571 		if (get_user(node, nodes + i))
1572 			goto out_flush;
1573 		addr = (unsigned long)p;
1574 
1575 		err = -ENODEV;
1576 		if (node < 0 || node >= MAX_NUMNODES)
1577 			goto out_flush;
1578 		if (!node_state(node, N_MEMORY))
1579 			goto out_flush;
1580 
1581 		err = -EACCES;
1582 		if (!node_isset(node, task_nodes))
1583 			goto out_flush;
1584 
1585 		if (current_node == NUMA_NO_NODE) {
1586 			current_node = node;
1587 			start = i;
1588 		} else if (node != current_node) {
1589 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1590 			if (err)
1591 				goto out;
1592 			err = store_status(status, start, current_node, i - start);
1593 			if (err)
1594 				goto out;
1595 			start = i;
1596 			current_node = node;
1597 		}
1598 
1599 		/*
1600 		 * Errors in the page lookup or isolation are not fatal and we simply
1601 		 * report them via status
1602 		 */
1603 		err = add_page_for_migration(mm, addr, current_node,
1604 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1605 		if (!err)
1606 			continue;
1607 
1608 		err = store_status(status, i, err, 1);
1609 		if (err)
1610 			goto out_flush;
1611 
1612 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1613 		if (err)
1614 			goto out;
1615 		if (i > start) {
1616 			err = store_status(status, start, current_node, i - start);
1617 			if (err)
1618 				goto out;
1619 		}
1620 		current_node = NUMA_NO_NODE;
1621 	}
1622 out_flush:
1623 	if (list_empty(&pagelist))
1624 		return err;
1625 
1626 	/* Make sure we do not overwrite the existing error */
1627 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1628 	if (!err1)
1629 		err1 = store_status(status, start, current_node, i - start);
1630 	if (!err)
1631 		err = err1;
1632 out:
1633 	return err;
1634 }
1635 
1636 /*
1637  * Determine the nodes of an array of pages and store it in an array of status.
1638  */
1639 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1640 				const void __user **pages, int *status)
1641 {
1642 	unsigned long i;
1643 
1644 	down_read(&mm->mmap_sem);
1645 
1646 	for (i = 0; i < nr_pages; i++) {
1647 		unsigned long addr = (unsigned long)(*pages);
1648 		struct vm_area_struct *vma;
1649 		struct page *page;
1650 		int err = -EFAULT;
1651 
1652 		vma = find_vma(mm, addr);
1653 		if (!vma || addr < vma->vm_start)
1654 			goto set_status;
1655 
1656 		/* FOLL_DUMP to ignore special (like zero) pages */
1657 		page = follow_page(vma, addr, FOLL_DUMP);
1658 
1659 		err = PTR_ERR(page);
1660 		if (IS_ERR(page))
1661 			goto set_status;
1662 
1663 		err = page ? page_to_nid(page) : -ENOENT;
1664 set_status:
1665 		*status = err;
1666 
1667 		pages++;
1668 		status++;
1669 	}
1670 
1671 	up_read(&mm->mmap_sem);
1672 }
1673 
1674 /*
1675  * Determine the nodes of a user array of pages and store it in
1676  * a user array of status.
1677  */
1678 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1679 			 const void __user * __user *pages,
1680 			 int __user *status)
1681 {
1682 #define DO_PAGES_STAT_CHUNK_NR 16
1683 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1684 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1685 
1686 	while (nr_pages) {
1687 		unsigned long chunk_nr;
1688 
1689 		chunk_nr = nr_pages;
1690 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1691 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1692 
1693 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1694 			break;
1695 
1696 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1697 
1698 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1699 			break;
1700 
1701 		pages += chunk_nr;
1702 		status += chunk_nr;
1703 		nr_pages -= chunk_nr;
1704 	}
1705 	return nr_pages ? -EFAULT : 0;
1706 }
1707 
1708 /*
1709  * Move a list of pages in the address space of the currently executing
1710  * process.
1711  */
1712 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1713 			     const void __user * __user *pages,
1714 			     const int __user *nodes,
1715 			     int __user *status, int flags)
1716 {
1717 	struct task_struct *task;
1718 	struct mm_struct *mm;
1719 	int err;
1720 	nodemask_t task_nodes;
1721 
1722 	/* Check flags */
1723 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1724 		return -EINVAL;
1725 
1726 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1727 		return -EPERM;
1728 
1729 	/* Find the mm_struct */
1730 	rcu_read_lock();
1731 	task = pid ? find_task_by_vpid(pid) : current;
1732 	if (!task) {
1733 		rcu_read_unlock();
1734 		return -ESRCH;
1735 	}
1736 	get_task_struct(task);
1737 
1738 	/*
1739 	 * Check if this process has the right to modify the specified
1740 	 * process. Use the regular "ptrace_may_access()" checks.
