1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 /* No need to invalidate - it was non-present before */ 279 update_mmu_cache(vma, pvmw.address, pvmw.pte); 280 } 281 282 return true; 283 } 284 285 /* 286 * Get rid of all migration entries and replace them by 287 * references to the indicated page. 288 */ 289 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 290 { 291 struct rmap_walk_control rwc = { 292 .rmap_one = remove_migration_pte, 293 .arg = old, 294 }; 295 296 if (locked) 297 rmap_walk_locked(new, &rwc); 298 else 299 rmap_walk(new, &rwc); 300 } 301 302 /* 303 * Something used the pte of a page under migration. We need to 304 * get to the page and wait until migration is finished. 305 * When we return from this function the fault will be retried. 306 */ 307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 308 spinlock_t *ptl) 309 { 310 pte_t pte; 311 swp_entry_t entry; 312 struct page *page; 313 314 spin_lock(ptl); 315 pte = *ptep; 316 if (!is_swap_pte(pte)) 317 goto out; 318 319 entry = pte_to_swp_entry(pte); 320 if (!is_migration_entry(entry)) 321 goto out; 322 323 page = migration_entry_to_page(entry); 324 325 /* 326 * Once page cache replacement of page migration started, page_count 327 * *must* be zero. And, we don't want to call wait_on_page_locked() 328 * against a page without get_page(). 329 * So, we use get_page_unless_zero(), here. Even failed, page fault 330 * will occur again. 331 */ 332 if (!get_page_unless_zero(page)) 333 goto out; 334 pte_unmap_unlock(ptep, ptl); 335 wait_on_page_locked(page); 336 put_page(page); 337 return; 338 out: 339 pte_unmap_unlock(ptep, ptl); 340 } 341 342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 343 unsigned long address) 344 { 345 spinlock_t *ptl = pte_lockptr(mm, pmd); 346 pte_t *ptep = pte_offset_map(pmd, address); 347 __migration_entry_wait(mm, ptep, ptl); 348 } 349 350 void migration_entry_wait_huge(struct vm_area_struct *vma, 351 struct mm_struct *mm, pte_t *pte) 352 { 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 354 __migration_entry_wait(mm, pte, ptl); 355 } 356 357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 359 { 360 spinlock_t *ptl; 361 struct page *page; 362 363 ptl = pmd_lock(mm, pmd); 364 if (!is_pmd_migration_entry(*pmd)) 365 goto unlock; 366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 367 if (!get_page_unless_zero(page)) 368 goto unlock; 369 spin_unlock(ptl); 370 wait_on_page_locked(page); 371 put_page(page); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 #ifdef CONFIG_BLOCK 379 /* Returns true if all buffers are successfully locked */ 380 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 381 enum migrate_mode mode) 382 { 383 struct buffer_head *bh = head; 384 385 /* Simple case, sync compaction */ 386 if (mode != MIGRATE_ASYNC) { 387 do { 388 get_bh(bh); 389 lock_buffer(bh); 390 bh = bh->b_this_page; 391 392 } while (bh != head); 393 394 return true; 395 } 396 397 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 398 do { 399 get_bh(bh); 400 if (!trylock_buffer(bh)) { 401 /* 402 * We failed to lock the buffer and cannot stall in 403 * async migration. Release the taken locks 404 */ 405 struct buffer_head *failed_bh = bh; 406 put_bh(failed_bh); 407 bh = head; 408 while (bh != failed_bh) { 409 unlock_buffer(bh); 410 put_bh(bh); 411 bh = bh->b_this_page; 412 } 413 return false; 414 } 415 416 bh = bh->b_this_page; 417 } while (bh != head); 418 return true; 419 } 420 #else 421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 422 enum migrate_mode mode) 423 { 424 return true; 425 } 426 #endif /* CONFIG_BLOCK */ 427 428 /* 429 * Replace the page in the mapping. 430 * 431 * The number of remaining references must be: 432 * 1 for anonymous pages without a mapping 433 * 2 for pages with a mapping 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 435 */ 436 int migrate_page_move_mapping(struct address_space *mapping, 437 struct page *newpage, struct page *page, 438 struct buffer_head *head, enum migrate_mode mode, 439 int extra_count) 440 { 441 XA_STATE(xas, &mapping->i_pages, page_index(page)); 442 struct zone *oldzone, *newzone; 443 int dirty; 444 int expected_count = 1 + extra_count; 445 446 /* 447 * Device public or private pages have an extra refcount as they are 448 * ZONE_DEVICE pages. 449 */ 450 expected_count += is_device_private_page(page); 451 expected_count += is_device_public_page(page); 452 453 if (!mapping) { 454 /* Anonymous page without mapping */ 455 if (page_count(page) != expected_count) 456 return -EAGAIN; 457 458 /* No turning back from here */ 459 newpage->index = page->index; 460 newpage->mapping = page->mapping; 461 if (PageSwapBacked(page)) 462 __SetPageSwapBacked(newpage); 463 464 return MIGRATEPAGE_SUCCESS; 465 } 466 467 oldzone = page_zone(page); 468 newzone = page_zone(newpage); 469 470 xas_lock_irq(&xas); 471 472 expected_count += hpage_nr_pages(page) + page_has_private(page); 473 if (page_count(page) != expected_count || xas_load(&xas) != page) { 474 xas_unlock_irq(&xas); 475 return -EAGAIN; 476 } 477 478 if (!page_ref_freeze(page, expected_count)) { 479 xas_unlock_irq(&xas); 480 return -EAGAIN; 481 } 482 483 /* 484 * In the async migration case of moving a page with buffers, lock the 485 * buffers using trylock before the mapping is moved. If the mapping 486 * was moved, we later failed to lock the buffers and could not move 487 * the mapping back due to an elevated page count, we would have to 488 * block waiting on other references to be dropped. 489 */ 490 if (mode == MIGRATE_ASYNC && head && 491 !buffer_migrate_lock_buffers(head, mode)) { 492 page_ref_unfreeze(page, expected_count); 493 xas_unlock_irq(&xas); 494 return -EAGAIN; 495 } 496 497 /* 498 * Now we know that no one else is looking at the page: 499 * no turning back from here. 500 */ 501 newpage->index = page->index; 502 newpage->mapping = page->mapping; 503 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 504 if (PageSwapBacked(page)) { 505 __SetPageSwapBacked(newpage); 506 if (PageSwapCache(page)) { 507 SetPageSwapCache(newpage); 508 set_page_private(newpage, page_private(page)); 509 } 510 } else { 511 VM_BUG_ON_PAGE(PageSwapCache(page), page); 512 } 513 514 /* Move dirty while page refs frozen and newpage not yet exposed */ 515 dirty = PageDirty(page); 516 if (dirty) { 517 ClearPageDirty(page); 518 SetPageDirty(newpage); 519 } 520 521 xas_store(&xas, newpage); 522 if (PageTransHuge(page)) { 523 int i; 524 525 for (i = 1; i < HPAGE_PMD_NR; i++) { 526 xas_next(&xas); 527 xas_store(&xas, newpage + i); 528 } 529 } 530 531 /* 532 * Drop cache reference from old page by unfreezing 533 * to one less reference. 534 * We know this isn't the last reference. 535 */ 536 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 537 538 xas_unlock(&xas); 539 /* Leave irq disabled to prevent preemption while updating stats */ 540 541 /* 542 * If moved to a different zone then also account 543 * the page for that zone. Other VM counters will be 544 * taken care of when we establish references to the 545 * new page and drop references to the old page. 546 * 547 * Note that anonymous pages are accounted for 548 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 549 * are mapped to swap space. 550 */ 551 if (newzone != oldzone) { 552 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 553 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 554 if (PageSwapBacked(page) && !PageSwapCache(page)) { 555 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 556 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 557 } 558 if (dirty && mapping_cap_account_dirty(mapping)) { 559 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 560 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 561 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 562 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 563 } 564 } 565 local_irq_enable(); 566 567 return MIGRATEPAGE_SUCCESS; 568 } 569 EXPORT_SYMBOL(migrate_page_move_mapping); 570 571 /* 572 * The expected number of remaining references is the same as that 573 * of migrate_page_move_mapping(). 574 */ 575 int migrate_huge_page_move_mapping(struct address_space *mapping, 576 struct page *newpage, struct page *page) 577 { 578 XA_STATE(xas, &mapping->i_pages, page_index(page)); 579 int expected_count; 580 581 xas_lock_irq(&xas); 582 expected_count = 2 + page_has_private(page); 583 if (page_count(page) != expected_count || xas_load(&xas) != page) { 584 xas_unlock_irq(&xas); 585 return -EAGAIN; 586 } 587 588 if (!page_ref_freeze(page, expected_count)) { 589 xas_unlock_irq(&xas); 590 return -EAGAIN; 591 } 592 593 newpage->index = page->index; 594 newpage->mapping = page->mapping; 595 596 get_page(newpage); 597 598 xas_store(&xas, newpage); 599 600 page_ref_unfreeze(page, expected_count - 1); 601 602 xas_unlock_irq(&xas); 603 604 return MIGRATEPAGE_SUCCESS; 605 } 606 607 /* 608 * Gigantic pages are so large that we do not guarantee that page++ pointer 609 * arithmetic will work across the entire page. We need something more 610 * specialized. 611 */ 612 static void __copy_gigantic_page(struct page *dst, struct page *src, 613 int nr_pages) 614 { 615 int i; 616 struct page *dst_base = dst; 617 struct page *src_base = src; 618 619 for (i = 0; i < nr_pages; ) { 620 cond_resched(); 621 copy_highpage(dst, src); 622 623 i++; 624 dst = mem_map_next(dst, dst_base, i); 625 src = mem_map_next(src, src_base, i); 626 } 627 } 628 629 static void copy_huge_page(struct page *dst, struct page *src) 630 { 631 int i; 632 int nr_pages; 633 634 if (PageHuge(src)) { 635 /* hugetlbfs page */ 636 struct hstate *h = page_hstate(src); 637 nr_pages = pages_per_huge_page(h); 638 639 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 640 __copy_gigantic_page(dst, src, nr_pages); 641 return; 642 } 643 } else { 644 /* thp page */ 645 BUG_ON(!PageTransHuge(src)); 646 nr_pages = hpage_nr_pages(src); 647 } 648 649 for (i = 0; i < nr_pages; i++) { 650 cond_resched(); 651 copy_highpage(dst + i, src + i); 652 } 653 } 654 655 /* 656 * Copy the page to its new location 657 */ 658 void migrate_page_states(struct page *newpage, struct page *page) 659 { 660 int cpupid; 661 662 if (PageError(page)) 663 SetPageError(newpage); 664 if (PageReferenced(page)) 665 SetPageReferenced(newpage); 666 if (PageUptodate(page)) 667 SetPageUptodate(newpage); 668 if (TestClearPageActive(page)) { 669 VM_BUG_ON_PAGE(PageUnevictable(page), page); 670 SetPageActive(newpage); 671 } else if (TestClearPageUnevictable(page)) 672 SetPageUnevictable(newpage); 673 if (PageChecked(page)) 674 SetPageChecked(newpage); 675 if (PageMappedToDisk(page)) 676 SetPageMappedToDisk(newpage); 677 678 /* Move dirty on pages not done by migrate_page_move_mapping() */ 679 if (PageDirty(page)) 680 SetPageDirty(newpage); 681 682 if (page_is_young(page)) 683 set_page_young(newpage); 684 if (page_is_idle(page)) 685 set_page_idle(newpage); 686 687 /* 688 * Copy NUMA information to the new page, to prevent over-eager 689 * future migrations of this same page. 690 */ 691 cpupid = page_cpupid_xchg_last(page, -1); 692 page_cpupid_xchg_last(newpage, cpupid); 693 694 ksm_migrate_page(newpage, page); 695 /* 696 * Please do not reorder this without considering how mm/ksm.c's 697 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 698 */ 699 if (PageSwapCache(page)) 700 ClearPageSwapCache(page); 701 ClearPagePrivate(page); 702 set_page_private(page, 0); 703 704 /* 705 * If any waiters have accumulated on the new page then 706 * wake them up. 707 */ 708 if (PageWriteback(newpage)) 709 end_page_writeback(newpage); 710 711 copy_page_owner(page, newpage); 712 713 mem_cgroup_migrate(page, newpage); 714 } 715 EXPORT_SYMBOL(migrate_page_states); 716 717 void migrate_page_copy(struct page *newpage, struct page *page) 718 { 719 if (PageHuge(page) || PageTransHuge(page)) 720 copy_huge_page(newpage, page); 721 else 722 copy_highpage(newpage, page); 723 724 migrate_page_states(newpage, page); 725 } 726 EXPORT_SYMBOL(migrate_page_copy); 727 728 /************************************************************ 729 * Migration functions 730 ***********************************************************/ 731 732 /* 733 * Common logic to directly migrate a single LRU page suitable for 734 * pages that do not use PagePrivate/PagePrivate2. 735 * 736 * Pages are locked upon entry and exit. 737 */ 738 int migrate_page(struct address_space *mapping, 739 struct page *newpage, struct page *page, 740 enum migrate_mode mode) 741 { 742 int rc; 743 744 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 745 746 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 747 748 if (rc != MIGRATEPAGE_SUCCESS) 749 return rc; 750 751 if (mode != MIGRATE_SYNC_NO_COPY) 752 migrate_page_copy(newpage, page); 753 else 754 migrate_page_states(newpage, page); 755 return MIGRATEPAGE_SUCCESS; 756 } 757 EXPORT_SYMBOL(migrate_page); 758 759 #ifdef CONFIG_BLOCK 760 /* 761 * Migration function for pages with buffers. This function can only be used 762 * if the underlying filesystem guarantees that no other references to "page" 763 * exist. 764 */ 765 int buffer_migrate_page(struct address_space *mapping, 766 struct page *newpage, struct page *page, enum migrate_mode mode) 767 { 768 struct buffer_head *bh, *head; 769 int rc; 770 771 if (!page_has_buffers(page)) 772 return migrate_page(mapping, newpage, page, mode); 773 774 head = page_buffers(page); 775 776 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 777 778 if (rc != MIGRATEPAGE_SUCCESS) 779 return rc; 780 781 /* 782 * In the async case, migrate_page_move_mapping locked the buffers 783 * with an IRQ-safe spinlock held. In the sync case, the buffers 784 * need to be locked now 785 */ 786 if (mode != MIGRATE_ASYNC) 787 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 788 789 ClearPagePrivate(page); 790 set_page_private(newpage, page_private(page)); 791 set_page_private(page, 0); 792 put_page(page); 793 get_page(newpage); 794 795 bh = head; 796 do { 797 set_bh_page(bh, newpage, bh_offset(bh)); 798 bh = bh->b_this_page; 799 800 } while (bh != head); 801 802 SetPagePrivate(newpage); 803 804 if (mode != MIGRATE_SYNC_NO_COPY) 805 migrate_page_copy(newpage, page); 806 else 807 migrate_page_states(newpage, page); 808 809 bh = head; 810 do { 811 unlock_buffer(bh); 812 put_bh(bh); 813 bh = bh->b_this_page; 814 815 } while (bh != head); 816 817 return MIGRATEPAGE_SUCCESS; 818 } 819 EXPORT_SYMBOL(buffer_migrate_page); 820 #endif 821 822 /* 823 * Writeback a page to clean the dirty state 824 */ 825 static int writeout(struct address_space *mapping, struct page *page) 826 { 827 struct writeback_control wbc = { 828 .sync_mode = WB_SYNC_NONE, 829 .nr_to_write = 1, 830 .range_start = 0, 831 .range_end = LLONG_MAX, 832 .for_reclaim = 1 833 }; 834 int rc; 835 836 if (!mapping->a_ops->writepage) 837 /* No write method for the address space */ 838 return -EINVAL; 839 840 if (!clear_page_dirty_for_io(page)) 841 /* Someone else already triggered a write */ 842 return -EAGAIN; 843 844 /* 845 * A dirty page may imply that the underlying filesystem has 846 * the page on some queue. So the page must be clean for 847 * migration. Writeout may mean we loose the lock and the 848 * page state is no longer what we checked for earlier. 849 * At this point we know that the migration attempt cannot 850 * be successful. 851 */ 852 remove_migration_ptes(page, page, false); 853 854 rc = mapping->a_ops->writepage(page, &wbc); 855 856 if (rc != AOP_WRITEPAGE_ACTIVATE) 857 /* unlocked. Relock */ 858 lock_page(page); 859 860 return (rc < 0) ? -EIO : -EAGAIN; 861 } 862 863 /* 864 * Default handling if a filesystem does not provide a migration function. 865 */ 866 static int fallback_migrate_page(struct address_space *mapping, 867 struct page *newpage, struct page *page, enum migrate_mode mode) 868 { 869 if (PageDirty(page)) { 870 /* Only writeback pages in full synchronous migration */ 871 switch (mode) { 872 case MIGRATE_SYNC: 873 case MIGRATE_SYNC_NO_COPY: 874 break; 875 default: 876 return -EBUSY; 877 } 878 return writeout(mapping, page); 879 } 880 881 /* 882 * Buffers may be managed in a filesystem specific way. 883 * We must have no buffers or drop them. 884 */ 885 if (page_has_private(page) && 886 !try_to_release_page(page, GFP_KERNEL)) 887 return -EAGAIN; 888 889 return migrate_page(mapping, newpage, page, mode); 890 } 891 892 /* 893 * Move a page to a newly allocated page 894 * The page is locked and all ptes have been successfully removed. 895 * 896 * The new page will have replaced the old page if this function 897 * is successful. 898 * 899 * Return value: 900 * < 0 - error code 901 * MIGRATEPAGE_SUCCESS - success 902 */ 903 static int move_to_new_page(struct page *newpage, struct page *page, 904 enum migrate_mode mode) 905 { 906 struct address_space *mapping; 907 int rc = -EAGAIN; 908 bool is_lru = !__PageMovable(page); 909 910 VM_BUG_ON_PAGE(!PageLocked(page), page); 911 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 912 913 mapping = page_mapping(page); 914 915 if (likely(is_lru)) { 916 if (!mapping) 917 rc = migrate_page(mapping, newpage, page, mode); 918 else if (mapping->a_ops->migratepage) 919 /* 920 * Most pages have a mapping and most filesystems 921 * provide a migratepage callback. Anonymous pages 922 * are part of swap space which also has its own 923 * migratepage callback. This is the most common path 924 * for page migration. 925 */ 926 rc = mapping->a_ops->migratepage(mapping, newpage, 927 page, mode); 928 else 929 rc = fallback_migrate_page(mapping, newpage, 930 page, mode); 931 } else { 932 /* 933 * In case of non-lru page, it could be released after 934 * isolation step. In that case, we shouldn't try migration. 935 */ 936 VM_BUG_ON_PAGE(!PageIsolated(page), page); 937 if (!PageMovable(page)) { 938 rc = MIGRATEPAGE_SUCCESS; 939 __ClearPageIsolated(page); 940 goto out; 941 } 942 943 rc = mapping->a_ops->migratepage(mapping, newpage, 944 page, mode); 945 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 946 !PageIsolated(page)); 947 } 948 949 /* 950 * When successful, old pagecache page->mapping must be cleared before 951 * page is freed; but stats require that PageAnon be left as PageAnon. 952 */ 953 if (rc == MIGRATEPAGE_SUCCESS) { 954 if (__PageMovable(page)) { 955 VM_BUG_ON_PAGE(!PageIsolated(page), page); 956 957 /* 958 * We clear PG_movable under page_lock so any compactor 959 * cannot try to migrate this page. 960 */ 961 __ClearPageIsolated(page); 962 } 963 964 /* 965 * Anonymous and movable page->mapping will be cleard by 966 * free_pages_prepare so don't reset it here for keeping 967 * the type to work PageAnon, for example. 968 */ 969 if (!PageMappingFlags(page)) 970 page->mapping = NULL; 971 } 972 out: 973 return rc; 974 } 975 976 static int __unmap_and_move(struct page *page, struct page *newpage, 977 int force, enum migrate_mode mode) 978 { 979 int rc = -EAGAIN; 980 int page_was_mapped = 0; 981 struct anon_vma *anon_vma = NULL; 982 bool is_lru = !__PageMovable(page); 983 984 if (!trylock_page(page)) { 985 if (!force || mode == MIGRATE_ASYNC) 986 goto out; 987 988 /* 989 * It's not safe for direct compaction to call lock_page. 990 * For example, during page readahead pages are added locked 991 * to the LRU. Later, when the IO completes the pages are 992 * marked uptodate and unlocked. However, the queueing 993 * could be merging multiple pages for one bio (e.g. 994 * mpage_readpages). If an allocation happens for the 995 * second or third page, the process can end up locking 996 * the same page twice and deadlocking. Rather than 997 * trying to be clever about what pages can be locked, 998 * avoid the use of lock_page for direct compaction 999 * altogether. 