1741 	 */
1742 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1743 		rcu_read_unlock();
1744 		err = -EPERM;
1745 		goto out;
1746 	}
1747 	rcu_read_unlock();
1748 
1749  	err = security_task_movememory(task);
1750  	if (err)
1751 		goto out;
1752 
1753 	task_nodes = cpuset_mems_allowed(task);
1754 	mm = get_task_mm(task);
1755 	put_task_struct(task);
1756 
1757 	if (!mm)
1758 		return -EINVAL;
1759 
1760 	if (nodes)
1761 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1762 				    nodes, status, flags);
1763 	else
1764 		err = do_pages_stat(mm, nr_pages, pages, status);
1765 
1766 	mmput(mm);
1767 	return err;
1768 
1769 out:
1770 	put_task_struct(task);
1771 	return err;
1772 }
1773 
1774 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1775 		const void __user * __user *, pages,
1776 		const int __user *, nodes,
1777 		int __user *, status, int, flags)
1778 {
1779 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1780 }
1781 
1782 #ifdef CONFIG_COMPAT
1783 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1784 		       compat_uptr_t __user *, pages32,
1785 		       const int __user *, nodes,
1786 		       int __user *, status,
1787 		       int, flags)
1788 {
1789 	const void __user * __user *pages;
1790 	int i;
1791 
1792 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1793 	for (i = 0; i < nr_pages; i++) {
1794 		compat_uptr_t p;
1795 
1796 		if (get_user(p, pages32 + i) ||
1797 			put_user(compat_ptr(p), pages + i))
1798 			return -EFAULT;
1799 	}
1800 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1801 }
1802 #endif /* CONFIG_COMPAT */
1803 
1804 #ifdef CONFIG_NUMA_BALANCING
1805 /*
1806  * Returns true if this is a safe migration target node for misplaced NUMA
1807  * pages. Currently it only checks the watermarks which crude
1808  */
1809 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1810 				   unsigned long nr_migrate_pages)
1811 {
1812 	int z;
1813 
1814 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1815 		struct zone *zone = pgdat->node_zones + z;
1816 
1817 		if (!populated_zone(zone))
1818 			continue;
1819 
1820 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1821 		if (!zone_watermark_ok(zone, 0,
1822 				       high_wmark_pages(zone) +
1823 				       nr_migrate_pages,
1824 				       0, 0))
1825 			continue;
1826 		return true;
1827 	}
1828 	return false;
1829 }
1830 
1831 static struct page *alloc_misplaced_dst_page(struct page *page,
1832 					   unsigned long data)
1833 {
1834 	int nid = (int) data;
1835 	struct page *newpage;
1836 
1837 	newpage = __alloc_pages_node(nid,
1838 					 (GFP_HIGHUSER_MOVABLE |
1839 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1840 					  __GFP_NORETRY | __GFP_NOWARN) &
1841 					 ~__GFP_RECLAIM, 0);
1842 
1843 	return newpage;
1844 }
1845 
1846 /*
1847  * page migration rate limiting control.
1848  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1849  * window of time. Default here says do not migrate more than 1280M per second.
1850  */
1851 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1852 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1853 
1854 /* Returns true if the node is migrate rate-limited after the update */
1855 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1856 					unsigned long nr_pages)
1857 {
1858 	/*
1859 	 * Rate-limit the amount of data that is being migrated to a node.
1860 	 * Optimal placement is no good if the memory bus is saturated and
1861 	 * all the time is being spent migrating!
1862 	 */
1863 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1864 		spin_lock(&pgdat->numabalancing_migrate_lock);
1865 		pgdat->numabalancing_migrate_nr_pages = 0;
1866 		pgdat->numabalancing_migrate_next_window = jiffies +
1867 			msecs_to_jiffies(migrate_interval_millisecs);
1868 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1869 	}
1870 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1871 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1872 								nr_pages);
1873 		return true;
1874 	}
1875 
1876 	/*
1877 	 * This is an unlocked non-atomic update so errors are possible.
1878 	 * The consequences are failing to migrate when we potentiall should
1879 	 * have which is not severe enough to warrant locking. If it is ever
1880 	 * a problem, it can be converted to a per-cpu counter.
1881 	 */
1882 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1883 	return false;
1884 }
1885 
1886 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1887 {
1888 	int page_lru;
1889 
1890 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1891 
1892 	/* Avoid migrating to a node that is nearly full */
1893 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1894 		return 0;
1895 
1896 	if (isolate_lru_page(page))
1897 		return 0;
1898 
1899 	/*
1900 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1901 	 * check on page_count(), so we must do it here, now that the page
1902 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1903 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1904 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1905 	 */
1906 	if (PageTransHuge(page) && page_count(page) != 3) {
1907 		putback_lru_page(page);
1908 		return 0;
1909 	}
1910 
1911 	page_lru = page_is_file_cache(page);
1912 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1913 				hpage_nr_pages(page));
1914 
1915 	/*
1916 	 * Isolating the page has taken another reference, so the
1917 	 * caller's reference can be safely dropped without the page
1918 	 * disappearing underneath us during migration.
1919 	 */
1920 	put_page(page);
1921 	return 1;
1922 }
1923 
1924 bool pmd_trans_migrating(pmd_t pmd)
1925 {
1926 	struct page *page = pmd_page(pmd);
1927 	return PageLocked(page);
1928 }
1929 
1930 /*
1931  * Attempt to migrate a misplaced page to the specified destination
1932  * node. Caller is expected to have an elevated reference count on
1933  * the page that will be dropped by this function before returning.
1934  */
1935 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1936 			   int node)
1937 {
1938 	pg_data_t *pgdat = NODE_DATA(node);
1939 	int isolated;
1940 	int nr_remaining;
1941 	LIST_HEAD(migratepages);
1942 
1943 	/*
1944 	 * Don't migrate file pages that are mapped in multiple processes
1945 	 * with execute permissions as they are probably shared libraries.
1946 	 */
1947 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1948 	    (vma->vm_flags & VM_EXEC))
1949 		goto out;
1950 
1951 	/*
1952 	 * Also do not migrate dirty pages as not all filesystems can move
1953 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1954 	 */
1955 	if (page_is_file_cache(page) && PageDirty(page))
1956 		goto out;
1957 
1958 	/*
1959 	 * Rate-limit the amount of data that is being migrated to a node.
1960 	 * Optimal placement is no good if the memory bus is saturated and
1961 	 * all the time is being spent migrating!