1000 */ 1001 if (current->flags & PF_MEMALLOC) 1002 goto out; 1003 1004 lock_page(page); 1005 } 1006 1007 if (PageWriteback(page)) { 1008 /* 1009 * Only in the case of a full synchronous migration is it 1010 * necessary to wait for PageWriteback. In the async case, 1011 * the retry loop is too short and in the sync-light case, 1012 * the overhead of stalling is too much 1013 */ 1014 switch (mode) { 1015 case MIGRATE_SYNC: 1016 case MIGRATE_SYNC_NO_COPY: 1017 break; 1018 default: 1019 rc = -EBUSY; 1020 goto out_unlock; 1021 } 1022 if (!force) 1023 goto out_unlock; 1024 wait_on_page_writeback(page); 1025 } 1026 1027 /* 1028 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1029 * we cannot notice that anon_vma is freed while we migrates a page. 1030 * This get_anon_vma() delays freeing anon_vma pointer until the end 1031 * of migration. File cache pages are no problem because of page_lock() 1032 * File Caches may use write_page() or lock_page() in migration, then, 1033 * just care Anon page here. 1034 * 1035 * Only page_get_anon_vma() understands the subtleties of 1036 * getting a hold on an anon_vma from outside one of its mms. 1037 * But if we cannot get anon_vma, then we won't need it anyway, 1038 * because that implies that the anon page is no longer mapped 1039 * (and cannot be remapped so long as we hold the page lock). 1040 */ 1041 if (PageAnon(page) && !PageKsm(page)) 1042 anon_vma = page_get_anon_vma(page); 1043 1044 /* 1045 * Block others from accessing the new page when we get around to 1046 * establishing additional references. We are usually the only one 1047 * holding a reference to newpage at this point. We used to have a BUG 1048 * here if trylock_page(newpage) fails, but would like to allow for 1049 * cases where there might be a race with the previous use of newpage. 1050 * This is much like races on refcount of oldpage: just don't BUG(). 1051 */ 1052 if (unlikely(!trylock_page(newpage))) 1053 goto out_unlock; 1054 1055 if (unlikely(!is_lru)) { 1056 rc = move_to_new_page(newpage, page, mode); 1057 goto out_unlock_both; 1058 } 1059 1060 /* 1061 * Corner case handling: 1062 * 1. When a new swap-cache page is read into, it is added to the LRU 1063 * and treated as swapcache but it has no rmap yet. 1064 * Calling try_to_unmap() against a page->mapping==NULL page will 1065 * trigger a BUG. So handle it here. 1066 * 2. An orphaned page (see truncate_complete_page) might have 1067 * fs-private metadata. The page can be picked up due to memory 1068 * offlining. Everywhere else except page reclaim, the page is 1069 * invisible to the vm, so the page can not be migrated. So try to 1070 * free the metadata, so the page can be freed. 1071 */ 1072 if (!page->mapping) { 1073 VM_BUG_ON_PAGE(PageAnon(page), page); 1074 if (page_has_private(page)) { 1075 try_to_free_buffers(page); 1076 goto out_unlock_both; 1077 } 1078 } else if (page_mapped(page)) { 1079 /* Establish migration ptes */ 1080 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1081 page); 1082 try_to_unmap(page, 1083 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1084 page_was_mapped = 1; 1085 } 1086 1087 if (!page_mapped(page)) 1088 rc = move_to_new_page(newpage, page, mode); 1089 1090 if (page_was_mapped) 1091 remove_migration_ptes(page, 1092 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1093 1094 out_unlock_both: 1095 unlock_page(newpage); 1096 out_unlock: 1097 /* Drop an anon_vma reference if we took one */ 1098 if (anon_vma) 1099 put_anon_vma(anon_vma); 1100 unlock_page(page); 1101 out: 1102 /* 1103 * If migration is successful, decrease refcount of the newpage 1104 * which will not free the page because new page owner increased 1105 * refcounter. As well, if it is LRU page, add the page to LRU 1106 * list in here. 1107 */ 1108 if (rc == MIGRATEPAGE_SUCCESS) { 1109 if (unlikely(__PageMovable(newpage))) 1110 put_page(newpage); 1111 else 1112 putback_lru_page(newpage); 1113 } 1114 1115 return rc; 1116 } 1117 1118 /* 1119 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1120 * around it. 1121 */ 1122 #if defined(CONFIG_ARM) && \ 1123 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1124 #define ICE_noinline noinline 1125 #else 1126 #define ICE_noinline 1127 #endif 1128 1129 /* 1130 * Obtain the lock on page, remove all ptes and migrate the page 1131 * to the newly allocated page in newpage. 1132 */ 1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1134 free_page_t put_new_page, 1135 unsigned long private, struct page *page, 1136 int force, enum migrate_mode mode, 1137 enum migrate_reason reason) 1138 { 1139 int rc = MIGRATEPAGE_SUCCESS; 1140 struct page *newpage; 1141 1142 if (!thp_migration_supported() && PageTransHuge(page)) 1143 return -ENOMEM; 1144 1145 newpage = get_new_page(page, private); 1146 if (!newpage) 1147 return -ENOMEM; 1148 1149 if (page_count(page) == 1) { 1150 /* page was freed from under us. So we are done. */ 1151 ClearPageActive(page); 1152 ClearPageUnevictable(page); 1153 if (unlikely(__PageMovable(page))) { 1154 lock_page(page); 1155 if (!PageMovable(page)) 1156 __ClearPageIsolated(page); 1157 unlock_page(page); 1158 } 1159 if (put_new_page) 1160 put_new_page(newpage, private); 1161 else 1162 put_page(newpage); 1163 goto out; 1164 } 1165 1166 rc = __unmap_and_move(page, newpage, force, mode); 1167 if (rc == MIGRATEPAGE_SUCCESS) 1168 set_page_owner_migrate_reason(newpage, reason); 1169 1170 out: 1171 if (rc != -EAGAIN) { 1172 /* 1173 * A page that has been migrated has all references 1174 * removed and will be freed. A page that has not been 1175 * migrated will have kepts its references and be 1176 * restored. 1177 */ 1178 list_del(&page->lru); 1179 1180 /* 1181 * Compaction can migrate also non-LRU pages which are 1182 * not accounted to NR_ISOLATED_*. They can be recognized 1183 * as __PageMovable 1184 */ 1185 if (likely(!__PageMovable(page))) 1186 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1187 page_is_file_cache(page), -hpage_nr_pages(page)); 1188 } 1189 1190 /* 1191 * If migration is successful, releases reference grabbed during 1192 * isolation. Otherwise, restore the page to right list unless 1193 * we want to retry. 1194 */ 1195 if (rc == MIGRATEPAGE_SUCCESS) { 1196 put_page(page); 1197 if (reason == MR_MEMORY_FAILURE) { 1198 /* 1199 * Set PG_HWPoison on just freed page 1200 * intentionally. Although it's rather weird, 1201 * it's how HWPoison flag works at the moment. 1202 */ 1203 if (set_hwpoison_free_buddy_page(page)) 1204 num_poisoned_pages_inc(); 1205 } 1206 } else { 1207 if (rc != -EAGAIN) { 1208 if (likely(!__PageMovable(page))) { 1209 putback_lru_page(page); 1210 goto put_new; 1211 } 1212 1213 lock_page(page); 1214 if (PageMovable(page)) 1215 putback_movable_page(page); 1216 else 1217 __ClearPageIsolated(page); 1218 unlock_page(page); 1219 put_page(page); 1220 } 1221 put_new: 1222 if (put_new_page) 1223 put_new_page(newpage, private); 1224 else 1225 put_page(newpage); 1226 } 1227 1228 return rc; 1229 } 1230 1231 /* 1232 * Counterpart of unmap_and_move_page() for hugepage migration. 1233 * 1234 * This function doesn't wait the completion of hugepage I/O 1235 * because there is no race between I/O and migration for hugepage. 1236 * Note that currently hugepage I/O occurs only in direct I/O 1237 * where no lock is held and PG_writeback is irrelevant, 1238 * and writeback status of all subpages are counted in the reference 1239 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1240 * under direct I/O, the reference of the head page is 512 and a bit more.) 1241 * This means that when we try to migrate hugepage whose subpages are 1242 * doing direct I/O, some references remain after try_to_unmap() and 1243 * hugepage migration fails without data corruption. 1244 * 1245 * There is also no race when direct I/O is issued on the page under migration, 1246 * because then pte is replaced with migration swap entry and direct I/O code 1247 * will wait in the page fault for migration to complete. 1248 */ 1249 static int unmap_and_move_huge_page(new_page_t get_new_page, 1250 free_page_t put_new_page, unsigned long private, 1251 struct page *hpage, int force, 1252 enum migrate_mode mode, int reason) 1253 { 1254 int rc = -EAGAIN; 1255 int page_was_mapped = 0; 1256 struct page *new_hpage; 1257 struct anon_vma *anon_vma = NULL; 1258 1259 /* 1260 * Movability of hugepages depends on architectures and hugepage size. 1261 * This check is necessary because some callers of hugepage migration 1262 * like soft offline and memory hotremove don't walk through page 1263 * tables or check whether the hugepage is pmd-based or not before 1264 * kicking migration. 1265 */ 1266 if (!hugepage_migration_supported(page_hstate(hpage))) { 1267 putback_active_hugepage(hpage); 1268 return -ENOSYS; 1269 } 1270 1271 new_hpage = get_new_page(hpage, private); 1272 if (!new_hpage) 1273 return -ENOMEM; 1274 1275 if (!trylock_page(hpage)) { 1276 if (!force) 1277 goto out; 1278 switch (mode) { 1279 case MIGRATE_SYNC: 1280 case MIGRATE_SYNC_NO_COPY: 1281 break; 1282 default: 1283 goto out; 1284 } 1285 lock_page(hpage); 1286 } 1287 1288 if (PageAnon(hpage)) 1289 anon_vma = page_get_anon_vma(hpage); 1290 1291 if (unlikely(!trylock_page(new_hpage))) 1292 goto put_anon; 1293 1294 if (page_mapped(hpage)) { 1295 try_to_unmap(hpage, 1296 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1297 page_was_mapped = 1; 1298 } 1299 1300 if (!page_mapped(hpage)) 1301 rc = move_to_new_page(new_hpage, hpage, mode); 1302 1303 if (page_was_mapped) 1304 remove_migration_ptes(hpage, 1305 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1306 1307 unlock_page(new_hpage); 1308 1309 put_anon: 1310 if (anon_vma) 1311 put_anon_vma(anon_vma); 1312 1313 if (rc == MIGRATEPAGE_SUCCESS) { 1314 move_hugetlb_state(hpage, new_hpage, reason); 1315 put_new_page = NULL; 1316 } 1317 1318 unlock_page(hpage); 1319 out: 1320 if (rc != -EAGAIN) 1321 putback_active_hugepage(hpage); 1322 1323 /* 1324 * If migration was not successful and there's a freeing callback, use 1325 * it. Otherwise, put_page() will drop the reference grabbed during 1326 * isolation. 1327 */ 1328 if (put_new_page) 1329 put_new_page(new_hpage, private); 1330 else 1331 putback_active_hugepage(new_hpage); 1332 1333 return rc; 1334 } 1335 1336 /* 1337 * migrate_pages - migrate the pages specified in a list, to the free pages 1338 * supplied as the target for the page migration 1339 * 1340 * @from: The list of pages to be migrated. 1341 * @get_new_page: The function used to allocate free pages to be used 1342 * as the target of the page migration. 1343 * @put_new_page: The function used to free target pages if migration 1344 * fails, or NULL if no special handling is necessary. 1345 * @private: Private data to be passed on to get_new_page() 1346 * @mode: The migration mode that specifies the constraints for 1347 * page migration, if any. 1348 * @reason: The reason for page migration. 1349 * 1350 * The function returns after 10 attempts or if no pages are movable any more 1351 * because the list has become empty or no retryable pages exist any more. 1352 * The caller should call putback_movable_pages() to return pages to the LRU 1353 * or free list only if ret != 0. 1354 * 1355 * Returns the number of pages that were not migrated, or an error code. 1356 */ 1357 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1358 free_page_t put_new_page, unsigned long private, 1359 enum migrate_mode mode, int reason) 1360 { 1361 int retry = 1; 1362 int nr_failed = 0; 1363 int nr_succeeded = 0; 1364 int pass = 0; 1365 struct page *page; 1366 struct page *page2; 1367 int swapwrite = current->flags & PF_SWAPWRITE; 1368 int rc; 1369 1370 if (!swapwrite) 1371 current->flags |= PF_SWAPWRITE; 1372 1373 for(pass = 0; pass < 10 && retry; pass++) { 1374 retry = 0; 1375 1376 list_for_each_entry_safe(page, page2, from, lru) { 1377 retry: 1378 cond_resched(); 1379 1380 if (PageHuge(page)) 1381 rc = unmap_and_move_huge_page(get_new_page, 1382 put_new_page, private, page, 1383 pass > 2, mode, reason); 1384 else 1385 rc = unmap_and_move(get_new_page, put_new_page, 1386 private, page, pass > 2, mode, 1387 reason); 1388 1389 switch(rc) { 1390 case -ENOMEM: 1391 /* 1392 * THP migration might be unsupported or the 1393 * allocation could've failed so we should 1394 * retry on the same page with the THP split 1395 * to base pages. 1396 * 1397 * Head page is retried immediately and tail 1398 * pages are added to the tail of the list so 1399 * we encounter them after the rest of the list 1400 * is processed. 1401 */ 1402 if (PageTransHuge(page)) { 1403 lock_page(page); 1404 rc = split_huge_page_to_list(page, from); 1405 unlock_page(page); 1406 if (!rc) { 1407 list_safe_reset_next(page, page2, lru); 1408 goto retry; 1409 } 1410 } 1411 nr_failed++; 1412 goto out; 1413 case -EAGAIN: 1414 retry++; 1415 break; 1416 case MIGRATEPAGE_SUCCESS: 1417 nr_succeeded++; 1418 break; 1419 default: 1420 /* 1421 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1422 * unlike -EAGAIN case, the failed page is 1423 * removed from migration page list and not 1424 * retried in the next outer loop. 1425 */ 1426 nr_failed++; 1427 break; 1428 } 1429 } 1430 } 1431 nr_failed += retry; 1432 rc = nr_failed; 1433 out: 1434 if (nr_succeeded) 1435 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1436 if (nr_failed) 1437 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1438 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1439 1440 if (!swapwrite) 1441 current->flags &= ~PF_SWAPWRITE; 1442 1443 return rc; 1444 } 1445 1446 #ifdef CONFIG_NUMA 1447 1448 static int store_status(int __user *status, int start, int value, int nr) 1449 { 1450 while (nr-- > 0) { 1451 if (put_user(value, status + start)) 1452 return -EFAULT; 1453 start++; 1454 } 1455 1456 return 0; 1457 } 1458 1459 static int do_move_pages_to_node(struct mm_struct *mm, 1460 struct list_head *pagelist, int node) 1461 { 1462 int err; 1463 1464 if (list_empty(pagelist)) 1465 return 0; 1466 1467 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1468 MIGRATE_SYNC, MR_SYSCALL); 1469 if (err) 1470 putback_movable_pages(pagelist); 1471 return err; 1472 } 1473 1474 /* 1475 * Resolves the given address to a struct page, isolates it from the LRU and 1476 * puts it to the given pagelist. 1477 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1478 * queued or the page doesn't need to be migrated because it is already on 1479 * the target node 1480 */ 1481 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1482 int node, struct list_head *pagelist, bool migrate_all) 1483 { 1484 struct vm_area_struct *vma; 1485 struct page *page; 1486 unsigned int follflags; 1487 int err; 1488 1489 down_read(&mm->mmap_sem); 1490 err = -EFAULT; 1491 vma = find_vma(mm, addr); 1492 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1493 goto out; 1494 1495 /* FOLL_DUMP to ignore special (like zero) pages */ 1496 follflags = FOLL_GET | FOLL_DUMP; 1497 page = follow_page(vma, addr, follflags); 1498 1499 err = PTR_ERR(page); 1500 if (IS_ERR(page)) 1501 goto out; 1502 1503 err = -ENOENT; 1504 if (!page) 1505 goto out; 1506 1507 err = 0; 1508 if (page_to_nid(page) == node) 1509 goto out_putpage; 1510 1511 err = -EACCES; 1512 if (page_mapcount(page) > 1 && !migrate_all) 1513 goto out_putpage; 1514 1515 if (PageHuge(page)) { 1516 if (PageHead(page)) { 1517 isolate_huge_page(page, pagelist); 1518 err = 0; 1519 } 1520 } else { 1521 struct page *head; 1522 1523 head = compound_head(page); 1524 err = isolate_lru_page(head); 1525 if (err) 1526 goto out_putpage; 1527 1528 err = 0; 1529 list_add_tail(&head->lru, pagelist); 1530 mod_node_page_state(page_pgdat(head), 1531 NR_ISOLATED_ANON + page_is_file_cache(head), 1532 hpage_nr_pages(head)); 1533 } 1534 out_putpage: 1535 /* 1536 * Either remove the duplicate refcount from 1537 * isolate_lru_page() or drop the page ref if it was 1538 * not isolated. 1539 */ 1540 put_page(page); 1541 out: 1542 up_read(&mm->mmap_sem); 1543 return err; 1544 } 1545 1546 /* 1547 * Migrate an array of page address onto an array of nodes and fill 1548 * the corresponding array of status. 1549 */ 1550 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1551 unsigned long nr_pages, 1552 const void __user * __user *pages, 1553 const int __user *nodes, 1554 int __user *status, int flags) 1555 { 1556 int current_node = NUMA_NO_NODE; 1557 LIST_HEAD(pagelist); 1558 int start, i; 1559 int err = 0, err1; 1560 1561 migrate_prep(); 1562 1563 for (i = start = 0; i < nr_pages; i++) { 1564 const void __user *p; 1565 unsigned long addr; 1566 int node; 1567 1568 err = -EFAULT; 1569 if (get_user(p, pages + i)) 1570 goto out_flush; 1571 if (get_user(node, nodes + i)) 1572 goto out_flush; 1573 addr = (unsigned long)p; 1574 1575 err = -ENODEV; 1576 if (node < 0 || node >= MAX_NUMNODES) 1577 goto out_flush; 1578 if (!node_state(node, N_MEMORY)) 1579 goto out_flush; 1580 1581 err = -EACCES; 1582 if (!node_isset(node, task_nodes)) 1583 goto out_flush; 1584 1585 if (current_node == NUMA_NO_NODE) { 1586 current_node = node; 1587 start = i; 1588 } else if (node != current_node) { 1589 err = do_move_pages_to_node(mm, &pagelist, current_node); 1590 if (err) 1591 goto out; 1592 err = store_status(status, start, current_node, i - start); 1593 if (err) 1594 goto out; 1595 start = i; 1596 current_node = node; 1597 } 1598 1599 /* 1600 * Errors in the page lookup or isolation are not fatal and we simply 1601 * report them via status 1602 */ 1603 err = add_page_for_migration(mm, addr, current_node, 1604 &pagelist, flags & MPOL_MF_MOVE_ALL); 1605 if (!err) 1606 continue; 1607 1608 err = store_status(status, i, err, 1); 1609 if (err) 1610 goto out_flush; 1611 1612 err = do_move_pages_to_node(mm, &pagelist, current_node); 1613 if (err) 1614 goto out; 1615 if (i > start) { 1616 err = store_status(status, start, current_node, i - start); 1617 if (err) 1618 goto out; 1619 } 1620 current_node = NUMA_NO_NODE; 1621 } 1622 out_flush: 1623 if (list_empty(&pagelist)) 1624 return err; 1625 1626 /* Make sure we do not overwrite the existing error */ 1627 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1628 if (!err1) 1629 err1 = store_status(status, start, current_node, i - start); 1630 if (!err) 1631 err = err1; 1632 out: 1633 return err; 1634 } 1635 1636 /* 1637 * Determine the nodes of an array of pages and store it in an array of status. 1638 */ 1639 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1640 const void __user **pages, int *status) 1641 { 1642 unsigned long i; 1643 1644 down_read(&mm->mmap_sem); 1645 1646 for (i = 0; i < nr_pages; i++) { 1647 unsigned long addr = (unsigned long)(*pages); 1648 struct vm_area_struct *vma; 1649 struct page *page; 1650 int err = -EFAULT; 1651 1652 vma = find_vma(mm, addr); 1653 if (!vma || addr < vma->vm_start) 1654 goto set_status; 1655 1656 /* FOLL_DUMP to ignore special (like zero) pages */ 1657 page = follow_page(vma, addr, FOLL_DUMP); 1658 1659 err = PTR_ERR(page); 1660 if (IS_ERR(page)) 1661 goto set_status; 1662 1663 err = page ? page_to_nid(page) : -ENOENT; 1664 set_status: 1665 *status = err; 1666 1667 pages++; 1668 status++; 1669 } 1670 1671 up_read(&mm->mmap_sem); 1672 } 1673 1674 /* 1675 * Determine the nodes of a user array of pages and store it in 1676 * a user array of status. 