1962 	 */
1963 	if (numamigrate_update_ratelimit(pgdat, 1))
1964 		goto out;
1965 
1966 	isolated = numamigrate_isolate_page(pgdat, page);
1967 	if (!isolated)
1968 		goto out;
1969 
1970 	list_add(&page->lru, &migratepages);
1971 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1972 				     NULL, node, MIGRATE_ASYNC,
1973 				     MR_NUMA_MISPLACED);
1974 	if (nr_remaining) {
1975 		if (!list_empty(&migratepages)) {
1976 			list_del(&page->lru);
1977 			dec_node_page_state(page, NR_ISOLATED_ANON +
1978 					page_is_file_cache(page));
1979 			putback_lru_page(page);
1980 		}
1981 		isolated = 0;
1982 	} else
1983 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1984 	BUG_ON(!list_empty(&migratepages));
1985 	return isolated;
1986 
1987 out:
1988 	put_page(page);
1989 	return 0;
1990 }
1991 #endif /* CONFIG_NUMA_BALANCING */
1992 
1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1994 /*
1995  * Migrates a THP to a given target node. page must be locked and is unlocked
1996  * before returning.
1997  */
1998 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1999 				struct vm_area_struct *vma,
2000 				pmd_t *pmd, pmd_t entry,
2001 				unsigned long address,
2002 				struct page *page, int node)
2003 {
2004 	spinlock_t *ptl;
2005 	pg_data_t *pgdat = NODE_DATA(node);
2006 	int isolated = 0;
2007 	struct page *new_page = NULL;
2008 	int page_lru = page_is_file_cache(page);
2009 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2010 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2011 
2012 	/*
2013 	 * Rate-limit the amount of data that is being migrated to a node.
2014 	 * Optimal placement is no good if the memory bus is saturated and
2015 	 * all the time is being spent migrating!
2016 	 */
2017 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2018 		goto out_dropref;
2019 
2020 	new_page = alloc_pages_node(node,
2021 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2022 		HPAGE_PMD_ORDER);
2023 	if (!new_page)
2024 		goto out_fail;
2025 	prep_transhuge_page(new_page);
2026 
2027 	isolated = numamigrate_isolate_page(pgdat, page);
2028 	if (!isolated) {
2029 		put_page(new_page);
2030 		goto out_fail;
2031 	}
2032 
2033 	/* Prepare a page as a migration target */
2034 	__SetPageLocked(new_page);
2035 	if (PageSwapBacked(page))
2036 		__SetPageSwapBacked(new_page);
2037 
2038 	/* anon mapping, we can simply copy page->mapping to the new page: */
2039 	new_page->mapping = page->mapping;
2040 	new_page->index = page->index;
2041 	migrate_page_copy(new_page, page);
2042 	WARN_ON(PageLRU(new_page));
2043 
2044 	/* Recheck the target PMD */
2045 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2046 	ptl = pmd_lock(mm, pmd);
2047 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2048 		spin_unlock(ptl);
2049 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2050 
2051 		/* Reverse changes made by migrate_page_copy() */
2052 		if (TestClearPageActive(new_page))
2053 			SetPageActive(page);
2054 		if (TestClearPageUnevictable(new_page))
2055 			SetPageUnevictable(page);
2056 
2057 		unlock_page(new_page);
2058 		put_page(new_page);		/* Free it */
2059 
2060 		/* Retake the callers reference and putback on LRU */
2061 		get_page(page);
2062 		putback_lru_page(page);
2063 		mod_node_page_state(page_pgdat(page),
2064 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2065 
2066 		goto out_unlock;
2067 	}
2068 
2069 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2070 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2071 
2072 	/*
2073 	 * Clear the old entry under pagetable lock and establish the new PTE.
2074 	 * Any parallel GUP will either observe the old page blocking on the
2075 	 * page lock, block on the page table lock or observe the new page.
2076 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2077 	 * guarantee the copy is visible before the pagetable update.
2078 	 */
2079 	flush_cache_range(vma, mmun_start, mmun_end);
2080 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2081 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2082 	set_pmd_at(mm, mmun_start, pmd, entry);
2083 	update_mmu_cache_pmd(vma, address, &entry);
2084 
2085 	page_ref_unfreeze(page, 2);
2086 	mlock_migrate_page(new_page, page);
2087 	page_remove_rmap(page, true);
2088 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2089 
2090 	spin_unlock(ptl);
2091 	/*
2092 	 * No need to double call mmu_notifier->invalidate_range() callback as
2093 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2094 	 */
2095 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2096 
2097 	/* Take an "isolate" reference and put new page on the LRU. */
2098 	get_page(new_page);
2099 	putback_lru_page(new_page);
2100 
2101 	unlock_page(new_page);
2102 	unlock_page(page);
2103 	put_page(page);			/* Drop the rmap reference */
2104 	put_page(page);			/* Drop the LRU isolation reference */
2105 
2106 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2107 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2108 
2109 	mod_node_page_state(page_pgdat(page),
2110 			NR_ISOLATED_ANON + page_lru,
2111 			-HPAGE_PMD_NR);
2112 	return isolated;
2113 
2114 out_fail:
2115 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2116 out_dropref:
2117 	ptl = pmd_lock(mm, pmd);
2118 	if (pmd_same(*pmd, entry)) {