1677 */ 1678 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1679 const void __user * __user *pages, 1680 int __user *status) 1681 { 1682 #define DO_PAGES_STAT_CHUNK_NR 16 1683 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1684 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1685 1686 while (nr_pages) { 1687 unsigned long chunk_nr; 1688 1689 chunk_nr = nr_pages; 1690 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1691 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1692 1693 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1694 break; 1695 1696 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1697 1698 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1699 break; 1700 1701 pages += chunk_nr; 1702 status += chunk_nr; 1703 nr_pages -= chunk_nr; 1704 } 1705 return nr_pages ? -EFAULT : 0; 1706 } 1707 1708 /* 1709 * Move a list of pages in the address space of the currently executing 1710 * process. 1711 */ 1712 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1713 const void __user * __user *pages, 1714 const int __user *nodes, 1715 int __user *status, int flags) 1716 { 1717 struct task_struct *task; 1718 struct mm_struct *mm; 1719 int err; 1720 nodemask_t task_nodes; 1721 1722 /* Check flags */ 1723 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1724 return -EINVAL; 1725 1726 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1727 return -EPERM; 1728 1729 /* Find the mm_struct */ 1730 rcu_read_lock(); 1731 task = pid ? find_task_by_vpid(pid) : current; 1732 if (!task) { 1733 rcu_read_unlock(); 1734 return -ESRCH; 1735 } 1736 get_task_struct(task); 1737 1738 /* 1739 * Check if this process has the right to modify the specified 1740 * process. Use the regular "ptrace_may_access()" checks. 1741 */ 1742 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1743 rcu_read_unlock(); 1744 err = -EPERM; 1745 goto out; 1746 } 1747 rcu_read_unlock(); 1748 1749 err = security_task_movememory(task); 1750 if (err) 1751 goto out; 1752 1753 task_nodes = cpuset_mems_allowed(task); 1754 mm = get_task_mm(task); 1755 put_task_struct(task); 1756 1757 if (!mm) 1758 return -EINVAL; 1759 1760 if (nodes) 1761 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1762 nodes, status, flags); 1763 else 1764 err = do_pages_stat(mm, nr_pages, pages, status); 1765 1766 mmput(mm); 1767 return err; 1768 1769 out: 1770 put_task_struct(task); 1771 return err; 1772 } 1773 1774 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1775 const void __user * __user *, pages, 1776 const int __user *, nodes, 1777 int __user *, status, int, flags) 1778 { 1779 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1780 } 1781 1782 #ifdef CONFIG_COMPAT 1783 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1784 compat_uptr_t __user *, pages32, 1785 const int __user *, nodes, 1786 int __user *, status, 1787 int, flags) 1788 { 1789 const void __user * __user *pages; 1790 int i; 1791 1792 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1793 for (i = 0; i < nr_pages; i++) { 1794 compat_uptr_t p; 1795 1796 if (get_user(p, pages32 + i) || 1797 put_user(compat_ptr(p), pages + i)) 1798 return -EFAULT; 1799 } 1800 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1801 } 1802 #endif /* CONFIG_COMPAT */ 1803 1804 #ifdef CONFIG_NUMA_BALANCING 1805 /* 1806 * Returns true if this is a safe migration target node for misplaced NUMA 1807 * pages. Currently it only checks the watermarks which crude 1808 */ 1809 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1810 unsigned long nr_migrate_pages) 1811 { 1812 int z; 1813 1814 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1815 struct zone *zone = pgdat->node_zones + z; 1816 1817 if (!populated_zone(zone)) 1818 continue; 1819 1820 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1821 if (!zone_watermark_ok(zone, 0, 1822 high_wmark_pages(zone) + 1823 nr_migrate_pages, 1824 0, 0)) 1825 continue; 1826 return true; 1827 } 1828 return false; 1829 } 1830 1831 static struct page *alloc_misplaced_dst_page(struct page *page, 1832 unsigned long data) 1833 { 1834 int nid = (int) data; 1835 struct page *newpage; 1836 1837 newpage = __alloc_pages_node(nid, 1838 (GFP_HIGHUSER_MOVABLE | 1839 __GFP_THISNODE | __GFP_NOMEMALLOC | 1840 __GFP_NORETRY | __GFP_NOWARN) & 1841 ~__GFP_RECLAIM, 0); 1842 1843 return newpage; 1844 } 1845 1846 /* 1847 * page migration rate limiting control. 1848 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1849 * window of time. Default here says do not migrate more than 1280M per second. 1850 */ 1851 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1852 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1853 1854 /* Returns true if the node is migrate rate-limited after the update */ 1855 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1856 unsigned long nr_pages) 1857 { 1858 /* 1859 * Rate-limit the amount of data that is being migrated to a node. 1860 * Optimal placement is no good if the memory bus is saturated and 1861 * all the time is being spent migrating! 1862 */ 1863 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1864 spin_lock(&pgdat->numabalancing_migrate_lock); 1865 pgdat->numabalancing_migrate_nr_pages = 0; 1866 pgdat->numabalancing_migrate_next_window = jiffies + 1867 msecs_to_jiffies(migrate_interval_millisecs); 1868 spin_unlock(&pgdat->numabalancing_migrate_lock); 1869 } 1870 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1871 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1872 nr_pages); 1873 return true; 1874 } 1875 1876 /* 1877 * This is an unlocked non-atomic update so errors are possible. 1878 * The consequences are failing to migrate when we potentiall should 1879 * have which is not severe enough to warrant locking. If it is ever 1880 * a problem, it can be converted to a per-cpu counter. 1881 */ 1882 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1883 return false; 1884 } 1885 1886 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1887 { 1888 int page_lru; 1889 1890 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1891 1892 /* Avoid migrating to a node that is nearly full */ 1893 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1894 return 0; 1895 1896 if (isolate_lru_page(page)) 1897 return 0; 1898 1899 /* 1900 * migrate_misplaced_transhuge_page() skips page migration's usual 1901 * check on page_count(), so we must do it here, now that the page 1902 * has been isolated: a GUP pin, or any other pin, prevents migration. 1903 * The expected page count is 3: 1 for page's mapcount and 1 for the 1904 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1905 */ 1906 if (PageTransHuge(page) && page_count(page) != 3) { 1907 putback_lru_page(page); 1908 return 0; 1909 } 1910 1911 page_lru = page_is_file_cache(page); 1912 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1913 hpage_nr_pages(page)); 1914 1915 /* 1916 * Isolating the page has taken another reference, so the 1917 * caller's reference can be safely dropped without the page 1918 * disappearing underneath us during migration. 1919 */ 1920 put_page(page); 1921 return 1; 1922 } 1923 1924 bool pmd_trans_migrating(pmd_t pmd) 1925 { 1926 struct page *page = pmd_page(pmd); 1927 return PageLocked(page); 1928 } 1929 1930 /* 1931 * Attempt to migrate a misplaced page to the specified destination 1932 * node. Caller is expected to have an elevated reference count on 1933 * the page that will be dropped by this function before returning. 1934 */ 1935 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1936 int node) 1937 { 1938 pg_data_t *pgdat = NODE_DATA(node); 1939 int isolated; 1940 int nr_remaining; 1941 LIST_HEAD(migratepages); 1942 1943 /* 1944 * Don't migrate file pages that are mapped in multiple processes 1945 * with execute permissions as they are probably shared libraries. 1946 */ 1947 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1948 (vma->vm_flags & VM_EXEC)) 1949 goto out; 1950 1951 /* 1952 * Also do not migrate dirty pages as not all filesystems can move 1953 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1954 */ 1955 if (page_is_file_cache(page) && PageDirty(page)) 1956 goto out; 1957 1958 /* 1959 * Rate-limit the amount of data that is being migrated to a node. 1960 * Optimal placement is no good if the memory bus is saturated and 1961 * all the time is being spent migrating! 1962 */ 1963 if (numamigrate_update_ratelimit(pgdat, 1)) 1964 goto out; 1965 1966 isolated = numamigrate_isolate_page(pgdat, page); 1967 if (!isolated) 1968 goto out; 1969 1970 list_add(&page->lru, &migratepages); 1971 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1972 NULL, node, MIGRATE_ASYNC, 1973 MR_NUMA_MISPLACED); 1974 if (nr_remaining) { 1975 if (!list_empty(&migratepages)) { 1976 list_del(&page->lru); 1977 dec_node_page_state(page, NR_ISOLATED_ANON + 1978 page_is_file_cache(page)); 1979 putback_lru_page(page); 1980 } 1981 isolated = 0; 1982 } else 1983 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1984 BUG_ON(!list_empty(&migratepages)); 1985 return isolated; 1986 1987 out: 1988 put_page(page); 1989 return 0; 1990 } 1991 #endif /* CONFIG_NUMA_BALANCING */ 1992 1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1994 /* 1995 * Migrates a THP to a given target node. page must be locked and is unlocked 1996 * before returning. 1997 */ 1998 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1999 struct vm_area_struct *vma, 2000 pmd_t *pmd, pmd_t entry, 2001 unsigned long address, 2002 struct page *page, int node) 2003 { 2004 spinlock_t *ptl; 2005 pg_data_t *pgdat = NODE_DATA(node); 2006 int isolated = 0; 2007 struct page *new_page = NULL; 2008 int page_lru = page_is_file_cache(page); 2009 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2010 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 2011 2012 /* 2013 * Rate-limit the amount of data that is being migrated to a node. 2014 * Optimal placement is no good if the memory bus is saturated and 2015 * all the time is being spent migrating! 