2119 		entry = pmd_modify(entry, vma->vm_page_prot);
2120 		set_pmd_at(mm, mmun_start, pmd, entry);
2121 		update_mmu_cache_pmd(vma, address, &entry);
2122 	}
2123 	spin_unlock(ptl);
2124 
2125 out_unlock:
2126 	unlock_page(page);
2127 	put_page(page);
2128 	return 0;
2129 }
2130 #endif /* CONFIG_NUMA_BALANCING */
2131 
2132 #endif /* CONFIG_NUMA */
2133 
2134 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2135 struct migrate_vma {
2136 	struct vm_area_struct	*vma;
2137 	unsigned long		*dst;
2138 	unsigned long		*src;
2139 	unsigned long		cpages;
2140 	unsigned long		npages;
2141 	unsigned long		start;
2142 	unsigned long		end;
2143 };
2144 
2145 static int migrate_vma_collect_hole(unsigned long start,
2146 				    unsigned long end,
2147 				    struct mm_walk *walk)
2148 {
2149 	struct migrate_vma *migrate = walk->private;
2150 	unsigned long addr;
2151 
2152 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2153 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2154 		migrate->dst[migrate->npages] = 0;
2155 		migrate->npages++;
2156 		migrate->cpages++;
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static int migrate_vma_collect_skip(unsigned long start,
2163 				    unsigned long end,
2164 				    struct mm_walk *walk)
2165 {
2166 	struct migrate_vma *migrate = walk->private;
2167 	unsigned long addr;
2168 
2169 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2170 		migrate->dst[migrate->npages] = 0;
2171 		migrate->src[migrate->npages++] = 0;
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2178 				   unsigned long start,
2179 				   unsigned long end,
2180 				   struct mm_walk *walk)
2181 {
2182 	struct migrate_vma *migrate = walk->private;
2183 	struct vm_area_struct *vma = walk->vma;
2184 	struct mm_struct *mm = vma->vm_mm;
2185 	unsigned long addr = start, unmapped = 0;
2186 	spinlock_t *ptl;
2187 	pte_t *ptep;
2188 
2189 again:
2190 	if (pmd_none(*pmdp))
2191 		return migrate_vma_collect_hole(start, end, walk);
2192 
2193 	if (pmd_trans_huge(*pmdp)) {
2194 		struct page *page;
2195 
2196 		ptl = pmd_lock(mm, pmdp);
2197 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2198 			spin_unlock(ptl);
2199 			goto again;
2200 		}
2201 
2202 		page = pmd_page(*pmdp);
2203 		if (is_huge_zero_page(page)) {
2204 			spin_unlock(ptl);
2205 			split_huge_pmd(vma, pmdp, addr);
2206 			if (pmd_trans_unstable(pmdp))
2207 				return migrate_vma_collect_skip(start, end,
2208 								walk);
2209 		} else {
2210 			int ret;
2211 
2212 			get_page(page);
2213 			spin_unlock(ptl);
2214 			if (unlikely(!trylock_page(page)))
2215 				return migrate_vma_collect_skip(start, end,
2216 								walk);
2217 			ret = split_huge_page(page);
2218 			unlock_page(page);
2219 			put_page(page);
2220 			if (ret)
2221 				return migrate_vma_collect_skip(start, end,
2222 								walk);
2223 			if (pmd_none(*pmdp))
2224 				return migrate_vma_collect_hole(start, end,
2225 								walk);
2226 		}
2227 	}
2228 
2229 	if (unlikely(pmd_bad(*pmdp)))
2230 		return migrate_vma_collect_skip(start, end, walk);
2231 
2232 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2233 	arch_enter_lazy_mmu_mode();
2234 
2235 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2236 		unsigned long mpfn, pfn;
2237 		struct page *page;
2238 		swp_entry_t entry;
2239 		pte_t pte;
2240 
2241 		pte = *ptep;
2242 		pfn = pte_pfn(pte);
2243 
2244 		if (pte_none(pte)) {
2245 			mpfn = MIGRATE_PFN_MIGRATE;
2246 			migrate->cpages++;
2247 			pfn = 0;
2248 			goto next;
2249 		}
2250 
2251 		if (!pte_present(pte)) {
2252 			mpfn = pfn = 0;
2253 
2254 			/*
2255 			 * Only care about unaddressable device page special
2256 			 * page table entry. Other special swap entries are not
2257 			 * migratable, and we ignore regular swapped page.
2258 			 */
2259 			entry = pte_to_swp_entry(pte);
2260 			if (!is_device_private_entry(entry))
2261 				goto next;
2262 
2263 			page = device_private_entry_to_page(entry);
2264 			mpfn = migrate_pfn(page_to_pfn(page))|
2265 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2266 			if (is_write_device_private_entry(entry))
2267 				mpfn |= MIGRATE_PFN_WRITE;
2268 		} else {
2269 			if (is_zero_pfn(pfn)) {
2270 				mpfn = MIGRATE_PFN_MIGRATE;
2271 				migrate->cpages++;
2272 				pfn = 0;
2273 				goto next;
2274 			}
2275 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2276 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2277 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2278 		}
2279 
2280 		/* FIXME support THP */
2281 		if (!page || !page->mapping || PageTransCompound(page)) {
2282 			mpfn = pfn = 0;
2283 			goto next;
2284 		}
2285 		pfn = page_to_pfn(page);
2286 
2287 		/*
2288 		 * By getting a reference on the page we pin it and that blocks
2289 		 * any kind of migration. Side effect is that it "freezes" the
2290 		 * pte.
2291 		 *
2292 		 * We drop this reference after isolating the page from the lru
2293 		 * for non device page (device page are not on the lru and thus
2294 		 * can't be dropped from it).
2295 		 */
2296 		get_page(page);
2297 		migrate->cpages++;
2298 
2299 		/*
2300 		 * Optimize for the common case where page is only mapped once
2301 		 * in one process. If we can lock the page, then we can safely
2302 		 * set up a special migration page table entry now.
2303 		 */
2304 		if (trylock_page(page)) {
2305 			pte_t swp_pte;
2306 
2307 			mpfn |= MIGRATE_PFN_LOCKED;
2308 			ptep_get_and_clear(mm, addr, ptep);
2309 
2310 			/* Setup special migration page table entry */
2311 			entry = make_migration_entry(page, mpfn &
2312 						     MIGRATE_PFN_WRITE);
2313 			swp_pte = swp_entry_to_pte(entry);
2314 			if (pte_soft_dirty(pte))
2315 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2316 			set_pte_at(mm, addr, ptep, swp_pte);
2317 
2318 			/*
2319 			 * This is like regular unmap: we remove the rmap and
2320 			 * drop page refcount. Page won't be freed, as we took
2321 			 * a reference just above.
2322 			 */
2323 			page_remove_rmap(page, false);
2324 			put_page(page);
2325 
2326 			if (pte_present(pte))
2327 				unmapped++;
2328 		}
2329 
2330 next:
2331 		migrate->dst[migrate->npages] = 0;
2332 		migrate->src[migrate->npages++] = mpfn;
2333 	}
2334 	arch_leave_lazy_mmu_mode();
2335 	pte_unmap_unlock(ptep - 1, ptl);
2336 
2337 	/* Only flush the TLB if we actually modified any entries */
2338 	if (unmapped)
2339 		flush_tlb_range(walk->vma, start, end);
2340 
2341 	return 0;
2342 }
2343 
2344 /*
2345  * migrate_vma_collect() - collect pages over a range of virtual addresses
2346  * @migrate: migrate struct containing all migration information
2347  *
2348  * This will walk the CPU page table. For each virtual address backed by a
2349  * valid page, it updates the src array and takes a reference on the page, in
2350  * order to pin the page until we lock it and unmap it.
2351  */
2352 static void migrate_vma_collect(struct migrate_vma *migrate)
2353 {
2354 	struct mm_walk mm_walk;
2355 
2356 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2357 	mm_walk.pte_entry = NULL;
2358 	mm_walk.pte_hole = migrate_vma_collect_hole;
2359 	mm_walk.hugetlb_entry = NULL;
2360 	mm_walk.test_walk = NULL;
2361 	mm_walk.vma = migrate->vma;
2362 	mm_walk.mm = migrate->vma->vm_mm;
2363 	mm_walk.private = migrate;
2364 
2365 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2366 					    migrate->start,
2367 					    migrate->end);
2368 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2369 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2370 					  migrate->start,
2371 					  migrate->end);
2372 
2373 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2374 }
2375 
2376 /*
2377  * migrate_vma_check_page() - check if page is pinned or not
2378  * @page: struct page to check
2379  *
2380  * Pinned pages cannot be migrated. This is the same test as in
2381  * migrate_page_move_mapping(), except that here we allow migration of a
2382  * ZONE_DEVICE page.
2383  */
2384 static bool migrate_vma_check_page(struct page *page)
2385 {
2386 	/*
2387 	 * One extra ref because caller holds an extra reference, either from
2388 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2389 	 * a device page.
2390 	 */
2391 	int extra = 1;
2392 
2393 	/*
2394 	 * FIXME support THP (transparent huge page), it is bit more complex to
2395 	 * check them than regular pages, because they can be mapped with a pmd
2396 	 * or with a pte (split pte mapping).
2397 	 */
2398 	if (PageCompound(page))
2399 		return false;
2400 
2401 	/* Page from ZONE_DEVICE have one extra reference */
2402 	if (is_zone_device_page(page)) {
2403 		/*
2404 		 * Private page can never be pin as they have no valid pte and
2405 		 * GUP will fail for those. Yet if there is a pending migration
2406 		 * a thread might try to wait on the pte migration entry and
2407 		 * will bump the page reference count. Sadly there is no way to
2408 		 * differentiate a regular pin from migration wait. Hence to
2409 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2410 		 * infinite loop (one stoping migration because the other is
2411 		 * waiting on pte migration entry). We always return true here.
2412 		 *
2413 		 * FIXME proper solution is to rework migration_entry_wait() so
2414 		 * it does not need to take a reference on page.
2415 		 */
2416 		if (is_device_private_page(page))
2417 			return true;
2418 
2419 		/*
2420 		 * Only allow device public page to be migrated and account for
2421 		 * the extra reference count imply by ZONE_DEVICE pages.
2422 		 */
2423 		if (!is_device_public_page(page))
2424 			return false;
2425 		extra++;
2426 	}
2427 
2428 	/* For file back page */
2429 	if (page_mapping(page))
2430 		extra += 1 + page_has_private(page);
2431 
2432 	if ((page_count(page) - extra) > page_mapcount(page))
2433 		return false;
2434 
2435 	return true;
2436 }
2437 
2438 /*
2439  * migrate_vma_prepare() - lock pages and isolate them from the lru
2440  * @migrate: migrate struct containing all migration information
2441  *
2442  * This locks pages that have been collected by migrate_vma_collect(). Once each
2443  * page is locked it is isolated from the lru (for non-device pages). Finally,
2444  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2445  * migrated by concurrent kernel threads.
2446  */
2447 static void migrate_vma_prepare(struct migrate_vma *migrate)
2448 {
2449 	const unsigned long npages = migrate->npages;
2450 	const unsigned long start = migrate->start;
2451 	unsigned long addr, i, restore = 0;
2452 	bool allow_drain = true;
2453 
2454 	lru_add_drain();
2455 
2456 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2457 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2458 		bool remap = true;
2459 
2460 		if (!page)
2461 			continue;
2462 
2463 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2464 			/*
2465 			 * Because we are migrating several pages there can be
2466 			 * a deadlock between 2 concurrent migration where each
2467 			 * are waiting on each other page lock.
2468 			 *
2469 			 * Make migrate_vma() a best effort thing and backoff
2470 			 * for any page we can not lock right away.