2016 */ 2017 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 2018 goto out_dropref; 2019 2020 new_page = alloc_pages_node(node, 2021 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2022 HPAGE_PMD_ORDER); 2023 if (!new_page) 2024 goto out_fail; 2025 prep_transhuge_page(new_page); 2026 2027 isolated = numamigrate_isolate_page(pgdat, page); 2028 if (!isolated) { 2029 put_page(new_page); 2030 goto out_fail; 2031 } 2032 2033 /* Prepare a page as a migration target */ 2034 __SetPageLocked(new_page); 2035 if (PageSwapBacked(page)) 2036 __SetPageSwapBacked(new_page); 2037 2038 /* anon mapping, we can simply copy page->mapping to the new page: */ 2039 new_page->mapping = page->mapping; 2040 new_page->index = page->index; 2041 migrate_page_copy(new_page, page); 2042 WARN_ON(PageLRU(new_page)); 2043 2044 /* Recheck the target PMD */ 2045 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2046 ptl = pmd_lock(mm, pmd); 2047 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2048 spin_unlock(ptl); 2049 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2050 2051 /* Reverse changes made by migrate_page_copy() */ 2052 if (TestClearPageActive(new_page)) 2053 SetPageActive(page); 2054 if (TestClearPageUnevictable(new_page)) 2055 SetPageUnevictable(page); 2056 2057 unlock_page(new_page); 2058 put_page(new_page); /* Free it */ 2059 2060 /* Retake the callers reference and putback on LRU */ 2061 get_page(page); 2062 putback_lru_page(page); 2063 mod_node_page_state(page_pgdat(page), 2064 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2065 2066 goto out_unlock; 2067 } 2068 2069 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2070 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2071 2072 /* 2073 * Clear the old entry under pagetable lock and establish the new PTE. 2074 * Any parallel GUP will either observe the old page blocking on the 2075 * page lock, block on the page table lock or observe the new page. 2076 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2077 * guarantee the copy is visible before the pagetable update. 2078 */ 2079 flush_cache_range(vma, mmun_start, mmun_end); 2080 page_add_anon_rmap(new_page, vma, mmun_start, true); 2081 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2082 set_pmd_at(mm, mmun_start, pmd, entry); 2083 update_mmu_cache_pmd(vma, address, &entry); 2084 2085 page_ref_unfreeze(page, 2); 2086 mlock_migrate_page(new_page, page); 2087 page_remove_rmap(page, true); 2088 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2089 2090 spin_unlock(ptl); 2091 /* 2092 * No need to double call mmu_notifier->invalidate_range() callback as 2093 * the above pmdp_huge_clear_flush_notify() did already call it. 2094 */ 2095 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2096 2097 /* Take an "isolate" reference and put new page on the LRU. */ 2098 get_page(new_page); 2099 putback_lru_page(new_page); 2100 2101 unlock_page(new_page); 2102 unlock_page(page); 2103 put_page(page); /* Drop the rmap reference */ 2104 put_page(page); /* Drop the LRU isolation reference */ 2105 2106 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2108 2109 mod_node_page_state(page_pgdat(page), 2110 NR_ISOLATED_ANON + page_lru, 2111 -HPAGE_PMD_NR); 2112 return isolated; 2113 2114 out_fail: 2115 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2116 out_dropref: 2117 ptl = pmd_lock(mm, pmd); 2118 if (pmd_same(*pmd, entry)) { 2119 entry = pmd_modify(entry, vma->vm_page_prot); 2120 set_pmd_at(mm, mmun_start, pmd, entry); 2121 update_mmu_cache_pmd(vma, address, &entry); 2122 } 2123 spin_unlock(ptl); 2124 2125 out_unlock: 2126 unlock_page(page); 2127 put_page(page); 2128 return 0; 2129 } 2130 #endif /* CONFIG_NUMA_BALANCING */ 2131 2132 #endif /* CONFIG_NUMA */ 2133 2134 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2135 struct migrate_vma { 2136 struct vm_area_struct *vma; 2137 unsigned long *dst; 2138 unsigned long *src; 2139 unsigned long cpages; 2140 unsigned long npages; 2141 unsigned long start; 2142 unsigned long end; 2143 }; 2144 2145 static int migrate_vma_collect_hole(unsigned long start, 2146 unsigned long end, 2147 struct mm_walk *walk) 2148 { 2149 struct migrate_vma *migrate = walk->private; 2150 unsigned long addr; 2151 2152 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2153 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2154 migrate->dst[migrate->npages] = 0; 2155 migrate->npages++; 2156 migrate->cpages++; 2157 } 2158 2159 return 0; 2160 } 2161 2162 static int migrate_vma_collect_skip(unsigned long start, 2163 unsigned long end, 2164 struct mm_walk *walk) 2165 { 2166 struct migrate_vma *migrate = walk->private; 2167 unsigned long addr; 2168 2169 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2170 migrate->dst[migrate->npages] = 0; 2171 migrate->src[migrate->npages++] = 0; 2172 } 2173 2174 return 0; 2175 } 2176 2177 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2178 unsigned long start, 2179 unsigned long end, 2180 struct mm_walk *walk) 2181 { 2182 struct migrate_vma *migrate = walk->private; 2183 struct vm_area_struct *vma = walk->vma; 2184 struct mm_struct *mm = vma->vm_mm; 2185 unsigned long addr = start, unmapped = 0; 2186 spinlock_t *ptl; 2187 pte_t *ptep; 2188 2189 again: 2190 if (pmd_none(*pmdp)) 2191 return migrate_vma_collect_hole(start, end, walk); 2192 2193 if (pmd_trans_huge(*pmdp)) { 2194 struct page *page; 2195 2196 ptl = pmd_lock(mm, pmdp); 2197 if (unlikely(!pmd_trans_huge(*pmdp))) { 2198 spin_unlock(ptl); 2199 goto again; 2200 } 2201 2202 page = pmd_page(*pmdp); 2203 if (is_huge_zero_page(page)) { 2204 spin_unlock(ptl); 2205 split_huge_pmd(vma, pmdp, addr); 2206 if (pmd_trans_unstable(pmdp)) 2207 return migrate_vma_collect_skip(start, end, 2208 walk); 2209 } else { 2210 int ret; 2211 2212 get_page(page); 2213 spin_unlock(ptl); 2214 if (unlikely(!trylock_page(page))) 2215 return migrate_vma_collect_skip(start, end, 2216 walk); 2217 ret = split_huge_page(page); 2218 unlock_page(page); 2219 put_page(page); 2220 if (ret) 2221 return migrate_vma_collect_skip(start, end, 2222 walk); 2223 if (pmd_none(*pmdp)) 2224 return migrate_vma_collect_hole(start, end, 2225 walk); 2226 } 2227 } 2228 2229 if (unlikely(pmd_bad(*pmdp))) 2230 return migrate_vma_collect_skip(start, end, walk); 2231 2232 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2233 arch_enter_lazy_mmu_mode(); 2234 2235 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2236 unsigned long mpfn, pfn; 2237 struct page *page; 2238 swp_entry_t entry; 2239 pte_t pte; 2240 2241 pte = *ptep; 2242 pfn = pte_pfn(pte); 2243 2244 if (pte_none(pte)) { 2245 mpfn = MIGRATE_PFN_MIGRATE; 2246 migrate->cpages++; 2247 pfn = 0; 2248 goto next; 2249 } 2250 2251 if (!pte_present(pte)) { 2252 mpfn = pfn = 0; 2253 2254 /* 2255 * Only care about unaddressable device page special 2256 * page table entry. Other special swap entries are not 2257 * migratable, and we ignore regular swapped page. 2258 */ 2259 entry = pte_to_swp_entry(pte); 2260 if (!is_device_private_entry(entry)) 2261 goto next; 2262 2263 page = device_private_entry_to_page(entry); 2264 mpfn = migrate_pfn(page_to_pfn(page))| 2265 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2266 if (is_write_device_private_entry(entry)) 2267 mpfn |= MIGRATE_PFN_WRITE; 2268 } else { 2269 if (is_zero_pfn(pfn)) { 2270 mpfn = MIGRATE_PFN_MIGRATE; 2271 migrate->cpages++; 2272 pfn = 0; 2273 goto next; 2274 } 2275 page = _vm_normal_page(migrate->vma, addr, pte, true); 2276 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2277 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2278 } 2279 2280 /* FIXME support THP */ 2281 if (!page || !page->mapping || PageTransCompound(page)) { 2282 mpfn = pfn = 0; 2283 goto next; 2284 } 2285 pfn = page_to_pfn(page); 2286 2287 /* 2288 * By getting a reference on the page we pin it and that blocks 2289 * any kind of migration. Side effect is that it "freezes" the 2290 * pte. 2291 * 2292 * We drop this reference after isolating the page from the lru 2293 * for non device page (device page are not on the lru and thus 2294 * can't be dropped from it). 2295 */ 2296 get_page(page); 2297 migrate->cpages++; 2298 2299 /* 2300 * Optimize for the common case where page is only mapped once 2301 * in one process. If we can lock the page, then we can safely 2302 * set up a special migration page table entry now. 2303 */ 2304 if (trylock_page(page)) { 2305 pte_t swp_pte; 2306 2307 mpfn |= MIGRATE_PFN_LOCKED; 2308 ptep_get_and_clear(mm, addr, ptep); 2309 2310 /* Setup special migration page table entry */ 2311 entry = make_migration_entry(page, mpfn & 2312 MIGRATE_PFN_WRITE); 2313 swp_pte = swp_entry_to_pte(entry); 2314 if (pte_soft_dirty(pte)) 2315 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2316 set_pte_at(mm, addr, ptep, swp_pte); 2317 2318 /* 2319 * This is like regular unmap: we remove the rmap and 2320 * drop page refcount. Page won't be freed, as we took 2321 * a reference just above. 