2471 			 */
2472 			if (!trylock_page(page)) {
2473 				migrate->src[i] = 0;
2474 				migrate->cpages--;
2475 				put_page(page);
2476 				continue;
2477 			}
2478 			remap = false;
2479 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2480 		}
2481 
2482 		/* ZONE_DEVICE pages are not on LRU */
2483 		if (!is_zone_device_page(page)) {
2484 			if (!PageLRU(page) && allow_drain) {
2485 				/* Drain CPU's pagevec */
2486 				lru_add_drain_all();
2487 				allow_drain = false;
2488 			}
2489 
2490 			if (isolate_lru_page(page)) {
2491 				if (remap) {
2492 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2493 					migrate->cpages--;
2494 					restore++;
2495 				} else {
2496 					migrate->src[i] = 0;
2497 					unlock_page(page);
2498 					migrate->cpages--;
2499 					put_page(page);
2500 				}
2501 				continue;
2502 			}
2503 
2504 			/* Drop the reference we took in collect */
2505 			put_page(page);
2506 		}
2507 
2508 		if (!migrate_vma_check_page(page)) {
2509 			if (remap) {
2510 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511 				migrate->cpages--;
2512 				restore++;
2513 
2514 				if (!is_zone_device_page(page)) {
2515 					get_page(page);
2516 					putback_lru_page(page);
2517 				}
2518 			} else {
2519 				migrate->src[i] = 0;
2520 				unlock_page(page);
2521 				migrate->cpages--;
2522 
2523 				if (!is_zone_device_page(page))
2524 					putback_lru_page(page);
2525 				else
2526 					put_page(page);
2527 			}
2528 		}
2529 	}
2530 
2531 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2532 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2533 
2534 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2535 			continue;
2536 
2537 		remove_migration_pte(page, migrate->vma, addr, page);
2538 
2539 		migrate->src[i] = 0;
2540 		unlock_page(page);
2541 		put_page(page);
2542 		restore--;
2543 	}
2544 }
2545 
2546 /*
2547  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2548  * @migrate: migrate struct containing all migration information
2549  *
2550  * Replace page mapping (CPU page table pte) with a special migration pte entry
2551  * and check again if it has been pinned. Pinned pages are restored because we
2552  * cannot migrate them.
2553  *
2554  * This is the last step before we call the device driver callback to allocate
2555  * destination memory and copy contents of original page over to new page.
2556  */
2557 static void migrate_vma_unmap(struct migrate_vma *migrate)
2558 {
2559 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2560 	const unsigned long npages = migrate->npages;
2561 	const unsigned long start = migrate->start;
2562 	unsigned long addr, i, restore = 0;
2563 
2564 	for (i = 0; i < npages; i++) {
2565 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2566 
2567 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2568 			continue;
2569 
2570 		if (page_mapped(page)) {
2571 			try_to_unmap(page, flags);
2572 			if (page_mapped(page))
2573 				goto restore;
2574 		}
2575 
2576 		if (migrate_vma_check_page(page))
2577 			continue;
2578 
2579 restore:
2580 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2581 		migrate->cpages--;
2582 		restore++;
2583 	}
2584 
2585 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2586 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2587 
2588 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2589 			continue;
2590 
2591 		remove_migration_ptes(page, page, false);
2592 
2593 		migrate->src[i] = 0;
2594 		unlock_page(page);
2595 		restore--;
2596 
2597 		if (is_zone_device_page(page))
2598 			put_page(page);
2599 		else
2600 			putback_lru_page(page);
2601 	}
2602 }
2603 
2604 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2605 				    unsigned long addr,
2606 				    struct page *page,
2607 				    unsigned long *src,
2608 				    unsigned long *dst)
2609 {
2610 	struct vm_area_struct *vma = migrate->vma;
2611 	struct mm_struct *mm = vma->vm_mm;
2612 	struct mem_cgroup *memcg;
2613 	bool flush = false;
2614 	spinlock_t *ptl;
2615 	pte_t entry;
2616 	pgd_t *pgdp;
2617 	p4d_t *p4dp;
2618 	pud_t *pudp;
2619 	pmd_t *pmdp;
2620 	pte_t *ptep;
2621 
2622 	/* Only allow populating anonymous memory */
2623 	if (!vma_is_anonymous(vma))
2624 		goto abort;
2625 
2626 	pgdp = pgd_offset(mm, addr);
2627 	p4dp = p4d_alloc(mm, pgdp, addr);
2628 	if (!p4dp)
2629 		goto abort;
2630 	pudp = pud_alloc(mm, p4dp, addr);
2631 	if (!pudp)
2632 		goto abort;
2633 	pmdp = pmd_alloc(mm, pudp, addr);
2634 	if (!pmdp)
2635 		goto abort;
2636 
2637 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2638 		goto abort;
2639 
2640 	/*
2641 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2642 	 * pte_offset_map() on pmds where a huge pmd might be created
2643 	 * from a different thread.
2644 	 *
2645 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2646 	 * parallel threads are excluded by other means.
2647 	 *
2648 	 * Here we only have down_read(mmap_sem).
2649 	 */
2650 	if (pte_alloc(mm, pmdp, addr))
2651 		goto abort;
2652 
2653 	/* See the comment in pte_alloc_one_map() */
2654 	if (unlikely(pmd_trans_unstable(pmdp)))
2655 		goto abort;
2656 
2657 	if (unlikely(anon_vma_prepare(vma)))
2658 		goto abort;
2659 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2660 		goto abort;
2661 
2662 	/*
2663 	 * The memory barrier inside __SetPageUptodate makes sure that
2664 	 * preceding stores to the page contents become visible before
2665 	 * the set_pte_at() write.
2666 	 */
2667 	__SetPageUptodate(page);
2668 
2669 	if (is_zone_device_page(page)) {
2670 		if (is_device_private_page(page)) {
2671 			swp_entry_t swp_entry;
2672 
2673 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2674 			entry = swp_entry_to_pte(swp_entry);
2675 		} else if (is_device_public_page(page)) {
2676 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2677 			if (vma->vm_flags & VM_WRITE)
2678 				entry = pte_mkwrite(pte_mkdirty(entry));
2679 			entry = pte_mkdevmap(entry);
2680 		}
2681 	} else {
2682 		entry = mk_pte(page, vma->vm_page_prot);
2683 		if (vma->vm_flags & VM_WRITE)
2684 			entry = pte_mkwrite(pte_mkdirty(entry));
2685 	}
2686 
2687 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2688 
2689 	if (pte_present(*ptep)) {
2690 		unsigned long pfn = pte_pfn(*ptep);
2691 
2692 		if (!is_zero_pfn(pfn)) {
2693 			pte_unmap_unlock(ptep, ptl);
2694 			mem_cgroup_cancel_charge(page, memcg, false);
2695 			goto abort;
2696 		}
2697 		flush = true;
2698 	} else if (!pte_none(*ptep)) {
2699 		pte_unmap_unlock(ptep, ptl);
2700 		mem_cgroup_cancel_charge(page, memcg, false);
2701 		goto abort;
2702 	}
2703 
2704 	/*
2705 	 * Check for usefaultfd but do not deliver the fault. Instead,
2706 	 * just back off.
2707 	 */
2708 	if (userfaultfd_missing(vma)) {
2709 		pte_unmap_unlock(ptep, ptl);
2710 		mem_cgroup_cancel_charge(page, memcg, false);
2711 		goto abort;
2712 	}
2713 
2714 	inc_mm_counter(mm, MM_ANONPAGES);
2715 	page_add_new_anon_rmap(page, vma, addr, false);
2716 	mem_cgroup_commit_charge(page, memcg, false, false);
2717 	if (!is_zone_device_page(page))
2718 		lru_cache_add_active_or_unevictable(page, vma);
2719 	get_page(page);
2720 
2721 	if (flush) {
2722 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2723 		ptep_clear_flush_notify(vma, addr, ptep);
2724 		set_pte_at_notify(mm, addr, ptep, entry);
2725 		update_mmu_cache(vma, addr, ptep);
2726 	} else {
2727 		/* No need to invalidate - it was non-present before */
2728 		set_pte_at(mm, addr, ptep, entry);
2729 		update_mmu_cache(vma, addr, ptep);
2730 	}
2731 
2732 	pte_unmap_unlock(ptep, ptl);
2733 	*src = MIGRATE_PFN_MIGRATE;
2734 	return;
2735 
2736 abort:
2737 	*src &= ~MIGRATE_PFN_MIGRATE;
2738 }
2739 
2740 /*
2741  * migrate_vma_pages() - migrate meta-data from src page to dst page
2742  * @migrate: migrate struct containing all migration information
2743  *
2744  * This migrates struct page meta-data from source struct page to destination
2745  * struct page. This effectively finishes the migration from source page to the
2746  * destination page.
2747  */
2748 static void migrate_vma_pages(struct migrate_vma *migrate)
2749 {
2750 	const unsigned long npages = migrate->npages;
2751 	const unsigned long start = migrate->start;
2752 	struct vm_area_struct *vma = migrate->vma;
2753 	struct mm_struct *mm = vma->vm_mm;
2754 	unsigned long addr, i, mmu_start;
2755 	bool notified = false;
2756 
2757 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2758 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2759 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2760 		struct address_space *mapping;
2761 		int r;
2762 
2763 		if (!newpage) {
2764 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2765 			continue;
2766 		}
2767 
2768 		if (!page) {
2769 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2770 				continue;
2771 			}
2772 			if (!notified) {
2773 				mmu_start = addr;
2774 				notified = true;
2775 				mmu_notifier_invalidate_range_start(mm,
2776 								mmu_start,
2777 								migrate->end);
2778 			}
2779 			migrate_vma_insert_page(migrate, addr, newpage,
2780 						&migrate->src[i],
2781 						&migrate->dst[i]);
2782 			continue;
2783 		}
2784 
2785 		mapping = page_mapping(page);
2786 
2787 		if (is_zone_device_page(newpage)) {
2788 			if (is_device_private_page(newpage)) {
2789 				/*
2790 				 * For now only support private anonymous when
2791 				 * migrating to un-addressable device memory.
2792 				 */
2793 				if (mapping) {
2794 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 					continue;
2796 				}
2797 			} else if (!is_device_public_page(newpage)) {
2798 				/*
2799 				 * Other types of ZONE_DEVICE page are not
2800 				 * supported.
2801 				 */
2802 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2803 				continue;
2804 			}
2805 		}
2806 
2807 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2808 		if (r != MIGRATEPAGE_SUCCESS)
2809 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810 	}
2811 
2812 	/*
2813 	 * No need to double call mmu_notifier->invalidate_range() callback as
2814 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2815 	 * did already call it.
2816 	 */
2817 	if (notified)
2818 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2819 						       migrate->end);
2820 }
2821 
2822 /*
2823  * migrate_vma_finalize() - restore CPU page table entry
2824  * @migrate: migrate struct containing all migration information
2825  *
2826  * This replaces the special migration pte entry with either a mapping to the
2827  * new page if migration was successful for that page, or to the original page
2828  * otherwise.
2829  *
2830  * This also unlocks the pages and puts them back on the lru, or drops the extra
2831  * refcount, for device pages.