2322 */ 2323 page_remove_rmap(page, false); 2324 put_page(page); 2325 2326 if (pte_present(pte)) 2327 unmapped++; 2328 } 2329 2330 next: 2331 migrate->dst[migrate->npages] = 0; 2332 migrate->src[migrate->npages++] = mpfn; 2333 } 2334 arch_leave_lazy_mmu_mode(); 2335 pte_unmap_unlock(ptep - 1, ptl); 2336 2337 /* Only flush the TLB if we actually modified any entries */ 2338 if (unmapped) 2339 flush_tlb_range(walk->vma, start, end); 2340 2341 return 0; 2342 } 2343 2344 /* 2345 * migrate_vma_collect() - collect pages over a range of virtual addresses 2346 * @migrate: migrate struct containing all migration information 2347 * 2348 * This will walk the CPU page table. For each virtual address backed by a 2349 * valid page, it updates the src array and takes a reference on the page, in 2350 * order to pin the page until we lock it and unmap it. 2351 */ 2352 static void migrate_vma_collect(struct migrate_vma *migrate) 2353 { 2354 struct mm_walk mm_walk; 2355 2356 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2357 mm_walk.pte_entry = NULL; 2358 mm_walk.pte_hole = migrate_vma_collect_hole; 2359 mm_walk.hugetlb_entry = NULL; 2360 mm_walk.test_walk = NULL; 2361 mm_walk.vma = migrate->vma; 2362 mm_walk.mm = migrate->vma->vm_mm; 2363 mm_walk.private = migrate; 2364 2365 mmu_notifier_invalidate_range_start(mm_walk.mm, 2366 migrate->start, 2367 migrate->end); 2368 walk_page_range(migrate->start, migrate->end, &mm_walk); 2369 mmu_notifier_invalidate_range_end(mm_walk.mm, 2370 migrate->start, 2371 migrate->end); 2372 2373 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2374 } 2375 2376 /* 2377 * migrate_vma_check_page() - check if page is pinned or not 2378 * @page: struct page to check 2379 * 2380 * Pinned pages cannot be migrated. This is the same test as in 2381 * migrate_page_move_mapping(), except that here we allow migration of a 2382 * ZONE_DEVICE page. 2383 */ 2384 static bool migrate_vma_check_page(struct page *page) 2385 { 2386 /* 2387 * One extra ref because caller holds an extra reference, either from 2388 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2389 * a device page. 2390 */ 2391 int extra = 1; 2392 2393 /* 2394 * FIXME support THP (transparent huge page), it is bit more complex to 2395 * check them than regular pages, because they can be mapped with a pmd 2396 * or with a pte (split pte mapping). 2397 */ 2398 if (PageCompound(page)) 2399 return false; 2400 2401 /* Page from ZONE_DEVICE have one extra reference */ 2402 if (is_zone_device_page(page)) { 2403 /* 2404 * Private page can never be pin as they have no valid pte and 2405 * GUP will fail for those. Yet if there is a pending migration 2406 * a thread might try to wait on the pte migration entry and 2407 * will bump the page reference count. Sadly there is no way to 2408 * differentiate a regular pin from migration wait. Hence to 2409 * avoid 2 racing thread trying to migrate back to CPU to enter 2410 * infinite loop (one stoping migration because the other is 2411 * waiting on pte migration entry). We always return true here. 2412 * 2413 * FIXME proper solution is to rework migration_entry_wait() so 2414 * it does not need to take a reference on page. 2415 */ 2416 if (is_device_private_page(page)) 2417 return true; 2418 2419 /* 2420 * Only allow device public page to be migrated and account for 2421 * the extra reference count imply by ZONE_DEVICE pages. 2422 */ 2423 if (!is_device_public_page(page)) 2424 return false; 2425 extra++; 2426 } 2427 2428 /* For file back page */ 2429 if (page_mapping(page)) 2430 extra += 1 + page_has_private(page); 2431 2432 if ((page_count(page) - extra) > page_mapcount(page)) 2433 return false; 2434 2435 return true; 2436 } 2437 2438 /* 2439 * migrate_vma_prepare() - lock pages and isolate them from the lru 2440 * @migrate: migrate struct containing all migration information 2441 * 2442 * This locks pages that have been collected by migrate_vma_collect(). Once each 2443 * page is locked it is isolated from the lru (for non-device pages). Finally, 2444 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2445 * migrated by concurrent kernel threads. 2446 */ 2447 static void migrate_vma_prepare(struct migrate_vma *migrate) 2448 { 2449 const unsigned long npages = migrate->npages; 2450 const unsigned long start = migrate->start; 2451 unsigned long addr, i, restore = 0; 2452 bool allow_drain = true; 2453 2454 lru_add_drain(); 2455 2456 for (i = 0; (i < npages) && migrate->cpages; i++) { 2457 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2458 bool remap = true; 2459 2460 if (!page) 2461 continue; 2462 2463 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2464 /* 2465 * Because we are migrating several pages there can be 2466 * a deadlock between 2 concurrent migration where each 2467 * are waiting on each other page lock. 2468 * 2469 * Make migrate_vma() a best effort thing and backoff 2470 * for any page we can not lock right away. 2471 */ 2472 if (!trylock_page(page)) { 2473 migrate->src[i] = 0; 2474 migrate->cpages--; 2475 put_page(page); 2476 continue; 2477 } 2478 remap = false; 2479 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2480 } 2481 2482 /* ZONE_DEVICE pages are not on LRU */ 2483 if (!is_zone_device_page(page)) { 2484 if (!PageLRU(page) && allow_drain) { 2485 /* Drain CPU's pagevec */ 2486 lru_add_drain_all(); 2487 allow_drain = false; 2488 } 2489 2490 if (isolate_lru_page(page)) { 2491 if (remap) { 2492 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2493 migrate->cpages--; 2494 restore++; 2495 } else { 2496 migrate->src[i] = 0; 2497 unlock_page(page); 2498 migrate->cpages--; 2499 put_page(page); 2500 } 2501 continue; 2502 } 2503 2504 /* Drop the reference we took in collect */ 2505 put_page(page); 2506 } 2507 2508 if (!migrate_vma_check_page(page)) { 2509 if (remap) { 2510 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2511 migrate->cpages--; 2512 restore++; 2513 2514 if (!is_zone_device_page(page)) { 2515 get_page(page); 2516 putback_lru_page(page); 2517 } 2518 } else { 2519 migrate->src[i] = 0; 2520 unlock_page(page); 2521 migrate->cpages--; 2522 2523 if (!is_zone_device_page(page)) 2524 putback_lru_page(page); 2525 else 2526 put_page(page); 2527 } 2528 } 2529 } 2530 2531 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2532 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2533 2534 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2535 continue; 2536 2537 remove_migration_pte(page, migrate->vma, addr, page); 2538 2539 migrate->src[i] = 0; 2540 unlock_page(page); 2541 put_page(page); 2542 restore--; 2543 } 2544 } 2545 2546 /* 2547 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2548 * @migrate: migrate struct containing all migration information 2549 * 2550 * Replace page mapping (CPU page table pte) with a special migration pte entry 2551 * and check again if it has been pinned. Pinned pages are restored because we 2552 * cannot migrate them. 2553 * 2554 * This is the last step before we call the device driver callback to allocate 2555 * destination memory and copy contents of original page over to new page. 2556 */ 2557 static void migrate_vma_unmap(struct migrate_vma *migrate) 2558 { 2559 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2560 const unsigned long npages = migrate->npages; 2561 const unsigned long start = migrate->start; 2562 unsigned long addr, i, restore = 0; 2563 2564 for (i = 0; i < npages; i++) { 2565 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2566 2567 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2568 continue; 2569 2570 if (page_mapped(page)) { 2571 try_to_unmap(page, flags); 2572 if (page_mapped(page)) 2573 goto restore; 2574 } 2575 2576 if (migrate_vma_check_page(page)) 2577 continue; 2578 2579 restore: 2580 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2581 migrate->cpages--; 2582 restore++; 2583 } 2584 2585 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2586 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2587 2588 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2589 continue; 2590 2591 remove_migration_ptes(page, page, false); 2592 2593 migrate->src[i] = 0; 2594 unlock_page(page); 2595 restore--; 2596 2597 if (is_zone_device_page(page)) 2598 put_page(page); 2599 else 2600 putback_lru_page(page); 2601 } 2602 } 2603 2604 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2605 unsigned long addr, 2606 struct page *page, 2607 unsigned long *src, 2608 unsigned long *dst) 2609 { 2610 struct vm_area_struct *vma = migrate->vma; 2611 struct mm_struct *mm = vma->vm_mm; 2612 struct mem_cgroup *memcg; 2613 bool flush = false; 2614 spinlock_t *ptl; 2615 pte_t entry; 2616 pgd_t *pgdp; 2617 p4d_t *p4dp; 2618 pud_t *pudp; 2619 pmd_t *pmdp; 2620 pte_t *ptep; 2621 2622 /* Only allow populating anonymous memory */ 2623 if (!vma_is_anonymous(vma)) 2624 goto abort; 2625 2626 pgdp = pgd_offset(mm, addr); 2627 p4dp = p4d_alloc(mm, pgdp, addr); 2628 if (!p4dp) 2629 goto abort; 2630 pudp = pud_alloc(mm, p4dp, addr); 2631 if (!pudp) 2632 goto abort; 2633 pmdp = pmd_alloc(mm, pudp, addr); 2634 if (!pmdp) 2635 goto abort; 2636 2637 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2638 goto abort; 2639 2640 /* 2641 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2642 * pte_offset_map() on pmds where a huge pmd might be created 2643 * from a different thread. 2644 * 2645 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2646 * parallel threads are excluded by other means. 2647 * 2648 * Here we only have down_read(mmap_sem). 2649 */ 2650 if (pte_alloc(mm, pmdp, addr)) 2651 goto abort; 2652 2653 /* See the comment in pte_alloc_one_map() */ 2654 if (unlikely(pmd_trans_unstable(pmdp))) 2655 goto abort; 2656 2657 if (unlikely(anon_vma_prepare(vma))) 2658 goto abort; 2659 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2660 goto abort; 2661 2662 /* 2663 * The memory barrier inside __SetPageUptodate makes sure that 2664 * preceding stores to the page contents become visible before 2665 * the set_pte_at() write. 2666 */ 2667 __SetPageUptodate(page); 2668 2669 if (is_zone_device_page(page)) { 2670 if (is_device_private_page(page)) { 2671 swp_entry_t swp_entry; 2672 2673 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2674 entry = swp_entry_to_pte(swp_entry); 2675 } else if (is_device_public_page(page)) { 2676 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2677 if (vma->vm_flags & VM_WRITE) 2678 entry = pte_mkwrite(pte_mkdirty(entry)); 2679 entry = pte_mkdevmap(entry); 2680 } 2681 } else { 2682 entry = mk_pte(page, vma->vm_page_prot); 2683 if (vma->vm_flags & VM_WRITE) 2684 entry = pte_mkwrite(pte_mkdirty(entry)); 2685 } 2686 2687 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2688 2689 if (pte_present(*ptep)) { 2690 unsigned long pfn = pte_pfn(*ptep); 2691 2692 if (!is_zero_pfn(pfn)) { 2693 pte_unmap_unlock(ptep, ptl); 2694 mem_cgroup_cancel_charge(page, memcg, false); 2695 goto abort; 2696 } 2697 flush = true; 2698 } else if (!pte_none(*ptep)) { 2699 pte_unmap_unlock(ptep, ptl); 2700 mem_cgroup_cancel_charge(page, memcg, false); 2701 goto abort; 2702 } 2703 2704 /* 2705 * Check for usefaultfd but do not deliver the fault. Instead, 2706 * just back off. 2707 */ 2708 if (userfaultfd_missing(vma)) { 2709 pte_unmap_unlock(ptep, ptl); 2710 mem_cgroup_cancel_charge(page, memcg, false); 2711 goto abort; 2712 } 2713 2714 inc_mm_counter(mm, MM_ANONPAGES); 2715 page_add_new_anon_rmap(page, vma, addr, false); 2716 mem_cgroup_commit_charge(page, memcg, false, false); 2717 if (!is_zone_device_page(page)) 2718 lru_cache_add_active_or_unevictable(page, vma); 2719 get_page(page); 2720 2721 if (flush) { 2722 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2723 ptep_clear_flush_notify(vma, addr, ptep); 2724 set_pte_at_notify(mm, addr, ptep, entry); 2725 update_mmu_cache(vma, addr, ptep); 2726 } else { 2727 /* No need to invalidate - it was non-present before */ 2728 set_pte_at(mm, addr, ptep, entry); 2729 update_mmu_cache(vma, addr, ptep); 2730 } 2731 2732 pte_unmap_unlock(ptep, ptl); 2733 *src = MIGRATE_PFN_MIGRATE; 2734 return; 2735 2736 abort: 2737 *src &= ~MIGRATE_PFN_MIGRATE; 2738 } 2739 2740 /* 2741 * migrate_vma_pages() - migrate meta-data from src page to dst page 2742 * @migrate: migrate struct containing all migration information 2743 * 2744 * This migrates struct page meta-data from source struct page to destination 2745 * struct page. This effectively finishes the migration from source page to the 2746 * destination page. 2747 */ 2748 static void migrate_vma_pages(struct migrate_vma *migrate) 2749 { 2750 const unsigned long npages = migrate->npages; 2751 const unsigned long start = migrate->start; 2752 struct vm_area_struct *vma = migrate->vma; 2753 struct mm_struct *mm = vma->vm_mm; 2754 unsigned long addr, i, mmu_start; 2755 bool notified = false; 2756 2757 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2758 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2759 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2760 struct address_space *mapping; 2761 int r; 2762 2763 if (!newpage) { 2764 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2765 continue; 2766 } 2767 2768 if (!page) { 2769 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2770 continue; 2771 } 2772 if (!notified) { 2773 mmu_start = addr; 2774 notified = true; 2775 mmu_notifier_invalidate_range_start(mm, 2776 mmu_start, 2777 migrate->end); 2778 } 2779 migrate_vma_insert_page(migrate, addr, newpage, 2780 &migrate->src[i], 2781 &migrate->dst[i]); 2782 continue; 2783 } 2784 2785 mapping = page_mapping(page); 2786 2787 if (is_zone_device_page(newpage)) { 2788 if (is_device_private_page(newpage)) { 2789 /* 2790 * For now only support private anonymous when 2791 * migrating to un-addressable device memory. 2792 */ 2793 if (mapping) { 2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2795 continue; 2796 } 2797 } else if (!is_device_public_page(newpage)) { 2798 /* 2799 * Other types of ZONE_DEVICE page are not 2800 * supported. 2801 */ 2802 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2803 continue; 2804 } 2805 } 2806 2807 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2808 if (r != MIGRATEPAGE_SUCCESS) 2809 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2810 } 2811 2812 /* 2813 * No need to double call mmu_notifier->invalidate_range() callback as 2814 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2815 * did already call it. 2816 */ 2817 if (notified) 2818 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2819 migrate->end); 2820 } 2821 2822 /* 2823 * migrate_vma_finalize() - restore CPU page table entry 2824 * @migrate: migrate struct containing all migration information 2825 * 2826 * This replaces the special migration pte entry with either a mapping to the 2827 * new page if migration was successful for that page, or to the original page 2828 * otherwise. 2829 * 2830 * This also unlocks the pages and puts them back on the lru, or drops the extra 2831 * refcount, for device pages. 2832 */ 2833 static void migrate_vma_finalize(struct migrate_vma *migrate) 2834 { 2835 const unsigned long npages = migrate->npages; 2836 unsigned long i; 2837 2838 for (i = 0; i < npages; i++) { 2839 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2840 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2841 2842 if (!page) { 2843 if (newpage) { 2844 unlock_page(newpage); 2845 put_page(newpage); 2846 } 2847 continue; 2848 } 2849 2850 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2851 if (newpage) { 2852 unlock_page(newpage); 2853 put_page(newpage); 2854 } 2855 newpage = page; 2856 } 2857 2858 remove_migration_ptes(page, newpage, false); 2859 unlock_page(page); 2860 migrate->cpages--; 2861 2862 if (is_zone_device_page(page)) 2863 put_page(page); 2864 else 2865 putback_lru_page(page); 2866 2867 if (newpage != page) { 2868 unlock_page(newpage); 2869 if (is_zone_device_page(newpage)) 2870 put_page(newpage); 2871 else 2872 putback_lru_page(newpage); 2873 } 2874 } 2875 } 2876 2877 /* 2878 * migrate_vma() - migrate a range of memory inside vma 2879 * 2880 * @ops: migration callback for allocating destination memory and copying 2881 * @vma: virtual memory area containing the range to be migrated 2882 * @start: start address of the range to migrate (inclusive) 2883 * @end: end address of the range to migrate (exclusive) 2884 * @src: array of hmm_pfn_t containing source pfns 2885 * @dst: array of hmm_pfn_t containing destination pfns 2886 * @private: pointer passed back to each of the callback 2887 * Returns: 0 on success, error code otherwise 2888 * 2889 * This function tries to migrate a range of memory virtual address range, using 2890 * callbacks to allocate and copy memory from source to destination. First it 2891 * collects all the pages backing each virtual address in the range, saving this 2892 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2893 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2894 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2895 * in the corresponding src array entry. It then restores any pages that are 2896 * pinned, by remapping and unlocking those pages. 2897 * 2898 * At this point it calls the alloc_and_copy() callback. For documentation on 2899 * what is expected from that callback, see struct migrate_vma_ops comments in 2900 * include/linux/migrate.h 2901 * 2902 * After the alloc_and_copy() callback, this function goes over each entry in 2903 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2904 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2905 * then the function tries to migrate struct page information from the source 2906 * struct page to the destination struct page. If it fails to migrate the struct 2907 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2908 * array. 2909 * 2910 * At this point all successfully migrated pages have an entry in the src 2911 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2912 * array entry with MIGRATE_PFN_VALID flag set. 2913 * 2914 * It then calls the finalize_and_map() callback. See comments for "struct 2915 * migrate_vma_ops", in include/linux/migrate.h for details about 2916 * finalize_and_map() behavior. 2917 * 2918 * After the finalize_and_map() callback, for successfully migrated pages, this 2919 * function updates the CPU page table to point to new pages, otherwise it 2920 * restores the CPU page table to point to the original source pages. 2921 * 2922 * Function returns 0 after the above steps, even if no pages were migrated 2923 * (The function only returns an error if any of the arguments are invalid.) 2924 * 2925 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2926 * unsigned long entries. 2927 */ 2928 int migrate_vma(const struct migrate_vma_ops *ops, 2929 struct vm_area_struct *vma, 2930 unsigned long start, 2931 unsigned long end, 2932 unsigned long *src, 2933 unsigned long *dst, 2934 void *private) 2935 { 2936 struct migrate_vma migrate; 2937 2938 /* Sanity check the arguments */ 2939 start &= PAGE_MASK; 2940 end &= PAGE_MASK; 2941 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2942 vma_is_dax(vma)) 2943 return -EINVAL; 2944 if (start < vma->vm_start || start >= vma->vm_end) 2945 return -EINVAL; 2946 if (end <= vma->vm_start || end > vma->vm_end) 2947 return -EINVAL; 2948 if (!ops || !src || !dst || start >= end) 2949 return -EINVAL; 2950 2951 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2952 migrate.src = src; 2953 migrate.dst = dst; 2954 migrate.start = start; 2955 migrate.npages = 0; 2956 migrate.cpages = 0; 2957 migrate.end = end; 2958 migrate.vma = vma; 2959 2960 /* Collect, and try to unmap source pages */ 2961 migrate_vma_collect(&migrate); 2962 if (!migrate.cpages) 2963 return 0; 2964 2965 /* Lock and isolate page */ 2966 migrate_vma_prepare(&migrate); 2967 if (!migrate.cpages) 2968 return 0; 2969 2970 /* Unmap pages */ 2971 migrate_vma_unmap(&migrate); 2972 if (!migrate.cpages) 2973 return 0; 2974 2975 /* 2976 * At this point pages are locked and unmapped, and thus they have 2977 * stable content and can safely be copied to destination memory that 2978 * is allocated by the callback. 2979 * 2980 * Note that migration can fail in migrate_vma_struct_page() for each 2981 * individual page. 2982 */ 2983 ops->alloc_and_copy(vma, src, dst, start, end, private); 2984 2985 /* This does the real migration of struct page */ 2986 migrate_vma_pages(&migrate); 2987 2988 ops->finalize_and_map(vma, src, dst, start, end, private); 2989 2990 /* Unlock and remap pages */ 2991 migrate_vma_finalize(&migrate); 2992 2993 return 0; 2994 } 2995 EXPORT_SYMBOL(migrate_vma); 2996 #endif /* defined(MIGRATE_VMA_HELPER) */ 2997