2832  */
2833 static void migrate_vma_finalize(struct migrate_vma *migrate)
2834 {
2835 	const unsigned long npages = migrate->npages;
2836 	unsigned long i;
2837 
2838 	for (i = 0; i < npages; i++) {
2839 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2840 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2841 
2842 		if (!page) {
2843 			if (newpage) {
2844 				unlock_page(newpage);
2845 				put_page(newpage);
2846 			}
2847 			continue;
2848 		}
2849 
2850 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2851 			if (newpage) {
2852 				unlock_page(newpage);
2853 				put_page(newpage);
2854 			}
2855 			newpage = page;
2856 		}
2857 
2858 		remove_migration_ptes(page, newpage, false);
2859 		unlock_page(page);
2860 		migrate->cpages--;
2861 
2862 		if (is_zone_device_page(page))
2863 			put_page(page);
2864 		else
2865 			putback_lru_page(page);
2866 
2867 		if (newpage != page) {
2868 			unlock_page(newpage);
2869 			if (is_zone_device_page(newpage))
2870 				put_page(newpage);
2871 			else
2872 				putback_lru_page(newpage);
2873 		}
2874 	}
2875 }
2876 
2877 /*
2878  * migrate_vma() - migrate a range of memory inside vma
2879  *
2880  * @ops: migration callback for allocating destination memory and copying
2881  * @vma: virtual memory area containing the range to be migrated
2882  * @start: start address of the range to migrate (inclusive)
2883  * @end: end address of the range to migrate (exclusive)
2884  * @src: array of hmm_pfn_t containing source pfns
2885  * @dst: array of hmm_pfn_t containing destination pfns
2886  * @private: pointer passed back to each of the callback
2887  * Returns: 0 on success, error code otherwise
2888  *
2889  * This function tries to migrate a range of memory virtual address range, using
2890  * callbacks to allocate and copy memory from source to destination. First it
2891  * collects all the pages backing each virtual address in the range, saving this
2892  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2893  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2894  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2895  * in the corresponding src array entry. It then restores any pages that are
2896  * pinned, by remapping and unlocking those pages.
2897  *
2898  * At this point it calls the alloc_and_copy() callback. For documentation on
2899  * what is expected from that callback, see struct migrate_vma_ops comments in
2900  * include/linux/migrate.h
2901  *
2902  * After the alloc_and_copy() callback, this function goes over each entry in
2903  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2904  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2905  * then the function tries to migrate struct page information from the source
2906  * struct page to the destination struct page. If it fails to migrate the struct
2907  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2908  * array.
2909  *
2910  * At this point all successfully migrated pages have an entry in the src
2911  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2912  * array entry with MIGRATE_PFN_VALID flag set.
2913  *
2914  * It then calls the finalize_and_map() callback. See comments for "struct
2915  * migrate_vma_ops", in include/linux/migrate.h for details about
2916  * finalize_and_map() behavior.
2917  *
2918  * After the finalize_and_map() callback, for successfully migrated pages, this
2919  * function updates the CPU page table to point to new pages, otherwise it
2920  * restores the CPU page table to point to the original source pages.
2921  *
2922  * Function returns 0 after the above steps, even if no pages were migrated
2923  * (The function only returns an error if any of the arguments are invalid.)
2924  *
2925  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2926  * unsigned long entries.
2927  */
2928 int migrate_vma(const struct migrate_vma_ops *ops,
2929 		struct vm_area_struct *vma,
2930 		unsigned long start,
2931 		unsigned long end,
2932 		unsigned long *src,
2933 		unsigned long *dst,
2934 		void *private)
2935 {
2936 	struct migrate_vma migrate;
2937 
2938 	/* Sanity check the arguments */
2939 	start &= PAGE_MASK;
2940 	end &= PAGE_MASK;
2941 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2942 			vma_is_dax(vma))
2943 		return -EINVAL;
2944 	if (start < vma->vm_start || start >= vma->vm_end)
2945 		return -EINVAL;
2946 	if (end <= vma->vm_start || end > vma->vm_end)
2947 		return -EINVAL;
2948 	if (!ops || !src || !dst || start >= end)
2949 		return -EINVAL;
2950 
2951 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2952 	migrate.src = src;
2953 	migrate.dst = dst;
2954 	migrate.start = start;
2955 	migrate.npages = 0;
2956 	migrate.cpages = 0;
2957 	migrate.end = end;
2958 	migrate.vma = vma;
2959 
2960 	/* Collect, and try to unmap source pages */
2961 	migrate_vma_collect(&migrate);
2962 	if (!migrate.cpages)
2963 		return 0;
2964 
2965 	/* Lock and isolate page */
2966 	migrate_vma_prepare(&migrate);
2967 	if (!migrate.cpages)
2968 		return 0;
2969 
2970 	/* Unmap pages */
2971 	migrate_vma_unmap(&migrate);
2972 	if (!migrate.cpages)
2973 		return 0;
2974 
2975 	/*
2976 	 * At this point pages are locked and unmapped, and thus they have
2977 	 * stable content and can safely be copied to destination memory that
2978 	 * is allocated by the callback.
2979 	 *
2980 	 * Note that migration can fail in migrate_vma_struct_page() for each
2981 	 * individual page.
2982 	 */
2983 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2984 
2985 	/* This does the real migration of struct page */
2986 	migrate_vma_pages(&migrate);
2987 
2988 	ops->finalize_and_map(vma, src, dst, start, end, private);
2989 
2990 	/* Unlock and remap pages */
2991 	migrate_vma_finalize(&migrate);
2992 
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(migrate_vma);
2996 #endif /* defined(MIGRATE_VMA_HELPER) */
2997